elektroniknet.de

New RTOS embOS-Ultra

Real-Time Operating System - Saving Energy Without a System Tick

28. Mdrz 2022, 6:00 Uhr | Frank Riemenschneider

(Bild: everythingpossible/stock.adobe.com)

Almost 40 years after the introduction of the first RTOS for embedded
systems, Segger Microcontroller presents embOS-Ultra, a completely new
approach in scheduling. The advantages compared to conventional RTOS
include higher precision and more energy-efficient operation - effectively
by default.

In the embedded world, where demand for »hard« real-time applications is the rule
rather than the exception, the use of a real-time operating system (RTOS) has be-
come more and more common. The reason for this is simple: Studies in software
engineering in the 80s showed that the highest increase in productivity in software
development is achieved through reuse.

Before discussing the specific innovations and advantages of embOS-Ultra com-
pared to all conventional RTOSes known so far, the use of an RTOS in the embed-
ded world shall be discussed in general for a better understanding.

Even in a comparatively simple application like the control of a washing machine,
temperatures and pressures have to be measured and motors and pumps have to
be controlled. One implementation without RTOS is the so-called super-loop archi-
tecture — also known as »bare-metal programming«. Here, there is no operating
system, and the structure is quite simple: In the main() function, one sets up all vari-
ables, drivers, libraries, etc., and then executes one or more periodic tasks in a while
loop (Figure 7).

Super Loop
External events must be programmed e
at the interrupt level of the processor, Thread 1
which communicates with functions
from the main loop via global variables. lihlncusc
There are always dependencies be- Zeit Thread 3 i
tween data, time, functions and priori-
ties. A large problem occurs, if program il
parts from the main loop are extended,
then the time behavior of the whole vers
application changes. It is also difficult | Vordergrund

to process a program in a priority-ori-
ented way with this approach.

Thread &4

Disturbances in one function means | , |
. Figure 1. In the super-loop architecture, there is no

all others are also affected, making the operating system. In the main() function, one or more
System Very error-prone Further dis- periodic tasks are executed in a while loop.

' . © Segger Microcontroller
advantages are the loss of computing
time by polling and missing multitask-
Ing, since an intervention into the program sequence is possible only by interrupts.

Of course, there are other challenges such as the manual management of re-
sources, e.g. timers, interfaces, memory and computing time, which all have to be
shared.

Advantages of Using an RTOS

The use of an RTOS eliminates the described disadvantages, since the
operating system takes care of all these tasks, such as resource management.
The application is divided up by the programmer into so-called threads,
whereby a high degree of modularity is achieved. Tasks that are to run with
different priorities are implemented as separate threads (Figure 2).

Each thread has a specific state at any
point In time. proi Prora
The three basic states are:

Running: the thread is executing.
On a single-core microcontroller, of
course, only one thread can be in
the Running state at any given time,
since there is only one CPU availa- _—

ble. Events Reléll-TiTe —‘A‘uswahl
. Signals/Messages erne
Ready: The tasks in the Ready state o Tt]

are ready to run and are waiting for
the CPU to allocate them. | -
Waiting: The tasks are not ready 1o peue2I0en 108 tespplestonis dvdedto
run at the moment. Only once cer- implemented as separate threads.

tain events have occurred, e.qg. data

s available or a certain time has

been reached, do the threads become Ready.

The central switching point of the RTOS is the scheduler. It determines which
thread gets the CPU allocated. All threads must be executed before their deadline to
avoid problems. The deadline is the maximum permissible time, which may pass
from the arrival of an event to the completion of the associated function, without
causing issues.

Threads can be executed virtually concurrently, even if the embedded systerm on
which they run has only a single CPU. This is done in one of two ways: time-slicing
or priority-driven scheduling. Most RTOSes, such as Segger's embOS, allow both
types of scheduling to be combined.

Time-Slice Driven and Priority Driven Scheduling

In a time-slice system, also known as a »round-robin« scheduling system, all
threads that are ready to execute are executed for a specified time, the time slice.
Then, the next thread is executed for a specified amount of time — usually the
same amount. In this way, all threads share the CPU equally. A time slice is usually
one ms or a multiple of one ms.

The disadvantage of the time-slice approach is that the execution of a given task
can take several time slices, i.e, a few ms or even dozens of ms. This is not critical
for things like the user interface (Ul). The user will not notice a delay of, say, 10 ms
In response.

However, for a network stack that can operate in a separate thread, this can be
critical. If the network stack takes that much time to respond, it may not be able to
complete its task.

The solution to this is priority-driven scheduling, where more time-critical tasks
have a higher priority than less time-critical tasks. In this example, the Ul task would
have a lower priority than the network task. The network task can wait for an event
in this way. The event can be triggered by an ethernet interrupt when a data packet
is received. This allows the RTOS to immediately activate the network task, which
can then immediately process and respond to the incoming packet.

Another advantage of using an RTOS that should not be underestimated is hard-
ware abstraction: Especially now in the chip crisis, for example, the importance of
portability of applications from one hardware platform to another has become ap-
parent. Whereas with in-house developments you are locked into a specific control-
ler regardless of the higher development and maintenance effort, Segger's embOS,
for example, supports almost 1,000 different microcontrollers, making it very easy
to switch without having to change the application. How this looks in practice has
been described by a well-known industrial company in electronics [1].

The RTOS Revolution: Cycle-Resolution-Scheduling of embOS-Ultra

The scheduler of all RTOSes, from the 1980s to today, works with a system tick,
which is the basic time unit. So every time specification is given in multiples of
ticks, where users can configure the distance between these ticks individually, usu-
ally for example to 1 millisecond. This then means that a hardware timer is pro-
grammed to generate an interrupt 1000 times per second, indicating the expiration
of one millisecond each time. Although T millisecond already sounds high-reso-
lution and fast, there was still a need for improvement given the requirements of
modern embedded systems.

embOS-Ultra's revolutionary clock-cycle-based scheduling changes the fundamen-
tal time unit of the system, dramatically increasing the resolution of the scheduling.
Instead of relying on the traditional system tick, embOS-Ultra internally uses clock
cycles for all operations. Time-based operations such as for task delays or soft-
ware timers, which previously could only be specified in multiples of ticks, can now
be specified in clock cycles as a result. In addition, users of embOS-Ultra can now
use system-independent, high-resolution units such as microseconds or even na-
noseconds for time-based operations in one and the same application instead of
just system ticks.

Advantages of embOS-Ultra in Practical Use

The cycle resolution scheduling of embOS-Ultra brings two decisive advantages
to the developer: Higher precision and lower energy consumption. First, temporal
seqguences become more accurate.

=~ 4.5ms

In most RTOSes, for example, a Delay(5) . ' _
will interrupt the operation of the corre- o : s
sponding thread for a time between 4 ol I o e e e]

opp- . Time
and 5 milliseconds — depending on how o5 hsK 1oy Task oty o
far away the next tick of the system is. 5 : e
Why is this? A programmed delay can- o | IE
. . ask

not end between two system tick inter- e [D
rupts, but only with the next system tick S T— Tk o
interrupt, which then triggers the sched- | | _.

. Figure 3. An example for the higher precision of em-
uler <F|gure 3, above). bOS-Ultra. A delay of 5ms can in reality only last 4.5

ms with a conventional RTOS, because a programmed

. delay cannot end between two system tick interrupts,
Therefore, tasks that are to be interrupt- bt only with the next system tick interrupt, which then

ed for g DGHOd shorter than a System triggers the scheduler (top). With emb0OS-Ultra, on
. . . _ the other hand, the programmed delay is kept exactly
tick can only achieve this by actively (bottorn).

waiting via polling of the hardware timer ~ © Segger Microcontroller

until the desired period has elapsed. In

embOS-Ultra with cycle-based resolution, however, a Delay_ms(5) results in exactly
5 mes interruption time (Figure 3, below).

Energy Saving by Default

And then there is the energy saving effect. Semiconductor manufacturers spend a
ot of effort year after year on the development of even more energy saving micro-
controllers. With embOS-Ultra you get energy savings quasi out-of-the-box.

Even if there is only one thread executing for several consecutive system ticks, the
system tick interrupt will still occur periodically, thus »wasting« computing time
(Figure 4, above). In addition, the status of the CPU, i.e, register contents and flags,
must also be saved to the stack beforehand and then restored, which also con-
sumes computing time.

In the same way, for example, a CPU that is in energy-saving mode when no
threads are being executed must be switched back to active mode each time in
order to execute the interrupt service routine. This also costs computing time and
thus energy, which can be saved with embOS-Ultra. With embOS-Ultra, the CPU
simply stays in energy-saving mode longer and is only woken up when there is
something to do again (Figure 4, below).

~4.5ms

"
SysTick

RTOS Task

* SysTick width

50ms et lo seale.

SysTick™

RTOS Task []] éj_.—-:

T
Task Delay

05_TASK_Delay_us(5080); Expiration

Figure 4. With embOS-Ultra (bottom), the CPU stays in
energy-saving mode significantly longer and is woken
up less often by interrupts (red). The result is more
computing power for the application and less energy
consumption.

© Segger Microcontroller

embOS-Ultra Internal

Many applications today use the system tick to count the number of interrupts
since system startup, either to display them in a web interface or to use them in
short loops with timeouts. The simple »Tick Counts, which gives the number of
timer ticks since system startup, has disappeared in embOS-Ultra. In clock cy-
cle-based scheduling, the timer interrupt is still used, but it is not periodic. Instead,
It is a single-shot timer that is programmed to generate a timer interrupt exactly
when it is needed.

However, in embOS-Ultra there is a way to replace the traditional Tick Count.
Namely, to replicate the tick count, one can query the cycle-based time and divide it
by the clock frequency, e.q., for a 400 MHz system, calculate OS_TIME_GetCycles()
/ 400000. To simplify things even more, there is even an API function for this that
returns this value, conveniently named OS_TIME_GetTime_ms().

Most simple RTOSes simply use a hardware timer configured to generate peri-
odic interrupts, typically just once per millisecond. embOS-Ultra basically uses

two hardware timers. One timer is used for long-term stability. This timer runs in
continuous mode and does not generate interrupts. The other timer operates in
single-shot mode, i.e. it counts down from a configured value to O or from 0 to a
configured counter limit and then generates a single interrupt. If a timer is used that
first counts from O to a configured limit, and then continues from there to the next
configurable limit, even one hardware timer is sufficient for embOS-Ultra operation.
However, most embedded systems have more than enough hardware timers avail-
able, so even using two timers is usually not a problem.

Unlike conventional RTOSes, embOS-Ultra calculates the number of clock cycles

with 64-bit values instead of 32-bit values, which are still sufficient for counting sys-
tem ticks. The resulting performance loss is minimal and not significant on modern
32-bit CPUs in practice.

The fears of 64-bit values overflowing after a certain time are also unfounded: Even
on an extremely fast CPU with T GHz, an overflow occurs after 264 clock cycles,
which corresponds to about 585 years.

Easy Migration from a Conventional RTOS

In embOS-Ultra, the existing API has been left unchanged compared to embOS.
Existing functions therefore behave the same in the new clock-cycle-based em-
bOS-Ultra as they do in traditional embOS. This means that API functions such
as OS_TASK_Delay() still result in the same millisecond-based timing, ensuring
that the timing of an application migrating from embOS to embOS-Ultra does not
change.

However, to take advantage of the new functionality, functions such as OS_TASK_
Delay_ms(), OS_TASK_Delay_us(), OS_TASK_Delay_Cycles() have been added to
the API to provide much more accurate timing. The same was done for the soft-
ware timers provided by the RTOS,

The result is the best of both worlds: more accurate timing for modified and/or en-
hanced applications, while maintaining 100 % compatibility for applications that are
not to be modified.

Energy and Resource Efficiency Are the Drivers

One of Segger's corporate goals is to be and remain carbon neutral. This also
means making its own products — the market-leading debug probes J-Link, J-Trace
and Flasher are worth mentioning here — even more energy-efficient, although they
already consume less energy overall than some fans alone in competitor products.
To achieve this goal, among other things, the RTOS was also targeted and with em-
bOS-Ultra the desired result of saving even more energy were achieved.

For many years Segger has not only sold embOS to customers, but also used it
as well as other components of the all-in-one embedded OS emPower OS in the
J-Links and Flashers. Thus Segger is the first beneficiary of any improvement in
the emPower OS and provides its customers with products that have already been
proven in practice at Segger itself.

embOS-Ultra is available for many CPU and compiler combinations, including of
course ARM Cortex-A/R/M and RISC-V.

An embOS-Ultra port also includes a variety of board support packages for differ-
ent devices and evaluation boards. This allows users to put embOS-Ultra directly
Into operation without any additional effort.

Last but not least, embOS-Ultra has been optimized for minimal memory con-
sumption in RAM and ROM as well as for high speed and versatility. Throughout
the development process of embOS-Ultra the limited resources of microcontrollers
were always kept in mind. The internal structure has been optimized in a variety of
applications with different customers to meet industry requirements. Due to the
high level of modularity, only the functions that are needed are included in an appli-
cation, keeping the ROM size very small. A few files are included as source code to
ensure that customers do not lose flexibility and can fully customize the system to
their needs.

