
emUSB-Device
USB Device stack

User Guide & Reference Manual

Document: UM09001
Software Version: 3.64.2

Revision: 0
Date: May 16, 2024

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/emUSB-Device.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2024 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: ticket_emusb@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

As of version 3.00 the history has been reset. Older history entries can be found in older versions
of this document.

Print date: May 16, 2024

Software Date By Description

3.64.2 2024-05-16 RH Update to latest software version.

3.64.1 2024-04-09 RH Updated section PSoC6 driver.

3.64.0 2024-02-13 RH Updated section Compile-time configuration.
Added section C++ Host API.

3.62.0 2023-11-21 RH Update to latest software version.

3.60.4 2023-10-18 RH Update to latest software version.

3.60.2 2023-07-10 YR Update to latest software version.

3.60.1 2023-06-30 RH Update to latest software version.

3.60.0 2023-04-12 RH Link Power Management (LPM)
 • Added function USBD_SetLPMResponse().

3.58.0 2023-02-28 YR MTP class:
 • Added function USBD_MTP_SetOperationCb().

3.56.0 2023-01-12 RH

Link Power Management (LPM)
 • Added function USBD_GetDeviceState().
 • Added function USBD_SetBESLValues().
 • Added function USBD_SetOnLPMChange().
MTP class:
 • Added function USBD_MTP_RemoveStorage().

3.54.0 2022-12-07 RH Update to latest software version.

3.52.2 2022-10-25 RH Added functions USB_DRIVER_Cypress_PSoC6_SysTick() and USB_DRIVER_Cy-
press_PSoC6_Resume().

3.52.1 2022-08-24 SR Updated section PSoC6 driver.

3.52.0 2022-08-15 RH
Added section Link Power Management (LPM).
HID class:
 • Added functions USBD_HID_Receive() and USBD_HID_ReceivePoll().

3.50.2 2022-06-23 RH Updated section Giga Device GD32F4xx driver (high-speed controller).

3.50.1 2022-06-01 RH Updated section Giga Device GD32F4xx driver (full-speed controller).

3.50.0 2022-05-13 RH

BULK and VSC class
 • Update section Example Application.
Communication Device Class (CDC)
 • Updated driver requirements for Host system
Updated section Synopsys DWC2 driver (DMA mode)

3.46.4 2022-03-14 SR

Core functions:
 • Added function USBD_SetOnSOF().
Getting Started:
 • Wrong path to emUSB-Device was used (USBD instead of USB).

3.46.3 2022-02-22 YR MTP class:
 • Added function USBD_MTP_SetObjectAllocFailCb().

3.46.0 2021-10-15 RH Added section Low power mode.

3.44.0 2021-09-17 RH Added description for USB_ON_CLASS_REQUEST and USB_ON_SETUP.

3.42.1 2021-07-29 RH Added section Giga Device GD32F450 driver.

3.42.0 2021-07-12 RH HID class:
 • Added function USBD_HID_AddEx().

3.40.0 2021-03-31 RH Add new chapter Vendor Specific Class (VSC).

3.38.0 2021-01-29 RH DFU class:
 • Added function USBD_DFU_AddAlternateInterface().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

4

Software Date By Description
Printer class:
 • Added function USB_PRINTER_SetClass().

3.36.3 2020-12-18 YR Update to latest software version.

3.36.2 2020-12-15 RH

BULK class:
 • Added function USBD_BULK_PollForTX().
CDC class:
 • Added functions USBD_CDC_PollForRX(), USBD_CDC_PollForTX() and USBD_CD-
C_ReceivePoll().
Added new section Timeout handling
Update to latest software version.

3.36.1 2020-10-30 YR Update to latest software version.

3.36.0 2020-10-12 YR
Audio class:
 • Updated API with new function and structure names.
Update to latest software version.

3.34.3 2020-08-25 YR Update to latest software version.

3.34.2 2020-07-23 YR Update to latest software version.

3.34.1 2020-06-10 RH Added section Synopsys DWC2 driver (DMA mode)

3.34.0 2020-03-20 RH BULK class:
 • Added function USBD_BULK_AddAlternateInterface().

3.32.0 2020-02-26 RH Added CCID chapter.

3.30.0 2020-01-27 YR Added MIDI chapter.

3.28.1 2019-12-13 YR Update to latest software version.
HID class: Added USBHID_Read() and USBHID_Write() functions.

3.28.0 2019-11-29 YR Printer class:
 • Added function USB_PRINTER_SetOnVendorRequest().

3.26 2019-08-30 RH

USB Core:
 • Added function USBD_GetVersion().
 • Added function USBD_SetCheckAddress().
UVC class:
 • Added function USBD_UVC_WriteEx().

3.24 2019-07-01 RH Added chapter USB Device Firmware Upgrade (DFU)

3.22 2019-06-17 RH

BULK class:
 • Added function USBD_BULK_PollForRX().
 • Added function USBD_BULK_ReceivePoll().
USB Core:
 • Added function USBD_WaitForEndOfTransferEx().
 • Added function USBD_ReceivePoll().
 • Added function USBD_EnableSuperSpeed().
 • Added function USBD_SetWebUSBInfo().
MSD class:
 • Added function USBD_MSD_Poll().
Add section XHCI driver
Add chapter USB Video device Class (UVC)

3.20 2019-05-15 YR

Update to latest software version.
SmartMSD was renamed to VirtualMSD. Function prefixes changed from “SMSD” to
“VMSD”.
HID class: Added USBD_HID_ReadReport() function.

3.18b 2019-03-04 YR Update to latest software version.

3.18a 2019-02-28 YR

Update to latest software version.
Bulk Host API:
 • Removed USBBULK_ResetPipe()
 • Added USBBULK_ResetINPipe()
 • Added USBBULK_ResetOUTPipe()
 • USBBULK_DEV_INFO received an additional member - “Speed”

3.18 2018-11-26 RH Update to latest software version.

3.16 2018-10-05 YR
Update to latest software version.
MTP class:
 • USBD_MTP_SendEvent() description updated.

3.14 2018-07-19 RH
Added section Device driver specifics on page 732
BULK class:
 • Added functions USBD_BULK_ReadAsync() and USBD_BULK_WriteAsync().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

5

Software Date By Description
CDC class:
 • Added functions USBD_CDC_ReadAsync() and USBD_CDC_WriteAsync().

3.12 2018-05-04 RH

USB Core:
 • Added function USBD_RemoveOnEvent().
 • Removed functions USBD_SetLogFunc() and USBD_SetWarnFunc().
Audio class:
 • Added function USBD_AUDIO_Read_Task().
 • Added function USBD_AUDIO_Write_Task().

3.10 2018-03-22 RH

BULK class:
 • Added function USBD_BULK_Add_Ex().
Update to latest software version.
Added Audio chapter.

3.08 2018-02-12 RH
USB Core:
 • Added function USBD_RegisterSCHook().
 • Added function USBD_AddEPEx().

3.06e 2018-01-12 RH Update to latest software version.

3.06d 2017-12-19 YR Update to latest software version.

3.06c 2017-12-04 RH USB Core:
 • Added I/O functions.

3.06b 2017-10-13 YR Update to latest software version.
Corrected USBD_WriteEP0FromISR name (was USB__WriteEP0FromISR).

3.06 2017-09-15 RH

Printer class:
 • Added function USB_PRINTER_ConfigIRQProcessing().
 • Added function USB_PRINTER_TaskEx().
USB Core:
 • Added USBD_SetCacheConfig().
Chapter “Getting started” revised.

3.04 2017-07-24 YR Update to latest software version.
Added chapter “emUSB-Device-IP”

3.02q 2017-07-17 YR Update to latest software version.

3.02p 2017-07-14 RH Update to latest software version.

3.02o 2017-07-10 YR
Chapter Combining USB components:
 • Added information on the MSD+MTP combination feature.
Added Chapter “Profiling with SystemView”.

3.02o 2017-07-01 RH Major revision of the manual.
 • Manual converted to text processor emDoc.

3.02n 2017-06-12 SR Update to latest software version.

3.02m 2017-06-08 RH Update to latest software version.

3.02l 2017-06-02 SR Update to latest software version.

3.02k 2017-04-10 RH Function USBD_AddEP(): Parameter ’Interval’ changed.

3.02j 2017-03-01 RH Update to latest software version.

3.02i 2017-01-26 SR Update to latest software version.

3.02h 2017-01-26 SR Update to latest software version.

3.02g 2017-01-23 SR Update to latest software version.

3.02f 2017-01-04 RH Update to latest software version.

3.02e 2016-12-15 RH Update to latest software version.

3.02d 2016-11-18 RH Update to latest software version.

3.02c 2016-11-03 RH Update to latest software version.

3.02b 2016-10-28 RH Chapter VirtualMSD:
 • Renamed functions according to the emUSB V3 conventions.

3.02a 2016-10-18 RH Update to latest software version.

3.02 2016-10-07 SR

Chapter CDC:
 • Updated Overview - Added Windows 10 Support.
 • Updated Installing the driver. Section verification combined with Installing dri-
ver.
 • Updated section The .inf file

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

6

Software Date By Description
 • Added new section: Signing the package
 • Testing communication to the USB device updated.

3.02 2016-09-30 RH

Chapter CDC Data structures:
 • Removed CTS from USB_CDC_SERIAL_STATE.
Chapter BULK communication:
 • Removed description of the Segger USB driver(not necessary any more)
 • BULK host API and sample applications support for Linux and MacOSX added.
 • Added new function USBD_BULK_SetMSDescInfo().
 • Added new function USBBULK_GetDevInfoByIdx().
 • Removed description of deprecated host API functions.
Chapter VirtualMSD:
 • Added memory usage calculation.
Many minor corrections.

3.00g 2016-08-22 RH

Update to latest software version.
Chapter Target OS Interface:
 • New advanced OS layer interface.
Chapter Mass Storage Device Class (MSD):
 • Added new function USBD_MSD_RequestRefresh()

3.00f 2016-07-20 YR

Update to latest software version.
Chapter VirtualMSD:
 • Changed function prefix to VMSD.
 • Removed obsolete functions.

3.00e 2016-07-08 RH Update to latest software version.

3.00d 2016-06-08 YR Update to latest software version.

3.00c 2016-05-23 YR
Update to latest software version.
Chapter Bulk communication:
 • Added paragraph “Writing your own host driver”.

3.00b 2016-04-27 YR Update to latest software version.

3.00a 2016-04-15 SR

Chapter USB Core functions:
 • Updated prototype for USBD_SetMaxPower.
Chapter HID:
 • Added new function for Setting a callback for SET_REPORT.
Chapter Debugging:
 • Changed all prototypes from USB_* to USBD_*.

3.00 2016-02-12 YR Initial Version

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

7

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (compiler, linker, Integrated Development

Environment).
• The C programming language.
• The target processor.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

8

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

9

Table of contents

1 Introduction ..26

1.1 Overview ...27
1.2 emUSB-Device features .. 28
1.3 emUSB-Device components ... 29

1.3.1 emUSB-Device-Bulk ...29
1.3.2 emUSB-Device-MSD .. 29

1.3.2.1 Purpose of emUSB-Device-MSD ..29
1.3.2.2 Typical applications ...30
1.3.2.3 emUSB-Device-MSD features ... 30
1.3.2.4 How does it work? ... 30

1.3.3 emUSB-Device IP-over-USB ..31
1.3.3.1 Typical applications ...31

1.3.4 emUSB-Device-VirtualMSD ... 31
1.3.4.1 Typical applications ...31

1.3.5 emUSB-Device-CDC ...31
1.3.5.1 Typical applications ...31

1.3.6 emUSB-Device-HID ... 31
1.3.6.1 Typical applications ...31

1.3.7 emUSB-Device-MTP ... 32
1.3.7.1 Typical applications ...32

1.3.8 emUSB-Device-Printer ..32
1.3.8.1 Typical applications ...32

1.3.9 emUSB-Device-RNDIS ..32
1.3.9.1 Typical applications ...32

1.3.10 emUSB-Device-CDC-ECM ..33
1.3.10.1 Typical applications ...33

1.4 Requirements .. 34
1.4.1 Target system ...34
1.4.2 Development environment (compiler) .. 34

1.5 File structure ... 35
1.6 Multithreading ..36

2 Background information .. 37

2.1 USB ..38
2.1.1 Short Overview ...38
2.1.2 Important USB Standard Versions ... 38
2.1.3 USB System Architecture ... 39
2.1.4 Transfer Types .. 41
2.1.5 Setup phase / Enumeration .. 41
2.1.6 Product / Vendor IDs ... 41

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

10

2.2 Predefined device classes ..42
2.3 USB hardware analyzers ... 43
2.4 References .. 44

3 Getting started .. 45

3.1 How to setup your target system ...46
3.1.1 Take a running project ...46
3.1.2 Add emUSB-Device files ...46
3.1.3 Configuring debugging output ...46
3.1.4 Add hardware dependent configuration .. 47
3.1.5 Prepare and run the application .. 47

3.2 Updating emUSB-Device ... 49
3.3 emUSB-Device Configuration ... 50

3.3.1 USB_DEVICE_INFO ..50
3.3.2 Additional required configuration for emUSB-MSD51
3.3.3 Descriptors ...51

3.4 Compile-time configuration ..53
3.4.1 Compile-time switches for debugging ...53

3.4.1.1 USB_DEBUG_LEVEL .. 53
3.4.1.2 USB_LOG_BUFFER_SIZE ... 53

3.4.2 Use of standard C-library functions ... 53
3.4.3 General USB configuration ..54

3.4.3.1 USB_SUPPORT_TRANSFER_ISO ..54
3.4.3.2 USB_SUPPORT_TEST_MODE .. 54
3.4.3.3 USB_NUM_EPS ...54
3.4.3.4 USB_MAX_NUM_IF ... 54
3.4.3.5 USB_MAX_NUM_ALT_IF ...54
3.4.3.6 USB_DESC_BUFFER_SIZE ..55
3.4.3.7 USBD_SUPPORT_PROFILE ..55
3.4.3.8 USBD_OS_USE_USBD_X_INTERRUPT ..55
3.4.3.9 USBD_OS_USE_ISR_FLAG ... 56

3.5 Host OS specifics ... 57
3.5.1 Windows registry .. 57

3.5.1.1 Cleaning the Windows registry ...57

4 USB Core ..58

4.1 Overview ...59
4.2 Target API ...60

4.2.1 USB basic functions ...63
4.2.1.1 USBD_GetState() ... 63
4.2.1.2 USBD_GetSpeed() .. 64
4.2.1.3 USBD_GetDeviceState() .. 65
4.2.1.4 USBD_Init() ...66
4.2.1.5 USBD_IsConfigured() ..67
4.2.1.6 USBD_Start() .. 68
4.2.1.7 USBD_Stop() ... 69
4.2.1.8 USBD_DeInit() ...70
4.2.1.9 USBD_GetVersion() .. 71

4.2.2 USB configuration functions ..72
4.2.2.1 USBD_AddDriver() ..72
4.2.2.2 USBD_SetISREnableFunc() .. 73
4.2.2.3 USBD_SetAttachFunc() ... 74
4.2.2.4 USBD_AddEP() ...75
4.2.2.5 USBD_AddEPEx() ... 76
4.2.2.6 USBD_SetDeviceInfo() .. 77
4.2.2.7 USBD_SetClassRequestHook() ..78
4.2.2.8 USBD_SetVendorRequestHook() ... 79
4.2.2.9 USBD_SetIsSelfPowered() ... 80
4.2.2.10 USBD_SetMaxPower() ... 81

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

11

4.2.2.11 USBD_SetOnEvent() ... 82
4.2.2.12 USBD_RemoveOnEvent() ... 84
4.2.2.13 USBD_SetOnRxEP0() .. 85
4.2.2.14 USBD_SetOnRXHookEP() ... 86
4.2.2.15 USBD_SetOnSetup() ... 87
4.2.2.16 USBD_SetOnSetupHook() .. 88
4.2.2.17 USBD_SetOnSOF() ..89
4.2.2.18 USBD_RemoveOnSOF() ... 90
4.2.2.19 USBD_WriteEP0FromISR() ... 91
4.2.2.20 USBD_EnableIAD() ... 92
4.2.2.21 USBD_SetCacheConfig() .. 93
4.2.2.22 USBD_RegisterSCHook() ..94
4.2.2.23 USBD_AssignMemory() ..95
4.2.2.24 USBD_UseV210() ... 96
4.2.2.25 USBD_SetBESLValues() ... 97
4.2.2.26 USBD_SetOnLPMChange() ... 98
4.2.2.27 USBD_SetLPMResponse() .. 99
4.2.2.28 USBD_EnableSuperSpeed() .. 100
4.2.2.29 USBD_SetWebUSBInfo() .. 101
4.2.2.30 USBD_SetCheckAddress() .. 102
4.2.2.31 USBD_SetGetStringHook() ... 103

4.2.3 USB I/O functions ... 104
4.2.3.1 USBD_Read() ...104
4.2.3.2 USBD_ReadOverlapped() ... 105
4.2.3.3 USBD_Receive() ... 106
4.2.3.4 USBD_ReceivePoll() .. 107
4.2.3.5 USBD_ReadAsync() ...108
4.2.3.6 USBD_Write() .. 109
4.2.3.7 USBD_WriteAsync() .. 110
4.2.3.8 USBD_CancelIO() ... 111
4.2.3.9 USBD_WaitForEndOfTransferEx() .. 112
4.2.3.10 USBD_WaitForTXReady() ... 113
4.2.3.11 USBD_GetNumBytesInBuffer() ..114
4.2.3.12 USBD_GetNumBytesRemToRead() ... 115
4.2.3.13 USBD_GetNumBytesRemToWrite() .. 116
4.2.3.14 USBD_StallEP() .. 117

4.2.4 USB Remote wakeup functions ..118
4.2.4.1 USBD_SetAllowRemoteWakeUp() .. 119
4.2.4.2 USBD_DoRemoteWakeup() .. 120

4.2.5 Data structures ... 121
4.2.5.1 USB_ADD_EP_INFO .. 121
4.2.5.2 USB_SETUP_PACKET ...122
4.2.5.3 SEGGER_CACHE_CONFIG .. 123
4.2.5.4 USB_CHECK_ADDRESS_FUNC .. 124
4.2.5.5 USB_ASYNC_IO_CONTEXT ... 125
4.2.5.6 USB_WEBUSB_INFO ... 126

4.2.6 Function Types ..127
4.2.6.1 USB_ON_CLASS_REQUEST .. 127
4.2.6.2 USB_ON_SETUP ... 128
4.2.6.3 USB_GET_STRING_FUNC ...129
4.2.6.4 USB_ON_LPM_CHANGE ... 130

4.3 Timeout handling ... 131
4.4 Low power mode ..132

4.4.1 USB suspend .. 132
4.4.2 Link Power Management (LPM) ... 133

5 Bulk communication ..134

5.1 Generic bulk stack ..135
5.2 Requirements for the Host (PC) ... 136

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

12

5.2.1 Windows .. 136
5.2.2 Linux ... 136
5.2.3 macOS ... 136

5.3 Example application ..137
5.3.1 Running the example applications ..137
5.3.2 Compiling the PC example application ..138

5.3.2.1 Windows ... 138
5.3.2.2 Linux .. 139
5.3.2.3 macOS .. 139

5.4 Target API ... 140
5.4.1 Target interface function list ... 140
5.4.2 USB-Bulk functions .. 142

5.4.2.1 USBD_BULK_Add() ... 142
5.4.2.2 USBD_BULK_Add_Ex() .. 143
5.4.2.3 USBD_BULK_AddAlternateInterface() 144
5.4.2.4 USBD_BULK_SetMSDescInfo() ..145
5.4.2.5 USBD_BULK_CancelRead() ...146
5.4.2.6 USBD_BULK_CancelWrite() .. 147
5.4.2.7 USBD_BULK_GetNumBytesInBuffer() 148
5.4.2.8 USBD_BULK_GetNumBytesRemToRead()149
5.4.2.9 USBD_BULK_GetNumBytesRemToWrite() 150
5.4.2.10 USBD_BULK_Read() .. 151
5.4.2.11 USBD_BULK_ReadAsync() ..152
5.4.2.12 USBD_BULK_ReadOverlapped() .. 153
5.4.2.13 USBD_BULK_Receive() .. 154
5.4.2.14 USBD_BULK_ReceivePoll() ..155
5.4.2.15 USBD_BULK_SetContinuousReadMode()156
5.4.2.16 USBD_BULK_SetOnSetupRequest() 157
5.4.2.17 USBD_BULK_SetOnRXEvent() ...158
5.4.2.18 USBD_BULK_SetOnTXEvent() ... 160
5.4.2.19 USBD_BULK_TxIsPending() .. 162
5.4.2.20 USBD_BULK_WaitForRX() ...163
5.4.2.21 USBD_BULK_PollForRX() .. 164
5.4.2.22 USBD_BULK_WaitForTX() ...165
5.4.2.23 USBD_BULK_PollForTX() .. 166
5.4.2.24 USBD_BULK_WaitForTXReady() .. 167
5.4.2.25 USBD_BULK_Write() ..168
5.4.2.26 USBD_BULK_WriteAsync() ... 170
5.4.2.27 USBD_BULK_WriteEx() .. 171

5.4.3 Data structures ... 172
5.4.3.1 USB_BULK_INIT_DATA .. 172
5.4.3.2 USB_BULK_INIT_DATA_EX ...173

5.5 C Host API .. 174
5.5.1 Bulk Host API list .. 175
5.5.2 USB-Bulk basic functions ..177

5.5.2.1 USBBULK_Init() ..177
5.5.2.2 USBBULK_Exit() ... 178
5.5.2.3 USBBULK_AddAllowedDeviceItem() ...179
5.5.2.4 USBBULK_GetNumAvailableDevices() 180
5.5.2.5 USBBULK_Open() ... 181
5.5.2.6 USBBULK_Close() ... 182

5.5.3 USB-Bulk direct input/output functions ...183
5.5.3.1 USBBULK_Read() ..183
5.5.3.2 USBBULK_ReadTimed() ... 184
5.5.3.3 USBBULK_Write() ... 185
5.5.3.4 USBBULK_WriteTimed() ...186
5.5.3.5 USBBULK_CancelRead() .. 187
5.5.3.6 USBBULK_FlushRx() ..188

5.5.4 USB-Bulk control functions ... 189
5.5.4.1 USBBULK_SetMode() ...189

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

13

5.5.4.2 USBBULK_GetMode() .. 190
5.5.4.3 USBBULK_SetReadTimeout() ..191
5.5.4.4 USBBULK_SetWriteTimeout() ..192
5.5.4.5 USBBULK_ResetINPipe() ..193
5.5.4.6 USBBULK_ResetOUTPipe() ... 194
5.5.4.7 USBBULK_ResetDevice() ..195

5.5.5 USB-Bulk general GET functions ..196
5.5.5.1 USBBULK_GetVersion() ... 196
5.5.5.2 USBBULK_GetDevInfo() ...197
5.5.5.3 USBBULK_GetDevInfoByIdx() ...198
5.5.5.4 USBBULK_GetUSBId() ... 199
5.5.5.5 USBBULK_GetProductName() ... 200
5.5.5.6 USBBULK_GetVendorName() .. 201
5.5.5.7 USBBULK_GetSN() ..202
5.5.5.8 USBBULK_GetConfigDescriptor() ...203

5.5.6 USB-Bulk data structures ... 204
5.5.6.1 USBBULK_DEV_INFO ...204

6 Vendor Specific Class (VSC) ..205

6.1 Vendor Specific Class ..206
6.2 Requirements for the Host (PC) ... 207

6.2.1 Windows .. 207
6.2.2 Linux ... 207
6.2.3 macOS ... 207

6.3 Example application ..208
6.3.1 Running the example applications ..208
6.3.2 Compiling the PC example application ..209

6.3.2.1 Windows ... 209
6.3.2.2 Linux .. 209
6.3.2.3 macOS .. 209

6.4 Target API ... 210
6.4.1 Target interface function list ... 210
6.4.2 USB-VSC functions .. 212

6.4.2.1 USBD_VSC_Add() ... 212
6.4.2.2 USBD_VSC_AddAlternateInterface() ..213
6.4.2.3 USBD_VSC_CancelIO() ..214
6.4.2.4 USBD_VSC_GetNumBytesInBuffer() .. 215
6.4.2.5 USBD_VSC_GetNumBytesRemToRead() 216
6.4.2.6 USBD_VSC_GetNumBytesRemToWrite()217
6.4.2.7 USBD_VSC_Read() ... 218
6.4.2.8 USBD_VSC_ReadAsync() ... 220
6.4.2.9 USBD_VSC_SetContinuousReadMode() 221
6.4.2.10 USBD_VSC_SetOnSetupRequest() ...222
6.4.2.11 USBD_VSC_SetOnEPEvent() ...223
6.4.2.12 USBD_VSC_TxIsPending() ..227
6.4.2.13 USBD_VSC_WaitEP() ... 228
6.4.2.14 USBD_VSC_PollEP() .. 229
6.4.2.15 USBD_VSC_WaitForTXReady() .. 231
6.4.2.16 USBD_VSC_Write() ... 232
6.4.2.17 USBD_VSC_WriteAsync() ... 234

6.4.3 Data structures ... 235
6.4.3.1 USB_VSC_INIT_DATA ..235
6.4.3.2 USB_VSC_MSOSDESC_INFO .. 236
6.4.3.3 USB_VSC_ON_ADD_FUNCTION_DESC 237
6.4.3.4 USB_VSC_ON_SET_INTERFACE .. 238

6.5 C++ Host API ..239

7 Mass Storage Device Class (MSD) ..240

7.1 Overview ...241

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

14

7.2 MSD Configuration ..242
7.2.1 Initial configuration ..242
7.2.2 Final configuration ... 242
7.2.3 MSD class specific configuration functions ...242
7.2.4 Running the example application ...242

7.2.4.1 MSD_Start_StorageRAM.c in detail ..243
7.3 Target API ... 244

7.3.1 API functions .. 246
7.3.1.1 USBD_MSD_Add() .. 246
7.3.1.2 USBD_MSD_AddUnit() ...247
7.3.1.3 USBD_MSD_AddCDRom() .. 248
7.3.1.4 USBD_MSD_SetPreventAllowRemovalHook() 249
7.3.1.5 USBD_MSD_SetReadWriteHook() ..250
7.3.1.6 USBD_MSD_Task() ..251
7.3.1.7 USBD_MSD_Poll() ...252
7.3.1.8 USBD_MSD_PollEx() ... 253
7.3.1.9 USBD_MSD_SetStartStopUnitHook() 254

7.3.2 Extended API functions .. 255
7.3.2.1 USBD_MSD_Connect() .. 255
7.3.2.2 USBD_MSD_Disconnect() ...256
7.3.2.3 USBD_MSD_RequestDisconnect() ..257
7.3.2.4 USBD_MSD_RequestRefresh() .. 258
7.3.2.5 USBD_MSD_UpdateWriteProtect() ...259
7.3.2.6 USBD_MSD_WaitForDisconnection() .. 260

7.3.3 Data structures ... 261
7.3.3.1 USB_MSD_INIT_DATA ... 261
7.3.3.2 USB_MSD_INFO ... 262
7.3.3.3 USB_MSD_INST_DATA .. 263
7.3.3.4 USB_MSD_LUN_INFO .. 264
7.3.3.5 PREVENT_ALLOW_REMOVAL_HOOK ...265
7.3.3.6 READ_WRITE_HOOK ... 266
7.3.3.7 USB_MSD_INST_DATA_DRIVER .. 267
7.3.3.8 USB_MSD_STORAGE_API .. 269
7.3.3.9 START_STOP_UNIT_HOOK ... 270

7.4 MSD Storage Driver ..271
7.4.1 General information ... 271

7.4.1.1 Supported storage types ... 271
7.4.1.2 Storage drivers supplied with this release 271

7.4.2 Interface function list ...271
7.4.3 USB_MSD_STORAGE_API in detail ... 272

7.4.3.1 USB_MSD_STORAGE_INIT ... 272
7.4.3.2 USB_MSD_STORAGE_GETINFO ...273
7.4.3.3 USB_MSD_STORAGE_GETREADBUFFER 274
7.4.3.4 USB_MSD_STORAGE_READ ..275
7.4.3.5 USB_MSD_STORAGE_GETWRITEBUFFER276
7.4.3.6 USB_MSD_STORAGE_WRITE .. 277
7.4.3.7 USB_MSD_STORAGE_MEDIUMISPRESENT278
7.4.3.8 USB_MSD_STORAGE_DEINIT ... 279

8 Virtual Mass Storage Component (VirtualMSD) ... 280

8.1 Overview ...281
8.2 Configuration ... 282

8.2.1 Initial configuration ..282
8.2.2 Final configuration ... 282
8.2.3 Class specific configuration functions ... 282

8.2.3.1 USB_VMSD_X_Config() ... 283
8.2.4 Running the example application ...283
8.2.5 Calculation of RAM memory usage for VirtualMSD284

8.3 Target API ... 286

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

15

8.3.1 API functions .. 287
8.3.1.1 USBD_VMSD_Add() .. 287
8.3.1.2 USB_VMSD_X_Config() ... 288
8.3.1.3 USBD_VMSD_AssignMemory() ..289
8.3.1.4 USBD_VMSD_SetUserAPI() .. 290
8.3.1.5 USBD_VMSD_SetNumRootDirSectors() 291
8.3.1.6 USBD_VMSD_SetVolumeInfo() ... 292
8.3.1.7 USBD_VMSD_AddConstFiles() .. 293
8.3.1.8 USBD_VMSD_SetNumSectors() .. 294
8.3.1.9 USBD_VMSD_SetSectorsPerCluster()295

8.3.2 Data structures ... 296
8.3.2.1 USB_VMSD_CONST_FILE ...296
8.3.2.2 USB_VMSD_USER_FUNC_API ... 297
8.3.2.3 USB_VMSD_FILE_INFO ..298
8.3.2.4 USB_VMSD_DIR_ENTRY_SHORT ... 299

8.3.3 Function definitions ..301
8.3.3.1 USB_VMSD_ON_READ_FUNC ... 301
8.3.3.2 USB_VMSD_ON_WRITE_FUNC ..302
8.3.3.3 USB_VMSD_MEM_ALLOC ... 303
8.3.3.4 USB_VMSD_MEM_FREE ... 304

9 Media Transfer Protocol Class (MTP) .. 305

9.1 Overview ...306
9.1.1 Getting access to files ..307
9.1.2 Additional information .. 310

9.2 Configuration ... 311
9.2.1 Initial configuration ..311
9.2.2 Final configuration ... 311
9.2.3 emFile and MTP configuration for UTF8 characters 311
9.2.4 Class specific configuration ... 311
9.2.5 Compile time configuration ... 311

9.3 Running the sample application ..313
9.4 Target API ... 314

9.4.1 API functions .. 315
9.4.1.1 USBD_MTP_Add() ... 315
9.4.1.2 USBD_MTP_AddStorage() .. 316
9.4.1.3 USBD_MTP_RemoveStorage() .. 317
9.4.1.4 USBD_MTP_Task() .. 318
9.4.1.5 USBD_MTP_Poll() ... 319
9.4.1.6 USBD_MTP_SendEvent() ... 320
9.4.1.7 USBD_MTP_SetObjectAllocFailCb() .. 322
9.4.1.8 USBD_MTP_SetOperationCb() ...323

9.4.2 Data structures ... 324
9.4.2.1 USB_MTP_FILE_INFO .. 324
9.4.2.2 USB_MTP_INIT_DATA ..325
9.4.2.3 USB_MTP_INFO ..326
9.4.2.4 USB_MTP_INST_DATA ... 327
9.4.2.5 USB_MTP_INST_DATA_DRIVER ...328
9.4.2.6 USB_MTP_STORAGE_API ... 329
9.4.2.7 USB_MTP_STORAGE_INFO ...331
9.4.2.8 USB_MTP_OPERATION_INFO .. 332

9.4.3 Enums ... 333
9.4.3.1 USB_MTP_EVENT ..333
9.4.3.2 USB_MTP_OPERATION_CB_TYPE ...335

9.4.4 Prototypes .. 335
9.4.4.1 USB_MTP_OBJECT_ALLOC_FAIL ..335
9.4.4.2 USB_MTP_OPERATION_CB ... 337

9.5 MTP Storage Driver .. 338
9.5.1 General information ... 338

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

16

9.5.2 Interface function list ...338
9.5.3 USB_MTP_STORAGE_API in detail ..339

9.5.3.1 USB_MTP_STORAGE_INIT ..339
9.5.3.2 USB_MTP_STORAGE_GET_INFO ..340
9.5.3.3 USB_MTP_STORAGE_FIND_FIRST_FILE 341
9.5.3.4 USB_MTP_STORAGE_FIND_NEXT_FILE 342
9.5.3.5 USB_MTP_STORAGE_OPEN_FILE .. 343
9.5.3.6 USB_MTP_STORAGE_CREATE_FILE ... 344
9.5.3.7 USB_MTP_STORAGE_READ_FROM_FILE345
9.5.3.8 USB_MTP_STORAGE_WRITE_TO_FILE 346
9.5.3.9 USB_MTP_STORAGE_CLOSE_FILE ...347
9.5.3.10 USB_MTP_STORAGE_REMOVE_FILE348
9.5.3.11 USB_MTP_STORAGE_CREATE_DIR .. 349
9.5.3.12 USB_MTP_STORAGE_REMOVE_DIR 350
9.5.3.13 USB_MTP_STORAGE_FORMAT ...351
9.5.3.14 USB_MTP_STORAGE_RENAME_FILE352
9.5.3.15 USB_MTP_STORAGE_DEINIT .. 353
9.5.3.16 USB_MTP_STORAGE_GET_FILE_ATTRIBUTES354
9.5.3.17 USB_MTP_STORAGE_MODIFY_FILE_ATTRIBUTES 355
9.5.3.18 USB_MTP_STORAGE_GET_FILE_CREATION_TIME 356
9.5.3.19 USB_MTP_STORAGE_GET_FILELAST_WRITE_TIME 357
9.5.3.20 USB_MTP_STORAGE_GET_FILE_ID ..358
9.5.3.21 USB_MTP_STORAGE_GET_FILE_SIZE 359
9.5.3.22 USB_MTP_STORAGE_GET_FILE_INFO 360

10 Communication Device Class (CDC) ..361

10.1 Overview ... 362
10.1.1 Configuration .. 362
10.1.2 CDC-ACM issues on Windows 10 ... 362

10.2 The example application ..363
10.2.1 Testing communication to the USB device ... 363

10.3 Target API ... 366
10.3.1 Interface function list ... 366

10.3.1.1 USBD_CDC_Add() ...368
10.3.1.2 USBD_CDC_CancelRead() .. 369
10.3.1.3 USBD_CDC_CancelWrite() ..370
10.3.1.4 USBD_CDC_Read() ... 371
10.3.1.5 USBD_CDC_ReadOverlapped() ..372
10.3.1.6 USBD_CDC_Receive() ..373
10.3.1.7 USBD_CDC_ReceivePoll() ... 374
10.3.1.8 USBD_CDC_ReadAsync() ... 375
10.3.1.9 USBD_CDC_SetOnBreak() ..376
10.3.1.10 USBD_CDC_SetOnLineCoding() ...377
10.3.1.11 USBD_CDC_SetOnControlLineState() 378
10.3.1.12 USBD_CDC_SetOnRXEvent() .. 379
10.3.1.13 USBD_CDC_SetOnTXEvent() ...381
10.3.1.14 USBD_CDC_UpdateSerialState() ..383
10.3.1.15 USBD_CDC_Write() ... 384
10.3.1.16 USBD_CDC_WriteAsync() ... 385
10.3.1.17 USBD_CDC_WaitForRX() .. 386
10.3.1.18 USBD_CDC_PollForRX() ..387
10.3.1.19 USBD_CDC_WaitForTX() .. 388
10.3.1.20 USBD_CDC_PollForTX() ..389
10.3.1.21 USBD_CDC_WaitForTXReady() .. 390
10.3.1.22 USBD_CDC_WriteSerialState() .. 391
10.3.1.23 USBD_CDC_GetNumBytesRemToRead() 392
10.3.1.24 USBD_CDC_GetNumBytesRemToWrite() 393
10.3.1.25 USBD_CDC_GetNumBytesInBuffer() 394

10.3.2 Data structures ... 395

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

17

10.3.2.1 USB_CDC_INIT_DATA ..395
10.3.2.2 USB_CDC_LINE_CODING ... 396
10.3.2.3 USB_CDC_SERIAL_STATE .. 397
10.3.2.4 USB_CDC_CONTROL_LINE_STATE ...398

11 Human Interface Device Class (HID) ... 399

11.1 Overview ... 400
11.1.1 Further reading ... 400
11.1.2 Categories .. 400

11.1.2.1 True HIDs .. 400
11.1.2.2 Vendor specific HIDs ... 400

11.2 Background information ...402
11.2.1 HID descriptors ... 402

11.2.1.1 HID descriptor ..402
11.2.1.2 Report descriptor ..402
11.2.1.3 Physical descriptor .. 403

11.3 Configuration ... 404
11.3.1 Initial configuration ..404
11.3.2 Final configuration ... 404

11.4 Example application .. 405
11.4.1 USB_HID_Mouse.c ... 405
11.4.2 USB_HID_Echo1.c ..405

11.4.2.1 Running the example .. 406
11.4.2.2 Compiling the PC example application 406

11.5 Target API ... 408
11.5.1 Target interface function list ..409
11.5.2 HID Target API functions .. 410

11.5.2.1 USBD_HID_AddEx() .. 410
11.5.2.2 USBD_HID_Add() ..411
11.5.2.3 USBD_HID_GetNumBytesInBuffer()412
11.5.2.4 USBD_HID_GetNumBytesRemToRead()413
11.5.2.5 USBD_HID_GetNumBytesRemToWrite() 414
11.5.2.6 USBD_HID_Read() .. 415
11.5.2.7 USBD_HID_ReadOverlapped() .. 416
11.5.2.8 USBD_HID_Receive() .. 417
11.5.2.9 USBD_HID_ReceivePoll() ..418
11.5.2.10 USBD_HID_WaitForRX() ...419
11.5.2.11 USBD_HID_WaitForTX() ... 420
11.5.2.12 USBD_HID_Write() ..421
11.5.2.13 USBD_HID_SetOnGetReportRequest()422
11.5.2.14 USBD_HID_SetOnSetReportRequest()423
11.5.2.15 USBD_HID_ReadReport() ... 424

11.5.3 Data structures ... 425
11.5.3.1 USB_HID_INIT_DATA_EX ... 425
11.5.3.2 USB_HID_INIT_DATA .. 427

11.5.4 Type definitions ... 428
11.5.4.1 USB_HID_ON_GETREPORT_REQUEST_FUNC428
11.5.4.2 USB_HID_ON_SETREPORT_REQUEST_FUNC 429

11.6 Host API ..430
11.6.1 Host API function list ... 431
11.6.2 HID Host API functions ...432

11.6.2.1 USBHID_Close() ... 432
11.6.2.2 USBHID_Open() ... 433
11.6.2.3 USBHID_Init() .. 434
11.6.2.4 USBHID_Exit() ... 435
11.6.2.5 USBHID_Read() ..436
11.6.2.6 USBHID_Write() ... 437
11.6.2.7 USBHID_GetNumAvailableDevices()438
11.6.2.8 USBHID_GetProductName() ... 439

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

18

11.6.2.9 USBHID_GetInputReportSize() ..440
11.6.2.10 USBHID_GetOutputReportSize() ..441
11.6.2.11 USBHID_GetProductId() ...442
11.6.2.12 USBHID_GetVendorId() ..443
11.6.2.13 USBHID_RefreshList() ..444
11.6.2.14 USBHID_SetVendorPage() .. 445

12 Printer Class ... 446

12.1 Overview ... 447
12.1.1 Configuration .. 447

12.2 The example application ..448
12.3 Target API ... 450

12.3.1 Interface function list ... 450
12.3.2 API functions .. 451

12.3.2.1 USB_PRINTER_Init() ... 451
12.3.2.2 USB_PRINTER_Task() .. 452
12.3.2.3 USB_PRINTER_TaskEx() ...453
12.3.2.4 USB_PRINTER_ConfigIRQProcessing()454
12.3.2.5 USB_PRINTER_Read() ... 455
12.3.2.6 USB_PRINTER_ReadTimed() ...456
12.3.2.7 USB_PRINTER_Receive() ..457
12.3.2.8 USB_PRINTER_ReceiveTimed() ... 458
12.3.2.9 USB_PRINTER_Write() ...459
12.3.2.10 USB_PRINTER_WriteTimed() ...460
12.3.2.11 USB_PRINTER_SetOnVendorRequest() 461
12.3.2.12 USB_PRINTER_SetClass() ...462
12.3.2.13 USB_PRINTER_API .. 463

12.4 Printer API ...464
12.4.1 General information ... 464
12.4.2 USB_PRINTER_API in detail .. 465

12.4.2.1 USB_PRINTER_GET_DEVICE_ID_STRING 465
12.4.2.2 USB_PRINTER_ON_DATA_RECEIVED466
12.4.2.3 USB_PRINTER_GET_HAS_NO_ERROR 467
12.4.2.4 USB_PRINTER_GET_IS_SELECTED .. 468
12.4.2.5 USB_PRINTER_GET_IS_PAPER_EMPTY 469
12.4.2.6 USB_PRINTER_ON_RESET ..470

13 IP-over-USB (IP) ... 471

13.1 Overview ... 472
13.2 Using only RNDIS or CDC-ECM ...473

13.2.1 Working with emUSB-Device-IP ... 473
13.3 Configuration ... 475

13.3.1 Initial Configuration ... 475
13.3.2 Final configuration ... 475
13.3.3 Class specific configuration ... 475

13.4 Running the sample application ..476
13.5 emUSB-Device-IP + emNet as a "USB Webserver" .. 477
13.6 Target API ... 478

13.6.1 API functions .. 479
13.6.1.1 USBD_IP_Add() .. 479
13.6.1.2 USBD_IP_Task() ... 480

13.6.2 Data structures ... 481
13.6.2.1 USB_IP_INIT_DATA ...481

14 Remote NDIS (RNDIS) ... 482

14.1 Overview ... 483
14.1.1 Working with RNDIS .. 483
14.1.2 Additional information .. 483

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

19

14.2 Configuration ... 484
14.2.1 Initial Configuration ... 484
14.2.2 Final configuration ... 484
14.2.3 Class specific configuration ... 484

14.3 Running the sample application ..485
14.3.1 IP_Config_RNDIS.c in detail .. 485

14.4 RNDIS + emNet as a "USB Webserver" ... 487
14.5 Target API ... 488

14.5.1 API functions .. 489
14.5.1.1 USBD_RNDIS_Add() ..489
14.5.1.2 USBD_RNDIS_Task() ... 490
14.5.1.3 USBD_RNDIS_SetDeviceInfo() ..491

14.5.2 Data structures ... 492
14.5.2.1 USB_RNDIS_INIT_DATA ...492
14.5.2.2 USB_RNDIS_DEVICE_INFO .. 493

14.5.3 Driver interface ... 494
14.5.3.1 USB_IP_NI_DRIVER_API ..494
14.5.3.2 USB_IP_NI_DRIVER_DATA ... 495

14.6 RNDIS IP Driver ... 496
14.6.1 General information ... 496
14.6.2 Interface function list ... 496
14.6.3 USB_IP_NI_DRIVER_API in detail .. 497

14.6.3.1 USB_IP_NI_INIT ... 497
14.6.3.2 USB_IP_NI_GET_PACKET_BUFFER ...498
14.6.3.3 USB_IP_NI_WRITE_PACKET ... 499
14.6.3.4 USB_IP_NI_SET_PACKET_FILTER .. 500
14.6.3.5 USB_IP_NI_GET_LINK_STATUS ...501
14.6.3.6 USB_IP_NI_GET_LINK_SPEED .. 502
14.6.3.7 USB_IP_NI_GET_HWADDR ... 503
14.6.3.8 USB_IP_NI_GET_STATS ... 504
14.6.3.9 USB_IP_NI_GET_MTU ..505
14.6.3.10 USB_IP_NI_RESET .. 506
14.6.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNC 507
14.6.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC 508

15 CDC-ECM ... 509

15.1 Overview ... 510
15.1.1 Working with CDC-ECM .. 510
15.1.2 Additional information .. 511

15.2 Configuration ... 512
15.2.1 Initial configuration ..512
15.2.2 Final configuration ... 512

15.3 Running the sample application ..513
15.3.1 IP_Config_ECM.c in detail ... 513

15.4 Target API ... 515
15.4.1 API functions .. 516

15.4.1.1 USBD_ECM_Add() ...516
15.4.1.2 USBD_ECM_Task() .. 517

15.4.2 Data structures ... 518
15.4.2.1 USB_ECM_INIT_DATA ..518

15.4.3 Driver interface ... 519
15.4.3.1 USB_IP_NI_DRIVER_API ..519
15.4.3.2 USB_IP_NI_DRIVER_DATA ... 520

15.5 CDC-ECM IP Driver ... 521
15.5.1 General information ... 521
15.5.2 Interface function list ... 521
15.5.3 USB_IP_NI_DRIVER_API in detail .. 522

15.5.3.1 USB_IP_NI_INIT ... 522
15.5.3.2 USB_IP_NI_GET_PACKET_BUFFER ...523

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

20

15.5.3.3 USB_IP_NI_WRITE_PACKET ... 524
15.5.3.4 USB_IP_NI_SET_PACKET_FILTER .. 525
15.5.3.5 USB_IP_NI_GET_LINK_STATUS ...526
15.5.3.6 USB_IP_NI_GET_LINK_SPEED .. 527
15.5.3.7 USB_IP_NI_GET_HWADDR ... 528
15.5.3.8 USB_IP_NI_GET_STATS ... 529
15.5.3.9 USB_IP_NI_GET_MTU ..530
15.5.3.10 USB_IP_NI_RESET .. 531
15.5.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNC 532
15.5.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC 533

16 CDC-NCM ... 534

16.1 Overview ... 535
16.1.1 Working with CDC-NCM .. 535
16.1.2 Additional information .. 535

16.2 Configuration ... 536
16.2.1 Initial configuration ..536
16.2.2 Final configuration ... 536

16.3 Running the sample application ..537
16.3.1 IP_Config_NCM.c in detail ...537

16.4 Target API ... 539
16.4.1 API functions .. 540

16.4.1.1 USBD_NCM_Add() ...540
16.4.2 Data structures ... 541

16.4.2.1 USB_NCM_INIT_DATA ... 541
16.4.3 Driver interface ... 542

16.4.3.1 USB_IP_NI_DRIVER_API ..542
16.4.3.2 USB_IP_NI_DRIVER_DATA ... 543

16.5 CDC-NCM IP Driver ...544
16.5.1 General information ... 544
16.5.2 Interface function list ... 544
16.5.3 USB_IP_NI_DRIVER_API in detail .. 545

16.5.3.1 USB_IP_NI_INIT ... 545
16.5.3.2 USB_IP_NI_GET_PACKET_BUFFER ...546
16.5.3.3 USB_IP_NI_WRITE_PACKET ... 547
16.5.3.4 USB_IP_NI_SET_PACKET_FILTER .. 548
16.5.3.5 USB_IP_NI_GET_LINK_STATUS ...549
16.5.3.6 USB_IP_NI_GET_LINK_SPEED .. 550
16.5.3.7 USB_IP_NI_GET_HWADDR ... 551
16.5.3.8 USB_IP_NI_GET_STATS ... 552
16.5.3.9 USB_IP_NI_GET_MTU ..553
16.5.3.10 USB_IP_NI_RESET .. 554
16.5.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNC 555
16.5.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC 556

17 Audio ... 557

17.1 Overview ... 558
17.2 Creation of an audio device application ... 559

17.2.1 Configuration requirements ... 560
17.2.2 Design of audio interfaces .. 560
17.2.3 Handling of audio control requests ...561
17.2.4 Receiving audio data ..561

17.2.4.1 Using explicit feedback ..561
17.2.5 Sending audio data ..561

17.2.5.1 Using explicit feedback ..562
17.2.6 Physical controls ..562

17.3 Syntax definition of the USB audio design file .. 563
17.3.1 Overall syntax of the design file .. 564

17.3.1.1 Compiler Macros ...564

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

21

17.3.2 Control units description ...565
17.3.2.1 Input Terminal ..565
17.3.2.2 Output Terminal ... 566
17.3.2.3 Feature unit ... 566
17.3.2.4 Mixer unit .. 567
17.3.2.5 Selector unit .. 567
17.3.2.6 Clock source .. 568
17.3.2.7 Clock selector ...568
17.3.2.8 Clock multiplier .. 568

17.3.3 Streaming interface description ... 570
17.3.3.1 AUDIO_STREAM section ...570
17.3.3.2 ENDPOINT section .. 571

17.3.4 Stream units description ...572
17.3.4.1 Format I section ...572
17.3.4.2 Format II section ..572
17.3.4.3 Format III section ...572

17.4 Target API ... 574
17.4.1 API functions .. 576

17.4.1.1 USBD_AC_Add() ... 576
17.4.1.2 USBD_AC_GetCurrentAltSetting() ..577
17.4.1.3 USBD_AC_GetStreamInfo() .. 578
17.4.1.4 USBD_AC_OpenRXStream() ... 579
17.4.1.5 USBD_AC_CloseRXStream() ... 580
17.4.1.6 USBD_AC_OpenTXStream() ... 581
17.4.1.7 USBD_AC_Send() ... 582
17.4.1.8 USBD_AC_CloseTXStream() ..583
17.4.1.9 USBD_AC_SetFeedbackDataRate() .. 584
17.4.1.10 USBD_AC_GetFeedbackDataRate() 585
17.4.1.11 USBD_AC_SendInterruptMessage() 586

17.4.2 Data structures ... 587
17.4.2.1 USBD_AC_INIT_DATA ..587
17.4.2.2 USBD_AC_STREAM_INTF_INFO ...588
17.4.2.3 USBD_AC_RX_CTX ..589
17.4.2.4 USBD_AC_RX_DATA .. 590
17.4.2.5 USBD_AC_TX_CTX .. 591
17.4.2.6 USBD_AC_CONTROL_INFO ...592
17.4.2.7 USBD_AC_EVENT ..593

17.4.3 Function definitions ..594
17.4.3.1 USBD_AC_SET_ALT_INTERFACE ..594
17.4.3.2 USBD_AC_CONTROL_GET_FUNC ...595
17.4.3.3 USBD_AC_CONTROL_SET_FUNC ... 596
17.4.3.4 USBD_AC_RX_CALLBACK ...597
17.4.3.5 USBD_AC_TX_CALLBACK ... 598

18 Legacy Audio 1.0 ..599

18.1 Overview ... 600
18.2 Introduction ... 601
18.3 Configuration ... 602

18.3.1 Initial configuration ..602
18.3.2 Final configuration ... 602
18.3.3 Using the microphone interface ... 602
18.3.4 Using the speaker interface .. 603

18.4 Target API ... 604
18.4.1 API functions .. 605

18.4.1.1 USBD_AUDIO_Add() ..605
18.4.1.2 USBD_AUDIO_Read_Task() .. 606
18.4.1.3 USBD_AUDIO_Write_Task() ..607
18.4.1.4 USBD_AUDIO_Start_Play() ...608
18.4.1.5 USBD_AUDIO_Stop_Play() ... 609

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

22

18.4.1.6 USBD_AUDIO_Start_Listen() .. 610
18.4.1.7 USBD_AUDIO_Stop_Listen() ...611
18.4.1.8 USBD_AUDIO_Set_Timeouts() ..612

18.4.2 Data structures ... 613
18.4.2.1 USBD_AUDIO_INIT_DATA .. 613
18.4.2.2 USBD_AUDIO_IF_CONF ... 614
18.4.2.3 USBD_AUDIO_FORMAT .. 616
18.4.2.4 USBD_AUDIO_UNITS ...617

18.4.3 Function definitions ..618
18.4.3.1 USBD_AUDIO_TX_FUNC .. 618
18.4.3.2 USBD_AUDIO_RX_FUNC .. 619
18.4.3.3 USBD_AUDIO_CONTROL_FUNC ...621

19 USB Video device Class (UVC) ... 624

19.1 Overview ... 625
19.2 Configuration ... 626

19.2.1 Initial configuration ..626
19.2.1.1 Uncompressed video format ...626

19.2.2 Final configuration ... 626
19.3 Target API ... 627

19.3.1 API functions .. 628
19.3.1.1 USBD_UVC_Add() ... 628
19.3.1.2 USBD_UVC_Write() ... 629
19.3.1.3 USBD_UVC_WriteEx() ..631
19.3.1.4 USBD_UVC_SetOnResolutionChange() 632

19.3.2 Data structures ... 633
19.3.2.1 USBD_UVC_INIT_DATA ..633
19.3.2.2 USBD_UVC_BUFFER .. 634
19.3.2.3 USBD_UVC_DATA_BUFFER ... 635
19.3.2.4 USBD_UVC_RESOLUTION ...636

19.3.3 Function prototypes ... 637
19.3.3.1 USB_UVC_ON_RESOLUTION_CHANGE 637

20 Device Firmware Upgrade (DFU) ... 638

20.1 Overview ... 639
20.1.1 Using DFU on Windows .. 639

20.2 Configuration ... 640
20.2.1 Dual configuration mode ...640
20.2.2 Single configuration ... 640

20.3 Target API ... 641
20.3.1 API functions .. 642

20.3.1.1 USBD_DFU_Add() ... 642
20.3.1.2 USBD_DFU_Add_RunTime() ... 643
20.3.1.3 USBD_DFU_AddAlternateInterface() 644
20.3.1.4 USBD_DFU_SetMSDescInfo() ..645
20.3.1.5 USBD_DFU_SetPollTimeout() ..646
20.3.1.6 USBD_DFU_Ack() ..647
20.3.1.7 USBD_DFU_SetError() ... 648
20.3.1.8 USBD_DFU_ManifestComplt() ... 649
20.3.1.9 USBD_DFU_GetStatusReqCnt() ...650
20.3.1.10 USBD_DFU_GetAlternateSetting() 651

20.3.2 Data structures ... 652
20.3.2.1 USB_DFU_INIT_DATA .. 652

20.3.3 Function prototypes ... 653
20.3.3.1 USBD_DFU_DETACH_REQUEST ...653
20.3.3.2 USBD_DFU_DOWNLOAD .. 654
20.3.3.3 USBD_DFU_UPLOAD ..655

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

23

21 Musical Instrument Digital Interface (MIDI) ...656

21.1 Overview ... 657
21.2 Introduction ... 658
21.3 Configuration ... 660

21.3.1 Initial configuration ..660
21.3.2 Final configuration ... 660
21.3.3 Testing MIDI on different operating systems660

21.4 Target API ... 661
21.4.1 API functions .. 662

21.4.1.1 USBD_MIDI_Init() ...662
21.4.1.2 USBD_MIDI_Add() .. 663
21.4.1.3 USBD_MIDI_ReceivePackets() .. 664
21.4.1.4 USBD_MIDI_GetNumPacketsInBuffer() 665
21.4.1.5 USBD_MIDI_ConvertPackets() .. 666
21.4.1.6 USBD_MIDI_WritePackets() ..667
21.4.1.7 USBD_MIDI_WriteStream() .. 668

21.4.2 Data structures ... 669
21.4.2.1 USBD_MIDI_INIT_DATA ...669
21.4.2.2 USBD_MIDI_JACK ... 670
21.4.2.3 USBD_MIDI_PACKET ... 671

22 Smart Card Device Class (CCID) ...672

22.1 Overview ... 673
22.2 Target API ... 674

22.2.1 API functions .. 675
22.2.1.1 USBD_CCID_Init() .. 675
22.2.1.2 USBD_CCID_Add() ..676
22.2.1.3 USBD_CCID_ReceiveCmd() .. 677
22.2.1.4 USBD_CCID_SendStatus() ... 678
22.2.1.5 USBD_CCID_SendDataBlock() .. 679
22.2.1.6 USBD_CCID_SendEscape() ...680
22.2.1.7 USBD_CCID_SendParameters() .. 681
22.2.1.8 USBD_CCID_SendDataRateAndClockFrequency() 682
22.2.1.9 USBD_CCID_NotifySlotState() .. 683
22.2.1.10 USBD_CCID_NotifyHwError() .. 684

22.2.2 Data structures ... 685
22.2.2.1 USB_CCID_INIT_DATA ...685
22.2.2.2 USB_CCID_PROPERTIES .. 686
22.2.2.3 USB_CCID_CMD ... 688
22.2.2.4 USB_CCID_PROTOCOL_DATA_T0 .. 690
22.2.2.5 USB_CCID_PROTOCOL_DATA_T1 .. 691

22.2.3 Function prototypes ... 692
22.2.3.1 USBD_CCID_ABORT_CB ...692

23 emUSB-Web add-on ...693

23.1 Overview ... 694
23.2 Requirements ... 695
23.3 Configuration ... 696

23.3.1 Initial configuration ..696
23.3.1.1 emUSB-Web diagram .. 696

23.3.2 emUSB-Web operation in detail ... 696
23.3.2.1 Device recognition .. 697
23.3.2.2 emUSB-Web protocol .. 697

24 Combining USB components (Multi-Interface) ..698

24.1 Overview ... 699
24.1.1 Single interface device classes .. 700
24.1.2 Multiple interface device classes .. 700

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

24

24.1.3 IAD class ..700
24.2 Configuration ... 702
24.3 How to combine ... 703
24.4 emUSB-Device component specific modification ..707

24.4.1 CDC component .. 707
24.4.1.1 Device side .. 707
24.4.1.2 Host side ... 707

24.5 Issues on Windows 7 .. 709
24.5.1 Detailed description ... 709

25 Target OS Interface .. 710

25.1 General information .. 711
25.1.1 Operating system support supplied with this release711

25.2 Interface function list ..712
25.2.1 USB_OS_DeInit() ...713
25.2.2 USB_OS_Delay() ... 714
25.2.3 USB_OS_DecRI() ... 715
25.2.4 USB_OS_GetTickCnt() .. 716
25.2.5 USB_OS_IncDI() ..717
25.2.6 USB_OS_Init() .. 718
25.2.7 USB_OS_Signal() ...719
25.2.8 USB_OS_Wait() ... 720
25.2.9 USB_OS_WaitTimed() ...721
25.2.10 USB_OS_MutexAlloc() ...722
25.2.11 USB_OS_MutexFree() ... 723
25.2.12 USB_OS_MutexLock() ...724
25.2.13 USB_OS_MutexUnlock() ..725

26 Target USB Driver .. 726

26.1 General information .. 727
26.1.1 Available USB drivers ... 727

26.2 Adding a driver to emUSB-Device ...728
26.2.1 USBD_X_Config() ...728
26.2.2 USBD_X_DisableInterrupt() ...730
26.2.3 USBD_X_EnableInterrupt() ..731

26.3 Device driver specifics ...732
26.3.1 LPC54/55xxx full-speed driver ...733
26.3.2 LPC54/55xxx high-speed driver ... 733
26.3.3 EHCI driver ...734
26.3.4 Synopsys DWC2 driver (slave mode) ..735
26.3.5 Synopsys DWC2 driver (DMA mode) .. 736
26.3.6 XHCI driver ...737
26.3.7 Renesas RX driver ... 738
26.3.8 AT91RM9200 driver ..739
26.3.9 Giga Device GD32F4xx driver (full-speed controller)740
26.3.10 Giga Device GD32F4xx driver (high-speed controller) 740
26.3.11 Atmel ATSAMV7x driver .. 741
26.3.12 PSoC6 driver ... 742

26.3.12.1 Restrictions .. 742
26.3.12.2 PSoC6 driver specific functions ... 742

26.3.12.2.1 USB_DRIVER_Cypress_PSoC6_SysTick() 742
26.3.12.2.2 USB_DRIVER_Cypress_PSoC6_Resume()742
26.3.12.2.3 USB_DRIVER_Cypress_PSoC6_ConfigDMA()742

26.3.13 ST full-speed driver ..744

27 Support ..745

27.1 Contacting support ... 746
27.1.1 Where can I find the license number? .. 746

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

25

28 Profiling with SystemView ...747

28.1 Profiling overview ... 748
28.2 Additional files for profiling .. 749

28.2.1 Additional files on target side ..749
28.2.2 Additional files on PC side .. 749

28.3 Enable profiling .. 750
28.4 Recording and analyzing profiling information ...751

29 Debugging ...752

29.1 Message output ..753
29.2 API functions ... 754

29.2.1 USBD_AddLogFilter() ..755
29.2.2 USBD_AddWarnFilter() ... 756
29.2.3 USBD_SetLogFilter() .. 757
29.2.4 USBD_SetWarnFilter() .. 758
29.2.5 USB_PANIC ...759
29.2.6 USB_X_Log() .. 760
29.2.7 USB_X_Warn() .. 761
29.2.8 USB_OS_Panic() .. 762

29.3 Message types ... 763

30 Performance & resource usage ..765

30.1 Memory footprint ..766
30.2 Performance ...769

31 FAQ ...770

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 1

Introduction

This chapter will give a short introduction to emUSB-Device, including the supported USB
classes and components. Host and target requirements are covered as well.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

27 CHAPTER 1 Overview

1.1 Overview
This guide describes how to install, configure and use emUSB-Device. It also explains the
internal structure of emUSB-Device.

emUSB-Device has been designed to work on any embedded system with a USB client
controller. It can be used with USB 1.1, USB 2.0 or USB 3.0 devices.

The highest possible transfer rate on USB 2.0 full-speed (12 Mbit/s) devices is approximately
1.2 MB/s. In USB 2.0 high-speed mode (480 MBit/s) transfer rates of approx. 42 MByte/s
could be achieved. USB 3.0 SuperSpeed (5 Gbit/s) is also supported.

It depends on the capabilities of the USB controller hardware which USB version and actual
speed can be used on an embedded system.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

28 CHAPTER 1 emUSB-Device features

1.2 emUSB-Device features
Key features of emUSB-Device are:
• High performance
• Can be used with or without an RTOS
• Easy to use
• Easy to port
• No custom USB host driver necessary
• Start / test application supplied
• Highly efficient, portable, and commented ANSI C source code
• Hardware abstraction layer allows rapid addition of support for new devices

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

29 CHAPTER 1 emUSB-Device components

1.3 emUSB-Device components
emUSB-Device consists of three layers: A driver for hardware access, the emUSB-Device
core and at least a USB class driver or the bulk communication component.

The different available hardware drivers, the USB class drivers, and the bulk communication
component are additional packages, which can be combined and ordered as they fit to the
requirements of your project. Normally, emUSB-Device consists of a driver that fits to the
used hardware, the emUSB-Device core and at least one of the USB class drivers.

Component Description

USB protocol layer

Bulk / Vendor emUSB-Device vendor component.
MSD emUSB-Device Mass Storage Device class component.
IP-over-USB emUSB-Device IP-over-USB component.
VirtualMSD emUSB-Device VirtualMSD Component
CDC-ACM emUSB-Device Communication Device Class component.
HID emUSB-Device Human Interface Device Class component.
MTP emUSB-Device Media Transfer Protocol component.
Printer emUSB-Device Printer Class component.
RNDIS emUSB-Device RNDIS component.
CDC-ECM emUSB-Device CDC Ethernet Control Model component.
CDC-NCM emUSB-Device CDC Network Control Model component.
UVC emUSB-Device USB video class.
Audio emUSB-Device USB audio class.
DFU emUSB-Device Device Firmware Upgrade class.
MIDI emUSB-Device Musical Instrument Digital Interface class.
CCID emUSB-Device Smart Card Interface Device class.

Core layer

emUSB-Device-Core The emUSB-Device core is the intrinsic USB stack.
Hardware layer

Driver USB controller driver.

1.3.1 emUSB-Device-Bulk
emUSB-Device-Bulk allows you to quickly and smoothly develop software for an embedded
device that communicates with a PC via USB. The communication is like a single, high-
speed, reliable channel (very similar to a TCP connection). This bidirectional channel, with
built-in flow control, allows the PC to send data to the embedded target, the embedded
target to receive these bytes and reply with any number of bytes. The PC is the USB host,
the target is the USB client.

1.3.2 emUSB-Device-MSD

1.3.2.1 Purpose of emUSB-Device-MSD

Access the target device like an ordinary disk drive

emUSB-Device-MSD enables the use of an embedded target device as a USB mass storage
device. The target device can be simply plugged-in and used like an ordinary disk drive,
without the need to develop a driver for the host operating system. This is possible because
the mass storage class is one of the standard device classes, defined by the USB Imple-

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

30 CHAPTER 1 emUSB-Device components

menters Forum (USB IF). Virtually every major operating system on the market supports
these device classes out of the box.

No custom host drivers necessary

Every major OS already provides host drivers for USB mass storage devices, there is no
need to implement your own. The target device will be recognized as a mass storage device
and can be accessed directly.

Plug and Play

Assuming the target system is a digital camera using emUSB-Device-MSD, videos or photos
taken by this camera can be conveniently accessed with the file system explorer of the
used operating system when the camera is connected to the computer.

1.3.2.2 Typical applications
Typical applications are:
• Digital camera
• USB stick
• MP3 Player
• DVD player

Any target with USB interface: easy access to configuration and data files

1.3.2.3 emUSB-Device-MSD features
Key features of emUSB-Device-MSD are:
• Can be used with RAM, parallel flash, serial flash or mechanical drives
• Support for full-speed (12 Mbit/s) and high-speed (480 Mbit/s) transfer rates
• OS-abstraction: Can be used with any RTOS, but no OS is required for MSD-only devices

1.3.2.4 How does it work?

Use file system support from host OS

A device which uses emUSB-Device-MSD will be recognized as a mass storage device and
can be used like an ordinary disk drive. If the device is unformatted when plugged-in, the
host operating system will ask you to format the device. Any file system provided by the
host can be used. Typically FAT is used, but other file systems such as NTFS are possible,
too. If one of those file systems is used, the host is able to read from and write to the
device using the storage functions of the emUSB-Device MSD component, which define
unstructured read and write operations. Thus, there is no need to develop extra file system
code if the application only accesses data on the target from the host side. This is typically
the case for simple storage applications, such as USB memory sticks or ATA to USB bridges.

Provide file system code on the target if necessary

There are basically two types of MSD devices, one is where the devices does not need
to access the storage (e.g. USB stick, external HDD). The other type is where the device
needs to write data onto the storage medium before it is accessed from a PC (e.g. data
logger) or read data from it after it has been written onto the storage medium by a PC
(e.g. a mp3 player or a device which reads configuration files from the storage). If you are
using emUSB-Device-MSD you are most likely writing software for the former device type.
emUSB-Device-MSD does not offer file-level access to the storage medium, you need a file
system to access the storage. complex and time-consuming task and increases the time-to
market. Thus we recommend the use of a commercial file system like emFile, SEGGER’s file
system for embedded applications. emFile is a high performance library that is optimized for
minimum memory consumption in RAM and ROM, high-speed and versatility. It is written
in ANSI C and runs on any CPU and on any media. Refer to https://www.segger.com/emfile
for more information about emFile.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/emfile

31 CHAPTER 1 emUSB-Device components

1.3.3 emUSB-Device IP-over-USB
emUSB-Device IP-over-USB allows to run any IP-based protocol over USB. This component
combines the advantages of RNDIS and CDC-ECM and allows plug-and-play on any major
host operating system. Using the IP-over-USB technology in combination with a built in
web server, the device can easily be accessed from any host (Windows, Linux, Mac) by
simply typing the device name into the web browser.

1.3.3.1 Typical applications
Typical applications are:
• Headphones
• Printer
• Data logger
• Ethernet2USB adapter

1.3.4 emUSB-Device-VirtualMSD
The emUSB-Device-VirtualMSD component allows to easily stream files to and from USB
devices. Once the USB device is connected to the host, files can be read or written to the
application without the need for dedicated storage memory.

1.3.4.1 Typical applications
Typical applications are:
• Updating firmware (e.g. Handheld Terminal)
• Updating configuration files

1.3.5 emUSB-Device-CDC
emUSB-Device-CDC converts the target device into a serial communication device. A tar-
get device running emUSB-Device-CDC is recognized by the host as a serial interface
(USB2COM, virtual COM port), without the need to install a special host driver, because the
communication device class is one of the standard device classes and every major operat-
ing system already provides host drivers for those device classes. All PC software using a
COM port will work without modifications with this virtual COM port.

1.3.5.1 Typical applications
Typical applications are:
• Modem
• Telephone system
• Fax machine

1.3.6 emUSB-Device-HID
The Human Interface Device class (HID) is an abstract USB class protocol defined by the
USB Implementers Forum. This protocol was defined for handling devices that humans use
to control the operation of computer systems. An installation of a custom host USB driver
is not necessary because the USB human interface device class is standardized and every
major OS already provides host drivers for it.

1.3.6.1 Typical applications
Typical applications are:
• Keyboard
• Mouse and similar pointing devices
• Gamepad
• Front-panel controls - for example, switches and buttons

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

32 CHAPTER 1 emUSB-Device components

• Bar-code reader
• Thermometer
• Voltmeter
• Low-speed JTAG emulator
• Uninterruptible power supply (UPS)

1.3.7 emUSB-Device-MTP
The Media Transfer Protocol (MTP) is a USB class protocol which can be used to transfer
files to and from storage devices. MTP is an alternative to MSD as it operates on a file level
rather than on a storage sector level. The advantage of MTP is the ability to access the
storage medium from the host PC and from the device at the same time. Because MTP
works at the file level this also eliminates the risk of damaging the file system when the
communication to the host has been canceled unexpectedly (e.g. the cable was removed).
MTP is supported by most operating systems without the need to install third-party drivers.

1.3.7.1 Typical applications
Typical applications are:
• Digital camera
• USB stick
• MP3 Player
• DVD player
• Telephone

Any target with USB interface: easy access to configuration and data files.

1.3.8 emUSB-Device-Printer
emUSB-Device-Printer converts the target device into a printing device. A target device
running emUSB-Device-Printer is recognized by the host as a printer. Unless the device
identifies itself as a printer already recognized by the host PC, you must install a driver to
be able to communicate with the USB device.

1.3.8.1 Typical applications
Typical applications are:
• Laser/Inkjet printer
• CNC machine

1.3.9 emUSB-Device-RNDIS
emUSB-Device-RNDIS allows to create a virtual Ethernet adapter through which the host
PC can communicate with the device using the Internet protocol suite (TCP, UDP, FTP, HTTP,
Telnet). This allows the creation of USB based devices which can host a webserver or
act as a telnet terminal or a FTP server. emUSB-Device-RNDIS offer a unique customer
experience and allows to save development and hardware cost by e.g. using a website as
a user interface instead of creating an application for every major OS and by eliminating
the Ethernet hardware components from your device.

1.3.9.1 Typical applications
Typical applications are:
• USB-Webserver
• USB-Terminal (e.g. Telnet)
• USB-FTP-Server

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

33 CHAPTER 1 emUSB-Device components

1.3.10 emUSB-Device-CDC-ECM
emUSB-Device-CDC-ECM allows to create a virtual Ethernet adapter through which the
host PC can communicate with the device using the Internet protocol suite (TCP, UDP, FTP,
HTTP, Telnet). This allows the creation of USB based devices which can host a webserver or
act as a telnet terminal or a FTP server. emUSB-Device-CDC-ECM offer a unique customer
experience and allows to save development and hardware cost by e.g. using a website as
a user interface instead of creating an application for every major OS and by eliminating
the Ethernet hardware components from your device.

1.3.10.1 Typical applications
Typical applications are:
• USB-Webserver
• USB-Terminal (e.g. Telnet)
• USB-FTP-Server

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

34 CHAPTER 1 Requirements

1.4 Requirements

1.4.1 Target system

Hardware

The target system must have a USB controller. The memory requirements can be found in
the chapter Performance & resource usage on page 765. In order to have the control when
the device is enumerated by the host, a switchable attach is necessary. This is a switchable
pull-up connected to the D+ Line of USB.

Software

emUSB-Device is optimized to be used with embOS but works with any other supported
RTOS or without an RTOS in a superloop. For information regarding the OS integration refer
to the chapter Target OS Interface on page 710.

1.4.2 Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant C compiler complying with at
least one of the following international standard is required:
• ISO/IEC 9899:1999 (C99)
• ISO/IEC 14882:1998 (C++)

A C++ compiler is not required, but can be used. The application program can therefore
also be programmed in C++ if desired.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

35 CHAPTER 1 File structure

1.5 File structure
The following table shows the contents of the emUSB-Device root directory:

Directory Contents

Application
Contains the application programs. Depending on which stack is
used, several files are available for each stack. Detailed informa-
tion can be found in the corresponding chapter.

BSP
Contains example hardware-specific configurations for different
eval boards.

Config Contains configuration files (USB_Conf.h, USB_ConfigIO.c).
Doc Contains the emUSB-Device documentation.
Inc Contains include files.

Sample
Contains operating systems dependent files which allows to run
emUSB-Device with different RTOS’s.

SEGGER Contains generic routines from SEGGER.
USB Contains the emUSB-Device source code.

Windows
Contains host specific applications (for Windows, Linux, MacOS)
which can be used in conjunction with the device application
samples.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

36 CHAPTER 1 Multithreading

1.6 Multithreading
The emUSB target API is not generally thread safe. But it is allowed to handle different
endpoints in different tasks in parallel. Examples are:
• A task that performs all reads of data from the host while another task sends data to

the host.
• Operating on different interfaces (e.g. a BULK and a CDC interface) in independent

tasks.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 2

Background information

This is a short introduction to USB. The fundamentals of USB are explained and links to
additional resources are given.

Information provided in this chapter is not required to use the software.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

38 CHAPTER 2 USB

2.1 USB

2.1.1 Short Overview
The Universal Serial Bus (USB) is a bus architecture for connecting multiple peripherals to a
host computer. It is an industry standard — maintained by the USB Implementers Forum —
and because of its many advantages it enjoys a huge industry-wide acceptance. Over the
years, a number of USB-capable peripherals appeared on the market, for example printers,
keyboards, mice, digital cameras etc. Among the top benefits of USB are:
• Excellent plug-and-play capabilities allow devices to be added to the host system

without reboots (“hot-plug”). Plugged-in devices are identified by the host and the
appropriate drivers are loaded instantly.

• USB allows easy extensions of host systems without requiring host-internal extension
cards.

• Device bandwidths may range from a few kB/s to hundreds of MB/s.
• A wide range of packet sizes and data transfer rates are supported.
• USB provides internal error handling. Together with the already mentioned hot-plug

capability this greatly improves robustness.
• The provisions for powering connected devices dispense the need for extra power

supplies for many low power devices.
• Several transfer modes are supported which ensures the wide applicability of USB.

These benefits did not only lead to broad market acceptance, but it also added several
advantages, such as low costs of USB cables and connectors or a wide range of USB stack
implementations. Last but not least, the major operating systems such as Microsoft Win-
dows, Mac OS X, or Linux provide excellent USB support.

2.1.2 Important USB Standard Versions

USB 1.1 (September 1998)

This standard version supports isochronous and asynchronous data transfers. It has dual
speed data transfer of 1.5 Mbit/s for low-speed and 12 Mbit/s for full-speed devices. The
maximum cable length between host and device is five meters. Up to 500 mA of electric
current may be distributed to low power devices.

USB 2.0 (April 2000)

As all previous USB standards, USB 2.0 is fully forward and backward compatible. Existing
cables and connectors may be reused. A new high-speed transfer speed of 480 Mbit/s (40
times faster than USB 1.1 at full-speed) was added.

USB 3.0 (November 2008)

As all previous USB standards, USB 3.0 is fully forward and backward compatible. Exist-
ing cables and connectors may be reused but the new speed can only be used with new
USB 3.0 cables and devices. The new speed class is named USB Super-Speed, which offers
a maximum rate of 5 Gbit/s.

USB 3.1 (July 2013)

As all previous USB standards, USB 3.1 is fully forward and backward compatible. The new
specification replaces the 3.0 standard and introduces new transfer speeds of up to 10
Gbit/s.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

39 CHAPTER 2 USB

2.1.3 USB System Architecture
A USB system is composed of three parts - a host side, a device side and a physical bus.
The physical bus is represented by the USB cable and connects the host and the device.
The USB system architecture is asymmetric. Every single host can be connected to multiple
devices in a tree-like fashion using special hub devices. You can connect up to 127 devices
to a single host, but the count must include the hub devices as well.

A USB host consists of a USB host controller hardware and a layered software stack. This
host stack contains:
• A host controller driver (HCD) which provides the functionality of the host controller

hardware.
• The USB Driver (USBD) Layer which implements the high level functions used by USB

device drivers in terms of the functionality provided by the HCD.
• The USB Device drivers which establish connections to USB devices. The driver classes

are also located here and provide generic access to certain types of devices such as
printers or mass storage devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

40 CHAPTER 2 USB

USB Device

Two types of devices exist: hubs and functions. Hubs provide for additional USB attachment
points. Functions provide capabilities to the host and are able to transmit or receive data
or control information over the USB bus. Every peripheral USB device represents at least
one function but may implement more than one function. A USB printer for instance may
provide file system like access in addition to printing.

In this guide we treat the term USB device as synonymous with functions and will not
consider hubs.

Each USB device contains configuration information which describes its capabilities and
resource requirements. A USB device must be configured by the host before its functions can
be used. When a new device is connected for the first time, the host enumerates it, requests
the configuration from the device, and performs the actual configuration. For example, if
an embedded device uses emUSB-Device-MSD, the embedded device will appear as a USB
mass storage device, and the host OS provides the driver out of the box. In general, there
is no need to develop a custom driver to communicate with target devices that use one
of the USB class protocols.

Descriptors

A device reports its attributes via descriptors. Descriptors are data structures with a stan-
dard defined format. A USB device has one device descriptor which contains information
applicable to the device and all of its configurations. It also contains the number of config-
urations the device supports. For each configuration, a configuration descriptor contains
configuration-specific information. The configuration descriptor also contains the number
of interfaces provided by the configuration. An interface groups the endpoints into logi-
cal units. Each interface descriptor contains information about the number of endpoints.
Each endpoint has its own endpoint descriptor which states the endpoint’s address, transfer
types etc.

As can be seen, the descriptors form a tree. The root is the device descriptor with n con-
figuration descriptors as children, each of which has m interface descriptors which in turn
have o endpoint descriptors each.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

41 CHAPTER 2 USB

2.1.4 Transfer Types
The USB standard defines four transfer types: control, isochronous, interrupt, and bulk.
Control transfers are used in the setup phase. The application can select one of the other
three transfer types. For most embedded applications, bulk is the best choice because it
allows the highest possible data rates.

Control transfers

Typically used for configuring a device when attached to the host. It may also be used for
other device-specific purposes, including control of other pipes on the device.

Interrupt transfers

Typically used by devices that need guaranteed quick responses (fixed latency).

Bulk transfers

Typically used by devices that generate or consume data in relatively large and bursty
quantities. Bulk transfer has wide dynamic latitude in transmission constraints. It can use all
remaining available bandwidth, but with no guarantees on bandwidth or latency. Because
the USB bus is normally not very busy, there is typically 90% or more of the bandwidth
available for USB transfers.

Isochronous transfers

Typically used for applications which need guaranteed speed. Isochronous transfer offers a
guaranteed bandwidth but with possible data loss. A typical use is for audio data which re-
quires a constant data rate. Unlike bulk, control or interrupt transfers isochronous transfers
do not receive an “ACK” from the other side, therefore the sender does not know whether
the data was received by the other side correctly. For applications where constant data
rate is more important than data integrity (audio, video) the potential data loss does not
pose an issue.

2.1.5 Setup phase / Enumeration
The host first needs to get information from the target, before the target can start commu-
nicating with the host. This information is gathered in the initial setup phase. The informa-
tion is contained in the descriptors, which are in the configurable section of the USB-MSD
stack. The most important part of target device identification are the Product and Vendor
IDs. During the setup phase, the host also assigns an address to the client. This part of
the setup is called enumeration.

2.1.6 Product / Vendor IDs
The Product and Vendor IDs are necessary to identify the USB device. The Product ID
describes a specific device type and does not need to be unique between different devices of
the same type. USB host systems like Windows use the Product ID/Vendor ID combination
to identify which drivers are needed.

For example: all our J-Link devices have the Vendor ID 0x1366 and Product ID 0x0105.

A Vendor and Product ID is necessary only when development of the product is finished;
during the development phase, the supplied Vendor and Product IDs can be used as sam-
ples. Using the sample Vendor ID (0x8765) or the SEGGER Vendor ID in a finished product
is not allowed.

Possible options to obtain a Vendor ID or Product ID are described in the chapter Vendor
and Product ID on page .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

42 CHAPTER 2 Predefined device classes

2.2 Predefined device classes
The USB Implementers Forum has defined device classes for different purposes. In general,
every device class defines a protocol for a particular type of application such as a mass
storage device (MSD), human interface device (HID), etc. Device classes provide a stan-
dardized way of communication between host and device and typically work with a class
driver which comes with the host operating system.

Using a predefined device class where applicable minimizes the amount of work to make
a device usable on different host systems.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

43 CHAPTER 2 USB hardware analyzers

2.3 USB hardware analyzers
A variety of USB hardware analyzers are on the market with different capabilities. If you
are developing an application using emUSB-Device it should not be necessary to have a
USB analyzer, but we still recommend you do.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

44 CHAPTER 2 References

2.4 References
For additional information see the following documents:
• Universal Serial Bus Specification, Revision 2.0
• Universal Serial Bus Mass Storage Class Specification Overview, Rev 1.2
• UFI command specification: USB Mass Storage Class, UFI Command Specification, Rev

1.0

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 3

Getting started

The first step in getting emUSB-Device up and running is typically to compile it for the
target system and to run it in the target system. This chapter explains how to do this.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

46 CHAPTER 3 How to setup your target system

3.1 How to setup your target system
We assume that you are familiar with the tools you have selected for your project (compiler,
project manager, linker, etc.). You should therefore be able to add files, add directories to
the include search path, and so on. In this document the Embedded Studio IDE is used for
all examples and screenshots, but every other ANSI C toolchain can also be used. It is also
possible to use makefiles; in this case, when we say “add to the project”, this translates
into “add to the makefile”.

Procedure to follow

Integration of emUSB-Device is a relatively simple process, which consists of the following
steps:
• Take a running project for your target hardware.
• Add emUSB-Device files to the project.
• Add hardware dependent configuration to the project.
• Prepare and run the application.

3.1.1 Take a running project
The project to start with should include the setup for basic hardware (e.g. CPU, PLL, DDR
SDRAM) and initialization of the RTOS. emUSB-Device is designed to be used with embOS,
SEGGER’s real-time operating system. We recommend to start with an embOS sample
project and include emUSB-Device into this project.

3.1.2 Add emUSB-Device files
Add all necessary source files from the USB folder to your project. You may simply add all
files and let the linker drop everything not needed for your configuration. But there are
some source files containing dependencies to emFile or emNet. If you don’t have these
middleware components, remove the respective files from your project.

Add RTOS layer

Additionally add the RTOS interface layer to your project. Choose a file from the folder
Sample/USB/OS that matches your RTOS. For embOS use USB_OS_embOSv5.c. There is also
a file USB_OS_None.c containing a layer to be used for superloop applications without an
RTOS.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same folder as the C file to
compile, an include path needs to be set. In order to build the project with all added files,
you will need to add the following directories to your include path:
• Config
• Inc
• SEGGER
• USB

3.1.3 Configuring debugging output
While developing and testing emUSB-Device, we recommend to use the DEBUG configu-
ration of emUSB-Device. This is enabled by setting the preprocessor symbol DEBUG to 1
(or USB_DEBUG_LEVEL to 2). The DEBUG configuration contains many additional run-time
checks and generate debug output messages which are very useful to identify problems
that may occur during development. In case of a fatal problem (e.g. an invalid configu-
ration) the program will end up in the function USB_OS_Panic() with a appropriate error
message that describes the cause of the problem. Once the application is running correctly,
DEBUG can be set to 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

47 CHAPTER 3 How to setup your target system

Add the file USB_ConfigIO.c found in the folder Config to your project and configure it to
match the message output method used by your debugging tools. If possible use RTT.

To later compile a release configuration, which has a significantly smaller code footprint,
simply set the preprocessor symbol DEBUG (or USB_DEBUG_LEVEL) to 0.

3.1.4 Add hardware dependent configuration
To perform target hardware dependent runtime configuration, the emUSB-Device stack calls
a function named USBD_X_Config. Typical tasks that may be done inside this function are:
• Select an appropriate driver for the USB controller.
• Configure I/O pins of the MCU for USB.
• Configure PLL and clock divider necessary for USB operation.
• Install an interrupt service routine for USB.

Details can be found in Target USB Driver on page 726.

Sample configurations for popular evaluation boards are supplied with the driver shipment.
They can be found in files called USB_Config_<TargetName>.c in the folders BSP/<Board-
Name>/Setup.

Add the appropriate configuration file to your project. If there is no configuration file for
your target hardware, take a file for a similar hardware and modify it if necessary.

If the file needs modifications, we recommend to copy it into the directory Config for easy
updates to later versions of emUSB-Device.

Add BSP file

Some targets require CPU specific functions for initialization, mainly for installing an inter-
rupt service routine. They are contained in the file BSP_USB.c. Sample BSP_USB.c files for
popular evaluation boards are supplied with the driver shipment. They can be found in the
folders BSP/<BoardName>/Setup.

Add the appropriate BSP_USB.c file to your project. If there is no BSP file for your target
hardware, take a file for a similar hardware and modify it if necessary.

If the file needs modifications, we recommend to copy it into the directory Config for easy
updates to later versions of emUSB-Device.

Note that a BSP_USB.c file is not always required, because for some target hardware all
runtime configuration is done in USB_X_Config.

3.1.5 Prepare and run the application
Choose a sample application from the folder Application and add it to your project. For
example, add USB_HID_Mouse.c as your application to your project. Compile and run the
application on the target hardware. After connecting the USB cable to the target device,
the mouse pointer should hop from left to right.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

48 CHAPTER 3 How to setup your target system

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

49 CHAPTER 3 Updating emUSB-Device

3.2 Updating emUSB-Device
If an existing project should be updated to a later emUSB-Device version, only files have
to be replaced. You should have received the emUSB-Device update as a zip file. Unzip this
file to the location of your choice and replace all emUSB-Device files in your project with
the newer files from the emUSB-Device update shipment.

In general, all files from the following directories have to be updated:
• USB
• Inc
• SEGGER
• Doc
• Sample/USB/OS

Some files may contain modification required for project specific customization. These files
should reside in the folder Config and must not be overwritten. This includes:
• USB_Conf.h
• USB_ConfigIO.c
• BSP_USB.c
• USB_Config_<TargetName>.c

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

50 CHAPTER 3 emUSB-Device Configuration

3.3 emUSB-Device Configuration
An application using emUSB-Device must contain a USB_DEVICE_INFO structure containing
the device identification information.

3.3.1 USB_DEVICE_INFO

Description

Device information that must be provided by the application via the function USBD_SetDe-
viceInfo() before the USB stack is started using USBD_Start(). Is used during enumer-
ation of the device by the host.

Type definition

typedef struct {
 U16 VendorId;
 U16 ProductId;
 const char * sVendorName;
 const char * sProductName;
 const char * sSerialNumber;
} USB_DEVICE_INFO;

Structure members

Member Description

VendorId Vendor ID. Uniquely identifies the vendor on a USB device.
ProductId Product ID. Uniquely identifies all USB devices of a vendor.
sVendorName Vendor name. ASCII string of up to 126 characters.

sProductName
Description of the USB device. ASCII string of up to 126
characters.

sSerialNumber
Serial number of the USB device (ASCII string). May be NULL
if no serial number should be provided.

Additional information

The Product ID in combination with the Vendor ID creates a worldwide unique identifier for
the product model. The Vendor ID is assigned by the USB Implementers Forum (https://
www.usb.org). For tests, the default number above (or pretty much any other number) can
be used. However, you may not bring a product to market without having been assigned
your own Vendor ID. For emUSB-Device-CDC: If you change this value, do not forget to
make the same change to the .inf file as described in section The .inf file on page .
Otherwise, the Windows host will be unable to locate the driver.

The manufacturer name, product name and serial number are used during the enumeration
phase. They together should give a detailed information about which device is connected
to the host.

Note

The max string length cannot be more than 126 ANSI characters.

Note for MSD: In order to confirm to the USB bootability specification, the minimum string
length of the serial number must be 12 characters where each character is a hexadecimal
digit (’0’ though ’9’ or ’A’ through ’F’).

Example

static const USB_DEVICE_INFO _DeviceInfo = {
 0x8765, // VendorId

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org
https://www.usb.org

51 CHAPTER 3 emUSB-Device Configuration

 0x1234, // ProductId
 "Vendor", // VendorName
 "Bulk device", // ProductName
 "13245678" // SerialNumber
}
...
USBD_SetDeviceInfo(&_DeviceInfo);
...
USBD_Start();

This structure and functions are included in every example application and can be used
without modifications in the development phase of your application, but you may not bring
a product on the market without modifying the Vendor ID and Product ID.

Ids Description

Default Vendor ID for all applications

0x8765
Example Vendor ID for all examples. Do not use
this in real products!
Used Product IDs

0x1240 Example Product ID for all bulk samples.

0x1234
Example Product ID for deprecated bulk samples
(using SEGGER Windows driver)

0x1200 Example Product ID for the MSD CD-ROM sample.
0x1000 Example Product ID for all MSD samples.
0x1088 Example Product ID for all UVC samples.
0x1111 Example Product ID for all CDC samples.
0x1112 Example Product ID for HID mouse sample.

0x1114
Example Product ID for the vendor specific HID
sample.

0x1115 Example Product ID for HID keyboard sample.
0x1310 Example Product ID for the Audio Speaker sample.

0x1311
Example Product ID for the Audio Microphone sam-
ple.

0x1312 Example Product ID for the Audio Headset sample.
0x1350 Example Product ID for the MIDI sample.
0x2114 Example Product ID for the Printer class sample.
0x3000 Example Product ID for RNDIS sample.
0x3003 Example Product ID for ECM sample.
0x3004 Example Product ID for IP-over-USB sample.
0x3005 Example Product ID for NCM sample.

3.3.2 Additional required configuration for emUSB-MSD
Refer to MSD Configuration on page 242 for more information about the required additional
configuration functions for emUSB-MSD.

3.3.3 Descriptors
All configuration descriptors are automatically generated by emUSB-Device and do not
require configuration.

Some optional descriptors may be enabled by calling the following functions:
• USBD_EnableIAD()
• USBD_UseV210()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

52 CHAPTER 3 emUSB-Device Configuration

• USBD_EnableSuperSpeed()
• USBD_SetWebUSBInfo()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

53 CHAPTER 3 Compile-time configuration

3.4 Compile-time configuration
emUSB-Device can be used without changing any of the compile-time switches. All com-
pile-time configuration switches are preconfigured with valid values which match the re-
quirements of most applications. An exception are the audio and video classes, which re-
quire change some of the options in order to work properly, see Configuration requirements.

All compile-time switches and their default values can be found in the file USB_ConfDe-
faults.h.

To change the default configuration of emUSB-Host compile-time switches can be added
to USB_Conf.h. Don’t change the USB_ConfDefaults.h file for easy updates of emUSB-
Device.

3.4.1 Compile-time switches for debugging

3.4.1.1 USB_DEBUG_LEVEL

Description

emUSB-Device can be configured to display debug messages and warnings to locate an
error or potential problems. This can be useful for debugging. In a release (production)
build of a target system, they are typically not required and should be switches off.

To output the messages, emUSB-Host uses the logging routines contained in USB_Con-
figIO.c which can be customized.

USB_DEBUG_LEVEL can be set to the following values:
• 0 - Used for release builds. Includes no debug options.
• 1 - Used in debug builds to include support for “panic” checks.
• 2 - Used in debug builds to include warning, log messages and “panic” checks. This

significantly increases the code size.

Definition

#define USB_DEBUG_LEVEL 0

3.4.1.2 USB_LOG_BUFFER_SIZE

Description

Maximum size of a debug / warning message (in characters) that can be output. A buffer
of this size is created on the stack when a message is output.

Definition

#define USB_LOG_BUFFER_SIZE 100

3.4.2 Use of standard C-library functions
emUSB-Device calls some functions from the standard C-library. If the standard C-library
should not be used, the following macros can be changed to call user defined functions
instead:

#define USBH_MEMCPY memcpy
#define USBH_MEMSET memset
#define USBH_MEMCMP memcmp
#define USBH_MEMMOVE memmove
#define USBH_STRLEN strlen
#define USBH_STRCAT strcat
#define USBH_STRRCHR strrchr
#define USBH_STRNCPY strncpy
#define USBH_STRCMP strcmp

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

54 CHAPTER 3 Compile-time configuration

3.4.3 General USB configuration

3.4.3.1 USB_SUPPORT_TRANSFER_ISO

Description

Must be set to 1 if the USB stack shall support isochronous transfers (e.g. for audio and
video applications). If set to 0, all code that handles isochronous transfers is disabled, which
may significantly reduce the code size of the USB stack.

Definition

#define USB_SUPPORT_TRANSFER_ISO 0

3.4.3.2 USB_SUPPORT_TEST_MODE

Description

USB test mode enable. This can be set to 1 to enable support for USB high-speed test
mode. It is disabled by default to reduce memory footprint of the USB stack.

Definition

#define USB_SUPPORT_TEST_MODE 0

3.4.3.3 USB_NUM_EPS

Description

Maximum number of endpoints that can be used in the main stack. A table is stored in
static memory with USB_NUM_EPS entries, each allocates 56 bytes.

Definition

#define USB_NUM_EPS 8u

3.4.3.4 USB_MAX_NUM_IF

Description

Maximum number of USB interfaces the device can support. Each USB class has one or
more interfaces. For a USB composite device USB_MAX_NUM_IF must be ≥ the sum of the
number of interfaces for all classes configured. Information about all interfaces are stored
into a table, which allocates about USB_MAX_NUM_IF * 9 words in static memory (word =
sizeof(void *)).

Definition

#define USB_MAX_NUM_IF 4u

3.4.3.5 USB_MAX_NUM_ALT_IF

Description

Maximum number of USB alternate settings the device can support. Some USB inter-
faces may have alternate settings to select different operating modes / configurations.
USB_MAX_NUM_ALT_IF must be ≥ the sum of the number of all alternate settings of all in-
terfaces of all classes configured. Information about all alternates settings are stored into
a table, which allocates about USB_MAX_NUM_ALT_IF * 10 words in static memory (word
= sizeof(void *)).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

55 CHAPTER 3 Compile-time configuration

Definition

#define USB_MAX_NUM_ALT_IF 2u

Number of interfaces / alternate settings for each USB class

USB class Number of interfacses Number of alternate settings

Bulk / Vendor 1 usually 0, but may be configured
to 1

CDC-ACM 2 0
CDC-ECM 2 1
CDC-NCM 2 1
CCID 1 0
HID 1 0
Mass storage 1 0
MTP 1 0
Printer 1 0
DFU 0 1
MIDI 2 0
RNDIS 2 1
UVC 2 1

Audio 1 + Number of audio streams
(IN/OUT)

At least one per audio stream,
see Design of audio interfaces

3.4.3.6 USB_DESC_BUFFER_SIZE

Description

Maximum size of a USB configuration descriptor. The configuration descriptor consists of a
header and the concatenation of configurations for all configured USB classes. The config-
uration descriptors are small for most classes, but for the audio or video class it may get
large and require to increase the size of this buffer.

Definition

#define USB_DESC_BUFFER_SIZE 256

3.4.3.7 USBD_SUPPORT_PROFILE

Description

Enables USB API instrumentation for SystemView.

Definition

#define USBD_SUPPORT_PROFILE 0

3.4.3.8 USBD_OS_USE_USBD_X_INTERRUPT

Description

If set emUSB-Device will use the functions USBD_X_EnableInterrupt() and USBD_X_Dis-
ableInterrupt() instead of disabling/enabling the interrupts globally. Those functions on-
ly disable/enable the USB interrupt. The functions are MCU specific and must be defined
in the corresponding USB_Config_*.c file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

56 CHAPTER 3 Compile-time configuration

Definition

#define USBD_OS_USE_USBD_X_INTERRUPT 0

3.4.3.9 USBD_OS_USE_ISR_FLAG

Description

Enable flag to indicate execution of USB interrupt. May be needed by some RTOS layer in
combination with USBD_OS_USE_USBD_X_INTERRUPT=1 (experimental).

Definition

#define USBD_OS_USE_ISR_FLAG 0

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

57 CHAPTER 3 Host OS specifics

3.5 Host OS specifics

3.5.1 Windows registry
The Windows registry is a database which stores settings for the operating system. The
relevant aspect of the Windows registry in regard to USB development is the fact that Win-
dows stores information about connected USB devices into the registry. Normally Windows
stores the Vendor and Product ID pair together with the USB configuration of that particular
device in the registry. During USB development this can have negative effects because, if
you, the developer, change the USB configuration of a device Windows will still have the old
USB configuration saved in the registry. While the USB device is functioning perfectly fine
the old registry entry can result in the device not being properly recognized by Windows.

This issue is especially prevalent when developing a USB Audio device.

3.5.1.1 Cleaning the Windows registry
Easiest is to use a tool such as Uwe Sieber’s “Device Cleanup Tool”: https://www.uwe-
sieber.de/misc_tools_e.html This tool allows any not connected devices to be removed
from the registry.

Alternatively the registry can be cleaned by hand using the Windows registry editor.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.uwe-sieber.de/misc_tools_e.html
https://www.uwe-sieber.de/misc_tools_e.html

Chapter 4

USB Core

This chapter describes the basic functions of the USB Core.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

59 CHAPTER 4 Overview

4.1 Overview
This chapter describes the functions of the core layer of emUSB-Device. These functions
are required for all USB class drivers and the unclassified bulk communication component.

General information

To communicate with the host, the example applications include a USB-specific header
USB.h. This file contains API functions to communicate with the USB host through the USB
Core driver.

Every application using USB Core must perform the following steps:
1. Initialize the USB stack. To initialize the USB stack USBD() has to be called. USBD_Init()

performs the low-level initialization of the USB stack and calls USBD_X_Config() to add
a driver to the USB stack.

2. Add communication endpoints. You have to add the required endpoints with the
compatible transfer type for the desired interface before you can use any of the USB
class drivers or the unclassified bulk communication component. For the emUSB-Device
bulk component, refer to USB_BULK_INIT_DATA on page 142 for information about
the initialization structure that is required when you want to add a bulk interface. For
the emUSB-Device MSD component, refer to USB_MSD_INIT_DATA on page 261 and
USB_MSD_INST_DATA on page 263 for information about the initialization structures
that are required when you want to add an MSD interface. For the emUSB-Device
CDC component, refer to USB_CDC_INIT_DATA on page 395 for information about the
initialization structure that is required when you want to add a CDC interface. For
the emUSB-Device HID component, refer to USB_HID_INIT_DATA on page 427 for
information about the initialization structure that is required when you want to add a
HID interface.

3. Provide device information using USBD_SetDeviceInfo() .
4. Start the USB stack. Call USBD_Start() to start the USB stack.

Example applications for every supported USB class and the unclassified bulk component
are supplied. We recommend using one of these examples as a starting point for your own
application. All examples are supplied in the \Application\ directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

60 CHAPTER 4 Target API

4.2 Target API
This section describes the functions that can be used by the target application.

Function Description

USB basic functions

USBD_Init() Initializes the USB device with its settings.
USBD_Start() Starts the emUSB-Device Core.
USBD_GetVersion() Returns the version of the stack.
USBD_GetState() Returns the state of the USB device.

USBD_IsConfigured()
Checks if the USB device is initialized and
ready.

USBD_GetSpeed() Returns the current connection speed.

USBD_GetDeviceState()

Returns the state of the USB device, set by
the host (except USB_DEVSTAT_SELF_POW-
ERED, which is configured by the device,
see USBD_SetMaxPower()).

USBD_Stop() Stops the USB communication.
USBD_DeInit() De-initialize the complete USB stack.

USB configuration functions

USBD_AddDriver() Adds a USB device driver to the USB stack.
USBD_SetISREnableFunc() Register function to enable USB interrupts.

USBD_SetAttachFunc()
Sets a function to perform hardware-spe-
cific actions to attach USB.

USBD_AddEP()
Returns an endpoint “handle” that can be
used for the desired USB interface.

USBD_AddEPEx()
Returns an endpoint “handle” that can be
used for the desired USB interface.

USBD_SetDeviceInfo()
Sets a all information used during device
enumeration.

USBD_SetClassRequestHook()
Sets a callback function that is called when
a setup class request is sent from the host
to the specified interface index.

USBD_SetVendorRequestHook()
Sets a callback function that is called when
a setup vendor request is sent from the
host to the specified interface index.

USBD_SetIsSelfPowered()
Sets whether the device is self-powered or
not.

USBD_SetMaxPower()
Sets the maximum power consumption re-
ported to the host during enumeration.

USBD_SetOnEvent()
Sets a callback function for an endpoint
that will be called on every RX or TX event
for that endpoint.

USBD_RemoveOnEvent()
Removes a callback function which was
added via USBD_SetOnEvent from the call-
back list.

USBD_SetOnRxEP0()
Sets a callback when data are received in
the data stage of the setup request.

USBD_SetOnRXHookEP()
Sets a callback whenever data are re-
ceived from a given endpoint handle.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

61 CHAPTER 4 Target API

Function Description

USBD_SetOnSetup()
Sets a callback function that is called when
any setup request is sent from the host.

USBD_SetOnSetupHook() Obsolete, use USBD_SetOnSetup().

USBD_SetOnSOF()
Installs a function that will be called, when
a SOF was received from the host.

USBD_RemoveOnSOF()
Removes a callback function which was
added via USBD_SetOnSOF() from the call-
back list.

USBD_WriteEP0FromISR() Write data to EP0 (control endpoint).

USBD_EnableIAD()
Enables combination of multi-interface de-
vice classes with single-interface classes or
other multi-interface classes.

USBD_SetCacheConfig()
Configures cache related functionality that
might be required by the stack for cache
handling in drivers.

USBD_RegisterSCHook()
Sets a callback function that will be called
on every state change of the USB device.

USBD_AssignMemory()
Assigns an area of RAM to be used for the
endpoint buffers and transfer descriptors
by the USB driver.

USBD_UseV210()
Enable use of USB V2.10 specification revi-
sion.

USBD_SetBESLValues()

Set recommended BESL (Best Effort Ser-
vice Latency) values to be used in the BOS
descriptor when using LPM (Link Power
Management).

USBD_SetOnLPMChange()
Sets a call back to report LPM transition on
the USB lines (L0 <-> L1).

USBD_SetLPMResponse()
Defines the behavior of the device on LPM
requests from the host.

USBD_EnableSuperSpeed() Enable SuperSpeed in the USB stack.

USBD_SetWebUSBInfo()

For WebUSB capable USB devices this
function may be called before USBD_S-
tart() to enable WebUSB specific descrip-
tors.

USBD_SetCheckAddress()
Installs a function that checks if an ad-
dress can be used for DMA transfers.

USBD_SetGetStringHook()
Sets a call to determine the string of a
specified string index.

USB I/O functions

USBD_Read() Reads data from the host.
USBD_ReadOverlapped() Reads data from the host asynchronously.
USBD_Receive() Reads data from host.
USBD_ReceivePoll() Reads data from host.
USBD_ReadAsync() Reads data from the host asynchronously.
USBD_Write() Writes data to the host.
USBD_WriteAsync() Sends data to the host asynchronously.
USBD_CancelIO() Cancel any read or write operation.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

62 CHAPTER 4 Target API

Function Description

USBD_WaitForEndOfTransferEx()
Wait until the current transfer on a particu-
lar EP has completed.

USBD_WaitForTXReady()
Waits (blocking) until the TX queue can ac-
cept another data packet.

USBD_GetNumBytesInBuffer()
Returns the number of bytes that are
available in the internal BULK-OUT end-
point buffer.

USBD_GetNumBytesRemToRead()
This function is to be used in combination
with USBD_ReadOverlapped().

USBD_GetNumBytesRemToWrite()
This function is to be used in combination
with a non-blocking call to USBD_Write().

USBD_StallEP() Stalls an endpoint.
USB RemoteWakeUp functions

USBD_SetAllowRemoteWakeUp()
Allows the device to publish that remote
wake is available.

USBD_DoRemoteWakeup()
Performs a remote wakeup in order to
wake up the host from the standby/sus-
pend state.

Data structures

USB_ASYNC_IO_CONTEXT
Contains information for asynchronous
transfers.

USB_SETUP_PACKET Structure containing a USB setup packet.

SEGGER_CACHE_CONFIG
Used to pass cache configuration and call-
back function pointers to the stack.

USB_CHECK_ADDRESS_FUNC
Checks if an address can be used for DMA
transfers.

USB_WEBUSB_INFO
Information that may be provided by the
application for WebUSB capable USB de-
vices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

63 CHAPTER 4 Target API

4.2.1 USB basic functions

4.2.1.1 USBD_GetState()

Description

Returns the state of the USB device.

Prototype

unsigned USBD_GetState(void);

Return value

A bitwise combination of the USB state flags:

USB_STAT_ATTACHED Device is attached. (Note 1)
USB_STAT_READY Device is ready. (Note 2)
USB_STAT_ADDRESSED Device is addressed. (Note 3)
USB_STAT_CONFIGURED Device is configured. (Note 4)
USB_STAT_SUSPENDED Device is suspended. (Note 5)

Additional information

A USB device has several possible states. Some of these states are visible to the USB
and the host, while others are internal to the USB device. Refer to Universal Serial Bus
Specification, Revision 2.0, Chapter 9 for detailed information.

Notes

(1) Attached in a USB-specification sense of the word does not mean that the device is
physically connected to the host via a USB cable, it only means that the pull-up resistor
on the device side is connected. The status can be “attached” regardless of whether the
device is connected to a host or not. This state can normally be ignored.

(2) Ready denotes the USB controller state, the controller is “ready” after a bus reset. This
state can normally be ignored.

(3) A device is in an addressed state after it receives a valid (non-zero) USB address from
the USB host. This state can normally be ignored.

(4) When a device is “configured” the enumeration of the device has been successfully
completed and the host can communicate with the device.

(5) Suspend is set when the device is physically disconnected from the host or when the
USB host suspends the connected device.

Mapping of the state value returned by USBD_GetState() to the USB states described in
“Universal Serial Bus Specification Revision 2.0” chapter 9.1:

Return value of USBD_GetState() USB state

0x10 = 10000B Attached

0x11 = 10001B Powered + Suspended

0x18 = 11000B Default

0x19 = 11001B Default + Suspended

0x1C = 11100B Address

0x1D = 11101B Address + Suspended

0x1E = 11110B Configured

0x1F = 11111B Configured + Suspended

Other value should not occur

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

64 CHAPTER 4 Target API

4.2.1.2 USBD_GetSpeed()

Description

Returns the current connection speed.

Prototype

int USBD_GetSpeed(void);

Return value

USB_SPEED_NONE Unknown speed.
USB_SPEED_FS Full-speed.
USB_SPEED_HS High-speed.
USB_SPEED_SS SuperSpeed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

65 CHAPTER 4 Target API

4.2.1.3 USBD_GetDeviceState()

Description

Returns the state of the USB device, set by the host (except USB_DEVSTAT_SELF_POWERED,
which is configured by the device, see USBD_SetMaxPower()).

Prototype

unsigned USBD_GetDeviceState(void);

Return value

A bitwise combination of the USB device state flags:

USB_DEVSTAT_SELF_POWERED Device is self-powered.
USB_DEVSTAT_REMOTE_WAKEUP_ALLOWED Remote Wakeup is allowed.
USB_DEVSTAT_U1_ENABLE Link power state U1 is enabled (Su-

perSpeed only).
USB_DEVSTAT_U2_ENABLE Link power state U2 is enabled (Su-

perSpeed only).
USB_DEVSTAT_LPM_ENABLE Link power management is enabled (Su-

perSpeed only).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

66 CHAPTER 4 Target API

4.2.1.4 USBD_Init()

Description

Initializes the USB device with its settings.

Prototype

void USBD_Init(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

67 CHAPTER 4 Target API

4.2.1.5 USBD_IsConfigured()

Description

Checks if the USB device is initialized and ready.

Prototype

char USBD_IsConfigured(void);

Return value

0 USB device is not configured.
1 USB device is configured.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

68 CHAPTER 4 Target API

4.2.1.6 USBD_Start()

Description

Starts the emUSB-Device Core.

Prototype

void USBD_Start(void);

Additional information

This function should be called after configuring USB Core. It initiates a hardware attach and
updates the endpoint configuration. When the USB cable is connected to the device, the
host will start enumeration of the device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

69 CHAPTER 4 Target API

4.2.1.7 USBD_Stop()

Description

Stops the USB communication. This also makes sure that the device is detached from the
HOST.

Prototype

void USBD_Stop(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

70 CHAPTER 4 Target API

4.2.1.8 USBD_DeInit()

Description

De-initialize the complete USB stack.

Prototype

void USBD_DeInit(void);

Additional information

This function also calls USBD_Stop() internally.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

71 CHAPTER 4 Target API

4.2.1.9 USBD_GetVersion()

Description

Returns the version of the stack.

Prototype

U32 USBD_GetVersion(void);

Return value

Format: Mmmrr; e.g: 32401 is 3.24.1

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

72 CHAPTER 4 Target API

4.2.2 USB configuration functions

4.2.2.1 USBD_AddDriver()

Description

Adds a USB device driver to the USB stack. This function should be called from within
USBD_X_Config() which is implemented in USB_Config_*.c.

Prototype

void USBD_AddDriver(const USB_HW_DRIVER * pDriver);

Parameters

Parameter Description

pDriver Pointer to the driver API structure.

Additional information

To add the driver, use USBD_AddDriver() with the identifier of the compatible driver. Refer
to the section “Available target USB drivers” in the USB.h header file for a list of supported
devices and their valid identifiers.

Example

/***
*
* USBD_X_Config
*/
void USBD_X_Config(void) {
 BSP_USB_Init();
 USB_DRIVER_LPC17xx_ConfigAddr(0x2008C000); // USB controller of LPC1788
 // is located @ 0x2008C000
 USBD_AddDriver(&USB_Driver_NXPLPC17xx);
 USBD_SetISREnableFunc(_EnableISR, NULL, NULL);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

73 CHAPTER 4 Target API

4.2.2.2 USBD_SetISREnableFunc()

Description

Register function to enable USB interrupts.

Prototype

void USBD_SetISREnableFunc(USB_ENABLE_ISR_FUNC * pfEnableISR);

Parameters

Parameter Description

pfEnableISR
Pointer to the function to install the interrupt handler and
enable the USB interrupt.

Additional information

This function must be called within USBD_X_Config() function. See Adding a driver to
emUSB-Device on page 728. The functions pointer prototype is defined as follows:

typedef void USB_ENABLE_ISR_FUNC (USB_ISR_HANDLER * pfISRHandler);

Example

See USBD_AddDriver().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

74 CHAPTER 4 Target API

4.2.2.3 USBD_SetAttachFunc()

Description

Sets a function to perform hardware-specific actions to attach USB.

Prototype

void USBD_SetAttachFunc(USB_ATTACH_FUNC * pfAttach);

Parameters

Parameter Description

pfAttach Pointer to the attach function.

Additional information

This function must be called within USBD_X_Config() function. See Adding a driver to
emUSB-Device on page 728. The functions pointer prototypes are defined as follows:

typedef void USB_ATTACH_FUNC (void);

Example

See USBD_X_Config() on page 728.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

75 CHAPTER 4 Target API

4.2.2.4 USBD_AddEP()

Description

Returns an endpoint “handle” that can be used for the desired USB interface.

Prototype

unsigned USBD_AddEP(U8 InDir,
 U8 TransferType,
 U16 Interval,
 U8 * pBuffer,
 unsigned BufferSize);

Parameters

Parameter Description

InDir
Specifies the direction of the desired endpoint.
• USB_DIR_IN
• USB_DIR_OUT

TransferType

Specifies the transfer type of the endpoint. The following val-
ues are allowed:
• USB_TRANSFER_TYPE_BULK
• USB_TRANSFER_TYPE_INT
ISO endpoints must be created using USBD_AddEPEx().

Interval
Specifies the interval measured in units of 125us (micro
frames). This value should be zero for a bulk endpoint.

pBuffer
Pointer to a buffer that is used for OUT-transactions. For IN-
endpoints this parameter must be NULL.

BufferSize
Size of the buffer (OUT endpoints only). Must be a multiple
of the maximum packet size.

Return value

> 0 A valid endpoint handle is returned.
= 0 Error.

Additional information

The Interval parameter specifies the frequency in which the endpoint should be polled for
information by the host. It must be specified in units of 125 us.

Depending on the actual speed of the device during enumeration, the USB stack converts
the interval to the correct value required for the endpoint descriptor according to the USB
specification (into milliseconds for low/full-speed, into 125 us for high-speed).

For endpoints of type USB_TRANSFER_TYPE_BULK the value is ignored and should be set to 0.

This function must be called after USBD_Init() and before USBD_Start().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

76 CHAPTER 4 Target API

4.2.2.5 USBD_AddEPEx()

Description

Returns an endpoint “handle” that can be used for the desired USB interface.

Prototype

unsigned USBD_AddEPEx(const USB_ADD_EP_INFO * pInfo,
 U8 * pBuffer,
 unsigned BufferSize);

Parameters

Parameter Description

pInfo Pointer to a structure of type USB_ADD_EP_INFO.

pBuffer
Pointer to an endpoint buffer that is used for OUT-trans-
actions. For IN-endpoints or ISO endpoints this parameter
should be NULL.

BufferSize
Size of the endpoint buffer (OUT endpoints only). Must be ≥
the maximum packet size of the endpoint. For IN-endpoints
or ISO endpoints this parameter should be 0.

Return value

> 0 A valid endpoint handle is returned.
= 0 Error.

Additional information

This function must be called after USBD_Init() and before USBD_Start().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

77 CHAPTER 4 Target API

4.2.2.6 USBD_SetDeviceInfo()

Description

Sets a all information used during device enumeration.

Prototype

void USBD_SetDeviceInfo(const USB_DEVICE_INFO * pDeviceInfo);

Parameters

Parameter Description

pDeviceInfo
Pointer to a structure containing the device information.
Must point to static data that is not changed while the stack
is running.

Additional information

See USB_DEVICE_INFO on page 50 for a description of the structure.

Example

See USB_DEVICE_INFO on page 50.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

78 CHAPTER 4 Target API

4.2.2.7 USBD_SetClassRequestHook()

Description

Sets a callback function that is called when a setup class request is sent from the host to
the specified interface index.

Prototype

void USBD_SetClassRequestHook(unsigned InterfaceNum,
 USB_ON_CLASS_REQUEST * pfOnClassRequest);

Parameters

Parameter Description

InterfaceNum Interface index that for setting the class request callback.
pfOnClassRequest Pointer to the callback.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD_WriteEP0FromISR().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

79 CHAPTER 4 Target API

4.2.2.8 USBD_SetVendorRequestHook()

Description

Sets a callback function that is called when a setup vendor request is sent from the host
to the specified interface index.

Prototype

void USBD_SetVendorRequestHook(unsigned InterfaceNum,
 USB_ON_CLASS_REQUEST * pfOnVendorRequest);

Parameters

Parameter Description

InterfaceNum Interface index that for setting the class request callback.
pfOnVendorRequest Pointer to the callback.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD_WriteEP0FromISR().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

80 CHAPTER 4 Target API

4.2.2.9 USBD_SetIsSelfPowered()

Description

Sets whether the device is self-powered or not. Obsolete function, please use USBD_Set-
MaxPower().

Prototype

void USBD_SetIsSelfPowered(U8 IsSelfPowered);

Parameters

Parameter Description

IsSelfPowered
• 0 - Device is not self-powered.
• 1 - Device is self-powered.

Additional information

This function has to be called before USBD_Start(), as it will specify if the device is self-
powered or not. The default value is 0 (not self-powered).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

81 CHAPTER 4 Target API

4.2.2.10 USBD_SetMaxPower()

Description

Sets the maximum power consumption reported to the host during enumeration. This func-
tion also sets whether the device is self-powered (MaxPower = 0) or not.

Prototype

void USBD_SetMaxPower(unsigned MaxPower);

Parameters

Parameter Description

MaxPower
Maximum power consumption of the device given in mA.
MaxPower shall be in range between 0mA - 500mA, for Su-
perSpeed devices up to 900mA.

Additional information

This function shall be called before USBD_Start(), as it will specify how much power the
device will consume from the host. If this function is not called, a default value of 100 mA
will be used.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

82 CHAPTER 4 Target API

4.2.2.11 USBD_SetOnEvent()

Description

Sets a callback function for an endpoint that will be called on every RX or TX event for
that endpoint.

Prototype

void USBD_SetOnEvent(unsigned EPIndex,
 USB_EVENT_CALLBACK * pEventCb,
 USB_EVENT_CALLBACK_FUNC * pfEventCb,
 void * pContext);

Parameters

Parameter Description

EPIndex Endpoint index returned by USBD_AddEP().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure (will be initial-
ized by this function).

pfEventCb
Pointer to the callback routine that will be called on every
event on the USB endpoint.

pContext
A pointer which is used as parameter for the callback func-
tion.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_SetOnEvent(). The USB stack keeps track of all event callback functions using a
linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and must
reside in static memory.

The callback function is called only, if a read or write operation was started for the endpoint
using one of the USBD_Read…() or USBD_Write…() functions.

Additional information

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK_FUNC(unsigned Events, void *pContext);

Parameter Description

Events
A bit mask indicating which events occurred on the
endpoint.

pContext
The pointer which was provided to the USBD_SetOn-
Event() function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description

USB_EVENT_DATA_READ
Some data was received from the host on the end-
point.

USB_EVENT_DATA_SEND
Some data was sent to the host, so that (part of)
the user write buffer may be reused by the applica-
tion.

USB_EVENT_DATA_ACKED Some data was acknowledged by the host.
USB_EVENT_READ_COMPLETE The last read operation was completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

83 CHAPTER 4 Target API

Event Description

USB_EVENT_READ_ABORT A read transfer was aborted.
USB_EVENT_WRITE_ABORT A write transfer was aborted.
USB_EVENT_WRITE_COMPLETE All write operations were completed.

Example

// The callback function.
static void _OnEvent(unsigned Events, void *pContext) {
 if ((Events & USB_EVENT_DATA_SEND) != 0 &&
 // Check for last write transfer to be completed.
 USBD_GetNumBytesRemToWrite(EPIndex) == 0) {
 <.. prepare next data for writing..>
 // Send next packet of data.
 r = USBD_Write(EPIndex, &ac[0], 200, 0, -1);
 if (r < 0) {
 <.. error handling..>
 }
 }
}
// Main programm.
// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_SetOnEvent(EPIndex, &_usb_callback, _OnEvent, NULL);
// Send the first packet of data using an asynchronous write operation.
r = USBD_Write(EPIndex, &ac[0], 200, 0, -1);
if (r < 0) {
 <.. error handling..>
}
<.. do anything else here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

84 CHAPTER 4 Target API

4.2.2.12 USBD_RemoveOnEvent()

Description

Removes a callback function which was added via USBD_SetOnEvent from the callback list.

Prototype

void USBD_RemoveOnEvent(unsigned EPIndex,
 const USB_EVENT_CALLBACK * pEventCb);

Parameters

Parameter Description

EPIndex Endpoint index returned by USBD_AddEP().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure which was used
with USBD_SetOnEvent.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

85 CHAPTER 4 Target API

4.2.2.13 USBD_SetOnRxEP0()

Description

Sets a callback when data are received in the data stage of the setup request.

Prototype

void USBD_SetOnRxEP0(USB_ON_RX_FUNC * pfOnRx);

Parameters

Parameter Description

pfOnRx
Pointer to a function that should be called when receiving
data other than setup packets on EP0.

Additional information

Please note that this function can be called multiple times from different classes in order
to check the data.

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD_WriteEP0FromISR().

USB_ON_RX_FUNC is defined as follows:

typedef void USB_ON_RX_FUNC(const U8 * pData, unsigned NumBytes);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

86 CHAPTER 4 Target API

4.2.2.14 USBD_SetOnRXHookEP()

Description

Sets a callback whenever data are received from a given endpoint handle. The callback
function is called within the interrupt context and must not block.

Prototype

void USBD_SetOnRXHookEP(unsigned EPIndex,
 USB_ON_RX_FUNC * pfOnRx);

Parameters

Parameter Description

EPIndex Any valid endpoint handle > 0.
pfOnRx Pointer to the callback.

USB_ON_RX_FUNC is defined as follows:

typedef void USB_ON_RX_FUNC(const U8 * pData, unsigned NumBytes);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

87 CHAPTER 4 Target API

4.2.2.15 USBD_SetOnSetup()

Description

Sets a callback function that is called when any setup request is sent from the host.

Prototype

void USBD_SetOnSetup(USB_SETUP_HOOK * pHook,
 USB_ON_SETUP * pfOnSetup);

Parameters

Parameter Description

pHook
Pointer to a USB_SETUP_HOOK structure (will be initialized by
this function).

pfOnSetup Pointer to the callback function.

Additional information

The USB_SETUP_HOOK structure is private to the USB stack. It will be initialized by USBD_Se-
tOnSetup(). The USB stack keeps track of all setup callback functions using a linked list.
The USB_SETUP_HOOK structure will be included into this linked list and must reside in static
memory.

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD_WriteEP0FromISR().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

88 CHAPTER 4 Target API

4.2.2.16 USBD_SetOnSetupHook()

Description

Obsolete, use USBD_SetOnSetup(). Sets a callback function that is called when any setup
request is sent from the host.

Prototype

void USBD_SetOnSetupHook(unsigned InterfaceNum,
 USB_ON_SETUP * pfOnSetup);

Parameters

Parameter Description

InterfaceNum Interface index that for setting the setup request callback.
pfOnSetup Pointer to the callback function.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD_WriteEP0FromISR().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

89 CHAPTER 4 Target API

4.2.2.17 USBD_SetOnSOF()

Description

Installs a function that will be called, when a SOF was received from the host. The callback
function is called within the interrupt context and must not block.

Prototype

int USBD_SetOnSOF(void (*pfSOFCallback)(void * pContext),
 U16 Interval,
 void * pContext,
 USB_SOF_CALLBACK_HOOK * pHook);

Parameters

Parameter Description

pfSOFCallback Pointer to the callback function.

Interval
Function will be called every time a number of ’Interval’
SOFs were received.

pContext
A pointer which is used as parameter for the callback func-
tion.

pHook
Pointer to a USB_SOF_CALLBACK_HOOK structure (will be ini-
tialized by this function).

Return value

= 0 Callback function successfully installed.
≠ 0 SOF callback not supported by the driver.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_SetOnEvent(). The USB stack keeps track of all event callback functions using a
linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and must
reside in static memory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

90 CHAPTER 4 Target API

4.2.2.18 USBD_RemoveOnSOF()

Description

Removes a callback function which was added via USBD_SetOnSOF() from the callback list.

Prototype

void USBD_RemoveOnSOF(const USB_SOF_CALLBACK_HOOK * pHook);

Parameters

Parameter Description

pHook
Pointer to a USB_SOF_CALLBACK_HOOK structure which was
was installed using USBD_SetOnSOF().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

91 CHAPTER 4 Target API

4.2.2.19 USBD_WriteEP0FromISR()

Description

Write data to EP0 (control endpoint). This function may be called in an interrupt context.

Prototype

void USBD_WriteEP0FromISR(const void * pData,
 unsigned NumBytes,
 char Send0PacketIfRequired);

Parameters

Parameter Description

pData Data that should be written.
NumBytes Number of bytes to write.

Send0PacketIfRequired

Specifies that a zero-length packet should be sent when
the last data packet to the host is a multiple of MaxPack-
etSize. Normally MaxPacketSize for control mode transfer is
64 byte.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

92 CHAPTER 4 Target API

4.2.2.20 USBD_EnableIAD()

Description

Enables combination of multi-interface device classes with single-interface classes or other
multi-interface classes.

Prototype

void USBD_EnableIAD(void);

Additional information

Simple device classes such as HID and MSD or BULK use only one interface descriptor to
describe the class. The interface descriptor also contains the device class code. Multi-inter-
face device classes, such as CDC, Audio, MIDI use more than one interface descriptor to
describe the class. The device class code will then be written into the device descriptor. It
may be possible to add an interface which does not belong to a multi-interface class, but it
may not be correctly recognized by the host, this is not standardized and depends on the
host. In order to allow this, a new descriptor type was introduced:

IAD (Interface Association Descriptor), this descriptor will encapsulate the multi-interface
class into this IA descriptor, so that it will be seen as one single interface and will then
allow to add other device classes.

If you intend to use a multi-interface component with any other component, please call
USBD_EnableIAD() before adding the multi-interface component through USBD_*_Add().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

93 CHAPTER 4 Target API

4.2.2.21 USBD_SetCacheConfig()

Description

Configures cache related functionality that might be required by the stack for cache handling
in drivers.

Prototype

void USBD_SetCacheConfig(const SEGGER_CACHE_CONFIG * pConfig,
 unsigned ConfSize);

Parameters

Parameter Description

pConfig Pointer to an element of SEGGER_CACHE_CONFIG .

ConfSize
Size of the passed structure in case library and header size
of the structure differs.

Additional information

This function has to called in USBD_X_Config(). This function replaces the legacy cache
functions BSP_CACHE_CleanRange and BSP_CACHE_InvalidateRange. If you still want to
use these routines please set USBD_USE_LEGACY_CACHE_ROUTINES to 1 in your USB_Conf.h
file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

94 CHAPTER 4 Target API

4.2.2.22 USBD_RegisterSCHook()

Description

Sets a callback function that will be called on every state change of the USB device.

Prototype

int USBD_RegisterSCHook(USB_HOOK * pHook,
 USB_STATE_CALLBACK_FUNC * pfStateCb,
 void * pContext);

Parameters

Parameter Description

pHook
Pointer to a USB_HOOK structure (will be initialized by this
function).

pfStateCb
Pointer to the callback routine that will be called on every
state change.

pContext
A pointer which is used as parameter for the callback func-
tion.

Return value

0 OK.
1 Error, specified hook already exists.

Additional information

The USB_HOOK structure is private to the USB stack. It will be initialized by USBD_Regis-
terSCHook(). The USB stack keeps track of all state change callback functions using a
linked list. The USB_HOOK structure will be included into this linked list and must reside in
static memory.

Note that the callback function will be called within an ISR, therefore it should never block.

Example

// The callback function.
static void _OnStateChange(void *pContext, U8 NewState) {
 if ((NewState & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED)) == USB_STAT_CONFIGURED) {
 // Device is enumerated
 } else {
 // Device not enumerated
 }
}
// Main programm.
static USB_HOOK Hook;

USBD_Init();
...
USBD_RegisterSCHook(&Hook, _OnStateChange, NULL);
...
USBD_Start();

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

95 CHAPTER 4 Target API

4.2.2.23 USBD_AssignMemory()

Description

Assigns an area of RAM to be used for the endpoint buffers and transfer descriptors by the
USB driver. This function should be called from within the USBD_X_Config() function after
installing the driver with USBD_AddDriver(). Not all drivers support this function.

If the driver uses DMA, the USB controller must have DMA access to this area. For some
drivers, the memory should be aligned to a given boundary. If not aligned, the driver will
increase the start address and reduce the size of the area to achieve proper alignment.
This results in wasting of RAM and may cause the driver to run out of memory.

Prototype

void USBD_AssignMemory(void * pMem,
 U32 MemSize);

Parameters

Parameter Description

pMem Pointer to the start of the RAM area to be used by the driver.
MemSize Size of the RAM area in bytes.

Additional information

If the memory is not sufficient for the class and endpoint configuration, the USB dri-
ver will run into the USB_OS_Panic() function during initialization, if compiled for DEBUG
mode (USB_DEBUG_LEVEL > 0). After successful initialization, the driver will usually issue a
USB_LOG() message to report, how many bytes of the assigned memory are not used. The
size of the memory area may then be adjusted.

Information how to calculate the size of the endpoint buffer memory and about any align-
ment requirements can be found in Device driver specifics on page 732.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

96 CHAPTER 4 Target API

4.2.2.24 USBD_UseV210()

Description

Enable use of USB V2.10 specification revision. Must be called in USBD_X_Config(). It
enables providing a BOS descriptor to the host and also enables link power management
(LPM), if supported by the driver and the USB controller.

Prototype

void USBD_UseV210(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

97 CHAPTER 4 Target API

4.2.2.25 USBD_SetBESLValues()

Description

Set recommended BESL (Best Effort Service Latency) values to be used in the BOS descrip-
tor when using LPM (Link Power Management). See “Errata for USB 2.0 ECN: Link Power
Management (LPM) - 7/2007” from usb.org for an explanation of these values. Calling this
function has no effect, if LPM is not enabled (see USBD_UseV210()) or not supported by
the driver or USB controller.

Prototype

void USBD_SetBESLValues(int BaselineBESL,
 int DeepBESL);

Parameters

Parameter Description

BaselineBESL

Recommended Baseline BESL value. Must be in range -1
to 15. A value of -1 means, no BESL value is stored in the
BOS descriptor (the default). Values of 0,1,…,14,15 specify
a BESL of 125us,150us,…,9000us,10000us respectively (see
LPM document from usb.org).

DeepBESL
Recommended Deep BESL value. Must be in range -1 to 15
(see above).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

98 CHAPTER 4 Target API

4.2.2.26 USBD_SetOnLPMChange()

Description

Sets a call back to report LPM transition on the USB lines (L0 <-> L1).

Prototype

void USBD_SetOnLPMChange(USB_ON_LPM_CHANGE * pfOnLPMChange);

Parameters

Parameter Description

pfOnLPMChange Pointer to callback.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

99 CHAPTER 4 Target API

4.2.2.27 USBD_SetLPMResponse()

Description

Defines the behavior of the device on LPM requests from the host. Calling this function has
no effect, if LPM is not enabled (see USBD_UseV210()) or not supported by the driver or
USB controller.

Prototype

void USBD_SetLPMResponse(U8 Response);

Parameters

Parameter Description

Response
• 0 - LPM requests are rejected (NYET).
• 1 - LPM requests are acknowledged.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

100 CHAPTER 4 Target API

4.2.2.28 USBD_EnableSuperSpeed()

Description

Enable SuperSpeed in the USB stack. Must be called in USBD_X_Config(). If the USB driver
or USB controller does not support SuperSpeed, calling this function has no effect.

Prototype

void USBD_EnableSuperSpeed(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

101 CHAPTER 4 Target API

4.2.2.29 USBD_SetWebUSBInfo()

Description

For WebUSB capable USB devices this function may be called before USBD_Start() to
enable WebUSB specific descriptors. This function can be used only, if the USB controller
supports USB 2.1 compatibility, especially link power management (LPM).

Prototype

void USBD_SetWebUSBInfo(const USB_WEBUSB_INFO * pWebUSBInfo);

Parameters

Parameter Description

pWebUSBInfo
Pointer to a structure containing the device information.
Must point to static data that is not changed while the stack
is running.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

102 CHAPTER 4 Target API

4.2.2.30 USBD_SetCheckAddress()

Description

Installs a function that checks if an address can be used for DMA transfers. Installed function
must return 0, if DMA access is allowed for the given address, any value ≠ 0 otherwise.

Prototype

void USBD_SetCheckAddress(USB_CHECK_ADDRESS_FUNC * pfCheckValidDMAAddress);

Parameters

Parameter Description

pfCheckValidDMAAd-
dress

Pointer to the function.

Additional information

If the function reports a memory region not valid for DMA, the driver uses a temporary
transfer buffer to copy data to and from this area.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

103 CHAPTER 4 Target API

4.2.2.31 USBD_SetGetStringHook()

Description

Sets a call to determine the string of a specified string index.

Prototype

void USBD_SetGetStringHook(USB_GET_STRING_DESC_HOOK * pHook,
 USB_GET_STRING_FUNC * pfOnGetString);

Parameters

Parameter Description

pHook Pointer to static USB_GET_STRING_DESC_HOOK structure.
pfOnGetString Pointer to GetString callback.

Additional information

The USB_GET_STRING_DESC_HOOK structure is private to the USB stack. It will be initialized
by USBD_SetGetStringHook(). The USB stack keeps track of all ’GetString’ callback func-
tions using a linked list. The USB_GET_STRING_DESC_HOOK structure will be included into
this linked list and must reside in static memory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

104 CHAPTER 4 Target API

4.2.3 USB I/O functions

4.2.3.1 USBD_Read()

Description

Reads data from the host.

Prototype

int USBD_Read(unsigned EPOut,
 void * pData,
 unsigned NumBytesReq,
 unsigned Timeout);

Parameters

Parameter Description

EPOut Handle to an OUT endpoint returned by USBD_AddEP().
pData Pointer to a buffer where the received data will be stored.
NumBytesReq Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

= NumBytes Requested data was successfully read within the given timeout.
≥ 0 && < NumBytes Timeout has occurred (Number of bytes read before timeout).
< 0 An error occurred.

Additional information

This function blocks the task until all data has been read or a timeout occurs. In case of a
reset or a disconnect USB_STATUS_ERROR is returned.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via the USBD_AddEP() function. This data can be retrieved by a later call to USBD_Receive()
or USBD_Read(). See also USBD_GetNumBytesInBuffer().

In case of a timeout, the read transfer is aborted (see Timeout handling on page 131).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

105 CHAPTER 4 Target API

4.2.3.2 USBD_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

int USBD_ReadOverlapped(unsigned EPOut,
 void * pData,
 unsigned NumBytesReq);

Parameters

Parameter Description

EPOut Handle to an OUT endpoint returned by USBD_AddEP().
pData Pointer to a buffer where the received data will be stored.
NumBytesReq Number of bytes to read.

Return value

≥ 0 Number of bytes that have been read from the internal buffer (success).
= 0 No data was found in the internal buffer, read transfer started (success).
< 0 An error occurred.

Additional information

This function will not block the calling task. The read transfer will be initiated and the func-
tion returns immediately. In order to synchronize, USBD_WaitForEndOfTransfer() needs
to be called.

Another synchronization method would be to periodically call USBD_GetNumBytesRemToRe-
ad() in order to see how many bytes still need to be received (this method is preferred
when a non-blocking solution is necessary).

The read operation can be canceled using USBD_CancelIO().

The buffer pointed to by pData must be valid until the read operation is terminated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

106 CHAPTER 4 Target API

4.2.3.3 USBD_Receive()

Description

Reads data from host. The function blocks until any data have been received. In contrast
to USBD_Read() this function does not wait for all of NumBytes to be received, but returns
after the first packet has been received or after the timeout occurs. In case of a timeout,
the read transfer is aborted (see Timeout handling on page 131).

Prototype

int USBD_Receive(unsigned EPOut,
 void * pData,
 unsigned NumBytesReq,
 int Timeout);

Parameters

Parameter Description

EPOut Handle to an OUT endpoint returned by USBD_AddEP().
pData Pointer to a buffer where the received data will be stored.
NumBytesReq Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout. If Timeout is -1, the function never blocks and
only reads data from the internal endpoint buffer.

Return value

> 0 Number of bytes that have been read within the given timeout.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!), no data in buffer (if Timeout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

< 0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_Re-
ceive() will return as much data as is currently available up to the size of the buffer spec-
ified within the specified timeout. This function also returns when the target is disconnected
from the host or when a USB reset occurred during the function call, it will then return the
number of bytes read so far. If the target was disconnected before this function was called,
it returns USB_STATUS_ERROR.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided via
USBD_AddEP(). This data can be retrieved by a later call to USBD_Receive() / USBD_Read().
See also USBD_GetNumBytesInBuffer().

A call of USBD_Receive(EPOut, NULL, 0, -1) can be used to trigger an asynchronous read
that stores the data into the internal buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

107 CHAPTER 4 Target API

4.2.3.4 USBD_ReceivePoll()

Description

Reads data from host. The function blocks until any data have been received. In contrast
to USBD_Read() this function does not wait for all of NumBytes to be received, but returns
after the first packet has been received or after the timeout occurs. In contrast to USBD_Re-
ceive() this function will continue the read transfer asynchronously in case of a timeout.

Prototype

int USBD_ReceivePoll(unsigned EPOut,
 void * pData,
 unsigned NumBytesReq,
 unsigned Timeout);

Parameters

Parameter Description

EPOut Handle to an OUT endpoint returned by USBD_AddEP().
pData Pointer to a buffer where the received data will be stored.
NumBytesReq Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

> 0 Number of bytes that have been read within the given timeout.
= 0 A timeout occurred (if Timeout > 0) or a zero packet received (not every con-

troller supports this!), or the target was disconnected during the function call
and no data was read so far.

< 0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_Re-
ceivePoll() will return as much data as is currently available up to the size of the buffer
specified within the specified timeout. This function also returns when the target is discon-
nected from the host or when a USB reset occurred during the function call, it will then
return the number of bytes read so far. If the target was disconnected before this function
was called, it returns USB_STATUS_ERROR.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided via
USBD_AddEP(). This data can be retrieved by a later call to USBD_Receive() / USBD_Read().
See also USBD_GetNumBytesInBuffer().

If a timeout occurs, the read transfer is not affected. Data send from the host after the
timeout is stored into the internal buffer of the endpoint and can be read by later calls to
USBD_ReceivePoll().

If Timeout = 0, the function behaves like USBD_Receive().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

108 CHAPTER 4 Target API

4.2.3.5 USBD_ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype

void USBD_ReadAsync(unsigned EPIndex,
 USB_ASYNC_IO_CONTEXT * pContext,
 int ShortRead);

Parameters

Parameter Description

EPIndex Handle to an OUT endpoint returned by USBD_AddEP().

pContext
Pointer to an I/O context containing parameters and pointer
to the callback function.

ShortRead

• 0: The transfer is completed successfully after all bytes
have been read.

• 1: The transfer is completed successfully after one packet
has been read.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

109 CHAPTER 4 Target API

4.2.3.6 USBD_Write()

Description

Writes data to the host. Depending on the Timeout parameter, the function may block until
NumBytes have been written or a timeout occurs.

Prototype

int USBD_Write(unsigned EPIndex,
 const void * pData,
 unsigned NumBytes,
 char Send0PacketIfRequired,
 int ms);

Parameters

Parameter Description

EPIndex Handle to an IN endpoint returned by USBD_AddEP().
pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to be written.

Send0PacketIfRequired
Specifies that a zero-length packet should be sent when the
last data packet to the host is a multiple of MaxPacketSize.

ms
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Return value

= 0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NumBytes Number of bytes that have been written before a timeout oc-
curred.

= NumBytes Write transfer successful completed.
< 0 An error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (Timeout
= -1). If a write transfer is still in progress when this function is called and the USB stack
can not accept another write transfer request, the functions returns USB_STATUS_EP_BUSY.
A synchronous write transfer (Timeout ≥ 0) will always block until the transfer (including
all pending transfers) are finished.

In order to synchronize, USBD_WaitForEndOfTransfer() needs to be called. Another syn-
chronization method would be to periodically call USBD_GetNumBytesRemToWrite() in or-
der to see how many bytes still need to be written (this method is preferred when a non-
blocking solution is necessary).

In case of a timeout, the write transfer is aborted (see Timeout handling on page 131).

The write operation can be canceled using USBD_CancelIO().

If pData = NULL and NumBytes = 0, a zero-length packet is sent to the host.

The content of the buffer pointed to by pData must not be changed until the transfer has
been completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

110 CHAPTER 4 Target API

4.2.3.7 USBD_WriteAsync()

Description

Sends data to the host asynchronously. The function does not wait for the data to be sent.
A callback function is called after the transfer has completed successfully, an error occurred
or the transfer was canceled.

Prototype

void USBD_WriteAsync(unsigned EPIndex,
 USB_ASYNC_IO_CONTEXT * pContext,
 char Send0PacketIfRequired);

Parameters

Parameter Description

EPIndex Handle to an IN endpoint returned by USBD_AddEP().

pContext
Pointer to an I/O context containing parameters and pointer
to the callback function.

Send0PacketIfRequired
Specifies that a zero-length packet shall be sent when the
last data packet is a multiple of MaxPacketSize.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

111 CHAPTER 4 Target API

4.2.3.8 USBD_CancelIO()

Description

Cancel any read or write operation.

Prototype

void USBD_CancelIO(unsigned EPIndex);

Parameters

Parameter Description

EPIndex Handle to an endpoint returned by USBD_AddEP().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

112 CHAPTER 4 Target API

4.2.3.9 USBD_WaitForEndOfTransferEx()

Description

Wait until the current transfer on a particular EP has completed. This function must be
called from a task.

Prototype

int USBD_WaitForEndOfTransferEx(unsigned EPIndex,
 unsigned Timeout,
 int AbortOnTimeout);

Parameters

Parameter Description

EPIndex Handle to the endpoint returned by USBD_AddEP().
Timeout Timeout in milliseconds, 0 means infinite wait.

AbortOnTimeout

If a timeout occurs, then the current transfer is terminated if
AbortOnTimeout ≠ 0. The current transfer is not affected in
case of a timeout if AbortOnTimeout = 0. See also Timeout
handling on page 131.

Return value

0 Transfer completed.
1 Timeout occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

113 CHAPTER 4 Target API

4.2.3.10 USBD_WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used
in combination with a non-blocking call to USBD_Write(), it waits until a new asynchronous
write data transfer will be accepted by the USB stack.

Prototype

int USBD_WaitForTXReady(unsigned EPIndex,
 int Timeout);

Parameters

Parameter Description

EPIndex Handle to an IN endpoint returned by USBD_AddEP().

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is neg-
ative, the function will return immediately.

Return value

= 0 A new asynchronous write data transfer will be accepted.
= 1 The write queue is full, a call to USBD_Write() would return USB_S-

TATUS_EP_BUSY.
< 0 Error occurred.

Additional information

If Timeout is 0, the function never returns 1. If Timeout is -1, the function will not wait,
but immediately return the current state.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

114 CHAPTER 4 Target API

4.2.3.11 USBD_GetNumBytesInBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype

unsigned USBD_GetNumBytesInBuffer(unsigned EPIndex);

Parameters

Parameter Description

EPIndex Handle to an OUT endpoint returned by USBD_AddEP().

Return value

Number of bytes which have been stored in the internal buffer.

Additional information

The number of bytes returned by this function can be read using USBD_Read() or USBD_Re-
ceive() without blocking.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

115 CHAPTER 4 Target API

4.2.3.12 USBD_GetNumBytesRemToRead()

Description

This function is to be used in combination with USBD_ReadOverlapped(). It returns the
number of bytes which still have to be read during the transaction.

Prototype

unsigned USBD_GetNumBytesRemToRead(unsigned EPIndex);

Parameters

Parameter Description

EPIndex Handle to an OUT endpoint returned by USBD_AddEP().

Return value

Number of bytes which still have to be read.

Additional information

Note that this function does not return the number of bytes that have been read, but the
number of bytes which still have to be read. This function does not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

116 CHAPTER 4 Target API

4.2.3.13 USBD_GetNumBytesRemToWrite()

Description

This function is to be used in combination with a non-blocking call to USBD_Write(). It
returns the number of bytes which still have to be written during the transaction.

Prototype

unsigned USBD_GetNumBytesRemToWrite(unsigned EPIndex);

Parameters

Parameter Description

EPIndex Handle to an IN endpoint returned by USBD_AddEP().

Return value

Number of bytes which still have to be written.

Additional information

Note that this function does not return the number of bytes that have been written, but the
number of bytes which still have to be written. This function does not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

117 CHAPTER 4 Target API

4.2.3.14 USBD_StallEP()

Description

Stalls an endpoint.

Prototype

void USBD_StallEP(unsigned EPIndex);

Parameters

Parameter Description

EPIndex Handle to the endpoint handle returned by USBD_AddEP().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

118 CHAPTER 4 Target API

4.2.4 USB Remote wakeup functions
Remote wakeup is a feature that allows a device to wake a host system from a USB suspend
state.

In order to do this a special resume signal is sent over the USB data lines.

Additionally the USB host controller and operating system has to be able to handle this
signaling.

Windows OS

Currently Windows OS only supports the wakeup feature on devices based on HID mouse/
keyboard, CDC Modem and RNDIS Ethernet class. Remote wakeup for MSD, generic bulk
and CDC serial is not supported by Windows. So therefore a HID mouse class even as
dummy interface within your USB configuration is currently mandatory.

Windows must also be told that the device shall wake the PC from the suspend state. This
is done by setting the option “Allow this device to bring the computer out of standby”.

macOS

macOS supports remote wakeup for all device classes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

119 CHAPTER 4 Target API

4.2.4.1 USBD_SetAllowRemoteWakeUp()

Description

Allows the device to publish that remote wake is available.

Prototype

void USBD_SetAllowRemoteWakeUp(U8 AllowRemoteWakeup);

Parameters

Parameter Description

AllowRemoteWakeup
• 1 - Allows and publishes that remote wakeup is available.
• 0 - Publish that remote wakeup is not available.

Additional information

This function must be called before the function USBD_Start() is called. This ensures that
the Host is informed that USB remote wake up is available.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

120 CHAPTER 4 Target API

4.2.4.2 USBD_DoRemoteWakeup()

Description

Performs a remote wakeup in order to wake up the host from the standby/suspend state.
This will only work, when the USB device driver supports this. The function must be called
only, if either:

A) The USB device is in suspend state: (USBD_GetState() & USB_STAT_SUSPENDED) ≠ 0
and remote wakeup is allowed by the host: (USBD_GetDeviceState() & USB_DEVSTAT_RE-
MOTE_WAKEUP_ALLOWED) ≠ 0.

OR

B) The USB bus is in L1 state and remote wakeup is allowed by the host, see USBD_Se-
tOnLPMChange().

Prototype

void USBD_DoRemoteWakeup(void);

Additional information

This function cannot be called from an ISR context.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

121 CHAPTER 4 Target API

4.2.5 Data structures

4.2.5.1 USB_ADD_EP_INFO

Description

Structure used by USBD_AddEPEx() when adding an endpoint.

Type definition

typedef struct {
 unsigned MaxPacketSize;
 U16 Interval;
 U8 Flags;
 U8 InDir;
 U8 TransferType;
 U8 ISO_Type;
} USB_ADD_EP_INFO;

Structure members

Member Description

MaxPacketSize Maximum packet size for the endpoint.

Interval
Specifies the interval measured in units of 125us (mi-
croframes). This value should be zero for a bulk endpoint.

Flags

Specifies whether optional parameters are used.
• 0x00 - Ignore optional parameters.
• USB_ADD_EP_FLAG_USE_ISO_SYNC_TYPES - Use ISO_Type.

If not set the endpoint will have the sync type
USB_ISO_SYNC_TYPE_NONE.

InDir
Specifies the direction of the desired endpoint.
• USB_DIR_IN
• USB_DIR_OUT

TransferType

Specifies the transfer type of the endpoint. The following val-
ues are allowed:
• USB_TRANSFER_TYPE_BULK
• USB_TRANSFER_TYPE_ISO
• USB_TRANSFER_TYPE_INT

ISO_Type

Allows to set the synchronization type for isochronous end-
points. The following types are supported:
• USB_ISO_SYNC_TYPE_NONE (default)
• USB_ISO_SYNC_TYPE_ASYNCHRONOUS
• USB_ISO_SYNC_TYPE_ADAPTIVE
• USB_ISO_SYNC_TYPE_SYNCHRONOUS

Additional information

The Interval parameter specifies the frequency in which the endpoint should be polled
for information by the host. It must be specified in units of 125 us. Depending on the
actual speed of the device during enumeration, the USB stack converts the interval to
the correct value required for the endpoint descriptor according to the USB specification
(into milliseconds for low/full-speed, into 125 us for high-speed). For endpoints of type
USB_TRANSFER_TYPE_BULK the value is ignored and should be set to 0.

The actual maximum packet size for bulk endpoints may be smaller than given in the
’MaxPacketSize’ field to meet the requirements of the actual USB speed.

For SuperSpeed bulk endpoints, MaxPacketSize can be N * 1024, where N = 1…16. Values
of N > 1 enables the usage of burst transfers.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

122 CHAPTER 4 Target API

4.2.5.2 USB_SETUP_PACKET

Description

Structure containing a USB setup packet received from the host.

Type definition

typedef struct {
 U8 bmRequestType;
 U8 bRequest;
 U8 wValueLow;
 U8 wValueHigh;
 U8 wIndexLow;
 U8 wIndexHigh;
 U8 wLengthLow;
 U8 wLengthHigh;
} USB_SETUP_PACKET;

Structure members

Member Description

bmRequestType Setup request type.
bRequest Setup request number.
wValueLow Low byte of the value field.
wValueHigh High byte of the value field.
wIndexLow Low byte of the index field.
wIndexHigh High byte of the index field.
wLengthLow Low byte of the length field.
wLengthHigh High byte of the length field.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

123 CHAPTER 4 Target API

4.2.5.3 SEGGER_CACHE_CONFIG

Description

Used to pass cache configuration and callback function pointers to the stack.

Prototype

typedef struct {
 unsigned int CacheLineSize;
 void (*pfDMB) (void);
 void (*pfClean) (void *p, unsigned long NumBytes);
 void (*pfInvalidate)(void *p, unsigned long NumBytes);
} SEGGER_CACHE_CONFIG;

Member Description

CacheLineSize
Cache line size of the CPU in bytes. Most Systems use a 32 bytes
cache line size.

pfDMB Unused.

pfClean

Pointer to a callback function that executes a clean operation on
cached memory. The parameter ’p’ is always cache aligned. ’Num-
Bytes’ must be rounded up by the function to the next multiple of the
cache line size, if necessary.

pfInvalidate

Pointer to a callback function that executes an invalidate operation
on cached memory. The parameter ’p’ is always cache aligned. ’Num-
Bytes’ must be rounded up by the function to the next multiple of the
cache line size, if necessary.

Additional information

For further information about how this structure is used please refer to USBD_SetCacheCon-
fig on page 93.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

124 CHAPTER 4 Target API

4.2.5.4 USB_CHECK_ADDRESS_FUNC

Description

Checks if an address can be used for DMA transfers. The function must return 0, if DMA
access is allowed for the given address, 1 otherwise.

Type definition

typedef int USB_CHECK_ADDRESS_FUNC(const void * pMem);

Parameters

Parameter Description

pMem Pointer to the memory.

Return value

= 0 Memory can be used for DMA access.
≠ 0 DMA access not allowed for the given address.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

125 CHAPTER 4 Target API

4.2.5.5 USB_ASYNC_IO_CONTEXT

Description

Contains information for asynchronous transfers.

Type definition

typedef struct {
 unsigned NumBytesToTransfer;
 void * pData;
 USB_ASYNC_CALLBACK_FUNC * pfOnComplete;
 void * pContext;
 int Status;
 unsigned NumBytesTransferred;
} USB_ASYNC_IO_CONTEXT;

Structure members

Member Description

NumBytesToTransfer Number of bytes to transfer. Must be set by the application.

pData
Pointer to the buffer for read operations, pointer to the data
for write operations. Must be set by the application.

pfOnComplete
Pointer to the function called on completion of the transfer.
Must be set by the application.

pContext
Pointer to a user context. Can be arbitrarily used by the ap-
plication.

Status
Result status of the asynchronous transfer. Set by the USB
stack before calling pfOnComplete.

NumBytesTransferred
Number of bytes transferred. Set by the USB stack before
calling pfOnComplete.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

126 CHAPTER 4 Target API

4.2.5.6 USB_WEBUSB_INFO

Description

Information that may be provided by the application for WebUSB capable USB devices.
Can be set via the function USBD_SetWebUSBInfo() before the USB stack is started using
USBD_Start(). Is used during enumeration of the device by the host.

Type definition

typedef struct {
 U8 VendorCode;
 U8 DescIndex;
 U8 URLPrefix;
 const char * sURL;
} USB_WEBUSB_INFO;

Structure members

Member Description

VendorCode Vendor code used for the setup request.

DescIndex
Descriptor index of the descriptor containing the URL of the
landing page.

URLPrefix Prefix of the URL: 0 = “http://”, 1 = “https://”, 255 = none.
sURL URL of the landing page. UTF-8 string.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

127 CHAPTER 4 Target API

4.2.6 Function Types

4.2.6.1 USB_ON_CLASS_REQUEST

Description

Type of callback set in USBD_SetClassRequestHook() or USBD_SetVendorRequestHook().
This function is called when a setup class request is sent from the host to the specified
interface index.

Type definition

typedef int USB_ON_CLASS_REQUEST(const USB_SETUP_PACKET * pSetupPacket);

Parameters

Parameter Description

pSetupPacket Pointer to the setup packet received from the host.

Return value

If the function has processed the setup packet, it must acknowledge the packet by either
sending a response packet using USBD_WriteEP0FromISR() or an empty packet with USB-
D_WriteEP0FromISR(NULL, 0, 0) and must return 0.

If the function can’t process the packet, it must return 1. In this case the USB stacks tries
to process the packet and will send a STALL if that fails.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

128 CHAPTER 4 Target API

4.2.6.2 USB_ON_SETUP

Description

Type of callback set in USBD_SetOnSetup(). This function is called when a setup request
was sent from the host.

Type definition

typedef int USB_ON_SETUP(const USB_SETUP_PACKET * pSetupPacket);

Parameters

Parameter Description

pSetupPacket Pointer to the setup packet received from the host.

Return value

If the function has processed the setup packet, it must acknowledge the packet by either
sending a response packet using USBD_WriteEP0FromISR() or an empty packet with USB-
D_WriteEP0FromISR(NULL, 0, 0) and must return 0.

If the function can’t process the packet, it must return 1. In this case the USB stacks tries
to process the packet and will send a STALL if that fails.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

129 CHAPTER 4 Target API

4.2.6.3 USB_GET_STRING_FUNC

Description

Type of callback set in USBD_SetGetStringHook(). This function is called when a string
descriptor is requested from the host.

Type definition

typedef const char * USB_GET_STRING_FUNC(int Index);

Parameters

Parameter Description

Index Index of the requested string.

Return value

If the function is able to provide a string for the given index, it should return a pointer to
an ASCII string. Otherwise it should return a NULL pointer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

130 CHAPTER 4 Target API

4.2.6.4 USB_ON_LPM_CHANGE

Description

Type of callback set in USBD_SetOnLPMChange(). This function is called when a LPM transi-
tion on the USB lines (L0 <-> L1) is detected.

Type definition

typedef void USB_ON_LPM_CHANGE(int State,
 unsigned BESL);

Parameters

Parameter Description

State
• -1 - Transition to L0.
• 0 - Transition to L1. Remote wakeup not allowed.
• 1 - Transition to L1. Remote wakeup allowed.

BESL

BESL value (Best Effort Service Latency) in range 0…15
reported by the host when requesting a transition to L1
state. Values of 0,1,…,14,15 specify a BESL of 125us,150us,
…,9000us,10000us respectively, see “Errata for USB 2.0
ECN: Link Power Management (LPM) - 7/2007” from usb.org
for an explanation of these values.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

131 CHAPTER 4 Timeout handling

4.3 Timeout handling
Many API functions have a timeout parameter that causes the functions to return, if the
desired transaction can not be finished within the given time. Hardware USB controllers
usually do not have a mechanism for timeouts. Therefore the USB stack has to handle
timeouts as follows:
• Start a transaction.
• Wait for the transaction to complete or the timeout to expire.
• If the timeout has expired: Abort the current transaction.

Aborting a transaction is always a critical operation. The USB software is informed by the
hardware only if a transaction has been completed. The software usually does not know, if
a data transfer on the USB lines is still in progress. So if the USB stack decides to abort a
transaction, this transaction may already be in progress at that time. In this case the abort
of the transfer may cause the data currently transferred to be discarded without any notice
to the software. Although the data packet was successfully transferred on the USB bus and
acknowledged by the host, the data is lost from the target application’s viewpoint.

Because this is usually not the behavior intended by the application, timeouts should be
used to handle fatal errors only. Timeouts should not be used to repeatedly poll for data.

Bad example

NOT RECOMMENDED

for (;;) {
 // Try to read some data with 5 ms timeout
 NumBytesRead = USBD_Receive(EP, Buffer, 100, 5);
 if (NumBytesRead < 0) {
 <handle error>
 break;
 }
 if (NumBytesRead > 0) {
 <process the data>
 continue;
 }
 // NumBytesRead is 0 here, that means a timeout has occurred
 <execute other tasks>
 // Repeat the loop and retry to read data
}

In this example, data packets may be lost if they arrive exactly when the 5 ms timeout
expires.

There are several options to avoid this problem:
• Using non-blocking API functions, like USBD_Receive() whereas the Timeout value =

-1 eg. USBD_Receive(EP, Buffer, 100, -1).
• Using asynchronous API functions, line USBD_ReadOverlapped(), USBD_ReadAsync().
• Using blocking API functions with a timeout, that don’t abort the transaction. They

usually have a “Poll” in their name. The above example works well when using the
function USBD_ReceivePoll() instead of USBD_Receive().

The same applies when writing data to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

132 CHAPTER 4 Low power mode

4.4 Low power mode
emUSB-Device does not directly support low power modes of the device running USB,
because it is very specific to the actual hardware and requirements of the application and
there may be several different low power states. Low power mode may include:
• Shutting down peripherals (including the USB controller and/or the PHY)
• Shutting down PLLs
• Lowering the system clock
• CPU sleep modes

The device is usually put into low power state only, if there is no USB connection to the
host. Since the host supplies the device via (5 Volt) VBUS, there is no need for power
saving. Without a USB host connection, the device may run from a battery which requires
low power consumption.

The application is responsible to determine when low power state should be entered or
exited. In most cases it depends on VBUS: Enter low power mode while no VBUS is present.
There is no general way to detect VBUS with the USB controller, especially if the USB
controller is shut down. Therefore VBUS detection must be managed by the application.

To enter low power mode, the application should:
• Call USBD_Stop()
• Enter low power mode

To leave low power mode, the application should:
• Resume from low power mode
• Call USBD_Start()

Alternately the USB stack may be re-initialized completely.

To enter low power mode:
• Call USBD_DeInit()
• Enter low power mode

To leave low power mode:
• Resume from low power mode
• Call USBD_Init()
• Call all necessary USB configuration function (like USBD_SetDeviceInfo(),

USBD_<class>_Add(), …)
• Call USBD_Start()

The second approach is necessary for example, if the configuration which was done in the
USBD_X_Config() function should be executed after resuming from low power mode, or
if the memory used by the USB stack was shut down in low power mode and has lost its
contents.

4.4.1 USB suspend
If the application wants to respond to a USB suspend from the host while the device stays
connected to the host, it may simply monitor the status bit USB_STAT_SUSPENDED returned
by the function USBD_GetState(). The USB stack must remain active to get correct states
from USBD_GetState().

The USB controller is usually not able to distinguish between suspend state and USB dis-
connect. Therefore the VBUS state has to be considered: If the stack turns into suspend
state while VBUS is still present, the host has issued a suspend and a later resume (or
remote wake-up) may be possible. If the stack signals a suspend event and VBUS is off,
then the host was disconnected and no resume (or remote wake-up) is possible.

The device may be put into low power mode during suspend. If the USB controller is affected
by the low power mode (for example if the USB controller register settings are not retained),
then the application has to save and restore the USB controllers state before entering /
after leaving low power state.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

133 CHAPTER 4 Low power mode

4.4.2 Link Power Management (LPM)
To enable LPM, the application has to call USBD_UseV210() within the configuration func-
tion USBD_X_Config(). This sets the USB version of the device to 2.10. The host will then
request the LPM capabilities from the device (contained in the BOS descriptor) during enu-
meration. The USB stack will offer LPM support only, if the driver and the USB controller
supports it.

For SuperSpeed devices LPM is enabled by default.

Please notice that common USB hosts (Windows/Linux/MacOS) use LPM for full- and high-
speed devices only in special situations. If the host contains a controller hardware other
than a XHCI type controller, then LPM is not used. Also if the device is not directly connected
to that USB controller, but instead via a hub, then LPM is not used.

See also:
• USBD_SetBESLValues()
• USBD_SetOnLPMChange()
• USBD_SetLPMResponse()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 5

Bulk communication

This chapter describes how to get emUSB-Device-Bulk up and running.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

135 CHAPTER 5 Generic bulk stack

5.1 Generic bulk stack
The generic bulk stack is located in the directory USB. All C files in the directory should be
included in the project (compiled and linked as part of your project). The files in this direc-
tory are maintained by SEGGER and should not require any modification. All files requiring
modifications have been placed in other directories.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

136 CHAPTER 5 Requirements for the Host (PC)

5.2 Requirements for the Host (PC)
In order to communicate with a target (client) running emUSB-Device, the operating system
running on the host must recognize the device connected to it.

5.2.1 Windows
Microsoft’s Windows operating systems (Starting with XP Service Pack 2) contains a generic
driver called WinUSB.sys that is used to handle all communication to a emUSB-Device
running a BULK interface. If a emUSB bulk device is connected to a Windows 8, 8.1 and
10 PC for the first time, Windows will install the WinUSB driver automatically. For Windows
versions less than Windows 8, Microsoft provides a driver for Windows Vista and Windows
7 but this needs to be installed manually. A driver installation tool including the mentioned
driver is available in the Windows\USB\Bulk\WinUSBInstall. Windows XP user can use
the driver package located under Windows\USB\Bulk\WinUSB_USBBulk_XP. In order to get
emUSB BULK running with the WinUSB driver the following must be considered:
• The function USBD_BULK_SetMSDescInfo() must be called in the target application.
• The Product IDs 1234 and 1121 must not be used.

5.2.2 Linux
Linux can handle emUSB BULK devices out of the box.

By default a USB device can only be accessed by a process that is running with “root”
rights. In order to use the USB bulk device from normal user programs an udev rule has to
be configured for the device (refer to the linux udev documentation). The emUSB-Device
release contains a sample configuration file 99-emUSBD.rules, which may be modified and
copied to /etc/udev/rules.d on the host machine.

5.2.3 macOS
macOS can handle emUSB BULK devices out of the box.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

137 CHAPTER 5 Example application

5.3 Example application
Example applications for both the target (client) and the PC (host) are supplied. These
can be used for testing the correct installation and proper function of the device running
emUSB-Device.

The host sample applications can be used for Windows, Linux and MacOSX. Precompiled
executables for Windows can be found in the subfolder Windows/USB/Bulk/SampleAppli-
cation/Exe.

The application USB_BULK_Test.c is a modified echo server; the application receives data,
modifies the first byte and sends it back to the host. It also contains the functionality to
measure USB transfer speed.

To use this application, make sure to use the corresponding example files both on the host-
side as on the target side. The example applications on the PC host are named in the same
way, just without the prefix USB_BULK_.

The example applications for the target-side are supplied in source code in the Application
directory.

For information how to compile the host examples (especially for Linux and MacOSX) refer
to Compiling the PC example application on page 138.

The start application will of course later on be replaced by the real application program.
For the purpose of getting emUSB-Device up and running as well as doing an initial test,
the start application should not be modified.

5.3.1 Running the example applications
To test the emUSB-Device-Bulk component, build and download the application of choice
for the target-side.

To run one of the example applications, simply start the executable, for example by double
clicking it.

If a connection can be established, it exchanges data with the target, testing the USB
connection.

Example output of Test.exe:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

138 CHAPTER 5 Example application

5.3.2 Compiling the PC example application

5.3.2.1 Windows
For compiling the example application you need Visual C++ 2010 (or later).

The source code of the sample application is located in the subfolder Windows/USB/BULK/
SampleApplication/Src. Open the file USBBULK_Start.sln and compile the source.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

139 CHAPTER 5 Example application

5.3.2.2 Linux
The subfolder Windows/USB/Bulk/SampleApplication contains a Makefile for Linux.
Change to this folder and execute “make”.

5.3.2.3 macOS
The subfolder Windows/USB/Bulk/SampleApplication contains a Makefile for macOS.
Change to this folder and execute “make -f Makefile_MacOSX”.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

140 CHAPTER 5 Target API

5.4 Target API
This chapter describes the functions that can be used with the target system.

General information

To communicate with the host, the sample application project includes USB-specific header
and source files (USB.h, USB_Main.c, USB_Setup.c, USB_Bulk.c, USB_Bulk.h). These files
contain API functions to communicate with the USB host through the emUSB-Device driver.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API functions
have a simple interface and handle all operations that need to be done to communicate
with the hosts kernel.

Therefore, all operations that need to write to or read from the emUSB-Device are handled
internally by the provided API functions.

5.4.1 Target interface function list

Routine Explanation

USB-Bulk functions

USBD_BULK_Add()
Adds interface for USB-Bulk communica-
tion to emUSB-Device.

USBD_BULK_Add_Ex()
Adds interface for USB-Bulk communica-
tion to emUSB-Device.

USBD_BULK_AddAlternateInterface()
Adds an alternative interface for USB-Bulk
interface.

USBD_BULK_SetMSDescInfo() Enables use of Microsoft OS Descriptors.

USBD_BULK_CancelRead()
Cancels any non-blocking/blocking read
operation that is pending.

USBD_BULK_CancelWrite()
Cancels any non-blocking/blocking write
operation that is pending.

USBD_BULK_GetNumBytesInBuffer()
Returns the number of bytes that are
available in the internal BULK-OUT end-
point buffer.

USBD_BULK_GetNumBytesRemToRead()
Get the number of remaining bytes to read
by an active read operation.

USBD_BULK_GetNumBytesRemToWrite()

After starting a non-blocking write oper-
ation this function can be used to period-
ically check how many bytes still have to
be written.

USBD_BULK_Read()
Reads data from the host with a given
timeout.

USBD_BULK_ReadAsync() Reads data from the host asynchronously.
USBD_BULK_ReadOverlapped() Reads data from the host asynchronously.
USBD_BULK_Receive() Reads data from the host.
USBD_BULK_ReceivePoll() Reads data from the host.

USBD_BULK_SetContinuousReadMode()
Enables continuous read mode for the RX
endpoint.

USBD_BULK_SetOnSetupRequest()
Sets a callback function that is called when
any setup request is sent from the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

141 CHAPTER 5 Target API

Routine Explanation

USBD_BULK_SetOnRXEvent()
Sets a callback function for the OUT end-
point that will be called on every RX event
for that endpoint.

USBD_BULK_SetOnTXEvent()
Sets a callback function for the IN end-
point that will be called on every TX event
for that endpoint.

USBD_BULK_TxIsPending()
Checks whether the TX (IN endpoint) is
currently pending.

USBD_BULK_WaitForRX()
Waits (blocking) until the triggered USB-
D_BULK_ReadOverlapped() has received
the desired data.

USBD_BULK_PollForRX()
Waits (blocking) until the triggered USB-
D_BULK_ReadOverlapped() has received
the desired data.

USBD_BULK_WaitForTX()
Waits (blocking) until a pending asynchro-
nous USBD_BULK_Write() (Timeout para-
meter = -1) has sent the desired data.

USBD_BULK_PollForTX()
Waits (blocking) until a pending asynchro-
nous USBD_BULK_Write() (Timeout para-
meter = -1) has sent the desired data.

USBD_BULK_WaitForTXReady()
Waits (blocking) until the TX queue can ac-
cept another data packet.

USBD_BULK_Write() Sends data to the USB host.
USBD_BULK_WriteAsync() Sends data to the host asynchronously.

USBD_BULK_WriteEx()
Send data to the USB host with NULL pack-
et control.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

142 CHAPTER 5 Target API

5.4.2 USB-Bulk functions

5.4.2.1 USBD_BULK_Add()

Description

Adds interface for USB-Bulk communication to emUSB-Device.

Prototype

USB_BULK_HANDLE USBD_BULK_Add(const USB_BULK_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to USB_BULK_INIT_DATA structure.

Return value

Handle to a valid BULK instance. The handle of the first BULK instance is always 0.

Example

Example excerpt from BULK_Echo1.c:

static void _AddBULK(void) {
 static U8 _abOutBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
 USB_BULK_INIT_DATA Init;
 Init.EPIn = USBD_AddEP(USB_DIR_IN,
 USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 NULL,
 0);
 Init.EPOut = USBD_AddEP(USB_DIR_OUT,
 USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 _abOutBuffer,
 USB_HS_BULK_MAX_PACKET_SIZE);
 USBD_BULK_Add(&Init);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

143 CHAPTER 5 Target API

5.4.2.2 USBD_BULK_Add_Ex()

Description

Adds interface for USB-Bulk communication to emUSB-Device.

Prototype

USB_BULK_HANDLE USBD_BULK_Add_Ex(const USB_BULK_INIT_DATA_EX * pInitData);

Parameters

Parameter Description

pInitData Pointer to USB_BULK_INIT_DATA_EX structure.

Return value

Handle to a valid BULK instance. The handle of the first BULK instance is always 0.

Example

static void _AddBULK(void) {
 static U8 _abOutBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
 USB_BULK_INIT_DATA_EX Init;
 Init.Flags = 0;
 Init.EPIn = USBD_AddEP(USB_DIR_IN,
 USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 NULL,
 0);
 Init.EPOut = USBD_AddEP(USB_DIR_OUT,
 USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 _abOutBuffer,
 USB_HS_BULK_MAX_PACKET_SIZE);
 Init.pInterfaceName = "BULK Interface";
 USBD_BULK_Add_Ex(&Init);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

144 CHAPTER 5 Target API

5.4.2.3 USBD_BULK_AddAlternateInterface()

Description

Adds an alternative interface for USB-Bulk interface.

Prototype

void USBD_BULK_AddAlternateInterface(USB_BULK_HANDLE hInst,
 const USB_BULK_INIT_DATA_EX * pInitData,
 USB_ON_USER_SET_INTERFACE * pfOnUser);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pInitData Pointer to USB_BULK_INIT_DATA_EX structure.

pfOnUser
Callback function that is called, when the host changes the
interface.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

145 CHAPTER 5 Target API

5.4.2.4 USBD_BULK_SetMSDescInfo()

Description

Enables use of Microsoft OS Descriptors. A USB bulk device providing these descriptors is
detected by Windows to be handled by the generic WinUSB driver. For such devices no
other driver needs to be installed.

Prototype

void USBD_BULK_SetMSDescInfo(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Additional information

This function must be called after the call to the function USBD_BULK_Add() and before
USBD_Start().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

146 CHAPTER 5 Target API

5.4.2.5 USBD_BULK_CancelRead()

Description

Cancels any non-blocking/blocking read operation that is pending.

Prototype

void USBD_BULK_CancelRead(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Additional information

This function shall be called when a pending asynchronous read operation should be can-
celed. The function can be called from any task. In case of canceling a blocking operation,
this function must be called from another task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

147 CHAPTER 5 Target API

5.4.2.6 USBD_BULK_CancelWrite()

Description

Cancels any non-blocking/blocking write operation that is pending.

Prototype

void USBD_BULK_CancelWrite(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Additional information

This function shall be called when a pending asynchronous write operation should be can-
celed. The function can be called from any task. In case of canceling a blocking operation,
this function must be called from another task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

148 CHAPTER 5 Target API

5.4.2.7 USBD_BULK_GetNumBytesInBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype

unsigned USBD_BULK_GetNumBytesInBuffer(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Return value

Number of bytes that are available in the internal BULK-OUT endpoint buffer.

Additional information

If the host is sending more data than your target application has requested, the remaining
data will be stored in an internal buffer. This function shows how many bytes are available
in this buffer.

The number of bytes returned by this function can be read using USBD_BULK_Read() without
blocking.

Example

Your host application sends 50 bytes. Your target application only requests to receive 1 byte.
In this case the target application will get 1 byte and the remaining 49 bytes are stored in an
internal buffer. When your target application now calls USBD_BULK_GetNumBytesInBuffer()
it will return the number of bytes that are available in the internal buffer (49).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

149 CHAPTER 5 Target API

5.4.2.8 USBD_BULK_GetNumBytesRemToRead()

Description

Get the number of remaining bytes to read by an active read operation. This function is to be
used in combination with USBD_BULK_ReadOverlapped(). After starting the read operation
this function can be used to periodically check how many bytes still have to be read.

Prototype

unsigned USBD_BULK_GetNumBytesRemToRead(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Return value

≥ 0 Number of bytes which have not yet been read.
< 0 Error occurred.

Additional information

Alternatively the blocking function USBD_BULK_WaitForRX() can be used.

Example

NumBytesReceived = USBD_BULK_ReadOverlapped(hInst, &ac[0], 50);
if (NumBytesReceived < 0) {
 <.. error handling..>
}
if (NumBytesReceived > 0) {
 // Already had some data in the internal buffer.
 // The first 'NumBytesReceived' bytes may be processed here.
 <...>
} else {
 // Wait until we get all 50 bytes
 while (USBD_BULK_GetNumBytesRemToRead(hInst) > 0) {
 USB_OS_Delay(50);
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

150 CHAPTER 5 Target API

5.4.2.9 USBD_BULK_GetNumBytesRemToWrite()

Description

After starting a non-blocking write operation this function can be used to periodically check
how many bytes still have to be written.

Prototype

unsigned USBD_BULK_GetNumBytesRemToWrite(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Return value

Number of bytes which have not yet been written.

Additional information

Alternatively the blocking function USBD_BULK_WaitForTX() can be used.

Example

r = USBD_BULK_Write(hInst, &ac[0], TRANSFER_SIZE, -1);
if (r < 0) {
 <.. error handling..>
}
// NumBytesToWrite shows how many bytes still have to be written.
while (USBD_BULK_GetNumBytesRemToWrite(hInst) > 0) {
 USB_OS_Delay(50);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

151 CHAPTER 5 Target API

5.4.2.10 USBD_BULK_Read()

Description

Reads data from the host with a given timeout.

Prototype

int USBD_BULK_Read(USB_BULK_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.
Timeout Timeout in milliseconds, 0 means infinite.

Return value

= NumBytes Requested data was successfully read within the given timeout.
≥ 0 && < NumBytes Timeout has occurred. Number of bytes that have been read

within the given timeout.
< 0 Error occurred.

Additional information

This function blocks a task until all data have been read or a timeout expires. This function
also returns when the device is disconnected from host or when a USB reset occurs.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_BULK_Receive() /
USBD_BULK_Read(). See also USBD_BULK_GetNumBytesInBuffer().

In case of a timeout, the read transfer is aborted (see Timeout handling on page 131).

If a read transfer was still pending while the function is called, it returns USB_S-
TATUS_EP_BUSY.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

152 CHAPTER 5 Target API

5.4.2.11 USBD_BULK_ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype

void USBD_BULK_ReadAsync(USB_BULK_HANDLE hInst,
 USB_ASYNC_IO_CONTEXT * pContext,
 int ShortRead);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pContext
Pointer to a structure of type USB_ASYNC_IO_CONTEXT con-
taining parameters and a pointer to the callback function.

ShortRead

• 0: The transfer is completed successfully after all bytes
have been read.

• 1: The transfer is completed successfully after one packet
has been read.

Example

static void _AsyncCb(USB_ASYNC_IO_CONTEXT * pIOContext) {
 U8 *p;

 p = (U8 *)pIOContext->pContext;
 *p = 1;
}

<...>

USB_ASYNC_IO_CONTEXT IOContext;
U8 AsyncComplete;

IOContext.NumBytesToTransfer = 5000;
IOContext.pData = pBuff;
IOContext.pfOnComplete = _AsyncCb;
IOContext.pContext = (void *)&AsyncComplete;
AsyncComplete = 0;
USBD_BULK_ReadAsync(hInst, &IOContext, 0);
while (AsyncComplete == 0) {
 <.. Do other work. ..>
}
// Transaction is complete.
if (IOContext.Status < 0 || IOContext.NumBytesTransferred != 5000) {
 <.. error handling ..>
} else {
 <.. Process the data ..>
}
<...>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

153 CHAPTER 5 Target API

5.4.2.12 USBD_BULK_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

int USBD_BULK_ReadOverlapped(USB_BULK_HANDLE hInst,
 void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Return value

> 0 Number of bytes that have been read from the internal buffer (success).
= 0 No data was found in the internal buffer, read transfer started (success).
< 0 Error occurred.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USBD_BULK_WaitForRX() needs to
be called. Alternatively the function USBD_BULK_GetNumBytesRemToRead() can be called
periodically to check whether all bytes have been read or not. The read operation can be
canceled using USBD_BULK_CancelRead(). The buffer pointed to by pData must be valid
until the read operation is terminated.

If a read transfer was still pending while the function is called, it returns USB_S-
TATUS_EP_BUSY.

Example

See USBD_BULK_GetNumBytesRemToRead on page 149.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

154 CHAPTER 5 Target API

5.4.2.13 USBD_BULK_Receive()

Description

Reads data from the host. The function blocks until any data has been received or a timeout
occurs (if Timeout ≥ 0). In contrast to USBD_BULK_Read() this function does not wait for
all of NumBytes to be received, but returns after the first packet has been received. In case
of a timeout, the read transfer is aborted (see Timeout handling on page 131).

Prototype

int USBD_BULK_Receive(USB_BULK_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Maximum number of bytes to read.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is -1,
the function never blocks and only reads data from the inter-
nal endpoint buffer.

Return value

> 0 Number of bytes that have been read.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!), no data in buffer (if Timeout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

< 0 Error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USB-
D_BULK_Receive() will return as much data as is currently available -- up to the size of the
buffer specified. This function also returns when the target is disconnected from the host or
when a USB reset occurred during the function call, it will then return USB_STATUS_ERROR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_BULK_Receive() /
USBD_BULK_Read(). See also USBD_BULK_GetNumBytesInBuffer().

A call of USBD_BULK_Receive(Inst, NULL, 0, -1) can be used to trigger an asynchronous
read that stores the data into the internal buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

155 CHAPTER 5 Target API

5.4.2.14 USBD_BULK_ReceivePoll()

Description

Reads data from the host. The function blocks until any data has been received or a timeout
occurs (if Timeout ≥ 0). In contrast to USBD_BULK_Read() this function does not wait for all
of NumBytes to be received, but returns after the first packet has been received. In contrast
to USBD_BULK_Receive() this function will continue the read transfer asynchronously in
case of a timeout.

Prototype

int USBD_BULK_ReceivePoll(USB_BULK_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Maximum number of bytes to read.
Timeout Timeout in milliseconds. 0 means infinite.

Return value

> 0 Number of bytes that have been read.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!) or the target was disconnected during the function call and no
data was read so far.

< 0 Error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USB-
D_BULK_ReceivePoll() will return as much data as is currently available -- up to the size
of the buffer specified. This function also returns when the target is disconnected from
the host or when a USB reset occurred during the function call, it will then return USB_S-
TATUS_ERROR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_BULK_Receive() /
USBD_BULK_Read(). See also USBD_BULK_GetNumBytesInBuffer().

If a timeout occurs, the read transfer is not affected. Data send from the host after the
timeout is stored into the internal buffer of the endpoint and can be read by later calls to
USBD_BULK_ReceivePoll().

If Timeout = 0, the function behaves like USBD_BULK_Receive().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

156 CHAPTER 5 Target API

5.4.2.15 USBD_BULK_SetContinuousReadMode()

Description

Enables continuous read mode for the RX endpoint. In this mode every finished read transfer
will automatically trigger another read transfer, as long as there is enough space in the
internal buffer to receive another packet.

Prototype

void USBD_BULK_SetContinuousReadMode(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Additional information

To check how many bytes have been read into the buffer, the function USBD_BULK_GetNum-
BytesInBuffer() may be called. In order to read the data the function USBD_BULK_Re-
ceive() needs to be called (non-blocking).

The USB stack will use the buffer that was provided by the application with USBD_AddEP().
The transfer speed may be improved, if this buffer has a size of at least 2 * MaxPacketSize.
Normally MaxPacketSize for full-speed devices is 64 bytes and for high-speed devices 512
bytes.

Example

USBD_BULK_SetContinuousReadMode(hInst);
<...>
for(;;) {
 //
 // Fetch data that was already read (non-blocking).
 //
 NumBytesReceived = USBD_BULK_Receive(hInst, &ac[0], sizeof(ac), -1);
 if (NumBytesReceived > 0) {
 //
 // We got some data
 //
 <.. Process data..>
 } else {
 <.. Nothing received yet, do application processing..>
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

157 CHAPTER 5 Target API

5.4.2.16 USBD_BULK_SetOnSetupRequest()

Description

Sets a callback function that is called when any setup request is sent from the host.

Prototype

void USBD_BULK_SetOnSetupRequest(USB_BULK_HANDLE hInst,
 USB_ON_SETUP * pfOnSetupRequest);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pfOnSetupRequest Pointer to the callback function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

158 CHAPTER 5 Target API

5.4.2.17 USBD_BULK_SetOnRXEvent()

Description

Sets a callback function for the OUT endpoint that will be called on every RX event for
that endpoint.

Prototype

void USBD_BULK_SetOnRXEvent(USB_BULK_HANDLE hInst,
 USB_EVENT_CALLBACK * pEventCb,
 USB_EVENT_CALLBACK_FUNC * pfEventCb,
 void * pContext);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure. The structure is
initialized by this function.

pfEventCb
Pointer to the callback routine that will be called on every
event on the USB endpoint.

pContext
A pointer which is used as parameter for the callback func-
tion.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_BULK_SetOnRXEvent(). The USB stack keeps track of all event callback functions
using a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list
and must reside in static memory.

The callback function is called only, if a read operation was started using one of the USB-
D_BULK_Read…() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK_FUNC(unsigned Events, void *pContext);

Parameter Description

Events
A bit mask indicating which events occurred on the
endpoint.

pContext
The pointer which was provided to the USBD_SetOn-
Event() function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description

USB_EVENT_DATA_READ
Some data was received from the host on the end-
point.

USB_EVENT_READ_COMPLETE The last read operation was completed.
USB_EVENT_READ_ABORT A read transfer was aborted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

159 CHAPTER 5 Target API

Example

// The callback function.
static void _OnEvent(unsigned Events, void *pContext) {
 unsigned NumBytes;

 if (Events & USB_EVENT_DATA_READ) {
 NumBytes = USBD_BULK_GetNumBytesInBuffer(hInst);
 if (NumBytes) {
 r = USBD_BULK_Receive(hInst, Buff, NumBytes, -1);
 if (r > 0) {
 <.. process data in Buff..>
 }
 }
 }
}
// Main program.
// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_BULK_SetOnRXEvent(hInst, &_usb_callback, _OnEvent, NULL);
USBD_BULK_SetContinuousReadMode(hInst);
// Trigger first read
USBD_BULK_Receive(Inst, NULL, 0, -1);
<.. do anything else here while the data is processed in the callback ..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

160 CHAPTER 5 Target API

5.4.2.18 USBD_BULK_SetOnTXEvent()

Description

Sets a callback function for the IN endpoint that will be called on every TX event for that
endpoint.

Prototype

void USBD_BULK_SetOnTXEvent(USB_BULK_HANDLE hInst,
 USB_EVENT_CALLBACK * pEventCb,
 USB_EVENT_CALLBACK_FUNC * pfEventCb,
 void * pContext);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure. The structure is
initialized by this function.

pfEventCb
Pointer to the callback routine that will be called on every
event on the USB endpoint.

pContext
A pointer which is used as parameter for the callback func-
tion.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_BULK_SetOnTXEvent(). The USB stack keeps track of all event callback functions
using a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list
and must reside in static memory.

The callback function is called only, if a write operation was started using one of the USB-
D_BULK_Write…() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK_FUNC(unsigned Events, void *pContext);

Parameter Description

Events
A bit mask indicating which events occurred on the
endpoint.

pContext
The pointer which was provided to the USBD_SetOn-
Event() function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description

USB_EVENT_DATA_SEND
Some data was sent to the host, so that (part of)
the user write buffer may be reused by the applica-
tion.

USB_EVENT_DATA_ACKED Some data was acknowledged by the host.
USB_EVENT_WRITE_ABORT A write transfer was aborted.
USB_EVENT_WRITE_COMPLETE All write operations were completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

161 CHAPTER 5 Target API

Example

// The callback function.
static void _OnEvent(unsigned Events, void *pContext) {
 if ((Events & USB_EVENT_DATA_SEND) != 0 &&
 // Check for last write transfer to be completed.
 USBD_BULK_GetNumBytesRemToWrite(_hInst) == 0) {
 <.. prepare next data for writing..>
 // Send next packet of data.
 r = USBD_BULK_Write(_hInst, &ac[0], 200, -1);
 if (r < 0) {
 <.. error handling..>
 }
 }
}
// Main program.
// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_BULK_SetOnTXEvent(hInst, &_usb_callback, _OnEvent, NULL);
// Send the first packet of data using an asynchronous write operation.
r = USBD_BULK_Write(_hInst, &ac[0], 200, -1);
if (r < 0) {
 <.. error handling..>
}
<.. do anything else here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

162 CHAPTER 5 Target API

5.4.2.19 USBD_BULK_TxIsPending()

Description

Checks whether the TX (IN endpoint) is currently pending. Can be called in any context.

Prototype

int USBD_BULK_TxIsPending(USB_BULK_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Return value

1 We have queued data to be sent.
0 Queue is empty.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

163 CHAPTER 5 Target API

5.4.2.20 USBD_BULK_WaitForRX()

Description

Waits (blocking) until the triggered USBD_BULK_ReadOverlapped() has received the desired
data.

Prototype

int USBD_BULK_WaitForRX(USB_BULK_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Transfer completed.
= 1 Timeout occurred.
< 0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the read transfer is aborted (see Timeout handling on page 131).

Example

if (USBD_BULK_ReadOverlapped(hInst, &ac[0], 50) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_BULK_ReadOverlapped() will return immediately.
// Do something else while data may be transferred.
//
<...>
//
// Now wait until we get all 50 bytes.
// USBD_BULK_WaitForRX() will block, until total of
// 50 bytes are read or timeout occurs.
//
if (USBD_BULK_WaitForRX(hInst, timeout) != 0) {
 <.. timeout error handling..>
 return;
}
// Now we have 50 bytes of data.
// Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

164 CHAPTER 5 Target API

5.4.2.21 USBD_BULK_PollForRX()

Description

Waits (blocking) until the triggered USBD_BULK_ReadOverlapped() has received the desired
data.

Prototype

int USBD_BULK_PollForRX(USB_BULK_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Transfer completed.
= 1 Timeout occurred.
< 0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the current transfer is not affected. The function may be called re-
peatedly until it does not report a timeout any more.

Example

if (USBD_BULK_ReadOverlapped(hInst, &ac[0], 50) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_BULK_ReadOverlapped() will return immediately.
// While waiting for the data, we will blink a LED with 200 ms interval.
// USBD_BULK_PollForRX() will return, if all data were read or 100 ms expired.
//
while ((r = USBD_BULK_PollForRX(hInst, 100)) > 0) {
 ToggleLED();
}
if (r < 0) {
 <.. error handling..>
 return;
}
// Now we have 50 bytes of data.
// Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

165 CHAPTER 5 Target API

5.4.2.22 USBD_BULK_WaitForTX()

Description

Waits (blocking) until a pending asynchronous USBD_BULK_Write() (Timeout parameter =
-1) has sent the desired data.

Prototype

int USBD_BULK_WaitForTX(USB_BULK_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Transfer completed.
= 1 Timeout occurred.
< 0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the write transfer is aborted (see Timeout handling on page 131).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

166 CHAPTER 5 Target API

5.4.2.23 USBD_BULK_PollForTX()

Description

Waits (blocking) until a pending asynchronous USBD_BULK_Write() (Timeout parameter =
-1) has sent the desired data.

Prototype

int USBD_BULK_PollForTX(USB_BULK_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Transfer completed.
= 1 Timeout occurred.
< 0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the current transfer is not affected. The function may be called re-
peatedly until it does not report a timeout any more.

Example

if (USBD_BULK_Write(hInst, &ac[0], 50, -1) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_BULK_Write() will return immediately.
// While waiting for the data to be transferred, we will blink a LED with
 200 ms interval.
// USBD_BULK_PollForTX() will return, if all data were send or 100 ms expired.
//
while ((r = USBD_BULK_PollForTX(hInst, 100)) > 0) {
 ToggleLED();
}
if (r < 0) {
 <.. error handling..>
 return;
}
// Now all data have been send.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

167 CHAPTER 5 Target API

5.4.2.24 USBD_BULK_WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used
in combination with a non-blocking call to USBD_BULK_Write() , it waits until a new asyn-
chronous write data transfer will be accepted by the USB stack.

Prototype

int USBD_BULK_WaitForTXReady(USB_BULK_HANDLE hInst,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is neg-
ative, the function will return immediately.

Return value

= 0 A new asynchronous write data transfer will be accepted.
= 1 The write queue is full, a call to USBD_BULK_Write() would return USB_S-

TATUS_EP_BUSY.
< 0 Error occurred.

Additional information

If Timeout is 0, the function never returns 1.

If Timeout is -1, the function will not wait, but immediately return the current state.

Example

// Always keep the write queue full for maximum send speed.
for (;;) {
 pData = GetNextData(&NumBytes);
 // Wait until stack can accept a new write.
 USBD_BULK_WaitForTxReady(hInst, 0);
 // Issue write transfer.
 if (USBD_BULK_Write(hInst, pData, NumBytes, -1) < 0) {
 <.. error handling..>
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

168 CHAPTER 5 Target API

5.4.2.25 USBD_BULK_Write()

Description

Sends data to the USB host. Depending on the Timeout parameter, the function blocks
until NumBytes have been written or a timeout occurs.

Prototype

int USBD_BULK_Write(USB_BULK_HANDLE hInst,
 const void * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pData Data that should be written.
NumBytes Number of bytes to write.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Return value

= 0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NumBytes Number of bytes that have been written before a timeout oc-
curred.

= NumBytes Write transfer successful completed.
< 0 Error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (when
using Timeout = -1). If a write transfer is still in progress when this function is called
and the USB stack can not accept another write transfer request, the functions returns
USB_STATUS_EP_BUSY. A synchronous write transfer (Timeout ≥ 0) will always block until
the transfer (including all pending transfers) are finished or a timeout occurs.

In case of a timeout, the write transfer is aborted (see Timeout handling on page 131).

In order to synchronize, USBD_BULK_WaitForTX() needs to be called. Another synchroniza-
tion method would be to periodically call USBD_BULK_GetNumBytesRemToWrite() in order
to see how many bytes still need to be written (this method is preferred when a non-block-
ing solution is necessary). The write operation can be canceled using USBD_BULK_Cancel-
Write().

If pData = NULL and NumBytes = 0, a zero-length packet is sent to the host.

The content of the buffer pointed to by pData must not be changed until the transfer has
been completed.

Example

NumBytesWritten = USBD_BULK_Write(hInst, &ac[0], DataSize, 500);
if (NumBytesWritten <= 0) {
 <.. error handling..>
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

169 CHAPTER 5 Target API

if (NumBytesWritten < DataSize) {
 <.. timeout occurred, data partially written within 500ms ..>
} else {
 <.. write completed successfully..>
}

See also USBD_BULK_GetNumBytesRemToWrite on page 150.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

170 CHAPTER 5 Target API

5.4.2.26 USBD_BULK_WriteAsync()

Description

Sends data to the host asynchronously. The function does not block. A callback function
is called after the transfer has completed successfully, an error occurred or the transfer
was canceled.

Prototype

void USBD_BULK_WriteAsync(USB_BULK_HANDLE hInst,
 USB_ASYNC_IO_CONTEXT * pContext,
 char Send0PacketIfRequired);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pContext
Pointer to a structure of type USB_ASYNC_IO_CONTEXT con-
taining parameters and a pointer to the callback function.

Send0PacketIfRequired
Specifies that a zero-length packet shall be sent when the
last data packet is a multiple of MaxPacketSize.

Example

static void _AsyncCb(USB_ASYNC_IO_CONTEXT * pIOContext) {
 U8 *p;

 p = (U8 *)pIOContext->pContext;
 *p = 1;
}

<...>

USB_ASYNC_IO_CONTEXT IOContext;
U8 AsyncComplete;

IOContext.NumBytesToTransfer = 5000;
IOContext.pData = pBuff;
IOContext.pfOnComplete = _AsyncCb;
IOContext.pContext = (void *)&AsyncComplete;
AsyncComplete = 0;
USBD_BULK_WriteAsync(hInst, &IOContext, 1);
while (AsyncComplete == 0) {
 <.. Do other work. ..>
}
// Transaction is complete.
if (IOContext.Status < 0 || IOContext.NumBytesTransferred != 5000) {
 <.. error handling ..>
} else {
 <.. data written successfully ..>
}
<...>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

171 CHAPTER 5 Target API

5.4.2.27 USBD_BULK_WriteEx()

Description

Send data to the USB host with NULL packet control. This function behaves exactly like
USBD_BULK_Write(). Additionally sending of a zero length packet after sending the data
can be suppressed by setting Send0PacketIfRequired = 0.

Prototype

int USBD_BULK_WriteEx(USB_BULK_HANDLE hInst,
 const void * pData,
 unsigned NumBytes,
 char Send0PacketIfRequired,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid BULK instance, returned by USBD_BULK_Ad-
d().

pData Pointer to a buffer that contains the written data.
NumBytes Number of bytes to write.

Send0PacketIfRequired

Specifies that a zero-length packet shall be sent when the
last data packet is a multiple of MaxPacketSize. Normally
MaxPacketSize for full-speed devices is 64 bytes. For high-
speed devices the normal packet size is between 64 and 512
bytes.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Return value

= 0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NumBytes Number of bytes that have been written before a timeout oc-
curred.

= NumBytes Write transfer successful completed.
< 0 Error occurred.

Additional information

Normally USBD_BULK_Write() is called to let the stack send the data to the host and send
an optional zero-length packet to tell the host that this was the last packet. This is the
case when the last packet sent is MaxPacketSize bytes in size. When using this function,
the zero-length packet handling can be controlled. This means the function can be called
when sending data in multiple steps.

Example

// for high-speed devices
USBD_BULK_Write(hInst, _aBuffer1, 512, 0);
USBD_BULK_Write(hInst, _aBuffer2, 512, 0);
USBD_BULK_Write(hInst, _aBuffer3, 512, 0);
// this will send 6 packets to the host with sizes: 512, 0, 512, 0, 512, 0
USBD_BULK_WriteEx(hInst, _aBuffer1, 512, 0, 0);
USBD_BULK_WriteEx(hInst, _aBuffer2, 512, 0, 0);
USBD_BULK_WriteEx(hInst, _aBuffer3, 512, 1, 0);
// this will send 4 packets to the host with sizes: 512, 512, 512, 0

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

172 CHAPTER 5 Target API

5.4.3 Data structures

5.4.3.1 USB_BULK_INIT_DATA

Description

Initialization structure that is needed when adding a BULK interface to emUSB-Device.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
} USB_BULK_INIT_DATA;

Structure members

Member Description

EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

173 CHAPTER 5 Target API

5.4.3.2 USB_BULK_INIT_DATA_EX

Description

Initialization structure that is needed when adding a BULK interface to emUSB-Device.

Type definition

typedef struct {
 U16 Flags;
 U8 EPIn;
 U8 EPOut;
 const char * pInterfaceName;
 U8 InterfaceClass;
 U8 InterfaceSubClass;
 U8 InterfaceProtocol;
} USB_BULK_INIT_DATA_EX;

Structure members

Member Description

Flags

Various flags. Valid bits:
• USB_BULK_FLAG_USE_CUSTOM_CLASS_IDS - Allows to set

custom values for the
bInterfaceClass, bInterfaceSubClass and bInterfaceProtocol.

EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.
pInterfaceName Name of the interface.

InterfaceClass
Only used when Flags has the USB_BULK_FLAG_USE_CUS-
TOM_CLASS_IDS bit set. Allows to set the USB Class ID to a
different value (default is 0xFF).

InterfaceSubClass
Only used when Flags has the USB_BULK_FLAG_USE_CUS-
TOM_CLASS_IDS bit set. Allows to set the USB SubClass ID to
a different value (default is 0xFF).

InterfaceProtocol
Only used when Flags has the USB_BULK_FLAG_USE_CUS-
TOM_CLASS_IDS bit set. Allows to set the USB Protocol ID to
a different value (default is 0xFF).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

174 CHAPTER 5 C Host API

5.5 C Host API
To communicate with the target USB-Bulk stack an API is provided that can be used on
Windows, Linux and macOS systems. This chapter describes the functions of the C API can
be used with the host system.

Note

There is also a C++ API that can be used to communicate to a target running the
BULK class, see C++ Host API

To have an easy start-up when writing an application on the host side, these API functions
have a simple interface and handle all required operations to communicate with the target
USB-Bulk stack.

To use the API in an application the header file USBBULK.h must be included. Depending
on the host operating system used the following components must be added to the host
application:
• Windows: USBBULK.lib and USBBULK.dll (These files are provided for 32- and 64-Bit

applications).
• Linux: USBBULK_Linux.c.
• macOS: USBBULK_MacOSX.c.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

175 CHAPTER 5 C Host API

5.5.1 Bulk Host API list
The functions below are available on the host (PC) side.

Function Description

USB-Bulk Basic functions

USBBULK_Init() This function needs to be called first.

USBBULK_Exit()
This is a cleanup function, it shall be called
when exiting the application.

USBBULK_AddAllowedDeviceItem()
Adds the Vendor and Product ID to the list
of devices the USBBULK API should look
for.

USBBULK_GetNumAvailableDevices()
Returns the number of connected USB-
Bulk devices.

USBBULK_Open() Opens an existing device.
USBBULK_Close() Closes an opened device.

USB-Bulk direct input/output functions

USBBULK_Read()
Reads data from target device running
emUSB-Device-Bulk.

USBBULK_ReadTimed()
Reads data from target device running
emUSB-Device-Bulk within a given time-
out.

USBBULK_Write() Writes data to the device.

USBBULK_WriteTimed()
Writes data to the device within a given
timeout.

USBBULK_CancelRead() This cancels an initiated read.
USBBULK_FlushRx() Flush the any received data.

USB-Bulk Control functions

USBBULK_SetMode()
Sets the read and write mode for a speci-
fied device running emUSB-Device-Bulk.

USBBULK_GetMode() Returns the current mode of the device.

USBBULK_SetReadTimeout()
Sets the default read timeout for an
opened device.

USBBULK_SetWriteTimeout()
Sets a default write timeout for an opened
device.

USBBULK_ResetINPipe()
Resets the IN pipe that is opened to the
device.

USBBULK_ResetOUTPipe()
Resets the OUT pipe that is opened to the
device.

USBBULK_ResetDevice() Resets the device via a USB reset.
USB-Bulk general GET functions

USBBULK_GetVersion()
Returns the version number of the USB-
BULK API.

USBBULK_GetDevInfo()
Retrieves information about an opened
USBBULK device.

USBBULK_GetDevInfoByIdx() Retrieves information about a USB device.

USBBULK_GetUSBId()
Returns the Product and Vendor ID of an
opened device.

USBBULK_GetProductName()
Retrieves the device/product name if avail-
able.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

176 CHAPTER 5 C Host API

Function Description

USBBULK_GetVendorName()
Retrieves the vendor name of an opened
USBBULK device.

USBBULK_GetSN()
Retrieves the USB serial number as a
string which was sent by the device during
the enumeration.

USBBULK_GetConfigDescriptor()
Gets the received target USB configuration
descriptor of a specified device.

Data structures

USBBULK_DEV_INFO

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

177 CHAPTER 5 C Host API

5.5.2 USB-Bulk basic functions

5.5.2.1 USBBULK_Init()

Description

This function needs to be called first. This makes sure to have all structures and thread
have been initialized. It also sets a callback in order to be notified when a device is added
or removed.

Prototype

void USBBULK_Init(USBBULK_NOTIFICATION_FUNC * pfNotification,
 void * pContext);

Parameters

Parameter Description

pfNotification Pointer to the user callback.
pContext Context data that shall be called with the callback function.

Example

/***
*
* _OnDevNotify
*
* Function description:
* Is called when a new device is found or an existing device is removed.
*
* Parameters:
* pContext - Pointer to a context given when USBBULK_Init is called
* Index - Device Index that has been added or removed.
* Event - Type of event, currently the following are available:
* USBBULK_DEVICE_EVENT_ADD
* USBBULK_DEVICE_EVENT_REMOVE
*
*/
static void _OnDevNotify(void * pContext,
 unsigned Index,
 USBBULK_DEVICE_EVENT Event) {
 switch(Event) {
 case USBBULK_DEVICE_EVENT_ADD:
 printf("The following DevIndex has been added: %d", Index);
 NumDevices = USBBULK_GetNumAvailableDevices(&DeviceMask);
 break;
 case USBBULK_DEVICE_EVENT_REMOVE:
 printf("The following DevIndex has been removed: %d", Index);
 NumDevices = USBBULK_GetNumAvailableDevices(&DeviceMask);
 break;
 }
}
void MainTask(void) {
<...>
 USBBULK_Init(_OnDevNotify, NULL);
<...>
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

178 CHAPTER 5 C Host API

5.5.2.2 USBBULK_Exit()

Description

This is a cleanup function, it shall be called when exiting the application.

Prototype

void USBBULK_Exit(void);

Additional information

We recommend to call this function before exiting the application in order to remove all
handles and resources that have been allocated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

179 CHAPTER 5 C Host API

5.5.2.3 USBBULK_AddAllowedDeviceItem()

Description

Adds the Vendor and Product ID to the list of devices the USBBULK API should look for.

Prototype

void USBBULK_AddAllowedDeviceItem(U16 VendorId,
 U16 ProductId);

Parameters

Parameter Description

VendorId
The desired Vendor ID mask that shall be used with the
USBBULK API.

ProductId
The desired Product ID mask that shall be used with the
USBBULK API.

Additional information

It is necessary to call this function first before calling USBBULK_GetNumAvailableDevices()
or opening any connection to a device.

The function can be called multiple times to handle more than one pair of Vendor and
Product IDs with the API.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

180 CHAPTER 5 C Host API

5.5.2.4 USBBULK_GetNumAvailableDevices()

Description

Returns the number of connected USB-Bulk devices.

Prototype

unsigned USBBULK_GetNumAvailableDevices(U32 * pMask);

Parameters

Parameter Description

pMask
Pointer to a U32 variable to receive the connected device
mask. This parameter can be NULL.

Return value

Number of available devices running emUSB-Device-Bulk.

Additional information

For each emUSB-Device device that is connected, a bit in pMask is set. For example if device
0 and device 2 are connected to the host, the value pMask points to will be 0x00000005.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

181 CHAPTER 5 C Host API

5.5.2.5 USBBULK_Open()

Description

Opens an existing device. The ID of the device can be retrieved by the function USB-
BULK_GetNumAvailableDevices() via the pDeviceMask parameter. Each bit set in the De-
viceMask represents an available device. Currently 32 devices can be managed at once.

Prototype

USB_BULK_HANDLE USBBULK_Open(unsigned Id);

Parameters

Parameter Description

Id Device ID to be opened (0..31).

Return value

≠ 0 Handle to the opened device.
= 0 Error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

182 CHAPTER 5 C Host API

5.5.2.6 USBBULK_Close()

Description

Closes an opened device.

Prototype

void USBBULK_Close(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the device that shall be closed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

183 CHAPTER 5 C Host API

5.5.3 USB-Bulk direct input/output functions

5.5.3.1 USBBULK_Read()

Description

Reads data from target device running emUSB-Device-Bulk.

Prototype

int USBBULK_Read(USB_BULK_HANDLE hDevice,
 void * pBuffer,
 int NumBytes);

Parameters

Parameter Description

hDevice Handle to the opened device.
pBuffer Pointer to a buffer that shall receive the data.
NumBytes Number of bytes to be read.

Return value

= NumBytes All bytes have been successfully read.
> 0, < NumBytes Number of bytes that have been read. If short read transfers are

not allowed (normal mode) this indicates a timeout.
= 0 A timeout occurred, no data was read.
< 0 Error occurred.

Additional information

If short read transfers are allowed (see USBBULK_SetMode()) the function returns as soon
as data is available, even if just a single byte was read. Otherwise the function blocks until
NumBytes were read. In both cases the function returns if a timeout occurs. The default
timeout used can be set with USBBULK_SetReadTimeout().

If NumBytes exceeds the maximum read size the driver can handle (the default value is
64 Kbytes), USBBULK_Read() will read the desired NumBytes in chunks of the maximum
read size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

184 CHAPTER 5 C Host API

5.5.3.2 USBBULK_ReadTimed()

Description

Reads data from target device running emUSB-Device-Bulk within a given timeout.

Prototype

int USBBULK_ReadTimed(USB_BULK_HANDLE hDevice,
 void * pBuffer,
 int NumBytes,
 unsigned ms);

Parameters

Parameter Description

hDevice Handle to the opened device.
pBuffer Pointer to a buffer that shall receive the data.
NumBytes Maximum number of bytes to be read.
ms Timeout in milliseconds.

Return value

> 0 Number of bytes that have been read.
= 0 A timeout occurred during read.
< 0 Error, cannot read from the device.

Additional information

The function returns as soon as data is available, even if just a single byte was read. If no
data is available, the functions return after the given timeout was expired.

If NumBytes exceeds the maximum read size the driver can handle (the default value is 64
Kbytes), USBBULK_ReadTimed() will read the desired NumBytes in chunks of the maximum
read size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

185 CHAPTER 5 C Host API

5.5.3.3 USBBULK_Write()

Description

Writes data to the device.

Prototype

int USBBULK_Write(USB_BULK_HANDLE hDevice,
 const void * pBuffer,
 int NumBytes);

Parameters

Parameter Description

hDevice Handle to the opened device.
pBuffer Pointer to a buffer that contains the data.

NumBytes
Number of bytes to be written. If NumBytes = 0, a zero
length packet is written to the device.

Return value

= NumBytes All bytes have been successfully written.
> 0, < NumBytes Number of bytes that have been written.
= 0 A timeout occurred, no data was written.
< 0 Error, cannot write to the device.

Additional information

The function blocks until NumBytes were written or a timeout occurs. The default timeout
used can be set with USBBULK_SetWriteTimeout().

If NumBytes exceeds the maximum write size the driver can handle (the default value is
64 Kbytes), USBBULK_Write() will write the desired NumBytes in chunks of the maximum
write size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

186 CHAPTER 5 C Host API

5.5.3.4 USBBULK_WriteTimed()

Description

Writes data to the device within a given timeout.

Prototype

int USBBULK_WriteTimed(USB_BULK_HANDLE hDevice,
 const void * pBuffer,
 int NumBytes,
 unsigned ms);

Parameters

Parameter Description

hDevice Handle to the opened device.
pBuffer Pointer to a buffer that contains the data.

NumBytes
Number of bytes to be written. If NumBytes = 0, a zero
length packet is written to the device.

ms Timeout in milliseconds.

Return value

= NumBytes All bytes have been successfully written.
> 0, < NumBytes Number of bytes that have been written.
= 0 A timeout occurred, no data was written.
< 0 Error, cannot write to the device.

Additional information

The function blocks until NumBytes were written or a timeout occurs.

If NumBytes exceeds the maximum write size the driver can handle (the default value is 64
Kbytes), USBBULK_WriteTimed() will write the desired NumBytes in chunks of the maximum
write size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

187 CHAPTER 5 C Host API

5.5.3.5 USBBULK_CancelRead()

Description

This cancels an initiated read.

Prototype

void USBBULK_CancelRead(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the opened device.

Additional information

Not supported on Linux and MacOSX.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

188 CHAPTER 5 C Host API

5.5.3.6 USBBULK_FlushRx()

Description

Flush the any received data.

Prototype

int USBBULK_FlushRx(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the opened device.

Return value

= 0 Error, bad handle.
≠ 0 Success, flushing the RX buffer was successful.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

189 CHAPTER 5 C Host API

5.5.4 USB-Bulk control functions

5.5.4.1 USBBULK_SetMode()

Description

Sets the read and write mode for a specified device running emUSB-Device-Bulk.

Prototype

unsigned USBBULK_SetMode(USB_BULK_HANDLE hDevice,
 unsigned Mode);

Parameters

Parameter Description

hDevice Handle to the opened device.

Mode

Read and write mode for the USB-Bulk driver. This is a com-
bination of the following flags, combined by binary or:
• USBBULK_MODE_BIT_ALLOW_SHORT_READ
• USBBULK_MODE_BIT_ALLOW_SHORT_WRITE

Return value

= 0 Operation failed (invalid handle).
≠ 0 The operation was successful.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers are
transfers of less bytes than requested. If this bit is specified, the read function USB-
BULK_Read() returns as soon as data is available, even if it is just a single byte.

USBBULK_MODE_BIT_ALLOW_SHORT_WRITE allows short write transfers. USBBULK_Write()
and USBBULK_WriteTimed() return after writing the minimal amount of data (either Num-
Bytes or the maximal write transfer size).

Example

static void _TestMode(USB_BULK_HANDLE hDevice) {
 unsigned Mode;
 char * pText;
 Mode = USBBULK_GetMode(hDevice);
 if (Mode & USBBULK_MODE_BIT_ALLOW_SHORT_READ) {
 pText = "USE_SHORT_MODE";
 } else {
 pText = "USE_NORMAL_MODE";
 }
 printf("USB-Bulk driver is in %s for device %d\n", pText, (int)hDevice);
 printf("Set mode to USBBULK_MODE_BIT_ALLOW_SHORT_READ\n");
 USBBULK_SetMode(hDevice, USBBULK_MODE_BIT_ALLOW_SHORT_READ);
 Mode = USBBULK_GetMode(hDevice);
 if (Mode & USBBULK_MODE_BIT_ALLOW_SHORT_READ) {
 pText = "USE_SHORT_MODE";
 } else {
 pText = "USE_NORMAL_MODE";
 }
 printf("USB-Bulk driver is now in %s for device %d\n", pText,(int)hDevice);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

190 CHAPTER 5 C Host API

5.5.4.2 USBBULK_GetMode()

Description

Returns the current mode of the device.

Prototype

unsigned USBBULK_GetMode(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the opened device.

Return value

A combination of the following flags, combined by binary or:
• USBBULK_MODE_BIT_ALLOW_SHORT_READ - Short read mode is enabled.
• USBBULK_MODE_BIT_ALLOW_SHORT_WRITE - Short write mode is enabled.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

191 CHAPTER 5 C Host API

5.5.4.3 USBBULK_SetReadTimeout()

Description

Sets the default read timeout for an opened device.

Prototype

void USBBULK_SetReadTimeout(USB_BULK_HANDLE hDevice,
 int Timeout);

Parameters

Parameter Description

hDevice Handle to the opened device.
Timeout Timeout in milliseconds.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

192 CHAPTER 5 C Host API

5.5.4.4 USBBULK_SetWriteTimeout()

Description

Sets a default write timeout for an opened device.

Prototype

void USBBULK_SetWriteTimeout(USB_BULK_HANDLE hDevice,
 int Timeout);

Parameters

Parameter Description

hDevice Handle to the opened device.
Timeout Timeout in milliseconds.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

193 CHAPTER 5 C Host API

5.5.4.5 USBBULK_ResetINPipe()

Description

Resets the IN pipe that is opened to the device. It also flushes any data the USB bulk driver
would cache.

Prototype

int USBBULK_ResetINPipe(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the opened device.

Return value

≠ 0 The operation was successful.
= 0 Operation failed. Either an invalid handle was used or the pipe cannot be

flushed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

194 CHAPTER 5 C Host API

5.5.4.6 USBBULK_ResetOUTPipe()

Description

Resets the OUT pipe that is opened to the device.

Prototype

int USBBULK_ResetOUTPipe(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the opened device.

Return value

≠ 0 The operation was successful.
= 0 Operation failed. Either an invalid handle was used or the pipe cannot be

flushed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

195 CHAPTER 5 C Host API

5.5.4.7 USBBULK_ResetDevice()

Description

Resets the device via a USB reset. This can be used when the device does not work properly
and may be reactivated via USB reset. This will force a re-enumeration of the device.

Prototype

int USBBULK_ResetDevice(USB_BULK_HANDLE hDevice);

Parameters

Parameter Description

hDevice Handle to the opened device.

Return value

≠ 0 The operation was successful.
= 0 Operation failed. Either an invalid handle was used or the device cannot be re-

set.

Additional information

After the device has been reset it is necessary to re-open the device as the current handle
will become invalid.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

196 CHAPTER 5 C Host API

5.5.5 USB-Bulk general GET functions

5.5.5.1 USBBULK_GetVersion()

Description

Returns the version number of the USBBULK API.

Prototype

unsigned USBBULK_GetVersion(void);

Return value

Version number, format:

< Major Version><Minor Version><Subversion> (Mmmrr, decimal).

Example: 30203 is 3.02c

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

197 CHAPTER 5 C Host API

5.5.5.2 USBBULK_GetDevInfo()

Description

Retrieves information about an opened USBBULK device.

Prototype

void USBBULK_GetDevInfo(USB_BULK_HANDLE hDevice,
 USBBULK_DEV_INFO * pDevInfo);

Parameters

Parameter Description

hDevice Handle to the opened device.
pDevInfo Pointer to a device info structure of type USBBULK_DEV_INFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

198 CHAPTER 5 C Host API

5.5.5.3 USBBULK_GetDevInfoByIdx()

Description

Retrieves information about a USB device.

Prototype

int USBBULK_GetDevInfoByIdx(unsigned Idx,
 USBBULK_DEV_INFO * pDevInfo);

Parameters

Parameter Description

Idx Index of the device.
pDevInfo Pointer to a device info structure of type USBBULK_DEV_INFO.

Return value

= 0; Error, bad device index.
≠ 0 Success

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

199 CHAPTER 5 C Host API

5.5.5.4 USBBULK_GetUSBId()

Description

Returns the Product and Vendor ID of an opened device.

Prototype

void USBBULK_GetUSBId(USB_BULK_HANDLE hDevice,
 U16 * pVendorId,
 U16 * pProductId);

Parameters

Parameter Description

hDevice Handle to the opened device.
pVendorId Pointer to a variable that receives the Vendor ID.
pProductId Pointer to a variable that receives the Product ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

200 CHAPTER 5 C Host API

5.5.5.5 USBBULK_GetProductName()

Description

Retrieves the device/product name if available.

Prototype

int USBBULK_GetProductName(USB_BULK_HANDLE hDevice,
 char * sProductName,
 unsigned BufferSize);

Parameters

Parameter Description

hDevice Handle to the opened device.
sProductName Pointer to a buffer that should receive the string.
BufferSize Size of the buffer, given in bytes.

Return value

= 0 Error, product name not available or buffer to small.
≠ 0 Success, product name stored in buffer pointed by sProductName as 0-terminat-

ed string.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

201 CHAPTER 5 C Host API

5.5.5.6 USBBULK_GetVendorName()

Description

Retrieves the vendor name of an opened USBBULK device.

Prototype

int USBBULK_GetVendorName(USB_BULK_HANDLE hDevice,
 char * sVendorName,
 unsigned BufferSize);

Parameters

Parameter Description

hDevice Handle to the opened device.
sVendorName Pointer to a buffer that should receive the string.
BufferSize Size of the buffer, given in bytes.

Return value

= 0 Error, bad handle.
≠ 0 Success, vendor name stored in buffer pointed by sVendorName as 0-terminated

string.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

202 CHAPTER 5 C Host API

5.5.5.7 USBBULK_GetSN()

Description

Retrieves the USB serial number as a string which was sent by the device during the enu-
meration.

Prototype

int USBBULK_GetSN(USB_BULK_HANDLE hDevice,
 U8 * pBuffer,
 unsigned BuffSize);

Parameters

Parameter Description

hDevice Handle to the opened device.

pBuffer
Pointer to a buffer which shall receive the serial number of
the device.

BuffSize Size of the buffer in bytes.

Return value

= 0 Operation failed. Either an invalid handle was used or the serial number is not
available.

≠ 0 The operation was successful.

Additional information

If the function succeeds, the buffer pointed by pBuffer contains the serial number of the
device as 0-terminated string. If BuffSize is too small, the serial number is truncated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

203 CHAPTER 5 C Host API

5.5.5.8 USBBULK_GetConfigDescriptor()

Description

Gets the received target USB configuration descriptor of a specified device.

Prototype

int USBBULK_GetConfigDescriptor(USB_BULK_HANDLE hDevice,
 void * pBuffer,
 int Size);

Parameters

Parameter Description

hDevice Handle to the opened device.
pBuffer Pointer to the buffer that shall store the descriptor.
Size Size of the buffer, given in bytes.

Return value

≠ 0 Size of the returned USB configuration descriptor (Success).
= 0 Operation failed. Either an invalid handle was used or the buffer that shall store

the config descriptor is too small.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

204 CHAPTER 5 C Host API

5.5.6 USB-Bulk data structures

5.5.6.1 USBBULK_DEV_INFO

Type definition

typedef struct {
 U16 VendorId;
 U16 ProductId;
 char acSN[];
 char acDevName[];
 U8 InterfaceNo;
 U8 Speed;
} USBBULK_DEV_INFO;

Structure members

Member Description

VendorId Vendor ID of the device.
ProductId Product ID of the device.

acSN
0-terminated string which holds the serial number of the de-
vice.

acDevName 0-terminated string which holds the device name.
InterfaceNo Interface number used by this device.

Speed

Device speed. One of the following:
USBBULK_SPEED_UNKNOWN
USBBULK_SPEED_LOW
USBBULK_SPEED_FULL
USBBULK_SPEED_HIGH
USBBULK_SPEED_SUPER

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 6

Vendor Specific Class (VSC)

This chapter describes how to get emUSB-Device-VSC up and running.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

206 CHAPTER 6 Vendor Specific Class

6.1 Vendor Specific Class
The Vendor Specific Class (VSC) is located in the directory USB. All C files in the directory
should be included in the project (compiled and linked as part of your project). The files in
this directory are maintained by SEGGER and should not require any modification. All files
requiring modifications have been placed in other directories.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

207 CHAPTER 6 Requirements for the Host (PC)

6.2 Requirements for the Host (PC)
In order to communicate with a target (client) running emUSB-Device, the operating system
running on the host must recognize the device connected to it.

6.2.1 Windows
Microsoft’s Windows operating systems (Starting with XP Service Pack 2) contains a generic
driver called WinUSB.sys that is used to handle all communication to a emUSB-Device
running a VSC interface. If a emUSB device is connected to a Windows 8, 8.1 and 10 PC for
the first time, Windows will install the WinUSB driver automatically. For Windows versions
less than Windows 8, Microsoft provides a driver for Windows Vista and Windows 7 but
this needs to be installed manually. A driver installation tool including the mentioned driver
is available in the Windows\USB\VSC\WinUSBInstall. Windows XP user can use the driver
package located under Windows\USB\VSC\WinUSB_USBVSC_XP. In order to get emUSB VSC
running with the WinUSB driver the following must be considered:
• The function USBD_VSC_SetMSDescInfo() must be called in the target application.
• The Product IDs 1234 and 1121 must not be used.

6.2.2 Linux
Linux can handle emUSB VSC devices out of the box.

By default a USB device can only be accessed by a process that is running with “root”
rights. In order to use the USB VSC device from normal user programs an udev rule has to
be configured for the device (refer to the linux udev documentation). The emUSB-Device
release contains a sample configuration file 99-emUSBD.rules, which may be modified and
copied to /etc/udev/rules.d on the host machine.

6.2.3 macOS
macOS can handle emUSB VSC devices out of the box.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

208 CHAPTER 6 Example application

6.3 Example application
Example applications for both the target (client) and the PC (host) are supplied. These
can be used for testing the correct installation and proper function of the device running
emUSB-Device.

The host sample applications can be used for Windows, Linux and MacOSX. Precompiled
executables for Windows can be found in the subfolder Windows/USB/Bulk/SampleAppli-
cation/Exe.

The application USB_VSC_Start.c is a modified echo server; the application receives data,
modifies the first byte and sends it back to the host. It also contains the functionality to
measure USB transfer speed.

The example applications for the target-side are supplied in source code in the Application
directory.

For information how to compile the host examples (especially for Linux and MacOSX) refer
to Compiling the PC example application on page 138.

The start application will of course later on be replaced by the real application program.
For the purpose of getting emUSB-Device up and running as well as doing an initial test,
the start application should not be modified.

6.3.1 Running the example applications
To test the emUSB-Device-VSC component, build and download the USB_VSC_Start.c for
the target-side.

To run one of the example applications, simply start the executable Test.exe, for example
by double clicking it.

If a connection can be established, it exchanges data with the target, testing the USB
connection.

Example output of Test.exe:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

209 CHAPTER 6 Example application

6.3.2 Compiling the PC example application

6.3.2.1 Windows
For compiling the example application you need Visual C++ 2015 (or later).

The source code of the sample application is located in the subfolder Windows/USB/
BULK/USBVAPI_SampleApplication/Src. Open the file USBVAPI_Samples.sln and compile
the source.

6.3.2.2 Linux
The subfolder Windows/USB/Bulk/USBVAPI_SampleApplication contains a Makefile for
Linux. Change to this folder and execute “make”.

6.3.2.3 macOS
The subfolder Windows/USB/Bulk/USBVAPI_SampleApplication contains a Makefile for
macOS. Change to this folder and execute “make -f Makefile_MacOS”.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

210 CHAPTER 6 Target API

6.4 Target API
This chapter describes the functions that can be used with the target system.

General information

To communicate with the host, the sample application project includes USB-specific header
and source files (USB.h, USB_Main.c, USB_Setup.c, USB_VSC.c, USB_VSC.h). These files
contain API functions to communicate with the USB host through the emUSB-Device driver.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API functions
have a simple interface and handle all operations that need to be done to communicate
with the hosts kernel.

Therefore, all operations that need to write to or read from the emUSB-Device are handled
internally by the provided API functions.

6.4.1 Target interface function list

Routine Explanation

USB VSC functions

USBD_VSC_Add() Adds a VSC interface to emUSB-Device.

USBD_VSC_AddAlternateInterface()
Adds an alternative interface for USB-VSC
interface.

USBD_VSC_CancelIO()
Cancels any non-blocking/blocking data
transfer operation that is pending.

USBD_VSC_GetNumBytesInBuffer()
Returns the number of bytes that are
available in the internal BULK-OUT end-
point buffer.

USBD_VSC_GetNumBytesRemToRead()
Get the number of remaining bytes to read
by an active read operation.

USBD_VSC_GetNumBytesRemToWrite()

After starting a non-blocking write oper-
ation this function can be used to period-
ically check how many bytes still have to
be written.

USBD_VSC_Read()
Reads data from the host with a given
timeout.

USBD_VSC_ReadAsync() Reads data from the host asynchronously.

USBD_VSC_SetContinuousReadMode()
Enables continuous read mode for the RX
endpoint.

USBD_VSC_SetOnSetupRequest()
Sets a callback function that is called when
any setup request is sent from the host.

USBD_VSC_SetOnEPEvent()
Sets a callback function for the IN end-
point that will be called on every TX event
for that endpoint.

USBD_VSC_TxIsPending()
Checks whether the TX (IN endpoint) is
currently pending.

USBD_VSC_WaitEP()
Waits (blocking) until the triggered USB-
D_VSC_ReadOverlapped() has received
the desired data.

USBD_VSC_PollEP()
Waits (blocking) until the triggered USB-
D_VSC_ReadOverlapped() has received
the desired data.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

211 CHAPTER 6 Target API

Routine Explanation

USBD_VSC_StallEP() Stall an EP.

USBD_VSC_WaitForTXReady()
Waits (blocking) until the TX queue can ac-
cept another data packet.

USBD_VSC_Write() Sends data to the USB host.
USBD_VSC_WriteAsync() Sends data to the host asynchronously.

USBD_VSC_SetOnVendorRequest()
Sets a callback function that is called when
a setup vendor request is sent from the
host to the specified interface index.

USBD_VSC_SetOnSetupRequest()
Sets a callback function that is called when
any setup request is sent from the host.

USBD_VSC_SetOnClassRequest()
Sets a callback function that is called when
a setup class request is sent from the host
to the specified interface index.

USBD_VSC_AddAlternateInterface()
Adds an alternative interface for USB-VSC
interface.

Data structures and callbacks

USB_VSC_INIT_DATA
Initialization structure that is needed when
adding a VSC interface to emUSB-Device.

USB_VSC_MSOSDESC_INFO

MS OS descriptor structure that contains
for MS related OSes information how to
deal with device with out having a driver
store.

USB_VSC_ON_ADD_FUNCTION_DESC

Call back that is used to add an addition-
al descriptor between the interface or one
of its alternate setting descriptor and the
endpoint descriptor(s).

USB_VSC_ON_SET_INTERFACE

Global callback function that is called
whenever an alternate setting is set for
an interface that was added with USB-
D_VSC_Add().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

212 CHAPTER 6 Target API

6.4.2 USB-VSC functions

6.4.2.1 USBD_VSC_Add()

Description

Adds a VSC interface to emUSB-Device.

Prototype

USB_VSC_HANDLE USBD_VSC_Add(const USB_VSC_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to USB_VSC_INIT_DATA structure.

Return value

Handle to a valid VSC instance.

Example

Example excerpt from USB_VSC_Echo1.c:

Example

static void _AddVSC(void) {
 static U8 _abOutBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
 USB_VSC_INIT_DATA Init;
 Init.Flags = 0;
 Init.EPIn = USBD_AddEP(USB_DIR_IN,
 USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 NULL,
 0);
 Init.EPOut = USBD_AddEP(USB_DIR_OUT,
 USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 _abOutBuffer,
 USB_HS_BULK_MAX_PACKET_SIZE);
 Init.pInterfaceName = "VSC Interface";
 USBD_VSC_Add(&Init);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

213 CHAPTER 6 Target API

6.4.2.2 USBD_VSC_AddAlternateInterface()

Description

Adds an alternative interface for USB-VSC interface.

Prototype

void USBD_VSC_AddAlternateInterface(USB_VSC_HANDLE hInst,
 const USB_VSC_INIT_DATA * pInitData);

Parameters

Parameter Description

hInst
Handle to a valid VSC instance, returned by USBD_VSC_Ad-
d().

pInitData Pointer to USB_VSC_INIT_DATA structure.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

214 CHAPTER 6 Target API

6.4.2.3 USBD_VSC_CancelIO()

Description

Cancels any non-blocking/blocking data transfer operation that is pending.

Prototype

void USBD_VSC_CancelIO(U8 EPIndex);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Additional information

This function shall be called when a pending asynchronous transfer operation should be
canceled. The function can be called from any task. In case of canceling a blocking opera-
tion, this function must be called from another task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

215 CHAPTER 6 Target API

6.4.2.4 USBD_VSC_GetNumBytesInBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype

unsigned USBD_VSC_GetNumBytesInBuffer(U8 EPIndex);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Return value

Number of bytes that are available in the internal BULK-OUT endpoint buffer.

Additional information

If the host is sending more data than your target application has requested, the remaining
data will be stored in an internal buffer. This function shows how many bytes are available
in this buffer.

The number of bytes returned by this function can be read using USBD_VSC_Read() without
blocking.

Example

Your host application sends 50 bytes. Your target application only requests to receive 1 byte.
In this case the target application will get 1 byte and the remaining 49 bytes are stored in an
internal buffer. When your target application now calls USBD_VSC_GetNumBytesInBuffer()
it will return the number of bytes that are available in the internal buffer (49).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

216 CHAPTER 6 Target API

6.4.2.5 USBD_VSC_GetNumBytesRemToRead()

Description

Get the number of remaining bytes to read by an active read operation. This function is
to be used in combination with USBD_VSC_Read() where Timeout=-1. After starting the
read operation this function can be used to periodically check how many bytes still have
to be read.

Prototype

unsigned USBD_VSC_GetNumBytesRemToRead(U8 EPIndex);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Return value

≥ 0 Number of bytes which have not yet been read.
< 0 Error occurred.

Additional information

Alternatively the blocking function USBD_VSC_WaitForRX() can be used.

Example

NumBytesReceived = USBD_VSC_Read(hInst, &ac[0], 50, -1, 0);
if (NumBytesReceived < 0) {
 <.. error handling..>
}
if (NumBytesReceived > 0) {
 // Already had some data in the internal buffer.
 // The first 'NumBytesReceived' bytes may be processed here.
 <...>
} else {
 // Wait until we get all 50 bytes
 while (USBD_VSC_GetNumBytesRemToRead(hInst) > 0) {
 USB_OS_Delay(50);
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

217 CHAPTER 6 Target API

6.4.2.6 USBD_VSC_GetNumBytesRemToWrite()

Description

After starting a non-blocking write operation this function can be used to periodically check
how many bytes still have to be written.

Prototype

unsigned USBD_VSC_GetNumBytesRemToWrite(U8 EPIndex);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Return value

Number of bytes which have not yet been written.

Additional information

Alternatively the blocking function USBD_VSC_WaitForTX() can be used.

Example

r = USBD_VSC_Write(hInst, &ac[0], TRANSFER_SIZE, -1);
if (r < 0) {
 <.. error handling..>
}
// NumBytesToWrite shows how many bytes still have to be written.
while (USBD_VSC_GetNumBytesRemToWrite(hInst) > 0) {
 USB_OS_Delay(50);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

218 CHAPTER 6 Target API

6.4.2.7 USBD_VSC_Read()

Description

Reads data from the host with a given timeout.

Prototype

int USBD_VSC_Read(U8 EPIndex,
 void * pData,
 unsigned NumBytes,
 int Timeout,
 unsigned Flags);

Parameters

Parameter Description

EPIndex
One of the EPIndex was used in pInitData when calling
USBD_VSC_Add().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Flags

Various flags:
• USB_VSC_READ_FLAG_RECEIVE - This turns the read func-

tion in a the receive mode.
• USB_VSC_READ_FLAG_POLL - Can only be used with the

USB_VSC_READ_FLAG_RECEIVE.
This function will not abort the transfer in case of a timeout.

Return value

= NumBytes Requested data was successfully read within the given timeout.
≥ 0 && < NumBytes Timeout has occurred. Number of bytes that have been read

within the given timeout.
< 0 Error occurred.

Additional information
• Normal mode:

This function blocks a task until all data have been read or a timeout expires. This function
also returns when the device is disconnected from host or when a USB reset occurs.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_VSC_Read(). See also
USBD_VSC_GetNumBytesInBuffer().

When Timeout = -1 the read transfer will be initiated and the function returns immediate-
ly. In order to synchronize, USBD_VSC_WaitForRX() needs to be called. Alternatively the
function USBD_VSC_GetNumBytesRemToRead() can be called periodically to check whether
all bytes have been read or not. The read operation can be canceled using USBD_VSC_Can-
cel(). The buffer pointed to by pData must be valid until the read operation is terminated.

In case of a timeout, the read transfer is aborted (see Timeout handling on page 131).

If a read transfer was still pending while the function is called, it returns USB_S-
TATUS_EP_BUSY.

• Receive mode:

If no error occurs, this function returns the number of bytes received. Calling USBD_VSC_Re-
ceive() will return as much data as is currently available -- up to the size of the buffer

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

219 CHAPTER 6 Target API

specified. This function also returns when the target is disconnected from the host or when
a USB reset occurred during the function call, it will then return USB_STATUS_ERROR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_VSC_Read(). See also
USBD_VSC_GetNumBytesInBuffer().

A call of USBD_VSC_Read(EPIndex, NULL, 0, -1, USB_VSC_) can be used to trigger an asyn-
chronous read that stores the data into the internal buffer.
• Receive in polled mode:

In contrast to receive mode this function will continue the read transfer asynchronously
in case of a timeout.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

220 CHAPTER 6 Target API

6.4.2.8 USBD_VSC_ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype

void USBD_VSC_ReadAsync(U8 EPIndex,
 USB_ASYNC_IO_CONTEXT * pContext,
 int ShortRead);

Parameters

Parameter Description

EPIndex
A valid OUT EP Index that was also passed to USBD_VSC_Ad-
d().

pContext
Pointer to a structure of type USB_ASYNC_IO_CONTEXT con-
taining parameters and a pointer to the callback function.

ShortRead

• 0: The transfer is completed successfully after all bytes
have been read.

• 1: The transfer is completed successfully after one packet
has been read.

Example

static void _AsyncCb(USB_ASYNC_IO_CONTEXT * pIOContext) {
 U8 *p;

 p = (U8 *)pIOContext->pContext;
 *p = 1;
}

<...>

USB_ASYNC_IO_CONTEXT IOContext;
U8 AsyncComplete;

IOContext.NumBytesToTransfer = 5000;
IOContext.pData = pBuff;
IOContext.pfOnComplete = _AsyncCb;
IOContext.pContext = (void *)&AsyncComplete;
AsyncComplete = 0;
USBD_VSC_ReadAsync(hInst, &IOContext, 0);
while (AsyncComplete == 0) {
 <.. Do other work. ..>
}
// Transaction is complete.
if (IOContext.Status < 0 || IOContext.NumBytesTransferred != 5000) {
 <.. error handling ..>
} else {
 <.. Process the data ..>
}
<...>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

221 CHAPTER 6 Target API

6.4.2.9 USBD_VSC_SetContinuousReadMode()

Description

Enables continuous read mode for the RX endpoint. In this mode every finished read transfer
will automatically trigger another read transfer, as long as there is enough space in the
internal buffer to receive another packet.

Prototype

void USBD_VSC_SetContinuousReadMode(U8 EPIndex);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Additional information

To check how many bytes have been read into the buffer, the function USBD_VSC_Get-
NumBytesInBuffer() may be called. In order to read the data the function USBD_VSC_Re-
ceive() needs to be called (non-blocking).

The USB stack will use the buffer that was provided by the application with USBD_AddEP().
The transfer speed may be improved, if this buffer has a size of at least 2 * MaxPacketSize.
Normally MaxPacketSize for full-speed devices is 64 bytes and for high-speed devices 512
bytes.

Example

USBD_VSC_SetContinuousReadMode(hInst);
<...>
for(;;) {
 //
 // Fetch data that was already read (non-blocking).
 //
 NumBytesReceived = USBD_VSC_Read(hInst, &ac[0], sizeof(ac), -1, USB_VSC_READ_FLAG_POLL);
 if (NumBytesReceived > 0) {
 //
 // We got some data
 //
 <.. Process data..>
 } else {
 <.. Nothing received yet, do application processing..>
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

222 CHAPTER 6 Target API

6.4.2.10 USBD_VSC_SetOnSetupRequest()

Description

Sets a callback function that is called when any setup request is sent from the host.

Prototype

void USBD_VSC_SetOnSetupRequest(USB_VSC_HANDLE hInst,
 USB_ON_SETUP * pfOnSetupRequest);

Parameters

Parameter Description

hInst
Handle to a valid VSC instance, returned by USBD_VSC_Ad-
d().

pfOnSetupRequest Pointer to the callback function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

223 CHAPTER 6 Target API

6.4.2.11 USBD_VSC_SetOnEPEvent()

Description

Sets a callback function for the IN endpoint that will be called on every TX event for that
endpoint.

Prototype

void USBD_VSC_SetOnEPEvent(U8 EPIndex,
 USB_EVENT_CALLBACK * pEventCb,
 USB_EVENT_CALLBACK_FUNC * pfEventCb,
 void * pContext);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure. The structure is
initialized by this function.

pfEventCb
Pointer to the callback routine that will be called on every
event on the USB endpoint.

pContext
A pointer which is used as parameter for the callback func-
tion.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_VSC_SetOnEPEvent(). The USB stack keeps track of all event callback functions using
a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and
must reside in static memory.

The callback function is called only, if a transfer operation was started using either USB-
D_VSC_Read() or USBD_VSC_Write() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK_FUNC(unsigned Events, void *pContext);

Parameter Description

Events
A bit mask indicating which events occurred on the
endpoint.

pContext
The pointer which was provided to the USBD_SetOn-
Event() function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

EP
Direction

Event Description

OUT USB_EVENT_DATA_READ
Some data was received from the host on the end-
point.

OUT USB_EVENT_READ_COM-
PLETE

The last read operation was completed.

OUT USB_EVENT_READ_ABORT A read transfer was aborted.

IN USB_EVENT_DATA_SEND
Some data was sent to the host, so that (part of)
the user write buffer may be reused by the applica-
tion.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

224 CHAPTER 6 Target API

EP
Direction

Event Description

IN USB_EVENT_DATA_ACKED Some data was acknowledged by the host.
IN USB_EVENT_WRITE_ABORT A write transfer was aborted.

IN USB_EVENT_WRITE_COM-
PLETE

All write operations were completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

225 CHAPTER 6 Target API

Example for an OUT EP

// The callback function.
static void _OnEvent(unsigned Events, void *pContext) {
 unsigned NumBytes;

 if (Events & USB_EVENT_DATA_READ) {
 NumBytes = USBD_VSC_GetNumBytesInBuffer(hInst);
 if (NumBytes) {
r = USBD_VSC_Receive(hInst, Buff, NumBytes, -1);
 if (r > 0) {
 <.. process data in Buff..>
 }
 }
 }
}
// Main program.
// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_VSC_SetOnEPEvent(EPOut, &_usb_callback, _OnEvent, NULL);
USBD_VSC_SetContinuousReadMode(EPOut);
// Trigger first read
USBD_VSC_Read(EPOut, NULL, 0, -1, USB_VSC_READ_FLAG_POLL);
<.. do anything else here while the data is processed in the callback ..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

226 CHAPTER 6 Target API

Example for an IN EP

// The callback function.
static void _OnEvent(unsigned Events, void *pContext) {
 if ((Events & USB_EVENT_DATA_SEND) != 0 &&
 // Check for last write transfer to be completed.
USBD_VSC_GetNumBytesRemToWrite(_hInst) == 0) {
 <.. prepare next data for writing..>
 // Send next packet of data.
 r = USBD_VSC_Write(_hInst, &ac[0], 200, -1);
 if (r < 0) {
 <.. error handling..>
 }
 }
}
// Main program.
// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_VSC_SetOnEPEvent(hInst, &_usb_callback, _OnEvent, NULL);
// Send the first packet of data using an asynchronous write operation.
r = USBD_VSC_Write(_hInst, &ac[0], 200, -1, 0);
if (r < 0) {
 <.. error handling..>
}
<.. do anything else here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

227 CHAPTER 6 Target API

6.4.2.12 USBD_VSC_TxIsPending()

Description

Checks whether the TX (IN endpoint) is currently pending. Can be called in any context.

Prototype

int USBD_VSC_TxIsPending(U8 EPIndex);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Return value

1 We have queued data to be sent.
0 Queue is empty.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

228 CHAPTER 6 Target API

6.4.2.13 USBD_VSC_WaitEP()

Description

Waits (blocking) until the triggered USBD_VSC_ReadOverlapped() has received the desired
data.

Prototype

int USBD_VSC_WaitEP(U8 EPIndex,
 unsigned Timeout);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().
Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Transfer completed.
= 1 Timeout occurred.
< 0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the read transfer is aborted (see Timeout handling on page 131).

Example

if (USBD_VSC_Read(hInst, &ac[0], 50, -1, 0) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_VSC_Read() with Timeout==-1 will return immediately.
// Do something else while data may be transferred.
//
<...>
//
// Now wait until we get all 50 bytes.
// USBD_VSC_WaitEP() will block, until total of
// 50 bytes are read or timeout occurs.
//
if (USBD_VSC_WaitEP(hInst, timeout) != 0) {
 <.. timeout error handling..>
 return;
}
// Now we have 50 bytes of data.
// Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

229 CHAPTER 6 Target API

6.4.2.14 USBD_VSC_PollEP()

Description

Waits (blocking) until the triggered USBD_VSC_ReadOverlapped() has received the desired
data.

Prototype

int USBD_VSC_PollEP(U8 EPIndex,
 unsigned Timeout);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().
Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Transfer completed.
= 1 Timeout occurred.
< 0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the current transfer is not affected. The function may be called re-
peatedly until it does not report a timeout any more.

Example for an IN EP

if (USBD_VSC_Write(hInst, &ac[0], 50, -1, 0) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_VSC_Write() will return immediately.
// While waiting for the data to be transferred, we will blink a LED with
 200 ms interval.
// USBD_VSC_PollForTX() will return, if all data were send or 100 ms expired.
//
while ((r = USBD_VSC_PollEP(hInst, 100)) > 0) {
 ToggleLED();
}
if (r < 0) {
 <.. error handling..>
 return;
}
// Now all data have been send.

Example for an OUT EP

if (USBD_VSC_Read(hInst, &ac[0], 50, -1, 0) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_VSC_Read() with Timeout==-1 will return immediately.
// While waiting for the data, we will blink a LED with 200 ms interval.
// USBD_VSC_PollForRX() will return, if all data were read or 100 ms expired.
//
while ((r = USBD_VSC_PollEP(hInst, 100)) > 0) {
 ToggleLED();
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

230 CHAPTER 6 Target API

if (r < 0) {
 <.. error handling..>
 return;
}
// Now we have 50 bytes of data.
// Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

231 CHAPTER 6 Target API

6.4.2.15 USBD_VSC_WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used in
combination with a non-blocking call to USBD_VSC_Write() , it waits until a new asynchro-
nous write data transfer will be accepted by the USB stack.

Prototype

int USBD_VSC_WaitForTXReady(U8 EPIndex,
 int Timeout);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is neg-
ative, the function will return immediately.

Return value

= 0 A new asynchronous write data transfer will be accepted.
= 1 The write queue is full, a call to USBD_VSC_Write() would return USB_S-

TATUS_EP_BUSY.
< 0 Error occurred.

Additional information

If Timeout is 0, the function never returns 1.

If Timeout is -1, the function will not wait, but immediately return the current state.

Example

// Always keep the write queue full for maximum send speed.
for (;;) {
 pData = GetNextData(&NumBytes);
 // Wait until stack can accept a new write.
 USBD_VSC_WaitForTxReady(hInst, 0);
 // Issue write transfer.
 if (USBD_VSC_Write(hInst, pData, NumBytes, -1) < 0) {
 <.. error handling..>
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

232 CHAPTER 6 Target API

6.4.2.16 USBD_VSC_Write()

Description

Sends data to the USB host. Depending on the Timeout parameter, the function blocks
until NumBytes have been written or a timeout occurs.

Prototype

int USBD_VSC_Write(U8 EPIndex,
 const void * pData,
 unsigned NumBytes,
 int Timeout,
 unsigned Flags);

Parameters

Parameter Description

EPIndex
One of the EPIndex was used in pInitData when calling
USBD_VSC_Add().

pData Data that should be written.
NumBytes Number of bytes to write.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Flags

Various flags: Current flags:
• USB_VSC_WRITE_FLAG_NO_NULL_PACKET - Specifies that a

zero-length packet shall be sent when
the last data packet is a multiple of MaxPacketSize. Normal-
ly MaxPacketSize for full-speed devices is 64 bytes. For high-
speed devices the normal packet size is between 64 and 512
bytes.

Return value

= 0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NumBytes Number of bytes that have been written before a timeout oc-
curred.

= NumBytes Write transfer successful completed.
< 0 Error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (when
using Timeout = -1). If a write transfer is still in progress when this function is called
and the USB stack can not accept another write transfer request, the functions returns
USB_STATUS_EP_BUSY. A synchronous write transfer (Timeout ≥ 0) will always block until
the transfer (including all pending transfers) are finished or a timeout occurs.

In case of a timeout, the write transfer is aborted (see Timeout handling on page 131).

In order to synchronize, USBD_VSC_WaitForTX() needs to be called. Another synchroniza-
tion method would be to periodically call USBD_VSC_GetNumBytesRemToWrite() in order to
see how many bytes still need to be written (this method is preferred when a non-block-
ing solution is necessary). The write operation can be canceled using USBD_VSC_Cancel-
Write().

If pData = NULL and NumBytes = 0, a zero-length packet is sent to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

233 CHAPTER 6 Target API

The content of the buffer pointed to by pData must not be changed until the transfer has
been completed.

Example

NumBytesWritten = USBD_VSC_Write(hInst, &ac[0], DataSize, 500);
if (NumBytesWritten <= 0) {
 <.. error handling..>
}
if (NumBytesWritten < DataSize) {
 <.. timeout occurred, data partially written within 500ms ..>
} else {
 <.. write completed successfully..>
}

See also USBD_VSC_GetNumBytesRemToWrite on page 217.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

234 CHAPTER 6 Target API

6.4.2.17 USBD_VSC_WriteAsync()

Description

Sends data to the host asynchronously. The function does not block. A callback function
is called after the transfer has completed successfully, an error occurred or the transfer
was canceled.

Prototype

void USBD_VSC_WriteAsync(U8 EPIndex,
 USB_ASYNC_IO_CONTEXT * pContext,
 char Send0PacketIfRequired);

Parameters

Parameter Description

EPIndex A valid EP Index that was also passed to USBD_VSC_Add().

pContext
Pointer to a structure of type USB_ASYNC_IO_CONTEXT con-
taining parameters and a pointer to the callback function.

Send0PacketIfRequired
Specifies that a zero-length packet shall be sent when the
last data packet is a multiple of MaxPacketSize.

Example

static void _AsyncCb(USB_ASYNC_IO_CONTEXT * pIOContext) {
 U8 *p;

 p = (U8 *)pIOContext->pContext;
 *p = 1;
}

<...>

USB_ASYNC_IO_CONTEXT IOContext;
U8 AsyncComplete;

IOContext.NumBytesToTransfer = 5000;
IOContext.pData = pBuff;
IOContext.pfOnComplete = _AsyncCb;
IOContext.pContext = (void *)&AsyncComplete;
AsyncComplete = 0;
USBD_VSC_WriteAsync(hInst, &IOContext, 1);
while (AsyncComplete == 0) {
 <.. Do other work. ..>
}
// Transaction is complete.
if (IOContext.Status < 0 || IOContext.NumBytesTransferred != 5000) {
 <.. error handling ..>
} else {
 <.. data written successfully ..>
}
<...>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

235 CHAPTER 6 Target API

6.4.3 Data structures

6.4.3.1 USB_VSC_INIT_DATA

Description

Initialization structure that is needed when adding a VSC interface to emUSB-Device.

Type definition

typedef struct {
 U16 Flags;
 U8 aEP[];
 U8 NumEPs;
 const char * pInterfaceName;
 U8 InterfaceClass;
 U8 InterfaceSubClass;
 U8 InterfaceProtocol;
 const USB_VSC_MSOSDESC_INFO * pMSDescInfo;
} USB_VSC_INIT_DATA;

Structure members

Member Description

Flags

Various flags. Currently only one flag is available: -
USB_VSC_USE_CUSTOM_MSOSDESC: Allows to use a cutom
specified MS OS Descriptor. Otherwise this has to be be ini-
tialized to 0.

aEP
Array of Endpoints Indices to be used. Each EPIndex needs
to be allocated by USBD_AddEP

NumEPs Number of EPIndex in array.
pInterfaceName Name of the interface.
InterfaceClass Sets the USB Class ID .
InterfaceSubClass Sets the USB SubClass ID.
InterfaceProtocol Sets the USB Protocol ID.

pMSDescInfo
[Optional] This pointer will only be used when the Flag
USB_VSC_USE_CUSTOM_MSOSDESC is set.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

236 CHAPTER 6 Target API

6.4.3.2 USB_VSC_MSOSDESC_INFO

Description

MS OS descriptor structure that contains for MS related OSes information how to deal with
device with out having a driver store.

Type definition

typedef struct {
 const char * sCompatibleID;
 const char * sSubCompatibleID;
 U32 NumProperties;
 const USB_MS_OS_EXT_PROP * pProperties;
} USB_VSC_MSOSDESC_INFO;

Structure members

Member Description

sCompatibleID
Strings that gives MS OS a hint to the driver that shall be
loaded

sSubCompatibleID
[Optional] Gives a sub id string, in most cases this can be
NULL.

NumProperties NumBer of properties that are stored in pProperties

pProperties

Variable array of MS OS extended OS descriptors. Depend-
ing on the sCompatibleID, this can be some sub structure
which will be stored in the Windows registry. Eg. with Win-
USB this contains the GUID which is needed to identify your
device among other WinUSB devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

237 CHAPTER 6 Target API

6.4.3.3 USB_VSC_ON_ADD_FUNCTION_DESC

Description

Call back that is used to add an additional descriptor between the interface or one of its
alternate setting descriptor and the endpoint descriptor(s).

Type definition

typedef const U8 * (USB_VSC_ON_ADD_FUNCTION_DESC)
 (USB_VSC_HANDLE hInst,
 U8 IFAlternateSetting);

Parameters

Parameter Description

hInst
Handle to a valid VSC instance, returned by USBD_VSC_Ad-
d().

IFAlternateSetting Data that should be written.

Return value

= NULL No additional descriptor shall be added to this interface or its alternate setting..
≠ NULL Pointer to a USB descriptor.

Additional information

USB Descriptor follow a specific format. The first byte is always the length. The second byte
describes the descriptor type. Anything after these 2 bytes is descriptor dependent.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

238 CHAPTER 6 Target API

6.4.3.4 USB_VSC_ON_SET_INTERFACE

Description

Global callback function that is called whenever an alternate setting is set for an interface
that was added with USBD_VSC_Add().

Type definition

typedef void (USB_VSC_ON_SET_INTERFACE)(USB_VSC_HANDLE hInst,
 U8 AlternateInterface);

Parameters

Parameter Description

hInst
Handle to a valid VSC instance, returned by USBD_VSC_Ad-
d().

AlternateInterface Alternate interface that was set by the host.

Additional information

Each interface has one alternate setting which is the default setting. This call back is called
after the host has set the alternate setting. By default all data transfers of the previous
interface/alternate setting are canceled.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

239 CHAPTER 6 C++ Host API

6.5 C++ Host API
This chapter describes the functions that can be used with the host system.

To communicate with a target running the USB VSC or BULK class an API is provided that
can be used on Windows, Linux and macOS systems.

To have an easy start-up when writing an application on the host side, these API functions
have a simple interface and handle all required operations to communicate with the target
VSC class.

To use the API in an application the header file USBVAPI.h must be included. Depending
on the host operating system used one of the following libraries must be added to the host
application:
• Windows: USBVAPI_r_Win_x86_64.a.
• Linux: USBVAPI_r_Lin_x86_64.a.
• macOS: USBVAPI_r_Dar_x86_64.a oder USBVAPI_r_Dar_arm64.a.

The documentation for the host API is provided as HTML in the file USBVAPI_documenta-
tion_html.zip. To view the documentation unzip this file and open the index.html from
the resulting (unzipped) directory in a web browser.

The following table shows where components of the C++ API can be found in the emUSB-
Device shipping:

File / Directory Contents

Windows/USB/BULK/Inc/USBVAPI.h Header file for the API
Doc/USBVAPI_documentation_html.zip Manual of the API.

Windows/USB/BULK/USBVAPI
Libraries for different host archi-
tectures

Windows/USB/BULK/USBVAPI_SampleApplication
Sample applications to demon-
strate the usage of the API.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 7

Mass Storage Device Class
(MSD)

This chapter gives a general overview of the MSD class and describes how to get the MSD
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

241 CHAPTER 7 Overview

7.1 Overview
The Mass Storage Device (MSD) is a USB class protocol defined by the USB Implementers
Forum. The class itself is used to access one or more storage devices such as flash drives
or memory sticks.

As the USB mass storage device class is well standardized, every major operating system
such as Microsoft Windows (after Windows 2000), Apple OS X, Linux and many more sup-
port it. So therefore an installation of a custom host USB driver is normally not necessary.

emUSB-Device-MSD comes as a whole packet and contains the following:
• Generic USB handling
• MSD device class implementation, including support for direct disk and CD-ROM mode

(CD-ROM access is a separate component)
• Several storage drivers for handling different devices
• Example applications

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

242 CHAPTER 7 MSD Configuration

7.2 MSD Configuration

7.2.1 Initial configuration
To get emUSB-Device-MSD up and running as well as doing an initial test, the configuration
as it is delivered should not be modified.

7.2.2 Final configuration
The configuration must only be modified, when emUSB-Device is deployed in your final
product. Refer to emUSB-Device Configuration on page 50 for detailed information about
the generic information functions which must be adapted.

In order to comply with the Mass Storage Device Bootability specification, the serial number
provided by the function USBD_SetDeviceInfo() must be a string with at least 12 charac-
ters, where each character is a hexadecimal digit (’0’ through ’9’ or ’A’ through ’F’).

7.2.3 MSD class specific configuration functions
Beside the generic emUSB-Device configuration functions (emUSB-Device Configuration on
page 50), the following should be adapted before the emUSB-Device MSD component is
used in a final product. Example implementations are supplied in the MSD example appli-
cation USB_MSD_FS_Start.c, located in the Application directory of emUSB-Device.

Each logical unit (storage) which is added to the MSD component has it’s own set of name
and id values which is supplied when the logical unit is first added through USBD_MSD_Ad-
dUnit()

Example

static const USB_MSD_LUN_INFO _Lun0Info = {
 "Vendor", // MSD VendorName
 "MSD Volume", // MSD ProductName
 "1.00", // MSD ProductVer
 "134657890" // MSD SerialNo
};
...
InstData.pLunInfo = &_Lun0Info;
...
USB_MSD_AddUnit(&InstData);

7.2.4 Running the example application
The directory Application contains example applications that can be used with emUSB-
Device and the MSD component. To test the emUSB-Device-MSD component, build and
download the application of choice into the target. Remove the USB connection and recon-
nect the target to the host. The target will enumerate and can be accessed via a file browser.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

243 CHAPTER 7 MSD Configuration

7.2.4.1 MSD_Start_StorageRAM.c in detail
The main part of the example application USB_MSD_Start_StorageRAM.c is implemented
in a single task called MainTask().

/* MainTask() - excerpt from USB_MSD_Start_StorageRAM.c */
void MainTask(void);
void MainTask(void) {
 USBD_Init();
 _AddMSD();
 USBD_Start();
 while (1) {
 while ((USBD_GetState() & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED))
 != USB_STAT_CONFIGURED) {
 BSP_ToggleLED(0);
 USB_OS_Delay(50);
 }
 BSP_SetLED(0);
 USBD_MSD_Task();
 }
}

The first step is to initialize the USB core stack using USBD_Init(). The function _AddMSD()
configures all required endpoints and assigns the used storage medium to the MSD com-
ponent.

/* _AddMSD() - excerpt from MSD_Start_StorageRAM.c */
static void _AddMSD(void) {
 static U8 _abOutBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
 USB_MSD_INIT_DATA InitData;
 USB_MSD_INST_DATA InstData;
 InitData.EPIn = USBD_AddEP(1, USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE, NULL, 0);
 InitData.EPOut = USBD_AddEP(0, USB_TRANSFER_TYPE_BULK,
 USB_HS_BULK_MAX_PACKET_SIZE,
 _abOutBuffer, sizeof(_abOutBuffer));
 USBD_MSD_Add(&InitData);
 //
 // Add logical unit 0: RAM drive
 //
 memset(&InstData, 0, sizeof(InstData));
 InstData.pAPI = &USB_MSD_StorageRAM;
 InstData.DriverData.pStart = (void*)MSD_RAM_ADDR;
 InstData.DriverData.NumSectors = MSD_RAM_NUM_SECTORS;
 InstData.DriverData.SectorSize = MSD_RAM_SECTOR_SIZE;
 InstData.pLunInfo = &_Lun0Info;
 USBD_MSD_AddUnit(&InstData);
}

The example application uses a RAM disk as storage medium.

The example RAM disk has a size of 23 kB (46 sectors with a sector size of 512 bytes). You
can increase the size of the RAM disk by modifying the macros MSD_RAM_NUM_SECTORS and
MSD_RAM_SECTOR_SIZE (in multiples of 512), but the size must be at least 23 kB otherwise
a Windows host cannot format the disk.

/* AddMSD() - excerpt from MSD_Start_StorageRAM.c */
#define MSD_RAM_NUM_SECTORS 46
#define MSD_RAM_SECTOR_SIZE 512

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

244 CHAPTER 7 Target API

7.3 Target API
Function Description

API functions

USBD_MSD_Add()
Adds an MSD-class interface to the
USB stack.

USBD_MSD_AddUnit()
Adds a mass storage device to
emUSB-Device-MSD.

USBD_MSD_AddCDRom()
Adds a CD-ROM device to emUSB-De-
vice-MSD.

USBD_MSD_SetPreventAllowRemovalHook()
Sets a callback function to prevent/al-
low removal of storage medium.

USBD_MSD_SetReadWriteHook()

Sets a callback function which gives
information about the read and write
block-wise operations to the storage
medium.

USBD_MSD_Task()
Task that handles the MSD-specific
protocol.

USBD_MSD_Poll()
Function which handles MSD com-
mands.

USBD_MSD_PollEx()
Function which handles MSD com-
mands.

USBD_MSD_SetStartStopUnitHook()
Sets a callback function which is called
when the command StartStopUnit is
called.

Extended API functions

USBD_MSD_Connect()
Connects the storage medium to the
MSD component.

USBD_MSD_Disconnect()
Disconnects the storage medium from
the MSD.

USBD_MSD_RequestDisconnect() Sets the DisconnectRequest flag.

USBD_MSD_RequestRefresh()

Performs a disconnect (optional), a
detach and optionally a re-attach, to
inform host that volume contents has
changed.

USBD_MSD_UpdateWriteProtect()
This function updates the write protect
status of the storage medium.

USBD_MSD_WaitForDisconnection()
Waits for disconnection while time out
is not reached.

Data structures

USB_MSD_INIT_DATA
emUSB-Device-MSD initialization
structure that is required when adding
an MSD interface.

USB_MSD_INFO emUSB-Device-MSD storage interface.

USB_MSD_INST_DATA
USB-MSD initialization structure that
is required when adding an MSD inter-
face.

PREVENT_ALLOW_REMOVAL_HOOK
Callback function to prevent/allow re-
moval of storage medium.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

245 CHAPTER 7 Target API

Function Description

READ_WRITE_HOOK
Callback function which is called with
every read/write access to the storage
medium.

USB_MSD_INST_DATA_DRIVER
USB-MSD initialization structure that
is required when adding an MSD inter-
face.

USB_MSD_STORAGE_API
USB-MSD initialization structure that
is required when adding an MSD inter-
face.

START_STOP_UNIT_HOOK
Callback function which is called when
a START STOP UNIT SCSI command is
received.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

246 CHAPTER 7 Target API

7.3.1 API functions

7.3.1.1 USBD_MSD_Add()

Description

Adds an MSD-class interface to the USB stack.

Prototype

void USBD_MSD_Add(const USB_MSD_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to a USB_MSD_INIT_DATA structure.

Additional information

After the initialization of general emUSB-Device, this is the first function that needs to be
called when an MSD interface is used with emUSB-Device. The structure USB_MSD_INIT_DA-
TA must be initialized before USBD_MSD_Add() is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

247 CHAPTER 7 Target API

7.3.1.2 USBD_MSD_AddUnit()

Description

Adds a mass storage device to emUSB-Device-MSD.

Prototype

void USBD_MSD_AddUnit(const USB_MSD_INST_DATA * pInstData);

Parameters

Parameter Description

pInstData
Pointer to a USB_MSD_INST_DATA structure containing the in-
formation of the added storage device.

Additional information

It is necessary to call this function immediately after USBD_MSD_Add(). It will then add an
R/W storage device to emUSB-Device-MSD. The structure USB_MSD_INST_DATA must be
initialized before calling USBD_MSD_AddUnit().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

248 CHAPTER 7 Target API

7.3.1.3 USBD_MSD_AddCDRom()

Description

Adds a CD-ROM device to emUSB-Device-MSD.

Prototype

void USBD_MSD_AddCDRom(const USB_MSD_INST_DATA * pInstData);

Parameters

Parameter Description

pInstData
Pointer to a USB_MSD_INST_DATA structure containing the in-
formation of the added storage device.

Additional information

Similar to USBD_MSD_AddUnit(), this function should be called after USBD_MSD_Add(). The
structure USB_MSD_INST_DATA must be initialized before USBD_MSD_AddCDRom() is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

249 CHAPTER 7 Target API

7.3.1.4 USBD_MSD_SetPreventAllowRemovalHook()

Description

Sets a callback function to prevent/allow removal of storage medium.

Prototype

void USBD_MSD_SetPreventAllowRemovalHook
 (U8 Lun,
 PREVENT_ALLOW_REMOVAL_HOOK * pfOnPreventAllowRemoval);

Parameters

Parameter Description

Lun
Logical Unit Number. Using only one storage medium,
this parameter is 0.

pfOnPreventAllowRemoval Pointer to the callback function that shall be called.

Additional information

The callback is called within the MSD task context. The callback must not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

250 CHAPTER 7 Target API

7.3.1.5 USBD_MSD_SetReadWriteHook()

Description

Sets a callback function which gives information about the read and write block-wise oper-
ations to the storage medium.

Prototype

void USBD_MSD_SetReadWriteHook(U8 Lun,
 READ_WRITE_HOOK * pfOnReadWrite);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

pfOnReadWrite Pointer to the callback function that shall be called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

251 CHAPTER 7 Target API

7.3.1.6 USBD_MSD_Task()

Description

Task that handles the MSD-specific protocol.

Prototype

void USBD_MSD_Task(void);

Additional information

After the USB device has been successfully enumerated and configured, the USB-
D_MSD_Task() should be called. This function blocks until the device is detached or is sus-
pended. After a detach or suspend USBD_MSD_Task() will return.

Check USBD_MSD_Poll() if you need a non-blocking version.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

252 CHAPTER 7 Target API

7.3.1.7 USBD_MSD_Poll()

Description

Function which handles MSD commands. Using this function is only necessary if you want
to avoid using the blocking USB_MSD_Task function. This can be necessary if you are not
using an RTOS.

Prototype

int USBD_MSD_Poll(void);

Return value

2 O.K. Command was processed, but a protocol error occurred.
1 O.K. Command was processed successfully.
0 O.K. Timeout occurred.

1 An error occurred. (e.g. no cable connected).

Additional information

This function must be called periodically, otherwise the host can time out the device since
it does not process commands. It normally blocks for USB_MSD_POLL_TIMEOUT milliseconds
while waiting for a command from the host. Should a command arrive during the timeout
it will be processed, which could potentially increase the block duration. The duration could
also decrease because the function returns as soon as a command is finished.

In case of return value 2 the calling task should still call this function again, if possible
recovery will be initiated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

253 CHAPTER 7 Target API

7.3.1.8 USBD_MSD_PollEx()

Description

Function which handles MSD commands. Using this function is only necessary if you want
to avoid using the blocking USB_MSD_Task function. This can be necessary if you are not
using an RTOS.

Prototype

int USBD_MSD_PollEx(unsigned Timeout);

Parameters

Parameter Description

Timeout
Function will block for ’Timeout’ ms, if no requests are re-
ceived from the host. Timeout may be zero.

Return value

2 O.K. Command was processed, but a protocol error occurred.
1 O.K. Command was processed successfully.
0 O.K. Timeout occurred.

1 An error occurred. (e.g. no cable connected).

Additional information

This function must be called periodically, otherwise the host can time out the device since
it does not process commands. It normally blocks for ’Timeout’ milliseconds while waiting
for a command from the host. Should a command arrive during the timeout it will be
processed, which could potentially increase the block duration. The duration could also
decrease because the function returns as soon as a command is finished.

In case of return value 2 the calling task should still call this function again, if possible
recovery will be initiated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

254 CHAPTER 7 Target API

7.3.1.9 USBD_MSD_SetStartStopUnitHook()

Description

Sets a callback function which is called when the command StartStopUnit is called.

Prototype

void USBD_MSD_SetStartStopUnitHook(U8 Lun,
 START_STOP_UNIT_HOOK * pfOnStartStopUnit);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

pfOnStartStopUnit
Pointer to the callback function that shall be called. For
detailed information about the function pointer, refer to
START_STOP_UNIT_HOOK.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

255 CHAPTER 7 Target API

7.3.2 Extended API functions

7.3.2.1 USBD_MSD_Connect()

Description

Connects the storage medium to the MSD component.

Prototype

void USBD_MSD_Connect(U8 Lun);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Additional information

The storage medium is initially always connected to the MSD component. This function is
normally used after the storage medium was disconnected via USBD_MSD_Disconnect() to
carry out file system operations on the device application side. Because the device can not
actively perform a connect operation this function sets an internal flag and the next time
when the host requests the status of the storage medium the storage medium is connected
back to the MSD component.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

256 CHAPTER 7 Target API

7.3.2.2 USBD_MSD_Disconnect()

Description

Disconnects the storage medium from the MSD.

Prototype

void USBD_MSD_Disconnect(U8 Lun);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Additional information

This function will force the storage medium to be disconnected. The host will be informed
that the medium is not present. In order to reconnect the device to the host, the func-
tion USBD_MSD_Connect() shall be used. See USBD_MSD_RequestDisconnect() and USB-
D_MSD_WaitForDisconnection() for a graceful disconnection method.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

257 CHAPTER 7 Target API

7.3.2.3 USBD_MSD_RequestDisconnect()

Description

Sets the DisconnectRequest flag.

Prototype

void USBD_MSD_RequestDisconnect(U8 Lun);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Additional information

This function sets the disconnect flag for the storage medium. As soon as the next MSD
command is sent to the device, the host will be informed that the device is currently not
available. To reconnect the storage medium, USBD_MSD_Connect() shall be called.

Notes

If the host tries to access the storage medium while this flag is set to 1, the status of the
storage medium changes to disconnected.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

258 CHAPTER 7 Target API

7.3.2.4 USBD_MSD_RequestRefresh()

Description

Performs a disconnect (optional), a detach and optionally a re-attach, to inform host that
volume contents has changed.

Prototype

void USBD_MSD_RequestRefresh(U8 Lun,
 U32 Flags);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Flags

Request flags, a bit-ored combination of the following flags:
• USB_MSD_TRY_DISCONNECT - Try a medium disconnect be-

fore doing a USB detach.
• USB_MSD_RE_ATTACH - Automatically re-attach after detach

has been done.

Additional information

If the flag USB_MSD_TRY_DISCONNECT is given, the function sets the disconnect flag for the
storage medium. As soon as the next MSD command is sent to the device, the host will be
informed that the device is currently not available. If the host acknowledges the disconnect,
the medium is reconnected and the function USBD_MSD_Task() will return.

If the flag USB_MSD_TRY_DISCONNECT is not set or the host ignores the disconnection of the
medium, the USB device is detached from the host (using USBD_Stop()).

If the flag USB_MSD_RE_ATTACH is set, the device is re-attached after some delay us-
ing USBD_Start(). Then the function USBD_MSD_Task() will return. The function USB-
D_MSD_RequestRefresh() returns immediately while the procedure is executed in the USB-
D_MSD_Task().

Returning of the function USBD_MSD_Task() allows the application to reinitialize the vol-
ume (or calling USBD_Start(), if USB_MSD_RE_ATTACH was not set) before calling USB-
D_MSD_Task() again.

Detaching the USB device not only affects the specified volume (Lun) but all volumes of
the device and any other USB class interfaces.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

259 CHAPTER 7 Target API

7.3.2.5 USBD_MSD_UpdateWriteProtect()

Description

This function updates the write protect status of the storage medium.

Prototype

void USBD_MSD_UpdateWriteProtect(U8 Lun,
 U8 IsWriteProtected);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

IsWriteProtected
Set the write protect flag:

1 - Medium is write-protected.
0 - Medium is NOT write-protected.

Additional information

Please make sure that this function is called when the LUN is disconnected from the host,
otherwise the change in the WriteProtected flag is normally not recognized.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

260 CHAPTER 7 Target API

7.3.2.6 USBD_MSD_WaitForDisconnection()

Description

Waits for disconnection while time out is not reached.

Prototype

int USBD_MSD_WaitForDisconnection(U8 Lun,
 U32 TimeOut);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

TimeOut
Timeout give in ms. How long should this function wait, until
it stops waiting.

Return value

0 Error - Time out reached. Device not disconnected.
1 Success - Device disconnected.

Additional information

After triggering the disconnection via USBD_MSD_RequestDisconnect() the stack discon-
nects the storage medium as soon as the host requests the status of the storage medium.
Win2k does not periodically check the status of a USB MSD. Therefore, the timeout is re-
quired to leave the loop. The return value can be used to decide if the disconnection should
be forced. In this case, USBD_MSD_Disconnect() shall be called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

261 CHAPTER 7 Target API

7.3.3 Data structures

7.3.3.1 USB_MSD_INIT_DATA

Description

emUSB-Device-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 U8 InterfaceNum;
} USB_MSD_INIT_DATA;

Structure members

Member Description

EPIn Bulk IN endpoint for sending data to the host.
EPOut Bulk OUT endpoint for receiving data from the host.
InterfaceNum Interface number. This member is used internally, set to 0.

Additional information

This structure holds the endpoints that should be used with the MSD interface. Refer to
USBD_AddEP() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

262 CHAPTER 7 Target API

7.3.3.2 USB_MSD_INFO

Description

emUSB-Device-MSD storage interface.

Type definition

typedef struct {
 U32 NumSectors;
 U16 SectorSize;
} USB_MSD_INFO;

Structure members

Member Description

NumSectors Number of available sectors.
SectorSize Size of one sector in bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

263 CHAPTER 7 Target API

7.3.3.3 USB_MSD_INST_DATA

Description

USB-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {
 const USB_MSD_STORAGE_API * pAPI;
 USB_MSD_INST_DATA_DRIVER DriverData;
 U8 DeviceType;
 U8 IsPresent;
 USB_MSD_HANDLE_CMD * pfHandleCmd;
 U8 IsWriteProtected;
 const USB_MSD_LUN_INFO * pLunInfo;
} USB_MSD_INST_DATA;

Structure members

Member Description

pAPI
Pointer to a structure that holds the storage device driver
API.

DriverData
Driver data that are passed to the storage driver. Refer to
USB_MSD_INST_DATA_DRIVER for detailed information about
how to initialize this structure.

DeviceType
Determines the type of the device:

0: Direct access block device
5: CD/DVD

IsPresent
Determines if the medium is storage is present. For non-re-
movable devices always 1.

pfHandleCmd
Optional pointer to a callback function which handles SCSI
commands.

IsWriteProtected
Specifies whether the storage medium shall be write-pro-
tected.

pLunInfo
Pointer to a USB_MSD_LUN_INFO structure. Filling this struc-
ture is mandatory for each LUN.

Additional information

All non-optional members of this structure need to be initialized correctly, except Device-
Type and pfHandleCmd because it is done by the functions USBD_MSD_AddUnit() or USB-
D_MSD_AddCDROM().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

264 CHAPTER 7 Target API

7.3.3.4 USB_MSD_LUN_INFO

Description

Structure that is used when adding a logical volume to emUSB-Device-MSD.

Type definition

typedef struct {
 const char * pVendorName;
 const char * pProductName;
 const char * pProductVer;
 const char * pSerialNo;
} USB_MSD_LUN_INFO;

Structure members

Member Description

pVendorName
Vendor name of the mass storage device. The string should
be no longer than 8 bytes.

pProductName
Product name of the mass storage device. The product name
string should be no longer than 16 bytes.

pProductVer
Product version number of the mass storage device. The
product version string should be no longer than 4 bytes.

pSerialNo
Product serial number of the mass storage device. The seri-
al number string must be exactly 12 bytes, in order to satis-
fy the USB bootability specification requirements.

Additional information

The setting of these values is mandatory, if these values remain NULL at initialisation
emUSB-Device will report a panic error in debug builds (USB_PANIC).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

265 CHAPTER 7 Target API

7.3.3.5 PREVENT_ALLOW_REMOVAL_HOOK

Description

Callback function to prevent/allow removal of storage medium. See USBD_MSD_SetPreven-
tAllowRemovalHook().

Type definition

typedef void (PREVENT_ALLOW_REMOVAL_HOOK)(U8 PreventRemoval);

Parameters

Parameter Description

PreventRemoval
Show whether the device shall be locked or not.
• 0 - The device shall be removable.
• 1 - The device shall be locked.

Additional information

Most OSes call the prevent/allow removal before any write operation. This callback will be
called for all LUNs that are available on the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

266 CHAPTER 7 Target API

7.3.3.6 READ_WRITE_HOOK

Description

Callback function which is called with every read/write access to the storage medium.

Type definition

typedef void (READ_WRITE_HOOK)(U8 Lun,
 U8 IsRead,
 U8 OnOff,
 U32 StartLBA,
 U32 NumBlocks);

Parameters

Parameter Description

Lun
Specifies the logical unit number which was accessed
through read or write.

IsRead
Specifies whether a read or a write access was used:
• 1 : read
• 0 : write

OnOff
States whether the read or write request has been initialized
(1) or whether it is complete (0).

StartLBA The first Logical Block Address accessed by the transfer.

NumBlocks
The number of blocks accessed by the transfer, starting from
the StartLBA.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

267 CHAPTER 7 Target API

7.3.3.7 USB_MSD_INST_DATA_DRIVER

Description

USB-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {
 void * pStart;
 U32 StartSector;
 U32 NumSectors;
 U16 SectorSize;
 void * pSectorBuffer;
 unsigned NumBytes4Buffer;
 U8 NumBuffers;
} USB_MSD_INST_DATA_DRIVER;

Structure members

Member Description

pStart A pointer defining the start address
StartSector The start sector that is used for the driver.
NumSectors The available number of sectors available for the driver.
SectorSize The sector size that should be used by the driver.

pSectorBuffer
Pointer to an application provided buffer to be used as tem-
porary buffer for storing the sector data.

NumBytes4Buffer Size of the application provided buffer.

NumBuffers
Number of buffer that are available. This is only used when
using the MT storage layer.

Additional information

This structure is passed to the storage driver. Therefore, the member of this structure can
depend on the driver that is used. For the storage driver that are shipped with this software
the members of USB_MSD_INST_DATA_DRIVER have the following meaning:

USB_MSD_StorageRAM:

Member Description

pStart A pointer defining the start address of the RAM disk.
StartSector This member is ignored.
NumSectors The available number of sectors available for the RAM disk.
SectorSize The sector size that should be used by the driver.

USB_MSD_StorageByName:

Member Description

pStart
Pointer to a string holding the name of the volumes that
shall be used, for example “nand:” “mmc:1:”

StartSector Specifies the start sector.
NumSectors Number of sector that shall be used.
SectorSize This member is ignored.

pSectorBuffer
Pointer to an application provided buffer to be used as tem-
porary buffer for storing the sector data

NumBytes4Buffer
Size of the buffer provided by the application. Please make
sure that the buffer can at least 3 sectors otherwise, pSec-

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

268 CHAPTER 7 Target API

Member Description
torBuffer and NumBytes4Buffer are ignored and an inter-
nal sector buffer is used. This sector-buffer is then allocated
by using the FS-Storage-Layer functions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

269 CHAPTER 7 Target API

7.3.3.8 USB_MSD_STORAGE_API

Description

USB-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {
 USB_MSD_STORAGE_INIT * pfInit;
 USB_MSD_STORAGE_GETINFO * pfGetInfo;
 USB_MSD_STORAGE_GETREADBUFFER * pfGetReadBuffer;
 USB_MSD_STORAGE_READ * pfRead;
 USB_MSD_STORAGE_GETWRITEBUFFER * pfGetWriteBuffer;
 USB_MSD_STORAGE_WRITE * pfWrite;
 USB_MSD_STORAGE_MEDIUMISPRESENT * pfMediumIsPresent;
 USB_MSD_STORAGE_DEINIT * pfDeInit;
} USB_MSD_STORAGE_API;

Structure members

Member Description

pfInit Initializes the storage medium.

pfGetInfo
Retrieves storage medium information such as sector size
and number of sectors available.

pfGetReadBuffer
Prepares read function and returns a pointer to a buffer that
is used by the storage driver.

pfRead Reads one or multiple sectors from the storage medium.

pfGetWriteBuffer
Prepares write function and returns a pointer to a buffer that
is used by the storage driver.

pfWrite Writes one or more sectors to the storage medium.
pfMediumIsPresent Checks if medium is present.
pfDeInit De-initializes the storage medium.

Additional information

USB_MSD_STORAGE_API is used to retrieve information from the storage device driver or
access data that needs to be read or written. Detailed information can be found in MSD
Storage Driver on page 271.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

270 CHAPTER 7 Target API

7.3.3.9 START_STOP_UNIT_HOOK

Description

Callback function which is called when a START STOP UNIT SCSI command is received.

Type definition

typedef void (START_STOP_UNIT_HOOK)(U8 Lun,
 U8 StartLoadEject);

Parameters

Parameter Description

Lun Specifies the logical unit number.

StartLoadEject

Specifies which operation is executed by the host:
• 0 : Stop disk
• 1 : Start disk and make ready for access
• 2 : Eject disk if permitted
• 3 : Load, start and make disk ready.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

271 CHAPTER 7 MSD Storage Driver

7.4 MSD Storage Driver

7.4.1 General information
The storage interface is handled through an API-table, which contains all relevant functions
necessary for read/write operations and initialization. Its implementation handles the de-
tails of how data is actually read from or written to memory. Additionally, MSD knows two
different media types:
• Direct media access, for example RAM-Disk, NAND flash, MMC/SD cards etc.
• CD-ROM emulation.

7.4.1.1 Supported storage types
The supported storage types include:
• RAM, directly connected to the processor via the address bus.
• External flash memory, e.g. SD cards.
• Mechanical drives, for example CD-ROM. This is essentially an ATA/SCSI to USB bridge.

7.4.1.2 Storage drivers supplied with this release
This release comes with the following drivers:
• USB_MSD_StorageRAM: A RAM driver which should work with almost any device.
• USB_MSD_StorageByIndex: A storage driver that uses the storage layer (logical block

layer) of emFile to access the device.
• USB_MSD_StorageByName: A storage driver that uses the storage layer (logical block

layer) of emFile to access the device.

Note

If you are not using emFile or the RAM driver you will have to provide your own sector
write/read routines for your storage medium.

7.4.2 Interface function list
As described above, access to a storage medium is realized through an API-function table
(USB_MSD_STORAGE_API). The storage functions are declared in USB_MSD.h.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

272 CHAPTER 7 MSD Storage Driver

7.4.3 USB_MSD_STORAGE_API in detail

7.4.3.1 USB_MSD_STORAGE_INIT

Description

Initializes the storage medium.

Type definition

typedef void (USB_MSD_STORAGE_INIT)(U8 Lun,
 const USB_MSD_INST_DATA_DRIVER * pDriverData);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

pDriverData

Pointer to a USB_MSD_INST_DATA_DRIVER structure that con-
tains all information that is necessary for the driver initializa-
tion. Refer to USB_MSD_INST_DATA_DRIVER structure for de-
tailed information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

273 CHAPTER 7 MSD Storage Driver

7.4.3.2 USB_MSD_STORAGE_GETINFO

Description

Retrieves storage medium information such as sector size and number of sectors available.

Type definition

typedef void (USB_MSD_STORAGE_GETINFO)(U8 Lun,
 USB_MSD_INFO * pInfo);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

pInfo
Pointer to a USB_MSD_INFO structure. For detailed in-
formation about the USB_MSD_INFO structure, refer to
USB_MSD_INFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

274 CHAPTER 7 MSD Storage Driver

7.4.3.3 USB_MSD_STORAGE_GETREADBUFFER

Description

Prepares the read function and returns a pointer to a buffer that is used by the storage
driver.

Type definition

typedef U32 (USB_MSD_STORAGE_GETREADBUFFER)(U8 Lun,
 U32 SectorIndex,
 void ** ppData,
 U32 NumSectors);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

SectorIndex Specifies the start sector for the read operation.

ppData
Pointer to a pointer to store the read buffer address of the
driver.

NumSectors Number of sectors to read.

Return value

Maximum number of consecutive sectors that can be read at once by the driver.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

275 CHAPTER 7 MSD Storage Driver

7.4.3.4 USB_MSD_STORAGE_READ

Description

Reads one or multiple consecutive sectors from the storage medium.

Type definition

typedef I8 (USB_MSD_STORAGE_READ)(U8 Lun,
 U32 SectorIndex,
 void * pData,
 U32 NumSectors);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

SectorIndex
Specifies the start sector from where the read operation is
started.

pData Pointer to buffer to store the read data.
NumSectors Number of sectors to read.

Return value

= 0 Success.
≠ 0 Failed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

276 CHAPTER 7 MSD Storage Driver

7.4.3.5 USB_MSD_STORAGE_GETWRITEBUFFER

Description

Prepares the write function and returns a pointer to a buffer that is used by the storage
driver.

Type definition

typedef U32 (USB_MSD_STORAGE_GETWRITEBUFFER)(U8 Lun,
 U32 SectorIndex,
 void ** ppData,
 U32 NumSectors);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

SectorIndex Specifies the start sector for the write operation.

ppData
Pointer to a pointer to store the write buffer address of the
driver.

NumSectors Number of sectors to write.

Return value

Maximum number of consecutive sectors that can be written into the buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

277 CHAPTER 7 MSD Storage Driver

7.4.3.6 USB_MSD_STORAGE_WRITE

Description

Writes one or more consecutive sectors to the storage medium.

Type definition

typedef I8 (USB_MSD_STORAGE_WRITE)(U8 Lun,
 U32 SectorIndex,
 const void * pData,
 U32 NumSectors);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

SectorIndex Specifies the start sector for the write operation.
pData Pointer to data to be written to the storage medium.
NumSectors Number of sectors to write.

Return value

= 0 Success.
≠ 0 Failed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

278 CHAPTER 7 MSD Storage Driver

7.4.3.7 USB_MSD_STORAGE_MEDIUMISPRESENT

Description

Checks if medium is present.

Type definition

typedef I8 (USB_MSD_STORAGE_MEDIUMISPRESENT)(U8 Lun);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

Return value

1 Medium is present.
0 Medium is not present.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

279 CHAPTER 7 MSD Storage Driver

7.4.3.8 USB_MSD_STORAGE_DEINIT

Description

De-initializes the storage medium.

Type definition

typedef void (USB_MSD_STORAGE_DEINIT)(U8 Lun);

Parameters

Parameter Description

Lun
Logical unit number. Specifies for which drive the function is
called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 8

Virtual Mass Storage
Component (VirtualMSD)

This chapter gives a general overview of the VirtualMSD component and describes how to
get the VirtualMSD running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

281 CHAPTER 8 Overview

8.1 Overview
The VirtualMSD component allows to easily stream files to and from USB devices. Once the
USB device is connected to the host, files can be read or written to the application without
the need for dedicated storage memory.

This makes the software very flexible: it can be used for various types of applications and
purposes, with no additional software or drivers necessary on the host side.

The VirtualMSD software analyzes what operation is performed by the host and passes
this to the application layer of the embedded target, which then performs the appropriate
action. A simple drag and drop is all it takes to initialize this process, which is supported
by a unique active file technology.

Virtual MSD can access all data which has been created prior to the device being attached
to the host, live data cannot be provided.

VirtualMSD allows to use the storage device in a virtual manner, which means data does
not need to be stored on a physical medium.

The storage device will be shown on the host as a FAT formated volume with a configurable
size and a configurable file list.

With the help of that virtual function, the target device can be used for different applications
by simply dragging and dropping files to and from the storage medium:
• Firmware update application.
• Configuration updater.
• File system firewall - protect the target’s filesystem from being manipulated by the host.

The component itself is based on MSD class and thus can be used on virtually any OS such
as any Windows, macOS or any Linux distribution (including Android) which supports MSD,
without installing any third party tools.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

282 CHAPTER 8 Configuration

8.2 Configuration

8.2.1 Initial configuration
To get emUSB-Device-VirtualMSD up and running as well as doing an initial test, the con-
figuration as is delivered should not be modified.

8.2.2 Final configuration
The configuration must only be modified if emUSB-Device is deployed in your final product.
Refer to emUSB-Device Configuration on page 50 for detailed information about the generic
information functions which must be adapted.

8.2.3 Class specific configuration functions
For basic configuration please refer to the MSD chapter MSD class specific configuration
functions on page 242. In addition to the MSD configuration functions described there the
following VirtualMSD functions are available.

Function Description

emUSB-Device-VirtualMSD configuration functions

USB_VMSD_X_Config() Configures the VirtualMSD component.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

283 CHAPTER 8 Configuration

8.2.3.1 USB_VMSD_X_Config()

Description

Main user configuration function of the VirtualMSD component. This function is provided
by the user.

Prototype

void USB_VMSD_X_Config(void);

Example

void USB_VMSD_X_Config(void) {
 //
 // String information used when inquiring the volume.
 //
 static const USB_MSD_LUN_INFO _LunInfo = {
 "Vendor", // MSD VendorName
 "MSD Volume", // MSD ProductName
 "1.00", // MSD ProductVer
 "134657890" // MSD SerialNo
 };
 //
 // Global configuration
 //
 USBD_VMSD_AssignMemory(&_aMEMBuffer[0], sizeof(_aMEMBuffer));
 //
 // Setup LUN0
 //
 USBD_VMSD_SetNumSectors(0, 8000);
 USBD_VMSD_SetSectorsPerCluster(0, 32); // Anywhere from 1...128, needs to be
 2^x
 USBD_VMSD_SetNumRootDirSectors(0, 2);
 USBD_VMSD_SetUserAPI(0, &_UserFuncAPI);
 USBD_VMSD_SetVolumeInfo(0, "Virt0.MSD", &_LunInfo); // Add volume ID
 //
 // Push const contents to the volume
 //
 USBD_VMSD_AddConstFiles(0, &_aConstFiles[0], COUNTOF(_aConstFiles));
}

Additional information

During the call of USBD_VMSD_Add() this user function is called in order to configure the Vir-
tualMSD module according to the user’s preferences. In order to allow the user to configure
the volume it is necessary to provide either a memory block or memory allocation/free
callbacks to VirtualMSD component.

8.2.4 Running the example application
The directory Application contains example applications that can be used with emUSB-
Device and the VirtualMSD component. To test the VirtualMSD component, build and down-
load the application of choice into the target. Remove the USB connection and reconnect
the target to the host. The target will enumerate and can be accessed via a file browser.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

284 CHAPTER 8 Configuration

8.2.5 Calculation of RAM memory usage for VirtualMSD
An application has to provide RAM memory in order to use VirtualMSD either via a call to
the function USB_VirtualMSD_AssignMemory() or by setting callback functions for memory
allocation. The amount of memory used can be calculated as follows:

For each volume:

Purpose Bytes used Minimum

Global volume information 128 128
Cluster info for predefined files added with
USB_VirtualMSD_AddConstFiles()

2 (for each file) 0

I/O Buffer 512 512
Directory m * 512 512
FAT n * 512 512
Total - 1664

The number of files that can be stored on the volume depends on the size of the directory
which is configured using USB_VirtualMSD_SetNumRootDirSectors():

Number of root directory sectors (m)
Used memory
for directory

(bytes)

max. number of
files with short
(8.3) file name

1 512 15
2 1024 31
3 1536 47
4 2048 63
5 2560 79
6 3072 95

Files with long file names may occupy multiple entries in the directory, depending on the
actual length.

The number of FAT sectors (n) depends on the virtual size of the volume (configured using
USB_VirtualMSD_SetNumSectors()) and the number of sectors per cluster:

Number of sectors Sectors per cluster
Used memory
for FAT (bytes)

approx. virtual
volume size (MB)

10880 32 512 5.4
21792 32 1024 10.8
32704 32 1536 16.3
43616 32 2048 21.7
54528 32 2560 27.2
65440 32 3072 32.7
76352 32 3584 38.1
87264 32 4096 43.6
98176 32 4608 49.0
109088 32 5120 54.5
120000 32 5632 59.9
130720 32 6144 65.3
43520 128 512 21.3
87168 128 1024 43.5

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

285 CHAPTER 8 Configuration

Number of sectors Sectors per cluster
Used memory
for FAT (bytes)

approx. virtual
volume size (MB)

130816 128 1536 65.3
174464 128 2048 87.1
218112 128 2560 108.9
261760 128 3072 130.8
305408 128 3584 152.6
349056 128 4096 174.4
392704 128 4608 196.2
436352 128 5120 218.1
480000 128 5632 239.9
522800 128 6144 261.3

There is no disadvantage of using the maximum possible number of sectors per cluster
(128).

In most cases the minimal configuration (FAT = 512 and directory = 512) should be suffi-
cient. It supports a small number of files with a total size of all files up to 21 MB. If more files
or bigger files are needed, the required parameters can be looked up in the tables above.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

286 CHAPTER 8 Target API

8.3 Target API
Function Description

API functions

USBD_VMSD_Add()
Create VirtualMSD volumes and add MSD
interface to the device.

User supplied functions

USB_VMSD_X_Config()
User supplied function that configures all
storages of the VMSD component.

Configuration functions

USBD_VMSD_AssignMemory()
Assigns memory to the VirtualMSD mod-
ule.

USBD_VMSD_SetUserAPI()
Sets the default user callbacks for the Vir-
tualMSD component.

USBD_VMSD_SetNumRootDirSectors()
Sets the number of sectors which should
be used for root directory entries.

USBD_VMSD_SetVolumeInfo() Sets the volume name for a specified LUN.
USBD_VMSD_AddConstFiles() Adds constant files to VirtualMSD.

USBD_VMSD_SetNumSectors()
Sets the number of sectors available on
the volume.

USBD_VMSD_SetSectorsPerCluster() Set number of sectors per cluster.
Data structures

USB_VMSD_CONST_FILE

This structure contains information about
a constant file which cannot be changed at
run time and should be shown inside the
VirtualMSD volume (e.g.

USB_VMSD_USER_FUNC_API
This structure contains the function point-
ers for user provided functions.

USB_VMSD_FILE_INFO
Structure used in the read and write call-
backs.

USB_VMSD_DIR_ENTRY_SHORT
Structure used to describe an entry with a
short file name.

Function definitions

USB_VMSD_ON_READ_FUNC
Callback function prototype that is used
when calling the USBD_VMSD_SetUserAPI()
function.

USB_VMSD_ON_WRITE_FUNC
Callback function prototype that is used
when calling the USBD_VMSD_SetUserAPI()
function.

USB_VMSD_MEM_ALLOC
Function prototype that is used when
memory is being allocated by the Vir-
tualMSD module.

USB_VMSD_MEM_FREE
Function prototype that is used when
memory is being freed by the VirtualMSD
module.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

287 CHAPTER 8 Target API

8.3.1 API functions

8.3.1.1 USBD_VMSD_Add()

Description

Create VirtualMSD volumes and add MSD interface to the device.

Prototype

void USBD_VMSD_Add(void);

Additional information

After the initialization of emUSB-Device, this is the first function that needs to be called
when the VirtualMSD component is used with emUSB-Device. During the call of the said
function the user function USB_VMSD_X_Config() is called in order to configure the storage
itself.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

288 CHAPTER 8 Target API

8.3.1.2 USB_VMSD_X_Config()

Description

User supplied function that configures all storages of the VMSD component.

Prototype

void USB_VMSD_X_Config(void);

Additional information

This function is called automatically by USBD_VMSD_Add() in order to allow to configure the
storage volumes that VirtualMSD should show after configuration.

Only the following functions must be called in this context:

Allowed functions with USB_X_VMSD_Config:

USBD_VMSD_AssignMemory()

USBD_VMSD_SetUserAPI()

USBD_VMSD_SetNumRootDirSectors()

USBD_VMSD_SetVolumeInfo()

USBD_VMSD_AddConstFiles()

USBD_VMSD_SetNumSectors()

USBD_VMSD_SetSectorsPerCluster()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

289 CHAPTER 8 Target API

8.3.1.3 USBD_VMSD_AssignMemory()

Description

Assigns memory to the VirtualMSD module.

Prototype

void USBD_VMSD_AssignMemory(U32 * p,
 U32 NumBytes);

Parameters

Parameter Description

p
Pointer to the memory which should be dedicated to Vir-
tualMSD.

NumBytes Size of the memory block in bytes.

Additional information

See Calculation of RAM memory usage for VirtualMSD on page 284.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

290 CHAPTER 8 Target API

8.3.1.4 USBD_VMSD_SetUserAPI()

Description

Sets the default user callbacks for the VirtualMSD component.

Prototype

void USBD_VMSD_SetUserAPI(const USB_VMSD_USER_FUNC_API * pUserFunc);

Parameters

Parameter Description

pUserFunc
Pointer to a USB_VMSD_USER_FUNC_API structure which holds
the default function pointers for multiple functions.

Notes

(1) Must only be called from USB_VMSD_X_Config() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

291 CHAPTER 8 Target API

8.3.1.5 USBD_VMSD_SetNumRootDirSectors()

Description

Sets the number of sectors which should be used for root directory entries.

Prototype

void USBD_VMSD_SetNumRootDirSectors(unsigned Lun,
 unsigned NumRootDirSectors);

Parameters

Parameter Description

Lun Specifies the logical unit number.

NumRootDirSectors
Number of sectors to be reserved for the root directory en-
tries.

Additional information

The number of sectors reserved through this function is subtracted from the number of
sectors configured by USBD_VMSD_SetNumSectors(). These sectors hold the root directory
entries for the specified LUN. A single sector contains 512 bytes, a short file name entry
(also called 8.3 filenames) needs 32 bytes, therefore a single sector has enough space for
16 root directory entries. Please note that when using LFN (long file names) the number of
entries required for a single file is dynamic (depending on the length of the file name).

Notes

(1) Must only be called from USB_VMSD_X_Config() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

292 CHAPTER 8 Target API

8.3.1.6 USBD_VMSD_SetVolumeInfo()

Description

Sets the volume name for a specified LUN.

Prototype

int USBD_VMSD_SetVolumeInfo(unsigned Lun,
 const char * sVolumeName,
 const USB_MSD_LUN_INFO * pLunInfo);

Parameters

Parameter Description

Lun Specifies the logical unit number.
sVolumeName Pointer to a string containing the name of the LUN.

pLunInfo
Pointer to USB_MSD_LUN_INFO structure contain all relevant
MSD strings.

Return value

≥ 0 O.K.
< 0 Error

Notes

(1) Must only be called from USB_VMSD_X_Config() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

293 CHAPTER 8 Target API

8.3.1.7 USBD_VMSD_AddConstFiles()

Description

Adds constant files to VirtualMSD. Allows to add multiple files which should be shown on a
VirtualMSD volume as soon as it is connected. A common example would be a “Readme.txt”
or a link to the company website.

Prototype

int USBD_VMSD_AddConstFiles(unsigned Lun,
 const USB_VMSD_CONST_FILE * paConstFile,
 unsigned NumFiles);

Parameters

Parameter Description

Lun Specifies the logical unit number.
paConstFile Pointer to an array of USB_VMSD_CONST_FILE structures.
NumFiles The number of items in the paConstFile array.

Return value

≥ 0 O.K.
< 0 Error

Additional information

For additional information please see USB_VMSD_CONST_FILE.

Notes

(1) Must only be called from USB_VMSD_X_Config() during initialization phase

Example

#define COUNTOF(a) (sizeof((a))/sizeof((a)[0]))
static const U8 _abFile_SeggerHTML[] = {0x3C, 0x68, 0x74, 0x6D, 0x6C, 0x3E, 0x3C,
0x68, 0x65, 0x61, 0x64, 0x3E, 0x3C, 0x6D, 0x65, 0x74, 0x61, 0x20, 0x68, 0x74, 0x74,
0x70, 0x2D, 0x65, 0x71, 0x75, 0x69, 0x76, 0x3D, 0x22, 0x72, 0x65, 0x66, 0x72, 0x65,
0x73, 0x68, 0x22, 0x20, 0x63, 0x6F, 0x6E, 0x74, 0x65, 0x6E, 0x74, 0x3D, 0x22, 0x30,
0x3B, 0x20, 0x75, 0x72, 0x6C, 0x3D, 0x68, 0x74, 0x74, 0x70, 0x3A, 0x2F, 0x2F, 0x77,
0x77, 0x77, 0x2E, 0x73, 0x65, 0x67, 0x67, 0x65, 0x72, 0x2E, 0x63, 0x6F, 0x6D, 0x2F,
0x69, 0x6E, 0x64, 0x65, 0x78, 0x2E, 0x68, 0x74, 0x6D, 0x6C, 0x22, 0x2F, 0x3E, 0x3C,
0x74, 0x69, 0x74, 0x6C, 0x65, 0x3E, 0x53, 0x45, 0x47, 0x47, 0x45, 0x52, 0x20, 0x53,
0x68, 0x6F, 0x72, 0x74, 0x63, 0x75, 0x74, 0x3C, 0x2F, 0x74, 0x69, 0x74, 0x6C, 0x65,
0x3E, 0x3C, 0x2F, 0x68, 0x65, 0x61, 0x64, 0x3E, 0x3C, 0x62, 0x6F, 0x64, 0x79, 0x3E,
0x3C, 0x2F, 0x62, 0x6F, 0x64, 0x79, 0x3E, 0x3C, 0x2F, 0x68, 0x74, 0x6D, 0x6C, 0x3E};
static USB_VMSD_CONST_FILE _aConstFiles[] = {
// sName pData FileSize Flags
 { "Segger.html", _abFile_SeggerHTML, sizeof(_abFile_SeggerHTML), 0, }
};
/***
*
* USB_VMSD_X_Config
*
* Function description
* This function is called by the USB MSD Module during USB_VMSD_Init() and
initializes the VirtualMSD volume.
*/
void USB_VMSD_X_Config(void) {
 <...>
 USBD_VMSD_AddConstFiles(1, &_aConstFiles[0], COUNTOF(_aConstFiles));
 <...>
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

294 CHAPTER 8 Target API

8.3.1.8 USBD_VMSD_SetNumSectors()

Description

Sets the number of sectors available on the volume.

Prototype

void USBD_VMSD_SetNumSectors(unsigned Lun,
 unsigned NumSectors);

Parameters

Parameter Description

Lun Specifies the logical unit number.
NumSectors Specifies the number of sectors for a LUN.

Notes

(1) Must only be called from USB_VMSD_X_Config() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

295 CHAPTER 8 Target API

8.3.1.9 USBD_VMSD_SetSectorsPerCluster()

Description

Set number of sectors per cluster.

Prototype

void USBD_VMSD_SetSectorsPerCluster(unsigned Lun,
 unsigned SectorsPerCluster);

Parameters

Parameter Description

Lun Specifies the logical unit number.
SectorsPerCluster Number of sectors per cluster for the LUN.

Additional information

SectorsPerCluster can be anywhere between 1 and 128, but needs to be a power of 2.
Larger clusters save memory because the management overhead is lower, but the maxi-
mum number of files is limited by the number of available clusters.

Notes

(1) Must only be called from USB_VMSD_X_Config() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

296 CHAPTER 8 Target API

8.3.2 Data structures

8.3.2.1 USB_VMSD_CONST_FILE

Description

This structure contains information about a constant file which cannot be changed at run
time and should be shown inside the VirtualMSD volume (e.g. Readme.txt). This structure
is a parameter for the USBD_VMSD_AddConstFiles() function.

Type definition

typedef struct {
 const char * sName;
 const U8 * pData;
 unsigned FileSize;
 U32 Flags;
} USB_VMSD_CONST_FILE;

Structure members

Member Description

sName Pointer to a zero-terminated string containing the filename.
pData Pointer to the file data. Can be NULL.

FileSize
Size of the file. Normally the size of the data pointed to by
pData.

Flags

Can be one of the following items:
• USB_VMSD_FILE_WRITABLE: The file is writable
• USB_VMSD_FILE_AHEAD: File is located at the start of the

volume. Normally constant files are allocated at the end
of the volume.

Additional information

If a file does not occupy complete sectors the remaining bytes of the last sector are auto-
matically filled with 0s on read. If pData is NULL the file is not displayed in the volume.
This is useful when the application has certain files which should only be displayed after
certain events (e.g. the application displays a Fail.txt when the device is reconnected after
an unsuccessful firmware update).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

297 CHAPTER 8 Target API

8.3.2.2 USB_VMSD_USER_FUNC_API

Description

This structure contains the function pointers for user provided functions. This structure is
a parameter for the USBD_VMSD_SetUserAPI() function.

Type definition

typedef struct {
 USB_VMSD_ON_READ_FUNC * pfOnReadSector;
 USB_VMSD_ON_WRITE_FUNC * pfOnWriteSector;
 USB_VMSD_MEM_ALLOC * pfMemAlloc;
 USB_VMSD_MEM_FREE * pfMemFree;
} USB_VMSD_USER_FUNC_API;

Structure members

Member Description

pfOnReadSector

Pointer to a callback function of type
USB_VMSD_ON_READ_FUNC which is called when a sector is
read from the host. This function is mandatory and can not
be NULL.

pfOnWriteSector

Pointer to a callback function of type
USB_VMSD_ON_WRITE_FUNC which is called when a sector is
written from the host. This function is mandatory and can
not be NULL.

pfMemAlloc

Pointer to a user provided alloc function of type
USB_VMSD_MEM_ALLOC. If this pointer is NULL the internal
alloc function is called. If no memory block is assigned
USB_PANIC() is called.

pfMemFree
Pointer to a user provided free function of type
USB_VMSD_MEM_FREE. If this pointer is NULL the internal free
function is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

298 CHAPTER 8 Target API

8.3.2.3 USB_VMSD_FILE_INFO

Description

Structure used in the read and write callbacks.

Type definition

typedef struct {
 const USB_VMSD_DIR_ENTRY_SHORT * pDirEntry;
} USB_VMSD_FILE_INFO;

Structure members

Member Description

pDirEntry Pointer to a USB_VMSD_DIR_ENTRY_SHORT structure.

Additional information

Check USB_VMSD_ON_READ_FUNC, USB_VMSD_ON_WRITE_FUNC and USB_VMSD_DIR_EN-
TRY_SHORT for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

299 CHAPTER 8 Target API

8.3.2.4 USB_VMSD_DIR_ENTRY_SHORT

Description

Structure used to describe an entry with a short file name. This structure is a member of
USB_VMSD_DIR_ENTRY.

Type definition

typedef struct {
 U8 acFilename[];
 U8 acExt[];
 U8 DirAttr;
 U8 NTRes;
 U8 CrtTimeTenth;
 U16 CrtTime;
 U16 CrtDate;
 U16 LstAccDate;
 U16 FstClusHI;
 U16 WrtTime;
 U16 WrtDate;
 U16 FstClusLO;
 U32 FileSize;
} USB_VMSD_DIR_ENTRY_SHORT;

Structure members

Member Description

acFilename
File name, limited to 8 characters (short file name), padded
with spaces (0x20).

acExt
File extension, limited to 3 characters (short file name),
padded with spaces (0x20).

DirAttr File attributes. Available attributes are listed below.
NTRes Reserved for use by Windows NT.

CrtTimeTenth
Millisecond stamp at file creation time. This field actually
contains a count of tenths of a second.

CrtTime Creation time.
CrtDate Date file was created.

LstAccDate
Last access date. Note that there is no last access time, only
a date. This is the date of last read or write.

FstClusHI High word of this entry’s first cluster number.
WrtTime Time of last write.
WrtDate Date of last write.
FstClusLO Low word of this entry’s first cluster number.
FileSize File size in bytes.

Additional information

The following file attributes are available for short dir entries:

Attribute Explanation

USB_VMSD_ATTR_READ_ONLY The file is read-only.
USB_VMSD_ATTR_HIDDEN The file is hidden.
USB_VMSD_ATTR_SYSTEM The file is designated as a system file.
USB_VMSD_ATTR_VOLUME_ID This entry is the volume ID (volume name).
USB_VMSD_ATTR_DIRECTORY The file is a directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

300 CHAPTER 8 Target API

Attribute Explanation

USB_VMSD_ATTR_ARCHIVE The file has the archive attribute.
USB_VMSD_ATTR_LONG_NAME The file has a long file name.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

301 CHAPTER 8 Target API

8.3.3 Function definitions

8.3.3.1 USB_VMSD_ON_READ_FUNC

Description

Callback function prototype that is used when calling the USBD_VMSD_SetUserAPI() func-
tion.

Type definition

typedef int (USB_VMSD_ON_READ_FUNC)(unsigned Lun,
 U8 * pData,
 U32 Off,
 U32 NumBytes,
 const USB_VMSD_FILE_INFO * pFile);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one virtual
volume, this parameter is 0.

pData Pointer to a buffer in which the data is stored.
Off Offset in the file which is read by the host.
NumBytes Amount of bytes requested by the host.

pFile
Pointer to a USB_VMSD_FILE_INFO structure describing the
file.

Return value

= 0 Success.
≠ 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

302 CHAPTER 8 Target API

8.3.3.2 USB_VMSD_ON_WRITE_FUNC

Description

Callback function prototype that is used when calling the USBD_VMSD_SetUserAPI() func-
tion.

Type definition

typedef int (USB_VMSD_ON_WRITE_FUNC)(unsigned Lun,
 const U8 * pData,
 U32 Off,
 U32 NumBytes,
 const USB_VMSD_FILE_INFO * pFile);

Parameters

Parameter Description

Lun
Zero-based index for the unit number. Using only one virtual
volume, this parameter is 0.

pData

Pointer to the data to be written (received from the host). If
pData = NULL, then there are no data written by the host,
but instead a new or changed directory entry was written,
which is provided via pFile.

Off Offset in the file which the host writes.
NumBytes Amount of bytes to write.

pFile
Pointer to a USB_VMSD_FILE_INFO structure describing the
file or NULL.

Return value

0 Success.
1 Enable continuous sector mode: From now on, only forward writes to continuous

sectors to the user callback. Ignore writes to all other sectors.
-1 Disable continuous sector mode.
-2 Report write error to USB host.

Additional information

Depending on the behavior of the host operating system it is possible that pFile is NULL.
In this case we recommend to perform data analysis to recognize the file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

303 CHAPTER 8 Target API

8.3.3.3 USB_VMSD_MEM_ALLOC

Description

Function prototype that is used when memory is being allocated by the VirtualMSD module.

Type definition

typedef void * (USB_VMSD_MEM_ALLOC)(U32 Size);

Parameters

Parameter Description

Size Size of the required memory in bytes.

Return value

Pointer to the allocated memory or NULL.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

304 CHAPTER 8 Target API

8.3.3.4 USB_VMSD_MEM_FREE

Description

Function prototype that is used when memory is being freed by the VirtualMSD module.

Type definition

typedef void (USB_VMSD_MEM_FREE)(void * p);

Parameters

Parameter Description

p
Pointer to a memory block which was previously allocated by
USB_VMSD_MEM_ALLOC.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 9

Media Transfer Protocol Class
(MTP)

This chapter gives a general overview of the MTP class and describes how to get the MTP
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

306 CHAPTER 9 Overview

9.1 Overview
The Media Transfer Protocol (MTP) is a USB class protocol which can be used to transfer files
to and from storage devices. MTP is an official extension of the Picture Transfer Protocol
(PTP) designed to allow digital cameras to exchange image files with a computer. MTP
extends this by adding support for arbitrary data types.

MTP is an alternative to Mass Storage Device (MSD) and in contrast to MSD which reads
and writes sector data, it operates at the file level. This type of operation gives MTP some
advantages over MSD:
• The cable can be safely removed during a data transfer without damaging the file

system.
• The file system does not need to be FAT (can be the SEGGER emFile File System (EFS)

or any other proprietary file system)
• The application has full control over which files are visible to the user. Selected files or

directories can be hidden.
• Virtual files can be presented.
• Host and target can access storage simultaneously without conflicts.

MTP is supported by most operating systems out of the box and the installation of additional
drivers is not required.

emUSB-Device-MTP supports the following capabilities:
• File read
• File write
• Format
• File delete
• Directory create
• Directory delete

emUSB-Device-MTP comes as a complete package and contains the following:
• Generic USB handling
• MTP device class implementation
• Storage driver which uses emFile
• Sample application showing how to work with MTP

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

307 CHAPTER 9 Overview

9.1.1 Getting access to files
An MTP device will be displayed under the “Portable Devices” section in the “Computer”
window when connected to a PC running the Microsoft Windows 7 operating system:

The file and directories stored on the device are accessed in the usual way using the Win-
dows Explorer:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

308 CHAPTER 9 Overview

On the Ubuntu Linux operating system a connected MTP device is shown in the “Computer”
window:

The files and directories present on the MTP device can be easily accessed via GUI:

On other operating systems the data stored on MTP devices can be accessed similarly.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

309 CHAPTER 9 Overview

macOS does not support MTP natively, therefore a third party tool is necessary. Please have
a closer look on our wiki pages to this topic.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://wiki.segger.com/MTP#Accessing_MTP_devices_under_macOS

310 CHAPTER 9 Overview

9.1.2 Additional information
For more technical details about MTP and PTP follow these links:

MTP specification

PTP specification

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org/sites/default/files/MTPv1_1.zip
https://www.usb.org/sites/default/files/usb_still_img10.zip

311 CHAPTER 9 Configuration

9.2 Configuration

9.2.1 Initial configuration
To get emUSB-Device-MTP up and running as well as doing an initial test, the configuration
as delivered with the sample application should not be modified.

9.2.2 Final configuration
The configuration must only be modified when emUSB-Device is integrated in your final
product. Refer to section emUSB-Device Configuration on page 50 for detailed information
about the generic information functions which have to be adapted.

9.2.3 emFile and MTP configuration for UTF8 characters
If you need to support non-ASCII characters you need to set the define MT-
P_SUPPORT_UTF8 to 1 in your USB_Conf.h file. Furthermore you need to set
the defines FS_SUPPORT_FILE_NAME_ENCODING, FS_SUPPORT_EXT_ASCII and FS_SUP-
PORT_MBCS to 1 in your FS_Conf.h file. Additionally you must make sure that
LFN is active (FS_FAT_SupportLFN()) and that the following functions have been
called: FS_SetCharSetType(&FS_CHARSET_CP932), FS_FAT_SetLFNConverter(&FS_UNI-
CODE_CONV_UTF8). See the emFile documentation for details.

If you are not using emFile you must make sure that your filesystem is using UTF8.

9.2.4 Class specific configuration
Beside the generic emUSB-Device configuration functions (emUSB-Device Configuration on
page 50), the following should be adapted before the emUSB-Device MTP component is used
in a final product. Example implementations are supplied in the MSD example application
USB_MTP_Start.c, located in the Application directory of emUSB-Device.

An MTP device is required to present an additional information set to the host. These values
are added during the initial call to USBD_MTP_Add().

Example

static const USB_MTP_INFO _MTPInfo = {
 "Vendor", // MTP Manufacturer
 "Storage device", // MTP Model
 "1.0", // MTP DeviceVersion
 "0123456789ABCDEF0123456789ABCDEF" // MTP SerialNumber.
 // It must be exactly 32 characters long.
};
...
InitData.pMTPInfo = &_MTPInfo;
...
USB_MTP_Add(&InitData);

9.2.5 Compile time configuration
The following macros can be added to USB_Conf.h file in order to configure the behavior
of the MTP component.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

312 CHAPTER 9 Configuration

Numerical values "N"

Numerical values are used somewhere in the code in place of a numerical constant.

Type Macro Default Description

N MTP_MAX_NUM_STORAGES 4

Maximum number of storage units the
storage layer can handle. 4 addition-
al bytes are allocated for each storage
unit.

B MTP_SAVE_FILE_INFO 0

Specifies if the object properties (file
size, write protection, creation date,
modification date and file id) should
be stored in RAM for quick access to
them. This can have noticeable im-
pact on displaying folders with large
amount of objects in them. With this
switch set to 0 objects require 12
bytes + the size of the file name in-
side the object list memory area. 33
additional bytes of RAM are required
for each object when the switch is set
to 1.

N MTP_MAX_FILE_PATH 256 Maximum number of characters in the
path to a file or directory.

B MTP_SUPPORT_UTF8 1

Names of the files and directories
which are exchanged between the
MTP component and the file system
are encoded in UTF-8 format.

B MTP_SUPPORT_EVENTS 1
Support Events such as object re-
moved/added, new storage added/re-
moved.

B USB_MT-
P_NAME_CASE_SENSITIVE

0
When checking file names and direc-
tory names the string compare will be
case sensitive.

B USB_MTP_OLD_MOUNTING_BE-
HAVIOR

0

With version V3.54.0 and older the
MTP Storage layer for emFile would
automatically call FS_Mount. This is no
longer the case. This define allows to
restore this old behavior, when set to
1 the storage layer will call FS_Mount
automatically.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

313 CHAPTER 9 Running the sample application

9.3 Running the sample application
The directory Application contains a sample application USB_MTP_Start.c which can be
used with emUSB-Device and the MTP component. To test the emUSB-Device-MTP com-
ponent, the application should be built and then downloaded to target. Remove the USB
connection and reconnect the target to the host. The target will enumerate and will be
accessible via a file browser.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

314 CHAPTER 9 Target API

9.4 Target API
Function Description

API functions

USBD_MTP_Add() Adds an MTP interface to the USB stack.

USBD_MTP_AddStorage()
Adds a storage device to emUSB-De-
vice-MTP.

USBD_MTP_RemoveStorage()
Removed a storage previously added via
USBD_MTP_AddStorage().

USBD_MTP_Task()
Main task function of MTP component
which processes the commands from host.

USBD_MTP_Poll() Function which handles MTP commands.
USBD_MTP_SendEvent() Sends an event notification to the host.

USBD_MTP_SetObjectAllocFailCb()
Allows to set a callback which is called
when the object list is full and new objects
can no longer be allocated.

USBD_MTP_SetOperationCb()
Allows to set a callback which is called
when operations are executed by the host
operating system via MTP.

Data structures

USB_MTP_FILE_INFO
Structure which stores information about a
file or directory.

USB_MTP_INIT_DATA
Structure which stores the parameters of
the MTP interface.

USB_MTP_INFO
Structure that is used when initialising the
MTP module.

USB_MTP_INST_DATA
Structure which stores the parameters of
storage driver.

USB_MTP_INST_DATA_DRIVER
Structure which stores the parameters
passed to the storage driver.

USB_MTP_STORAGE_API
Structure that contains callbacks to the
storage driver.

USB_MTP_STORAGE_INFO
Structure which stores information about a
storage.

USB_MTP_OPERATION_INFO
Structure which provides information
about a new MTP operation.

Enums

USB_MTP_EVENT Enum containing the MTP event codes.

USB_MTP_OPERATION_CB_TYPE
Enum containing the callback operation
types.

Prototypes

USB_MTP_OBJECT_ALLOC_FAIL
Callback which can be set via USBD_MT-
P_SetObjectAllocFailCb().

USB_MTP_OPERATION_CB
Callback which can be set via USBD_MT-
P_SetOperationCb().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

315 CHAPTER 9 Target API

9.4.1 API functions

9.4.1.1 USBD_MTP_Add()

Description

Adds an MTP interface to the USB stack.

Prototype

int USBD_MTP_Add(const USB_MTP_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to a USB_MTP_INIT_DATA structure.

Return value

0 - Successfully added.

Additional information

After the initialization of USB core, this is the first function that needs to be called when an
MTP interface is used with emUSB-Device. The structure USB_MTP_INIT_DATA has to be ini-
tialized before USB_MTP_Add() is called. Refer to USB_MTP_INIT_DATA for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

316 CHAPTER 9 Target API

9.4.1.2 USBD_MTP_AddStorage()

Description

Adds a storage device to emUSB-Device-MTP.

Prototype

USB_MTP_STORAGE_HANDLE USBD_MTP_AddStorage(const USB_MTP_INST_DATA * pInstData);

Parameters

Parameter Description

pInstData
Pointer to a USB_MTP_INST_DATA structure which contains
the parameters of the added storage.

Return value

= 0 Invalid handle, storage could not be added
≠ 0 A valid storage handle, this handle can be used with the USBD_MTP_SendEvent to

indicate an event to the host.

Additional information

It is necessary to call this function immediately after USBD_MTP_Add() and before USB-
D_MTP_Task()/USBD_MTP_Poll() is called. This function adds a storage device such as a
hard drive, MMC/SD card or NAND flash etc., to emUSB-Device-MTP, which will be used
as source/destination of data exchange with the host. The structure USB_MTP_INST_DATA
must be initialized before USB_MTP_AddStorage() is called. Refer to USB_MTP_INST_DATA
for more information.

If a storage was removed in the middle of operation via USBD_MTP_RemoveStorage() it can
be added again by calling this function with the same parameters. Additionally the host
must be informed of the change by calling USBD_MTP_SendEvent(Handle, USB_MTP_EVEN-
T_STOREADDED, NULL)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

317 CHAPTER 9 Target API

9.4.1.3 USBD_MTP_RemoveStorage()

Description

Removed a storage previously added via USBD_MTP_AddStorage().

Prototype

int USBD_MTP_RemoveStorage(USB_MTP_STORAGE_HANDLE hStorage);

Parameters

Parameter Description

hStorage Valid storage handle.

Return value

= 0 Storage removed
≠ 0 An error occurred.

Additional information

It is necessary to notify the host about the storage removal through an MTP event pri-
or to calling this function. The following call can be used: USBD_MTP_SendEvent(Handle,
USB_MTP_EVENT_STOREREMOVED, NULL)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

318 CHAPTER 9 Target API

9.4.1.4 USBD_MTP_Task()

Description

Main task function of MTP component which processes the commands from host.

Prototype

void USBD_MTP_Task(void);

Additional information

The USBD_MTP_Task() should be called after the USB device has been successfully enumer-
ated and configured. The function returns when the USB device is detached or suspended.

Check USBD_MTP_Poll() if you need a non-blocking version.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

319 CHAPTER 9 Target API

9.4.1.5 USBD_MTP_Poll()

Description

Function which handles MTP commands. Using this function is only necessary if you want
to avoid using the blocking USB_MTP_Task function. This can be necessary if you are not
using an RTOS.

Prototype

int USBD_MTP_Poll(void);

Return value

2 O.K. Command was processed, but a protocol error occurred.
1 O.K. Command was processed successfully.
0 O.K. Timeout occurred.

1 An error occurred. (e.g. no cable connected).

Additional information

This function must be called periodically, otherwise the host can time out the device since
it does not process commands. It normally blocks for USB_MTP_POLL_TIMEOUT milliseconds
while waiting for a command from the host. Should a command arrive during the timeout it
will be processed (and the function will block for the complete duration of the command),
which could potentially increase the block duration. The duration could also decrease be-
cause the function returns as soon as a command is finished.

In case of return value 2 the calling task should still call this function again, if possible
recovery will be initiated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

320 CHAPTER 9 Target API

9.4.1.6 USBD_MTP_SendEvent()

Description

Sends an event notification to the host.

Prototype

int USBD_MTP_SendEvent(USB_MTP_STORAGE_HANDLE hStorage,
 USB_MTP_EVENT Event,
 void * pPara);

Parameters

Parameter Description

hStorage
Handle to a storage that was returned by USBD_MTP_AddS-
torage().

Event

Event that occurred. The following events are currently sup-
ported:
• USB_MTP_EVENT_OBJECTADDED
• USB_MTP_EVENT_OBJECTREMOVED
• USB_MTP_EVENT_STOREADDED
• USB_MTP_EVENT_STOREREMOVED
• USB_MTP_EVENT_OBJECTINFOCHANGED
• USB_MTP_EVENT_STOREFULL
• USB_MTP_EVENT_STORAGEINFOCHANGED

pPara

Pointer to additional information. This parameter depends on
the event. In case of Event =
• USB_MTP_EVENT_OBJECTADDED
• USB_MTP_EVENT_OBJECTREMOVED
• USB_MTP_EVENT_OBJECTINFOCHANGED
pPara is a pointer to a filled USB_MTP_FILE_INFO structure.
• USB_MTP_EVENT_STOREADDED
• USB_MTP_EVENT_STOREREMOVED
• USB_MTP_EVENT_STORAGEINFOCHANGED
pPara is not used and can be NULL.

Return value

= 0 Event sent out successfully.
≠ 0 Event could not be sent.

Additional information

Sending an event notification to the MTP host makes sure that the MTP host is aware of
changes in the file system of the storage. This function can also be used to notify that a stor-
age has been added or removed. The events USB_MTP_EVENT_STOREREMOVED and USB_MT-
P_EVENT_STOREADDED do not affect the internal object list.

Example

static void _GetFileInfo(const char * sPath, USB_MTP_FILE_INFO * pFileInfo) {
 const char * s;
 U8 AttrFS;
 U8 AttrMTP;

 memset(pFileInfo, 0, sizeof(USB_MTP_FILE_INFO));
 s = strrchr(sPath, '\\');
 if (s) {
 s++; // Go to the next character after '\'.
 } else {
 s = sPath;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

321 CHAPTER 9 Target API

 }
 //
 // In case the file path starts with \ skip this.
 //
 if (*sPath == '\\') {
 sPath++;
 }
 pFileInfo->pFileName = (char *)s;
 pFileInfo->pFilePath = (char *)sPath;
 FS_GetFileTimeEx(pFileInfo->pFilePath, &pFileInfo->CreationTime,
 FS_FILETIME_CREATE);
 FS_GetFileTimeEx(pFileInfo->pFilePath, &pFileInfo->LastWriteTime,
 FS_FILETIME_MODIFY);
 pFileInfo->IsDirectory = 0;
 AttrFS = FS_GetFileAttributes(pFileInfo ? pFilePath);
 if (AttrFS & FS_ATTR_DIRECTORY) {
 pFileInfo->IsDirectory = 1;
 }
 AttrMTP = 0;
 if (AttrFS & FS_ATTR_READ_ONLY) {
 AttrMTP |= MTP_FILE_ATTR_WP;
 }
 if (AttrFS & FS_ATTR_SYSTEM) {
 AttrMTP |= MTP_FILE_ATTR_SYSTEM;
 }
 if (AttrFS & FS_ATTR_HIDDEN) {
 AttrMTP |= MTP_FILE_ATTR_HIDDEN;
 }
 pFileInfo->Attributes = AttrMTP;
}

static int _WriteLogFile(const char * sLogFilePath) {
 char ac[30];
 FS_FILE * pFile;
 int r = 0;
 USB_MTP_FILE_INFO FileInfo = {0};

 if (FS_IsVolumeMounted("")) {
 //
 // Check whether file already exists
 //
 pFile = FS_FOpen(sLogFilePath, "r");
 if (pFile) {
 r = USB_MTP_EVENT_OBJECTINFOCHANGED;
 FS_Fclose(pFile);
 } else {
 r = USB_MTP_EVENT_OBJECTADDED;
 }
 pFile = FS_FOpen(sLogFilePath, "a+");
 if (pFile) {
 sprintf(ac, "OS_Time = %.8d\r\n", (int)OS_GetTime());
 FS_Write(pFile, ac, 20);
 FS_Fclose(pFile);
 } else {
 r = 0;
 }
 }
 _GetFileInfo(sLogFilePath, &FileInfo);
 //
 // Send events to the host.
 //
 USBD_MTP_SendEvent(_ahStorage[0], (USB_MTP_EVENT)r, &FileInfo);
 USBD_MTP_SendEvent(_ahStorage[0], USB_MTP_EVENT_STORAGEINFOCHANGED, NULL);
 return r;
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

322 CHAPTER 9 Target API

9.4.1.7 USBD_MTP_SetObjectAllocFailCb()

Description

Allows to set a callback which is called when the object list is full and new objects can no
longer be allocated. See USB_MTP_OBJECT_ALLOC_FAIL for details.

Prototype

void USBD_MTP_SetObjectAllocFailCb(USB_MTP_OBJECT_ALLOC_FAIL * pf);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

323 CHAPTER 9 Target API

9.4.1.8 USBD_MTP_SetOperationCb()

Description

Allows to set a callback which is called when operations are executed by the host operating
system via MTP. See USB_MTP_OPERATION_CB for details.

Prototype

void USBD_MTP_SetOperationCb(USB_MTP_OPERATION_CB * pf);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

324 CHAPTER 9 Target API

9.4.2 Data structures

9.4.2.1 USB_MTP_FILE_INFO

Description

Structure which stores information about a file or directory.

Type definition

typedef struct {
 const char * pFilePath;
 const char * pFileName;
 U64 FileSize;
 U32 CreationTime;
 U32 LastWriteTime;
 U8 IsDirectory;
 U8 Attributes;
 U8 acId[];
} USB_MTP_FILE_INFO;

Structure members

Member Description

pFilePath Full path to file.
pFileName Pointer to beginning of file/directory name in pFilePath.
FileSize Size of the file in bytes.
CreationTime The time and date when the file was created.
LastWriteTime The time and date when the file was last modified.
IsDirectory Set to 1 if the path points to a directory.
Attributes Bitmask of file attributes (MTP_FILE_ATTR_…).
acId Unique identifier which persists between MTP sessions.

Additional information

The date and time is formatted as follows:

Bit
range

Value
range

Description

0-4 0-29 2-second count
5-10 0-59 Minutes
11-15 0-23 Hours
16-20 1-31 Day of month
21-24 1-12 Month of year
25-31 0-127 Number of years since 1980

The following attributes are supported:

Bitmask Description

MTP_FILE_ATTR_WP File/directory can not be modified.

MTP_FILE_ATTR_SYSTEM
File/directory is required for the correct functioning
of the system.

MTP_FILE_ATTR_HIDDEN File/directory should not be shown to the user.

acId should be unique for each file and directory on the file system and it should be per-
sistent between MTP sessions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

325 CHAPTER 9 Target API

9.4.2.2 USB_MTP_INIT_DATA

Description

Structure which stores the parameters of the MTP interface.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
 void * pObjectList;
 U32 NumBytesObjectList;
 void * pDataBuffer;
 U32 NumBytesDataBuffer;
 const USB_MTP_INFO * pMTPInfo;
 U8 InterfaceNum;
 U32 NumBytesAllocated;
 U32 NumObjects;
} USB_MTP_INIT_DATA;

Structure members

Member Description

EPIn Endpoint for receiving data from host.
EPOut Endpoint for sending data to host.
EPInt Endpoint for sending events to host.

pObjectList

Pointer to a memory region where the list of MTP objects
is stored. Should be 4 byte aligned. Each object requires
a minimum of 12 bytes + the size of the file name inside
the this list. 33 more bytes are needed per object if MT-
P_SAVE_FILE_INFO is set to 1.

NumBytesObjectList Number of bytes allocated for the object list.

pDataBuffer
Pointer to a memory region to be used as communication
buffer.

NumBytesDataBuffer Number of bytes allocated for the data buffer.

pMTPInfo
Pointer to a USB_MTP_INFO structure. Filling this structure is
mandatory.

InterfaceNum Internal use.
NumBytesAllocated Internal use.
NumObjects Internal use.

Additional information

This structure holds the endpoints that should be used with the MTP interface. Refer to
USBD_AddEP() for more information about how to add an endpoint.

The number of bytes in the pDataBuffer should be a multiple of USB maximum packet size.
The number of bytes in the object list depends on the number of files/directories on the
storage medium. An object is assigned to each file/directory when the USB host requests
the object information for the first time.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

326 CHAPTER 9 Target API

9.4.2.3 USB_MTP_INFO

Description

Structure that is used when initialising the MTP module.

Type definition

typedef struct {
 const char * pManufacturer;
 const char * pModel;
 const char * pDeviceVersion;
 const char * pSerialNumber;
} USB_MTP_INFO;

Structure members

Member Description

pManufacturer Name of the device manufacturer.
pModel Model name of the MTP device.
pDeviceVersion Version of the MTP device.

pSerialNumber

Serial number of the MTP device. The serial number should
contain exactly 32 hexadecimal characters. It must be
unique among devices sharing the same model name and
device version strings. The MTP device returns this string in
the Serial Number field of the DeviceInfo dataset. For more
information, refer to MTP specification.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

327 CHAPTER 9 Target API

9.4.2.4 USB_MTP_INST_DATA

Description

Structure which stores the parameters of storage driver.

Type definition

typedef struct {
 const USB_MTP_STORAGE_API * pAPI;
 const char * sDescription;
 const char * sVolumeId;
 USB_MTP_INST_DATA_DRIVER DriverData;
} USB_MTP_INST_DATA;

Structure members

Member Description

pAPI
Pointer to a structure that holds the storage device driver
API.

sDescription
Human-readable string which identifies the storage. This
string is displayed in Nautilus/Windows Explorer/etc.

sVolumeId
Unique volume identifier This field must be up to 256 char-
acters long but only the first 128 are significant and these
must be unique for all storages of an MTP device.

DriverData
Driver data that are passed to the storage driver. Refer to
USB_MTP_INST_DATA_DRIVER for detailed information about
how to initialize this structure.

Additional information

The MTP device returns the sDescription string in the Storage Description parameter and
the sVolumeId in the Volume Identifier of the StorageInfo dataset. For more information,
refer to MTP specification.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

328 CHAPTER 9 Target API

9.4.2.5 USB_MTP_INST_DATA_DRIVER

Description

Structure which stores the parameters passed to the storage driver.

Type definition

typedef struct {
 const char * pRootDir;
 U8 IsRemovable;
} USB_MTP_INST_DATA_DRIVER;

Structure members

Member Description

pRootDir Path to directory to be used as the root of the storage.
IsRemovable Internal use.

Additional information

pRootDir can specify the root of the file system or any other subdirectory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

329 CHAPTER 9 Target API

9.4.2.6 USB_MTP_STORAGE_API

Description

Structure that contains callbacks to the storage driver.

Type definition

typedef struct {
 USB_MTP_STORAGE_INIT * pfInit;
 USB_MTP_STORAGE_GET_INFO * pfGetInfo;
 USB_MTP_STORAGE_FIND_FIRST_FILE * pfFindFirstFile;
 USB_MTP_STORAGE_FIND_NEXT_FILE * pfFindNextFile;
 USB_MTP_STORAGE_OPEN_FILE * pfOpenFile;
 USB_MTP_STORAGE_CREATE_FILE * pfCreateFile;
 USB_MTP_STORAGE_READ_FROM_FILE * pfReadFromFile;
 USB_MTP_STORAGE_WRITE_TO_FILE * pfWriteToFile;
 USB_MTP_STORAGE_CLOSE_FILE * pfCloseFile;
 USB_MTP_STORAGE_REMOVE_FILE * pfRemoveFile;
 USB_MTP_STORAGE_CREATE_DIR * pfCreateDir;
 USB_MTP_STORAGE_REMOVE_DIR * pfRemoveDir;
 USB_MTP_STORAGE_FORMAT * pfFormat;
 USB_MTP_STORAGE_RENAME_FILE * pfRenameFile;
 USB_MTP_STORAGE_DEINIT * pfDeInit;
 USB_MTP_STORAGE_GET_FILE_ATTRIBUTES * pfGetFileAttributes;
 USB_MTP_STORAGE_MODIFY_FILE_ATTRIBUTES * pfModifyFileAttributes;
 USB_MTP_STORAGE_GET_FILE_CREATION_TIME * pfGetFileCreationTime;
 USB_MTP_STORAGE_GET_FILELAST_WRITE_TIME * pfGetFileLastWriteTime;
 USB_MTP_STORAGE_GET_FILE_ID * pfGetFileId;
 USB_MTP_STORAGE_GET_FILE_SIZE * pfGetFileSize;
 USB_MTP_STORAGE_GET_FILE_INFO * pfGetFileInfo;
} USB_MTP_STORAGE_API;

Structure members

Member Description

pfInit Initializes the storage medium.

pfGetInfo
Returns information about the storage medium such as stor-
age capacity and the available free space.

pfFindFirstFile Returns information about the first file in a given directory.
pfFindNextFile Moves to next file and returns information about it.
pfOpenFile Opens an existing file.
pfCreateFile Creates a new file.
pfReadFromFile Reads data from the current file.
pfWriteToFile Writes data to current file.
pfCloseFile Closes the current file.
pfRemoveFile Removes a file from storage medium.
pfCreateDir Creates a new directory.
pfRemoveDir Removes a directory from storage medium.
pfFormat Formats the storage.
pfRenameFile Changes the name of a file or directory.
pfDeInit De-initializes the storage medium.
pfGetFileAttributes Reads the attributes of a file or directory.
pfModifyFileAttribut-
es

Changes the attributes of a file or directory.

pfGetFileCreationTime Returns the creation time of a file or directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

330 CHAPTER 9 Target API

Member Description

pfGetFileLastWrite-
Time

Returns the time of the last modification made to a file or di-
rectory.

pfGetFileId Returns the unique ID of a file or directory.
pfGetFileSize Returns the size of a file in bytes.
pfGetFileInfo [Optional] Returns information about a file.

Additional information

USB_MTP_STORAGE_API is used to retrieve information from the storage device driver or
access data that needs to be read or written. Detailed information can be found in MTP
Storage Driver on page 338.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

331 CHAPTER 9 Target API

9.4.2.7 USB_MTP_STORAGE_INFO

Description

Structure which stores information about a storage.

Type definition

typedef struct {
 U32 NumKBytesTotal;
 U32 NumKBytesFreeSpace;
 U16 FSType;
 U8 IsWriteProtected;
 U8 IsRemovable;
 char DirDelimiter;
 U8 BigFileSupport;
} USB_MTP_STORAGE_INFO;

Structure members

Member Description

NumKBytesTotal Storage capacity in kBytes
NumKBytesFreeSpace Available free space on storage in kBytes
FSType Type of file system as specified by MTP
IsWriteProtected Set to 1 if the storage medium can not be modified
IsRemovable Set to 1 if the storage medium can be removed from device
DirDelimiter Character which separates the directory/file names in a path
BigFileSupport Store layer should set this to 1 if it supports files > 4GB.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

332 CHAPTER 9 Target API

9.4.2.8 USB_MTP_OPERATION_INFO

Description

Structure which provides information about a new MTP operation.

Type definition

typedef struct {
 const char * pFilePath;
 U8 IsDirectory;
} USB_MTP_OPERATION_INFO;

Structure members

Member Description

pFilePath Full path to file.
IsDirectory Set to 1 if the path points to a directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

333 CHAPTER 9 Target API

9.4.3 Enums

9.4.3.1 USB_MTP_EVENT

Description

Enum containing the MTP event codes.

Type definition

typedef enum {
 USB_MTP_EVENT_UNDEFINED,
 USB_MTP_EVENT_CANCELTRANSACTION,
 USB_MTP_EVENT_OBJECTADDED,
 USB_MTP_EVENT_OBJECTREMOVED,
 USB_MTP_EVENT_STOREADDED,
 USB_MTP_EVENT_STOREREMOVED,
 USB_MTP_EVENT_DEVICEPROPCHANGED,
 USB_MTP_EVENT_OBJECTINFOCHANGED,
 USB_MTP_EVENT_DEVICEINFOCHANGED,
 USB_MTP_EVENT_REQUESTOBJECTTRANSFER,
 USB_MTP_EVENT_STOREFULL,
 USB_MTP_EVENT_DEVICERESET,
 USB_MTP_EVENT_STORAGEINFOCHANGED,
 USB_MTP_EVENT_CAPTURECOMPLETE,
 USB_MTP_EVENT_UNREPORTEDSTATUS,
 USB_MTP_EVENT_OBJECTPROPCHANGED,
 USB_MTP_EVENT_OBJECTPROPDESCCHANGED,
 USB_MTP_EVENT_OBJECTREFERENCESCHANGED
} USB_MTP_EVENT;

Enumeration constants

Constant Description

USB_MTP_EVENT_UNDEFINED
This event code is undefined, and is
not used

USB_MTP_EVENT_CANCELTRANSACTION

This event is used to initiate the can-
cellation of a transaction over trans-
ports which do not have their own
mechanism for canceling transactions.
Currently not used.

USB_MTP_EVENT_OBJECTADDED
This event informs the host about a
new object that has been added to the
storage.

USB_MTP_EVENT_OBJECTREMOVED
Informs the host that an object has
been removed.

USB_MTP_EVENT_STOREADDED

This event indicates that a storage has
been added to the device. It allows to
dynamically show the available stor-
ages.

USB_MTP_EVENT_STOREREMOVED

This event indicates that a storage has
been removed to the device. It allows
to dynamically hide the available stor-
ages.

USB_MTP_EVENT_DEVICEPROPCHANGED
A property changed on the device has
occurred. Currently not used.

USB_MTP_EVENT_OBJECTINFOCHANGED

This event indicates that the infor-
mation for a particular object has
changed and that the host should ac-
quire the information once again.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

334 CHAPTER 9 Target API

Constant Description

USB_MTP_EVENT_DEVICEINFOCHANGED

This event indicates that the capabil-
ities of the device have changed and
that the DeviceInfo should be request-
ed again. Currently not used.

USB_MTP_EVENT_REQUESTOBJECTTRANSFER
This event can be used by the device
to ask the host to initiate an file object
transfer to him. Currently not used.

USB_MTP_EVENT_STOREFULL
This event should be sent when a
storage becomes full.

USB_MTP_EVENT_DEVICERESET
Notifies the host about an internal re-
set. Currently not used

USB_MTP_EVENT_STORAGEINFOCHANGED
This event is used when information of
a storage changes.

USB_MTP_EVENT_CAPTURECOMPLETE
Informs the host that the previously
initiated capture acquire is complete.
Currently not used.

USB_MTP_EVENT_UNREPORTEDSTATUS

This event may be implemented for
certain transports in cases where the
responder unable to report events to
the initiator regarding changes in its
internal status. Currently not used.

USB_MTP_EVENT_OBJECTPROPCHANGED
Informs about a change in the object
property of an specific object. Cur-
rently not used.

USB_MTP_EVENT_OBJECTPROPDESCCHANGED

This event informs that the property
description of an object property has
been changed and needs to be re-ac-
quired. Currently not used.

USB_MTP_EVENT_OBJECTREFERENCESCHANGED
This event is used to indicate that the
references on an object have been up-
dated. Currently not used.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

335 CHAPTER 9 Target API

9.4.3.2 USB_MTP_OPERATION_CB_TYPE

Description

Enum containing the callback operation types.

Type definition

typedef enum {
 USB_MTP_OPERATION_OBJECT_ADDED,
 USB_MTP_OPERATION_OBJECT_REMOVED,
 USB_MTP_OPERATION_OBJECT_RENAMED_OLD_NAME,
 USB_MTP_OPERATION_OBJECT_RENAMED_NEW_NAME
} USB_MTP_OPERATION_CB_TYPE;

Enumeration constants

Constant Description

USB_MTP_OPERATION_OBJECT_ADDED A new object has been added.
USB_MTP_OPERATION_OBJECT_REMOVED An object is about to be removed.
USB_MTP_OPERATION_OBJECT_RE-
NAMED_OLD_NAME

An object is being renamed - old
name of the object.

USB_MTP_OPERATION_OBJECT_RE-
NAMED_NEW_NAME

An object is being renamed - new
name of the object.

9.4.4 Prototypes

9.4.4.1 USB_MTP_OBJECT_ALLOC_FAIL

Description

Callback which can be set via USBD_MTP_SetObjectAllocFailCb(). This callback is called
when the object list runs out of memory for new objects. It can be used to notify the user
of the issue (e.g. set an error LED).

Type definition

typedef void (USB_MTP_OBJECT_ALLOC_FAIL)(U32 NumBytesRequested,
 U32 NumBytesAvail,
 const char * pFilePath,
 const char * pFileName);

Parameters

Parameter Description

NumBytesRequested Bytes need for a new object.
NumBytesAvail Bytes free in the object list.

pFilePath
Pointer to a string containing the file
path.

pFileName
Pointer to a string containing the file
name.

Additional information

This callback is informative only, the application must not try to free the object list. This
callback is called for every object where allocation failed. The callback may not block. When
this callback is set the behavior of the MTP module is changed slightly - new objects are
normally allocated for each file/dir in a directory which is opened by the user in the PC’s
explorer. When this callback is not set once a single allocation fails the module will return an

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

336 CHAPTER 9 Target API

error to the PC even if some objects inside a folder could be allocated. When this callback is
set the module will return as many objects as it could fit into the object list before allocating
started failing (e.g. if a folder contains 50 files and allocation starts failing after 40 files the
MTP module will return the first 40 objects to the PC).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

337 CHAPTER 9 Target API

9.4.4.2 USB_MTP_OPERATION_CB

Description

Callback which can be set via USBD_MTP_SetOperationCb(). This callback is called when
operations are executed by the host operating system via MTP. This can be used to e.g.
monitor new objects being created.

Type definition

typedef void (USB_MTP_OPERATION_CB)(USB_MTP_OPERATION_CB_TYPE OperationType,
 const USB_MTP_OPERATION_INFO * pOpInfo);

Parameters

Parameter Description

OperationType
One of the USB_MTP_OPER-
ATION_CB_TYPE enum values.

pFileInfo
Pointer to a USB_MTP_OPERATION_INFO
structure containing information about
the affected file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

338 CHAPTER 9 MTP Storage Driver

9.5 MTP Storage Driver
This section describes the emUSB-Device MTP storage interface in detail.

9.5.1 General information
This release comes with USB_MTP_StorageFS driver which uses emFile to access the storage
medium. If you are using emFile this chapter can be ignored. This chapter is for those who
wish to write a file system interface for a third-party file system.

The storage interface is handled through an API-table, which contains all relevant functions
necessary for read/write operations and initialization. Its implementation handles the de-
tails of how data is actually read from or written to memory.

9.5.2 Interface function list
As described above, access to a storage media is realized through an API-function table
of type USB_MTP_STORAGE_API. The structure is declared in USB_MTP.h and it is described
in section on page 324

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

339 CHAPTER 9 MTP Storage Driver

9.5.3 USB_MTP_STORAGE_API in detail

9.5.3.1 USB_MTP_STORAGE_INIT

Description

Initializes the storage medium.

Type definition

typedef void (USB_MTP_STORAGE_INIT)(U8 Unit,
 const USB_MTP_INST_DATA_DRIVER * pDriverData);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath

Pointer to a USB_MTP_INST_DATA_DRIVER structure that con-
tains all information that is necessary for the driver initializa-
tion. For detailed information about the USB_MTP_INST_DA-
TA_DRIVER structure, refer to USB_MTP_INST_DATA_DRIVER.

Additional information

This function is called when the storage driver is added to emUSB-Device-MTP. It is the
first function of the storage driver to be called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

340 CHAPTER 9 MTP Storage Driver

9.5.3.2 USB_MTP_STORAGE_GET_INFO

Description

Returns information about storage medium such as capacity and available free space.

Type definition

typedef void (USB_MTP_STORAGE_GET_INFO)(U8 Unit,
 USB_MTP_STORAGE_INFO * pStorageInfo);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pStorageInfo
Pointer to a USB_MTP_STORAGE_INFO structure. For detailed
information about the USB_MTP_STORAGE_INFO structure, re-
fer to USB_MTP_STORAGE_INFO.

Additional information

Typically, this function is called immediately after the device is connected to USB host when
the USB host requests information about the available storage mediums.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

341 CHAPTER 9 MTP Storage Driver

9.5.3.3 USB_MTP_STORAGE_FIND_FIRST_FILE

Description

Returns information about the first file in a specified directory.

Type definition

typedef int (USB_MTP_STORAGE_FIND_FIRST_FILE)(U8 Unit,
 const char * pDirPath,
 USB_MTP_FILE_INFO * pFileInfo);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pDirPath Full path to the directory to be searched.
pFileInfo out Information about the file/directory found.

Return value

= 0 File/directory found
= 1 No more files/directories found
< 0 An error occurred

Additional information

The “.” and “..” directory entries which are relevant only for the file system should be
skipped.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

342 CHAPTER 9 MTP Storage Driver

9.5.3.4 USB_MTP_STORAGE_FIND_NEXT_FILE

Description

Moves to next file and returns information about it.

Type definition

typedef int (USB_MTP_STORAGE_FIND_NEXT_FILE)(U8 Unit,
 USB_MTP_FILE_INFO * pFileInfo);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFileInfo out Information about the file/directory found.

Return value

= 0 File/directory found
= 1 No more files/directories found
< 0 An error occurred

Additional information

The “.” and “..” directory entries which are relevant only for the file system should be
skipped.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

343 CHAPTER 9 MTP Storage Driver

9.5.3.5 USB_MTP_STORAGE_OPEN_FILE

Description

Opens a file for reading.

Type definition

typedef int (USB_MTP_STORAGE_OPEN_FILE)(U8 Unit,
 const char * pFilePath);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath in Full path to file.

Return value

= 0 File opened
≠ 0 An error occurred

Additional information

This function is called at the beginning of a file read operation. It is followed by one or more
calls to USB_MTP_STORAGE_READ_FROM_FILE. At the end of data transfer the MTP module
closes the file by calling USB_MTP_STORAGE_CLOSE_FILE. If the file does not exists an error
should be returned. The MTP module opens only one file at a time.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

344 CHAPTER 9 MTP Storage Driver

9.5.3.6 USB_MTP_STORAGE_CREATE_FILE

Description

Opens a file for writing.

Type definition

typedef int (USB_MTP_STORAGE_CREATE_FILE)(U8 Unit,
 const char * pDirPath,
 USB_MTP_FILE_INFO * pFileInfo);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pDirPath in Full path to directory where the file should be created.

pFileInfo

 in Information about the file to be created. pFileName
points to the name of the file. out pFilePath points to full
path of created file, pFileName points to the beginning of file
name in pFilePath.

Return value

= 0 File created and opened
≠ 0 An error occurred

Additional information

This function is called at the beginning of a file write operation. The name of the file is
specified in the pFileName filed of pFileInfo. If the file exists it should be truncated to zero
length. When a file is created, the call to USB_MTP_STORAGE_CREATE_FILE is followed by one
or more calls to USB_MTP_STORAGE_WRITE_TO_FILE. If CreationTime and LastWriteTime in
pFileInfo are not zero, these should be used instead of the time stamps generated by
the file system.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

345 CHAPTER 9 MTP Storage Driver

9.5.3.7 USB_MTP_STORAGE_READ_FROM_FILE

Description

Reads data from the current file.

Type definition

typedef int (USB_MTP_STORAGE_READ_FROM_FILE)(U8 Unit,
 U64 Off,
 void * pData,
 U32 NumBytes);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

Off Byte offset where to read from.
pData out Data read from file.
NumBytes Number of bytes to read from file.

Return value

= 0 Data read from file
≠ 0 An error occurred

Additional information

The function reads data from the file opened by USB_MTP_STORAGE_OPEN_FILE.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

346 CHAPTER 9 MTP Storage Driver

9.5.3.8 USB_MTP_STORAGE_WRITE_TO_FILE

Description

Writes data to current file.

Type definition

typedef int (USB_MTP_STORAGE_WRITE_TO_FILE)(U8 Unit,
 U64 Off,
 const void * pData,
 U32 NumBytes);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

Off Byte offset where to read from.
pData in Data to write to file.
NumBytes Number of bytes to write to file.

Return value

= 0 Data written to file
≠ 0 An error occurred

Additional information

The function writes data to file opened by USB_MTP_STORAGE_CREATE_FILE.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

347 CHAPTER 9 MTP Storage Driver

9.5.3.9 USB_MTP_STORAGE_CLOSE_FILE

Description

Closes the current file.

Type definition

typedef int (USB_MTP_STORAGE_CLOSE_FILE)(U8 Unit);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

Return value

= 0 File closed.
≠ 0 An error occurred

Additional information

The function closes the file opened by USB_MTP_STORAGE_CREATE_FILE or USB_MTP_STOR-
AGE_OPEN_FILE.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

348 CHAPTER 9 MTP Storage Driver

9.5.3.10 USB_MTP_STORAGE_REMOVE_FILE

Description

Removes a file/directory from the storage medium.

Type definition

typedef int (USB_MTP_STORAGE_REMOVE_FILE)(U8 Unit,
 const char * pFilePath);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file/directory to be removed

Return value

= 0 File removed.
≠ 0 An error occurred

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

349 CHAPTER 9 MTP Storage Driver

9.5.3.11 USB_MTP_STORAGE_CREATE_DIR

Description

Creates a directory on the storage medium.

Type definition

typedef int (USB_MTP_STORAGE_CREATE_DIR)(U8 Unit,
 const char * pDirPath,
 USB_MTP_FILE_INFO * pFileInfo);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pDirPath
 in Full path to directory where the directory should be cre-
ated.

pFileInfo

 in Information about the directory to be created. pFileName
points to the directory name. out pFilePath points to full
path of directory, pFileName points to the beginning of di-
rectory name in pFilePath

Return value

= 0 Directory created.
≠ 0 An error occurred

Additional information

If CreationTime and LastWriteTime in pFileInfo are not available, zero should be used
instead of the time stamps generated by the file system.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

350 CHAPTER 9 MTP Storage Driver

9.5.3.12 USB_MTP_STORAGE_REMOVE_DIR

Description

Removes a directory and its contents from the storage medium.

Type definition

typedef int (USB_MTP_STORAGE_REMOVE_DIR)(U8 Unit,
 const char * pDirPath);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pDirPath in Full path to directory to be removed.

Return value

= 0 Directory removed.
≠ 0 An error occurred

Additional information

The function should remove the directory and the entire file tree under it.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

351 CHAPTER 9 MTP Storage Driver

9.5.3.13 USB_MTP_STORAGE_FORMAT

Description

Initializes the storage medium.

Type definition

typedef int (USB_MTP_STORAGE_FORMAT)(U8 Unit);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

Return value

= 0 Storage medium initialized.
≠ 0 An error occurred

Additional information

The file system layer has to differentiate between two cases, one where the MTP root di-
rectory is the same as the root directory of the file system and one where it is only a subdi-
rectory of the file system. If pRootDir which was configured in the call to USB_MTP_STOR-
AGE_INIT, points to a subdirectory of the file system, the storage medium should not be
formatted. Instead, all the files and directories underneath pRootDir should be removed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

352 CHAPTER 9 MTP Storage Driver

9.5.3.14 USB_MTP_STORAGE_RENAME_FILE

Description

Changes the name of a file or directory.

Type definition

typedef int (USB_MTP_STORAGE_RENAME_FILE)(U8 Unit,
 USB_MTP_FILE_INFO * pFileInfo);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFileInfo

Pointer to a USB_MTP_FILE_INFO structure. in Information
about the file/directory to be renamed. pFilePath mem-
ber points to the full path and pFileName points to the new
name. out pFilePath member points to full path of file/di-
rectory with the new name, pFileName points to the begin-
ning of file/directory name in pFilePath. The other structure
fields should also be filled.

Return value

= 0 File/directory renamed.
≠ 0 An error occurred

Additional information

Only the name of the file/directory should be changed. The path to parent directory should
remain the same.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

353 CHAPTER 9 MTP Storage Driver

9.5.3.15 USB_MTP_STORAGE_DEINIT

Description

De-initializes the storage medium.

Type definition

typedef void (USB_MTP_STORAGE_DEINIT)(U8 Unit);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

Additional information

Typically called when the application calls USBD_Stop() to de-initialize emUSB-Device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

354 CHAPTER 9 MTP Storage Driver

9.5.3.16 USB_MTP_STORAGE_GET_FILE_ATTRIBUTES

Description

Returns the attributes of a file or directory.

Type definition

typedef int (USB_MTP_STORAGE_GET_FILE_ATTRIBUTES)(U8 Unit,
 const char * pFilePath,
 U8 * pMask);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file or directory (0-terminated string).
pMask out The bitmask of the attributes.

Return value

= 0 Information returned.
≠ 0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set to 0.
For the list of supported attributes refer to USB_MTP_FILE_INFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

355 CHAPTER 9 MTP Storage Driver

9.5.3.17 USB_MTP_STORAGE_MODIFY_FILE_ATTRIBUTES

Description

Sets and clears file attributes.

Type definition

typedef int (USB_MTP_STORAGE_MODIFY_FILE_ATTRIBUTES)(U8 Unit,
 const char * pFilePath,
 U8 SetMask,
 U8 ClrMask);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file or directory (0-terminated string).
SetMask The bitmask of the attributes which should be set.
ClrMask The bitmask of the attributes which should be cleared.

Return value

= 0 Attributes modified.
≠ 0 An error occurred

Additional information

For the list of supported attributes refer to USB_MTP_FILE_INFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

356 CHAPTER 9 MTP Storage Driver

9.5.3.18 USB_MTP_STORAGE_GET_FILE_CREATION_TIME

Description

Returns the creation time of file or directory.

Type definition

typedef int (USB_MTP_STORAGE_GET_FILE_CREATION_TIME)(U8 Unit,
 const char * pFilePath,
 U32 * pTime);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file or directory (0-terminated string).
pTime out The creation time.

Return value

= 0 Creation time returned.
≠ 0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set to 0.
For the list of supported attributes refer to USB_MTP_FILE_INFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

357 CHAPTER 9 MTP Storage Driver

9.5.3.19 USB_MTP_STORAGE_GET_FILELAST_WRITE_TIME

Description

Returns the time when the file or directory was last modified.

Type definition

typedef int (USB_MTP_STORAGE_GET_FILELAST_WRITE_TIME)(U8 Unit,
 const char * pFilePath,
 U32 * pTime);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file or directory (0-terminated string).
pTime out The modification time.

Return value

= 0 Modification time returned.
≠ 0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set to 0.
For the list of supported attributes refer to USB_MTP_FILE_INFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

358 CHAPTER 9 MTP Storage Driver

9.5.3.20 USB_MTP_STORAGE_GET_FILE_ID

Description

Returns an ID which uniquely identifies the file or directory.

Type definition

typedef int (USB_MTP_STORAGE_GET_FILE_ID)(U8 Unit,
 const char * pFilePath,
 U8 * pId);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file or directory (0-terminated string).

pId
 out The unique ID of file or directory. Should point to a byte
array MTP_NUM_BYTES_FILE_ID large.

Return value

= 0 ID returned.
≠ 0 An error occurred

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

359 CHAPTER 9 MTP Storage Driver

9.5.3.21 USB_MTP_STORAGE_GET_FILE_SIZE

Description

Returns the size of a file in bytes.

Type definition

typedef int (USB_MTP_STORAGE_GET_FILE_SIZE)(U8 Unit,
 const char * pFilePath,
 U64 * pFileSize);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Full path to file or directory (0-terminated string).
pFileSize out The size of file in bytes.

Return value

= 0 Size of file returned.
≠ 0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set to 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

360 CHAPTER 9 MTP Storage Driver

9.5.3.22 USB_MTP_STORAGE_GET_FILE_INFO

Description

This function is optional. It is used to speed up retrieval of file information. Returns the
creation time, modification time and attributes in one call.

Type definition

typedef int (USB_MTP_STORAGE_GET_FILE_INFO)(U8 Unit,
 const char * pFilePath,
 U32 * pCreationTime,
 U32 * pLastWriteTime,
 U64 * pFileSize,
 U8 * pAttributes);

Parameters

Parameter Description

Unit
Logical unit number. Specifies for which storage medium the
function is called.

pFilePath Path to file or directory.
pCreationTime out The creation time.
pLastWriteTime out The modification time.
pAttributes out The size of file in bytes.

Return value

= 0 Operation retrieved information successfully.
≠ 0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set to 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 10

Communication Device Class
(CDC)

This chapter describes how to get emUSB-Device up and running as a CDC device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

362 CHAPTER 10 Overview

10.1 Overview
The Communication Device Class - Abstract Control Model (CDC-ACM) is an abstract USB
class protocol defined by the USB Implementers Forum. For simplicity CDC-ACM is often
referred to as simply CDC. This protocol covers the handling of the following communication
flows:
• VirtualCOM/Serial interface
• Universal modem device
• ISDN communication
• Ethernet communication

A custom USB driver is not necessary because a kernel mode driver for USB-CDC serial
communication is delivered by all major Operating Systems.

Windows

Starting in Windows 10, such a file is not necessary anymore. A generic inf is provided,
handling devices/interfaces with a Device-/InterfaceClass = 0x02 or Device-/InterfaceClass
= 0x02 and Device-/InterfaceSubClass = 0x02. You may need to an .inf file for older
Windows versions. These are delivered with emUSB-Device. How to use and modifiy these
files can be found on the SEGGER wiki pages.

Linux

Linux handles USB 2 virtual COM ports since Kernel Ver. 2.4. Further information can be
found in the Linux Kernel documentation.

macOS

macOS (formely also known as OS X) supports CDC-ACM devices since the first release
10.1. The kext that is loaded is called com.apple.driver.usb.cdc.acm .

10.1.1 Configuration
The configuration section should later be modified to match the real application. For the
purpose of getting emUSB-Device up and running as well as doing an initial test, the con-
figuration as delivered should not be modified.

10.1.2 CDC-ACM issues on Windows 10
Windows 10 comes with a re-designed driver for CDC-ACM. At the time of writing (June
2019 (re-confirmed in January 2021)) Windows 10 has an issue with large IN CDC trans-
fers. Sometimes packets seems to disappear inside the Windows 10 USB stack. The only
workaround is to read in small chunks. Or to add a delay to the transfers. We have analysed
this using a hardware USB analyser and a test program which reads data from the device.
The device (USB high-speed) sends out data continuously in 512 bytes packets. Each packet
has a unique, consecutive ID. The test application checks that the received packet always
has the ID of the previous packet + 1. After a couple dozen packet the error usually appears
and a packet ends up missing. When comparing the packets which are seen “on the wire”
using the USB analyser with the packets which the Windows 10 program received it can
be seen that sometimes packets are missing even though they were clearly successfully
received by Windows 10. E.g. on the analyser one can see packets 30, 31, 32, 33 and on
Windows 10 one can see 30, 31, 33. It would appear that the method through which data
is read from the COM port (Windows API ReadFile, ReadFile overlapped or ReadFileEx) has
no effect on the missing packets. When using the same program on Windows 7 no issues
can be seen.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

363 CHAPTER 10 The example application

10.2 The example application
The start application (in the Application subfolder) is a simple echo server, which can
be used to test emUSB-Device. The application receives data byte by byte and sends it
back to the host.

Source code excerpt from USB_CDC_Echo.c:

/***
*
* MainTask
*/
void MainTask(void);
void MainTask(void) {
 USB_CDC_HANDLE hInst;
 USBD_Init();
 hInst = _AddCDC();
 USBD_SetDeviceInfo(&_DeviceInfo);
 USBD_Start();
 while (1) {
 static char _ac[USB_HS_BULK_MAX_PACKET_SIZE];
 int NumBytesReceived;

 //
 // Wait for configuration
 //
 while ((USBD_GetState() & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED)) !
= USB_STAT_CONFIGURED) {
 BSP_ToggleLED(0);
 USB_OS_Delay(50);
 }
 BSP_SetLED(0);
 //
 // Receive at maximum of 64 Bytes
 // If less data has been received,
 // this should be OK.
 //
 NumBytesReceived = USBD_CDC_Receive(hInst, &_ac[0], sizeof(_ac), 0);
 if (NumBytesReceived > 0) {
 USBD_CDC_Write(hInst, &_ac[0], NumBytesReceived, 0);
 }
 }
}

10.2.1 Testing communication to the USB device

Accessing CDC on Windows

The start application is a simple echo server. This means each character that is entered and
sent through the virtual serial port will be sent back by the USB device. A simple Windows
sample application is available to test the start application. The application is located in
Windows\USB\CDC\SampleApplication\Exe.

Alternatively any terminal program, such as PuTTY or TerraTerm or RealTerm, can be used
to check the connectivity.

This section shows how to start and make the first run of the sample application.
• Go to the Windows\USB\CDC\SampleApplication\Exe folder double click on the Echo

application. A console window will be open and will show that one device has been found
with the desired CDC Product and Vendor ID. Enter 0 to connect to that device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

364 CHAPTER 10 The example application

• The application will ask for the amount of bytes the application shall send to and receive

from the target device.

• Now enter the number of repetitions the application shall send and receive to or from

device and confirm with [Enter]..

• The test will run and should look like the following screenshot:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

365 CHAPTER 10 The example application

Accessing CDC on Linux

On Linux no drivers are needed, the device should show up as /dev/ttyACM0 or similar.
“sudo screen /dev/ttyACM0 115200” can be used to access the device.

Accessing CDC on macOS

On macOS no drivers are needed, the device should show up as /dev/tty.usbmo-
dem13245678 or similar. The “screen” terminal program can be used to access the device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

366 CHAPTER 10 Target API

10.3 Target API
This chapter describes the functions and data structures that can be used with the target
application.

10.3.1 Interface function list

Name Description

API functions

USBD_CDC_Add() Adds a CDC-ACM class to the stack.
USBD_CDC_CancelRead() Cancel a pending read operation.
USBD_CDC_CancelWrite() Cancel a pending write operation.
USBD_CDC_Read() Reads data from the host.
USBD_CDC_ReadOverlapped() Reads data from the host asynchronously.
USBD_CDC_Receive() Reads data from the host.
USBD_CDC_ReceivePoll() Reads data from the host.
USBD_CDC_ReadAsync() Reads data from the host asynchronously.

USBD_CDC_SetOnBreak()
Sets a callback in order to inform the ap-
plication about a break condition sent by
the host.

USBD_CDC_SetOnLineCoding()
Sets a user callback that shall be called
when a SET_LINE_CODING request is sent
to the device.

USBD_CDC_SetOnControlLineState()
Sets a user callback that shall be called
when a SET_LINE_STATE request is sent to
the device.

USBD_CDC_SetOnRXEvent()
Sets a callback function for the OUT end-
point that will be called on every RX event
for that endpoint.

USBD_CDC_SetOnTXEvent()
Sets a callback function for the IN end-
point that will be called on every TX event
for that endpoint.

USBD_CDC_UpdateSerialState() Sets the new serial state.
USBD_CDC_Write() Writes data to the host.
USBD_CDC_WriteAsync() Sends data to the host asynchronously.

USBD_CDC_WaitForRX()

This function is to be used in combination
with USBD_CDC_ReadOverlapped() and
waits for the reading data transfer from
the host to complete.

USBD_CDC_PollForRX()

This function is to be used in combination
with USBD_CDC_ReadOverlapped() and
waits for the reading data transfer from
the host to complete.

USBD_CDC_WaitForTX()
This function is to be used in combina-
tion with a non-blocking call to USBD_CD-
C_Write().

USBD_CDC_PollForTX()
This function is to be used in combina-
tion with a non-blocking call to USBD_CD-
C_Write().

USBD_CDC_WaitForTXReady()
Waits (blocking) until the TX queue can ac-
cept another data packet.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

367 CHAPTER 10 Target API

Name Description

USBD_CDC_WriteSerialState()
Sends the current control line serial state
to the host.

USBD_CDC_GetNumBytesRemToRead()
This function is to be used in combination
with USBD_CDC_ReadOverlapped().

USBD_CDC_GetNumBytesRemToWrite()
This function is to be used in combina-
tion with a non-blocking call to USBD_CD-
C_Write().

USBD_CDC_GetNumBytesInBuffer()
Returns the number of bytes that are
available in the internal BULK-OUT end-
point buffer.

Data structures

USB_CDC_INIT_DATA
Initialization structure that is needed when
adding a CDC interface to emUSB-Device.

USB_CDC_LINE_CODING
Structure that contains the new line-cod-
ing information sent by the host.

USB_CDC_SERIAL_STATE
Structure that contains the serial state
that can be sent to the host.

USB_CDC_CONTROL_LINE_STATE
Structure that contains the new control
line state sent by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

368 CHAPTER 10 Target API

10.3.1.1 USBD_CDC_Add()

Description

Adds a CDC-ACM class to the stack.

Prototype

USB_CDC_HANDLE USBD_CDC_Add(const USB_CDC_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to a USB_CDC_INIT_DATA structure.

Return value

Handle to a valid CDC instance. The handle of the first CDC instance is always 0.

Additional information

After the initialization of emUSB-Device, this is the first function that needs to be called
when the USB-CDC interface is used with emUSB-Device. The returned value can be used
with the CDC functions in order to talk to the right CDC instance.

For creating more than one CDC instance please make sure the USBD_EnableIAD() is called
before, otherwise none but the first CDC instance will work correctly. The same is true for
composite devices including CDC and another, different USB class.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

369 CHAPTER 10 Target API

10.3.1.2 USBD_CDC_CancelRead()

Description

Cancel a pending read operation.

Prototype

void USBD_CDC_CancelRead(USB_CDC_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Additional information

This function can be called when a pending asynchronous read operation (triggered by
USBD_CDC_ReadOverlapped()) should be canceled. The function can be called from any
task.

The function can also be used to cancel a call to one of the blocking read functions (when
called from a different task or interrupt function).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

370 CHAPTER 10 Target API

10.3.1.3 USBD_CDC_CancelWrite()

Description

Cancel a pending write operation.

Prototype

void USBD_CDC_CancelWrite(USB_CDC_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Additional information

This function shall be called when a pending asynchronous write operation (triggered by
non-blocking call to USBD_CDC_Write()) should be canceled. It can be called from any task.

The function can also be used to cancel a call to a blocking write functions (when called
from a different task or interrupt function).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

371 CHAPTER 10 Target API

10.3.1.4 USBD_CDC_Read()

Description

Reads data from the host.

Prototype

int USBD_CDC_Read(USB_CDC_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

= NumBytes Requested data was successfully read within the given timeout.
≥ 0 && < NumBytes Timeout has occurred (Number of bytes read before timeout).
< 0 An error occurred.

Additional information

This function blocks the task until all data has been read or a timeout occurs. In case of a
reset or a disconnect USB_STATUS_ERROR is returned.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_CDC_Receive() /
USBD_CDC_Read(). See also USBD_CDC_GetNumBytesInBuffer().

In case of a timeout, the read transfer is aborted (see Timeout handling on page 131).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

372 CHAPTER 10 Target API

10.3.1.5 USBD_CDC_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

int USBD_CDC_ReadOverlapped(USB_CDC_HANDLE hInst,
 void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Return value

≥ 0 Number of bytes that have been read from the internal buffer (success).
= 0 No data was found in the internal buffer (success).
< 0 An error occurred.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USBD_CDC_WaitForRX() needs to
be called.

Another synchronization method would be to periodically call USBD_CDC_GetNumBytesRem-
ToRead() in order to see how many bytes still need to be received (this method is preferred
when a non-blocking solution is necessary).

The read operation can be canceled using USBD_CDC_CancelRead().

The buffer pointed to by pData must be valid until the read operation is terminated.

Example

See USBD_CDC_GetNumBytesRemToRead on page 392.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

373 CHAPTER 10 Target API

10.3.1.6 USBD_CDC_Receive()

Description

Reads data from the host. The function blocks until any data have been received. In contrast
to USBD_CDC_Read() this function does not wait for all of NumBytes to be received, but
returns after the first packet has been received or after the timeout occurs. In case of a
timeout, the read transfer is aborted (see Timeout handling on page 131).

Prototype

int USBD_CDC_Receive(USB_CDC_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout. If Timeout is -1, the function never blocks and
only reads data from the internal endpoint buffer.

Return value

> 0 Number of bytes that have been read within the given timeout.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!), no data in buffer (if Timeout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

< 0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_CD-
C_Receive() will return as much data as is currently available up to the size of the buffer
specified within the specified timeout. This function also returns when the target is discon-
nected from the host or when a USB reset occurred during the function call, it will then
return the number of bytes read so far. If the target was disconnected before this function
was called, it returns USB_STATUS_ERROR.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_CDC_Receive() /
USBD_CDC_Read(). See also USBD_CDC_GetNumBytesInBuffer().

A call of USBD_CDC_Receive(Inst, NULL, 0, -1) can be used to trigger an asynchronous
read that stores the data into the internal buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

374 CHAPTER 10 Target API

10.3.1.7 USBD_CDC_ReceivePoll()

Description

Reads data from the host. The function blocks until any data have been received. In contrast
to USBD_CDC_Read() this function does not wait for all of NumBytes to be received, but
returns after the first packet has been received or after the timeout occurs. In contrast to
USBD_CDC_Receive() this function will continue the read transfer asynchronously in case
of a timeout.

Prototype

int USBD_CDC_ReceivePoll(USB_CDC_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

> 0 Number of bytes that have been read within the given timeout.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!), no data in buffer (if Timeout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

< 0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_CD-
C_ReceivePoll() will return as much data as is currently available up to the size of the
buffer specified within the specified timeout. This function also returns when the target is
disconnected from the host or when a USB reset occurred during the function call, it will
then return the number of bytes read so far. If the target was disconnected before this
function was called, it returns USB_STATUS_ERROR.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_CDC_ReceivePoll()
/ USBD_CDC_Read(). See also USBD_CDC_GetNumBytesInBuffer().

If a timeout occurs, the read transfer is not affected. Data send from the host after the
timeout is stored into the internal buffer of the endpoint and can be read by later calls to
USBD_CDC_ReceivePoll().

If Timeout = 0, the function behaves like USBD_CDC_Receive().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

375 CHAPTER 10 Target API

10.3.1.8 USBD_CDC_ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype

void USBD_CDC_ReadAsync(USB_CDC_HANDLE hInst,
 USB_ASYNC_IO_CONTEXT * pContext,
 int ShortRead);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pContext
Pointer to an I/O context containing parameters and pointer
to the callback function.

ShortRead

• 0: The transfer is completed successfully after all bytes
have been read.

• 1: The transfer is completed successfully after one packet
has been read.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

376 CHAPTER 10 Target API

10.3.1.9 USBD_CDC_SetOnBreak()

Description

Sets a callback in order to inform the application about a break condition sent by the host.

Prototype

void USBD_CDC_SetOnBreak(USB_CDC_HANDLE hInst,
 USB_CDC_ON_SET_BREAK * pfOnBreak);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pfOnBreak Pointer to the callback function.

Additional information

The callback is called in an ISR context, therefore it should should execute quickly.

The callback function has the following prototype:

typedef void USB_CDC_ON_SET_BREAK(unsigned BreakDuration);

Parameter Description

BreakDuration

Length of the break signal in milliseconds. If Break-
Duration is 0xFFFF, this is counted as a permanent
break condition. A SendBreak request with Break-
Duration of 0x0000 will reset the break state.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

377 CHAPTER 10 Target API

10.3.1.10 USBD_CDC_SetOnLineCoding()

Description

Sets a user callback that shall be called when a SET_LINE_CODING request is sent to the
device.

Prototype

void USBD_CDC_SetOnLineCoding(USB_CDC_HANDLE hInst,
 USB_CDC_ON_SET_LINE_CODING * pf);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pf Pointer to the callback function.

Additional information

This function is used to register a user callback which notifies the application that the host
has changed the line coding.

The callback is called in an ISR context, therefore it should should execute quickly.

The callback function has the following prototype:

typedef void USB_CDC_ON_SET_LINE_CODING(USB_CDC_LINE_CODING * pLineCoding);

Parameter Description

pLineCoding
Pointer to USB_CDC_LINE_CODING structure contain-
ing the new line coding parameters sent from the
host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

378 CHAPTER 10 Target API

10.3.1.11 USBD_CDC_SetOnControlLineState()

Description

Sets a user callback that shall be called when a SET_LINE_STATE request is sent to the
device.

Prototype

void USBD_CDC_SetOnControlLineState(USB_CDC_HANDLE hInst,
 USB_CDC_ON_SET_CONTROL_LINE_STATE * pf);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pf Pointer to the callback function.

Additional information

This function is used to register a user callback which notifies the application that the host
has changed the control line state.

The callback is called in an ISR context, therefore it should execute quickly and must never
block.

The callback function has the following prototype:

typedef void USB_CDC_ON_SET_CONTROL_LINE_STATE(USB_CDC_CONTROL_LINE_STATE * pLineState);

Parameter Description

pLineState
Pointer to USB_CDC_CONTROL_LINE_STATE structure
containing the new line state parameters sent from
the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

379 CHAPTER 10 Target API

10.3.1.12 USBD_CDC_SetOnRXEvent()

Description

Sets a callback function for the OUT endpoint that will be called on every RX event for
that endpoint.

Prototype

void USBD_CDC_SetOnRXEvent(USB_CDC_HANDLE hInst,
 USB_EVENT_CALLBACK * pEventCb,
 USB_EVENT_CALLBACK_FUNC * pfEventCb,
 void * pContext);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure (will be initial-
ized by this function).

pfEventCb
Pointer to the callback routine that will be called on every
event on the USB endpoint.

pContext
A pointer which is used as parameter for the callback func-
tion.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_CDC_SetOnRXEvent(). The USB stack keeps track of all event callback functions using
a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and
must reside in static memory.

The callback function is called only, if a read operation was started using one of the USB-
D_CDC_Read…() or USBD_CDC_Receive() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK_FUNC(unsigned Events, void *pContext);

Parameter Description

Events
A bit mask indicating which events occurred on the
endpoint.

pContext
The pointer which was provided to the USBD_SetOn-
Event function.

Note that the callback function will be called within an ISR, therefore it should never block.

The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description

USB_EVENT_DATA_READ
Some data was received from the host on the end-
point.

USB_EVENT_READ_COMPLETE The last read operation was completed.
USB_EVENT_READ_ABORT A read transfer was aborted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

380 CHAPTER 10 Target API

Example

// The callback function.
static void _OnEvent(unsigned Events, void *pContext) {
 unsigned NumBytes;

 if (Events & USB_EVENT_DATA_READ) {
 NumBytes = USBD_CDC_GetNumBytesInBuffer(hInst);
 if (NumBytes) {
 //
 // The call to receive will read all data from
 // the internal buffer and will start a new transfer.
 // The new transfer will again generate a new event when new data arrives.
 //
 // Note that a new transfer is only started when
 // the internal buffer is completely empty.
 // (It will be empty if you read the number of bytes
 // USBD_CDC_GetNumBytesInBuffer returns.)
 //
 r = USBD_CDC_Receive(hInst, Buff, NumBytes, -1);
 if (r > 0) {
 <.. process data in Buff..>
 }
 }
 }
}
// Main program.
// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_CDC_SetOnRXEvent(hInst, &_usb_callback, _OnEvent, NULL);
// Trigger first read
USBD_CDC_Receive(Inst, NULL, 0, -1);
<.. do anything else here while the data is processed in the callback ..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

381 CHAPTER 10 Target API

10.3.1.13 USBD_CDC_SetOnTXEvent()

Description

Sets a callback function for the IN endpoint that will be called on every TX event for that
endpoint.

Prototype

void USBD_CDC_SetOnTXEvent(USB_CDC_HANDLE hInst,
 USB_EVENT_CALLBACK * pEventCb,
 USB_EVENT_CALLBACK_FUNC * pfEventCb,
 void * pContext);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pEventCb
Pointer to a USB_EVENT_CALLBACK structure (will be initial-
ized by this function).

pfEventCb
Pointer to the callback routine that will be called on every
event on the USB endpoint.

pContext
A pointer which is used as parameter for the callback func-
tion.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_CDC_SetOnTXEvent(). The USB stack keeps track of all event callback functions using
a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and
must reside in static memory.

The callback function is called only, if a write operation was started using one of the USB-
D_CDC_Write…() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK_FUNC(unsigned Events, void *pContext);

Parameter Description

Events
A bit mask indicating which events occurred on the
endpoint.

pContext
The pointer which was provided to the USBD_SetOn-
Event function.

Note that the callback function will be called within an ISR, therefore it should never block.

The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description

USB_EVENT_DATA_SEND
Some data was sent to the host, so that (part of)
the user write buffer may be reused by the applica-
tion.

USB_EVENT_DATA_ACKED Some data was acknowledged by the host.
USB_EVENT_WRITE_ABORT A write transfer was aborted.
USB_EVENT_WRITE_COMPLETE All write operations were completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

382 CHAPTER 10 Target API

Example

// The callback function.

static void _OnEvent(unsigned Events, void *pContext) {
 if ((Events & USB_EVENT_DATA_SEND) != 0 &&
 // Check for last write transfer to be completed.
 USBD_CDC_GetNumBytesRemToWrite(_hInst) == 0) {
 <.. prepare next data for writing..>
 // Send next packet of data.
 r = USBD_CDC_Write(_hInst, &ac[0], 200, -1);
 if (r < 0) {
 <.. error handling..>
 }
 }
}

// Main program.

// Register callback function.
static USB_EVENT_CALLBACK _usb_callback;
USBD_CDC_SetOnTXEvent(hInst, &_usb_callback, _OnEvent, NULL);
// Send the first packet of data using an asynchronous write operation.
r = USBD_CDC_Write(_hInst, &ac[0], 200, -1);
if (r < 0) {
 <.. error handling..>
}
<.. do anything else here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

383 CHAPTER 10 Target API

10.3.1.14 USBD_CDC_UpdateSerialState()

Description

Sets the new serial state.

Prototype

void USBD_CDC_UpdateSerialState(USB_CDC_HANDLE hInst,
 const USB_CDC_SERIAL_STATE * pSerialState);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pSerialState Pointer to the USB_CDC_SERIAL_STATE structure.

Additional information

This function updates the control line state internally. In order to inform the host about the
serial state change, refer to the function USBD_CDC_WriteSerialState().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

384 CHAPTER 10 Target API

10.3.1.15 USBD_CDC_Write()

Description

Writes data to the host. Depending on the Timeout parameter, the function may block until
NumBytes have been written or a timeout occurs.

Prototype

int USBD_CDC_Write(USB_CDC_HANDLE hInst,
 const void * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to be written.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Return value

= 0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NumBytes Number of bytes that have been written before a timeout oc-
curred.

= NumBytes Write transfer successful completed.
< 0 An error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (Timeout
= -1). If a write transfer is still in progress when this function is called and the USB stack
can not accept another write transfer request, the functions returns USB_STATUS_EP_BUSY.
A synchronous write transfer (Timeout ≥ 0) will always block until the transfer (including
all pending transfers) are finished.

In order to synchronize, USBD_CDC_WaitForTX() needs to be called. Another synchroniza-
tion method would be to periodically call USBD_CDC_GetNumBytesRemToWrite() in order to
see how many bytes still need to be written (this method is preferred when a non-blocking
solution is necessary).

The write operation can be canceled using USBD_CDC_CancelWrite().

If pData = NULL and NumBytes = 0, a zero-length packet is sent to the host.

In case of a timeout, the write transfer is aborted (see Timeout handling on page 131).

The content of the buffer pointed to by pData must not be changed until the transfer has
been completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

385 CHAPTER 10 Target API

10.3.1.16 USBD_CDC_WriteAsync()

Description

Sends data to the host asynchronously. The function does not wait for the data to be send.
A callback function is called after the transfer has completed successfully, an error occurred
or the transfer was canceled.

Prototype

void USBD_CDC_WriteAsync(USB_CDC_HANDLE hInst,
 USB_ASYNC_IO_CONTEXT * pContext,
 char Send0PacketIfRequired);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

pContext
Pointer to an I/O context containing parameters and pointer
to the callback function.

Send0PacketIfRequired
Specifies that a zero-length packet shall be sent when the
last data packet is a multiple of MaxPacketSize.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

386 CHAPTER 10 Target API

10.3.1.17 USBD_CDC_WaitForRX()

Description

This function is to be used in combination with USBD_CDC_ReadOverlapped() and waits for
the reading data transfer from the host to complete.

Prototype

int USBD_CDC_WaitForRX(USB_CDC_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

0 Transfer completed.
1 Timeout occurred.

Additional information

This function shall be called in order to synchronize task with the read data transfer previ-
ously initiated. The function blocks until the number of bytes specified by USBD_CDC_Read-
Overlapped() has been read from the host. In case of a timeout, the read transfer is
aborted (see Timeout handling on page 131).

Example

if (USBD_CDC_ReadOverlapped(hInst, &ac[0], 50) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_CDC_ReadOverlapped() will return immediately.
// Do something else while data may be transferred.
//
<...>
//
// Now wait until we get all 50 bytes.
// USBD_CDC_WaitForRX() will block, until total of
// 50 bytes are read or timeout occurs.
//
if (USBD_CDC_WaitForRX(hInst, timeout) != 0) {
 <.. timeout error handling..>
 return;
}
// Now we have 50 bytes of data.
// Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

387 CHAPTER 10 Target API

10.3.1.18 USBD_CDC_PollForRX()

Description

This function is to be used in combination with USBD_CDC_ReadOverlapped() and waits for
the reading data transfer from the host to complete.

Prototype

int USBD_CDC_PollForRX(USB_CDC_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

0 Transfer completed.
1 Timeout occurred.

Additional information

This function shall be called in order to synchronize task with the read data transfer previ-
ously initiated. The function blocks until the number of bytes specified by USBD_CDC_Read-
Overlapped() has been read from the host. In case of a timeout, the current transfer is not
affected. The function may be called repeatedly until it does not report a timeout any more.

Example

if (USBD_CDC_ReadOverlapped(hInst, &ac[0], 50) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_CDC_ReadOverlapped() will return immediately.
// While waiting for the data, we will blink a LED with 200 ms interval.
// USBD_CDC_PollForRX() will return, if all data were read or 100 ms expired.
//
while ((r = USBD_CDC_PollForRX(hInst, 100)) > 0) {
 ToggleLED();
}
if (r < 0) {
 <.. error handling..>
 return;
}
// Now we have 50 bytes of data.
// Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

388 CHAPTER 10 Target API

10.3.1.19 USBD_CDC_WaitForTX()

Description

This function is to be used in combination with a non-blocking call to USBD_CDC_Write().
This function waits for the writing data transfer to the host to complete.

Prototype

int USBD_CDC_WaitForTX(USB_CDC_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

0 Transfer completed.
1 Timeout occurred.

Additional information

This function shall be called in order to synchronize task with the write data transfer
previously initiated. This function blocks until the number of bytes specified by USBD_CD-
C_Write() has been written to the host. In case of a timeout, the write transfer is aborted
(see Timeout handling on page 131).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

389 CHAPTER 10 Target API

10.3.1.20 USBD_CDC_PollForTX()

Description

This function is to be used in combination with a non-blocking call to USBD_CDC_Write().
This function waits for the writing data transfer to the host to complete.

Prototype

int USBD_CDC_PollForTX(USB_CDC_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Timeout Timeout in milliseconds. 0 means infinite.

Return value

0 Transfer completed.
1 Timeout occurred.

Additional information

This function shall be called in order to synchronize task with the write data transfer
previously initiated. This function blocks until the number of bytes specified by USBD_CD-
C_Write() has been written to the host. In case of a timeout, the current transfer is not
affected. The function may be called repeatedly until it does not report a timeout any more.

Example

if (USBD_CDC_Write(hInst, &ac[0], 50, -1) < 0) {
 <.. error handling..>
 return;
}
//
// USBD_CDC_Write() will return immediately.
// While waiting for the data to be transferred, we will blink a LED with
 200 ms interval.
// USBD_CDC_PollForTX() will return, if all data were send or 100 ms expired.
//
while ((r = USBD_CDC_PollForTX(hInst, 100)) > 0) {
 ToggleLED();
}
if (r < 0) {
 <.. error handling..>
 return;
}
// Now all data have been send.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

390 CHAPTER 10 Target API

10.3.1.21 USBD_CDC_WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used in
combination with a non-blocking call to USBD_CDC_Write(), it waits until a new asynchro-
nous write data transfer will be accepted by the USB stack.

Prototype

int USBD_CDC_WaitForTXReady(USB_CDC_HANDLE hInst,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is neg-
ative, the function will return immediately.

Return value

= 0 A new asynchronous write data transfer will be accepted.
= 1 The write queue is full, a call to USBD_CDC_Write() would return USB_S-

TATUS_EP_BUSY.
< 0 Error occurred.

Additional information

If Timeout is 0, the function never returns 1.

If Timeout is -1, the function will not wait, but immediately return the current state.

Example

// Always keep the write queue full for maximum send speed.
for (;;) {
 pData = GetNextData(&NumBytes);
 // Wait until stack can accept a new write.
 USBD_CDC_WaitForTxReady(hInst, 0);
 // Put write transfer into the write queue.
 if (USBD_CDC_Write(hInst, pData, NumBytes, -1) < 0) {
 <.. error handling..>
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

391 CHAPTER 10 Target API

10.3.1.22 USBD_CDC_WriteSerialState()

Description

Sends the current control line serial state to the host.

Prototype

void USBD_CDC_WriteSerialState(USB_CDC_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Additional information

This function shall be called in order to inform the host about the control serial state of the
CDC instance. The current control line serial state can be set using USBD_CDC_UpdateSe-
rialState().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

392 CHAPTER 10 Target API

10.3.1.23 USBD_CDC_GetNumBytesRemToRead()

Description

This function is to be used in combination with USBD_CDC_ReadOverlapped(). It returns
the number of bytes which still have to be read during the transaction.

Prototype

int USBD_CDC_GetNumBytesRemToRead(USB_CDC_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Return value

Number of bytes which still have to be read.

Additional information

Note that this function does not return the number of bytes that have been read, but the
number of bytes which still have to be read. This function does not block.

Example

NumBytesReceived = USBD_CDC_ReadOverlapped(hInst, &ac[0], 50);
if (NumBytesReceived < 0) {
 <.. error handling..>
}
if (NumBytesReceived > 0) {
 // Already had some data in the internal buffer.
 // The first 'NumBytesReceived' bytes may be processed here.
 <...>
} else {
 // Wait until we get all 50 bytes
 while (USBD_CDC_GetNumBytesRemToRead(hInst) > 0) {
 USB_OS_Delay(50);
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

393 CHAPTER 10 Target API

10.3.1.24 USBD_CDC_GetNumBytesRemToWrite()

Description

This function is to be used in combination with a non-blocking call to USBD_CDC_Write().
It returns the number of bytes which still have to be written during the transaction.

Prototype

int USBD_CDC_GetNumBytesRemToWrite(USB_CDC_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Return value

Number of bytes which still have to be written.

Additional information

Note that this function does not return the number of bytes that have been written, but the
number of bytes which still have to be written. This function does not block.

Example

// NumBytesWritten will contain > 0 values
// if we had anything in the write buffer.
NumBytesWritten = USBD_CDC_Write(hInst, &ac[0], TRANSFER_SIZE, -1);
if (NumBytesWritten < 0) {
 <.. error handling..>
}
// NumBytesToWrite shows how many bytes still have to be written.
while (USBD_CDC_GetNumBytesRemToWrite(hInst) > 0) {
 USB_OS_Delay(50);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

394 CHAPTER 10 Target API

10.3.1.25 USBD_CDC_GetNumBytesInBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype

int USBD_CDC_GetNumBytesInBuffer(USB_CDC_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid CDC instance, returned by USBD_CDC_Ad-
d().

Return value

Number of bytes which have been stored in the internal buffer.

Additional information

The number of bytes returned by this function can be read using USBD_CDC_Read() without
blocking.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

395 CHAPTER 10 Target API

10.3.2 Data structures

10.3.2.1 USB_CDC_INIT_DATA

Description

Initialization structure that is needed when adding a CDC interface to emUSB-Device.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
} USB_CDC_INIT_DATA;

Structure members

Member Description

EPIn Bulk IN endpoint for sending data to the host.
EPOut Bulk OUT endpoint for receiving data from the host.
EPInt Interrupt IN endpoint for sending status information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

396 CHAPTER 10 Target API

10.3.2.2 USB_CDC_LINE_CODING

Description

Structure that contains the new line-coding information sent by the host.

Type definition

typedef struct {
 U32 DTERate;
 U8 CharFormat;
 U8 ParityType;
 U8 DataBits;
} USB_CDC_LINE_CODING;

Structure members

Member Description

DTERate The data transfer rate for the device in bits per second.

CharFormat

Number of stop bits:
• 0 - 1 Stop bit
• 1 - 1.5 Stop bits
• 2 - 2 Stop bits

ParityType

Specifies the parity type:
• 0 - None
• 1 - Odd
• 2 - Even
• 3 - Mark
• 4 - Space

DataBits Specifies the bits per byte: (5, 6, 7, 8)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

397 CHAPTER 10 Target API

10.3.2.3 USB_CDC_SERIAL_STATE

Description

Structure that contains the serial state that can be sent to the host.

Type definition

typedef struct {
 U8 DCD;
 U8 DSR;
 U8 Break;
 U8 Ring;
 U8 FramingError;
 U8 ParityError;
 U8 OverRunError;
 U8 CTS;
} USB_CDC_SERIAL_STATE;

Structure members

Member Description

DCD
Data Carrier Detect: Tells that the device is connected to the
telephone line.

DSR Data Set Read: Device is ready to receive data.
Break 1 - Break condition signaled.

Ring
Device indicates that it has detected a ring signal on the
telephone line.

FramingError When set to 1, the device indicates a framing error.
ParityError When set to 1, the device indicates a parity error.
OverRunError When set to 1, the device indicates an over-run error.
CTS Clear to Send: Deprecated, not used with USB.

Additional information

All members of the structure may have value 0 (false) or 1 (true).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

398 CHAPTER 10 Target API

10.3.2.4 USB_CDC_CONTROL_LINE_STATE

Description

Structure that contains the new control line state sent by the host.

Type definition

typedef struct {
 U8 DTR;
 U8 RTS;
} USB_CDC_CONTROL_LINE_STATE;

Structure members

Member Description

DTR Data Terminal Ready.
RTS Request To Send.

Additional information

All members of the structure may have value 0 (false) or 1 (true).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 11

Human Interface Device Class
(HID)

This chapter gives a general overview of the HID class and describes how to get the HID
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

400 CHAPTER 11 Overview

11.1 Overview
The Human Interface Device class (HID) is an abstract USB class protocol defined by the
USB Implementers Forum. This protocol was defined for the handling of devices which are
used by humans to control the operation of computer systems.

An installation of a custom-host USB driver is not necessary, because the USB human
interface device class is standardized and every major OS already provides host drivers
for it.

11.1.1 Further reading
The following documents define the HID class and have been used to implement and verify
the HID component:
• [HID1] Device Class Definition for Human Interface Devices (HID), Firmware

Specification—6/27/01 Version 1.11
• [HID2] HID Usage Tables, 1/21/2005 Version 1.12

11.1.2 Categories
Devices which are in the HID class generally fall into one of two categories:

True HIDs and vendor specific HIDs, explained below. One or more examples for both
categories are provided.

11.1.2.1 True HIDs
True HID devices are devices which communicate directly with the host operating system,
this includes devices which are used by a human to enter data, but do not directly exchange
data with an application program running on the host.

Typical examples
• Keyboard
• Mouse and similar pointing devices
• Joystick
• Gamepad
• Bar-code reader
• Front-panel controls - for example, switches and buttons.

11.1.2.2 Vendor specific HIDs
These are HID devices communicating with an application program. The host OS loads the
same driver it loads for any “true HID” and will automatically enumerate the device, but it
cannot communicate with the device. When analyzing the report descriptor, the host finds
that it cannot exchange information with the device; the device uses a protocol which is
meaningless to the HID driver of the host. The host will therefore not exchange information
with the device. A host recognizes a vendor specific HID by its vendor-defined usage page
in the report descriptor: the numerical value of the usage page lies between 0xFF00 and
0xFFFF.

An application has the chance to communicate with the particular device using API functions
offered by the host. This enables an application program to communicate with the device
without having to load a driver. HID does not take advantage of the full USB bus bandwidth;
bulk communication can be much faster, but requires a driver with older operating systems.
Therefore it can be a good choice to select HID as a device class, especially if ease of use
is important and high communication speed is not required.

Typical examples
• Thermometer
• Voltmeter
• Low-speed JTAG emulator

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

401 CHAPTER 11 Overview

• UPS (Uninterruptible power supply)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

402 CHAPTER 11 Background information

11.2 Background information

11.2.1 HID descriptors
This section presents an overview of the HID class-specific descriptors. The HID descriptors
are defined in the Device Class Definition for Human Interface Devices (HID) of the USB Im-
plementers Forum. Refer to the USB Implementers Forum website, https://www.usb.org,
for detailed information about the USB HID standard.

11.2.1.1 HID descriptor
A HID descriptor contains the report descriptor and optionally the physical descriptors.
It specifies the number, type, and size of the report descriptor and the report’s physical
descriptors.

11.2.1.2 Report descriptor
Data between host and device is exchanged in so called “reports”. The report descriptor
defines the format of a report. In general, HIDs require a report descriptor as defined in the
Device Class Definition for Human Interface Devices (HID). The only exception to this are
very basic HIDs such as mice or keyboards. This implementation of HID always requires
a report descriptor.

Using HID only transfers matching the report size are allowed, for example if a report is
defined to be 64 bytes large in either direction only transfer of 64 bytes are allowed. If the
application needs to transfer less data the packet must be padded by the application to
match the report size. The report descriptor can define multiple reports of different sizes.
In this case the first byte of the transfer must contain the report ID.

The USB Implementers Forum provides an application which helps to build and modify HID
report descriptors. The HID Descriptor Tool can be downloaded from:

https://www.usb.org/hid

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org
https://www.usb.org/hid

403 CHAPTER 11 Background information

11.2.1.3 Physical descriptor
Physical descriptor sets are optional descriptors which provide information about the part
or parts of the human body used to activate the controls on a device. Physical descriptors
are currently not supported.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

404 CHAPTER 11 Configuration

11.3 Configuration

11.3.1 Initial configuration
To get emUSB-Device up and running as well as doing an initial test, the configuration as it is
delivered should not be modified. The configuration must only be modified if emUSB-Device
should be used in your final product. Refer to the section emUSB-Device Configuration on
page 50 for detailed information about the functions which must be adapted before you
can release a final product version.

11.3.2 Final configuration

Generating a report descriptor

This step is only required if your product is a vendor-specific human interface device. The
report descriptor provided in the example application can typically be used without any
modification. The vendor-defined usage page should be adapted in a final product. Ven-
dor-defined usage pages can be in the range from 0xFF00 to 0xFFFF. The low byte can
be selected by the application programmer. It needs to be identical on both target and
host and should be unique (as unique as an 8-bit value can be). The examples use the
value 0x12; this value is defined at the top of the application program with the macro
USB_HID_DEFAULT_VENDOR_PAGE.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

405 CHAPTER 11 Example application

11.4 Example application
Example applications are supplied. These can be used for testing the correct installation
and proper function of the device running emUSB-Device.

The following start application files are provided:

File Description

USB_HID_Mouse.c Simple mouse example. (“True HID” example)
USB_HID_Echo1.c Modified echo server. (“vendor specific” example)

11.4.1 USB_HID_Mouse.c
USB_HID_Mouse.c is a typical example for a “true HID” implementation. The host identifies
the device which is programmed with this example as a mouse. After the device is enu-
merated, it moves the mouse cursor in an endless loop to the left and after a short delay
back to the right.

11.4.2 USB_HID_Echo1.c
USB_HID_Echo1.c is a typical example for a “vendor-specific HID” implementation. The HID
start application (USB_HID_Echo1.c located in the Application subfolder) is a modified
echo server; the application receives data byte by byte, increments every single byte and
sends them back to the host.

To use this application, include the source code file USB_HID_Echo1.c into your project and
compile and download it into your target. Run HIDEcho1.exe after the target is connected
to the host and the enumeration process has been completed. The PC application is supplied
as executable in the Windows\USB\HID\SampleApp\Exe directory. The source code of the

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

406 CHAPTER 11 Example application

PC example is also supplied. Refer to section Compiling the PC example application for more
information to the PC example project.

11.4.2.1 Running the example
1. Add USB_HID_Echo1.c to your project and build and download the application into the

target.
2. Connect your target to the host via USB while the example application is running,

Windows will detect the new HID device.
3. If a connection can be established, it exchanges data with the target, testing the USB

connection. If the host example application can communicate with the emUSB-Device
device, the example application outputs the product name, Vendor and Product ID and
the report size which will be used to communicate with the target. The target will be
in interactive mode.

Example output of USB_HID_Echo1.exe:

4. Enter the number of reports that should be transmitted when the device is connected.

Every dot in the terminal window indicates a transmission.

11.4.2.2 Compiling the PC example application
Under Window you can build the sample by using the provided VisualStudio 2010 project.
The source code of the example application is located in the subfolder Windows\USB\HID
\SampleApp. Open the file USBHID_Start.sln and compile the source choose Build | Build
SampleApp.exe (Shortcut: F7). To run the executable choose Build | Execute Sam-
pleApp.exe (Shortcut: CTRL-F5).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

407 CHAPTER 11 Example application

Note

The Microsoft Windows Driver Development Kit (DDK) is required to compile the HID
host example application. Refer to https://docs.microsoft.com/en-us/windows-hard-
ware/drivers/download-the-wdk for more information.

Under Linux simply generate the executable by invoking make in the Windows/USB/HID/
SampleApp folder in a shell

cd Windows/USB/HID/SampleApp
make

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

408 CHAPTER 11 Target API

11.5 Target API
This section describes the functions that can be used on the target system.

General information

To communicate with the host, the example application project includes USB-specific header
and source files. These files contain API functions to communicate with the USB host.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API functions
have a simple interface and handle all operations that need to be done to communicate with
the host. Therefore, all operations that need to write to or read from the emUSB-Device
are handled internally by the provided API functions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

409 CHAPTER 11 Target API

11.5.1 Target interface function list

Function Description

API functions

USBD_HID_AddEx()
Adds HID class device to the USB inter-
face.

USBD_HID_Add()
Adds HID class device to the USB inter-
face.

USBD_HID_GetNumBytesInBuffer()
Returns the number of bytes available in
the internal read buffer.

USBD_HID_GetNumBytesRemToRead()
Checks how many bytes still have to be
read.

USBD_HID_GetNumBytesRemToWrite()
Checks how many bytes still have to be
written.

USBD_HID_Read()
Reads data from the host with a given
timeout.

USBD_HID_ReadOverlapped() Reads data from the host asynchronously.
USBD_HID_Receive() Reads data from the host.
USBD_HID_ReceivePoll() Reads data from the host.

USBD_HID_WaitForRX()
This function is to be used in combination
with USBD_HID_ReadOverlapped().

USBD_HID_WaitForTX()
This function is to be used in combi-
nation with a non-blocking call to USB-
D_HID_Write().

USBD_HID_Write() Writes data to the host.

USBD_HID_SetOnGetReportRequest()
Allows to set a callback for the GET_REPORT
command.

USBD_HID_SetOnSetReportRequest()
Allows to set a callback for the SET_REPORT
control command.

USBD_HID_ReadReport()
Reads report data that was sent from the
host via the control EP.

Data structures

USB_HID_INIT_DATA_EX
Initialization structure that is needed when
adding a HID interface to emUSB-Device.

USB_HID_INIT_DATA
Initialization structure that is needed when
adding a HID interface to emUSB-Device.

Type definitions

USB_HID_ON_GETREPORT_REQUEST_FUNC
Callback function description which is set
via USBD_HID_SetOnGetReportRequest().

USB_HID_ON_SETREPORT_REQUEST_FUNC
Callback function description which is set
via USBD_HID_SetOnSetReportRequest().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

410 CHAPTER 11 Target API

11.5.2 HID Target API functions

11.5.2.1 USBD_HID_AddEx()

Description

Adds HID class device to the USB interface.

Prototype

USB_HID_HANDLE USBD_HID_AddEx(const USB_HID_INIT_DATA_EX * pInitData);

Parameters

Parameter Description

pInitData
Pointer to a USB_HID_INIT_DATA_EX structure. For detailed
information refer to USB_HID_INIT_DATA_EX.

Return value

USB_HID_HANDLE: Handle to the HID instance (can be zero).

Additional information

After the initialization of general emUSB-Device, this is the first function that needs to be
called when the USB-HID interface is used with emUSB-Device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

411 CHAPTER 11 Target API

11.5.2.2 USBD_HID_Add()

Description

Adds HID class device to the USB interface.

Prototype

USB_HID_HANDLE USBD_HID_Add(const USB_HID_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData
Pointer to a USB_HID_INIT_DATA structure. For detailed in-
formation refer to USB_HID_INIT_DATA.

Return value

USB_HID_HANDLE: Handle to the HID instance (can be zero).

Additional information

After the initialization of general emUSB-Device, this is the first function that needs to be
called when the USB-HID interface is used with emUSB-Device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

412 CHAPTER 11 Target API

11.5.2.3 USBD_HID_GetNumBytesInBuffer()

Description

Returns the number of bytes available in the internal read buffer.

Prototype

unsigned USBD_HID_GetNumBytesInBuffer(USB_HID_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to an HID handle which is returned by USBD_HID_Ad-
d().

Return value

≥ 0 Number of bytes in the internal read buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

413 CHAPTER 11 Target API

11.5.2.4 USBD_HID_GetNumBytesRemToRead()

Description

Checks how many bytes still have to be read.

Prototype

unsigned USBD_HID_GetNumBytesRemToRead(USB_HID_HANDLE hInst);

Parameters

Parameter Description

hInst Handle to an HID instance.

Return value

≥ 0 Number of bytes which have not yet been read.

Additional information

This function is to be used in combination with USBD_HID_ReadOverlapped(). After starting
the read operation this function can be used to periodically check how many bytes still have
to be read. Alternatively the blocking function USBD_HID_WaitForRX() can be used.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

414 CHAPTER 11 Target API

11.5.2.5 USBD_HID_GetNumBytesRemToWrite()

Description

Checks how many bytes still have to be written.

Prototype

unsigned USBD_HID_GetNumBytesRemToWrite(USB_HID_HANDLE hInst);

Parameters

Parameter Description

hInst Handle to an HID instance.

Return value

≥ 0 Number of bytes which have not yet been written.

Additional information

This function is to be used in combination with a non-blocking call to USBD_HID_Write().
After starting the write operation this function can be used to periodically check how many
bytes still have to be written. Alternatively the blocking function USBD_HID_WaitForTX()
can be used.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

415 CHAPTER 11 Target API

11.5.2.6 USBD_HID_Read()

Description

Reads data from the host with a given timeout.

Prototype

int USBD_HID_Read(USB_HID_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 unsigned Timeout);

Parameters

Parameter Description

hInst Handle to an HID instance.
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

= NumBytes Requested data was successfully read within the given timeout.
≥ 0, < NumBytes Timeout has occurred. Number of bytes that have been read within

the given timeout.
< 0 Returns a USB_STATUS_ERROR.

Additional information

This function blocks until the timeout has been reached, it has received NumBytes or until
the device is disconnected from the host. This function blocks a task until all data has been
read or a timeout occurs. In case of a reset or a disconnect USB_STATUS_ERROR is returned.

The host will always send transmissions which match the report size. In most cases it makes
sense to set NumBytes to the report size.

When using multiple reports the first byte will contain the report ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

416 CHAPTER 11 Target API

11.5.2.7 USBD_HID_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

int USBD_HID_ReadOverlapped(USB_HID_HANDLE hInst,
 void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

hInst Handle to a HID instance.
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Return value

> 0 Number of bytes that have been read from the internal buffer (success).
= 0 No data was found in the internal buffer (success).
< 0 Error.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USBD_HID_WaitForRX() needs to be
called. Alternatively the function USBD_HID_GetNumBytesRemToRead() can be called peri-
odically to check whether all bytes have been written or not. The buffer pointed to by pData
must be valid until the read operation is terminated.

The host will always send transmissions which match the report size. In most cases it makes
sense to set NumBytes to the report size.

When using multiple reports the first byte will contain the report ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

417 CHAPTER 11 Target API

11.5.2.8 USBD_HID_Receive()

Description

Reads data from the host. The function blocks until any data has been received or a timeout
occurs (if Timeout ≥ 0). In contrast to USBD_HID_Read() this function does not wait for all
of NumBytes to be received, but returns after the first packet has been received. In case of
a timeout, the read transfer is aborted (see Timeout handling on page 131).

Prototype

int USBD_HID_Receive(USB_HID_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst Handle to an HID instance.
pData Pointer to a buffer where the received data will be stored.
NumBytes Maximum number of bytes to read.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is -1,
the function never blocks and only reads data from the inter-
nal endpoint buffer.

Return value

> 0 Number of bytes that have been read.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!), no data in buffer (if Timeout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

< 0 Error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_HID_Re-
ceive() will return as much data as is currently available -- up to the size of the buffer
specified. This function also returns when the target is disconnected from the host or when
a USB reset occurred during the function call, it will then return USB_STATUS_ERROR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_HID_Receive() /
USBD_HID_Read(). See also USBD_HID_GetNumBytesInBuffer().

A call of USBD_HID_Receive(Inst, NULL, 0, -1) can be used to trigger an asynchronous
read that stores the data into the internal buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

418 CHAPTER 11 Target API

11.5.2.9 USBD_HID_ReceivePoll()

Description

Reads data from the host. The function blocks until any data has been received or a timeout
occurs (if Timeout ≥ 0). In contrast to USBD_BULK_Read() this function does not wait for all
of NumBytes to be received, but returns after the first packet has been received. In contrast
to USBD_BULK_Receive() this function will continue the read transfer asynchronously in
case of a timeout.

Prototype

int USBD_HID_ReceivePoll(USB_HID_HANDLE hInst,
 void * pData,
 unsigned NumBytes,
 unsigned Timeout);

Parameters

Parameter Description

hInst Handle to an HID instance.
pData Pointer to a buffer where the received data will be stored.
NumBytes Maximum number of bytes to read.
Timeout Timeout in milliseconds. 0 means infinite.

Return value

> 0 Number of bytes that have been read.
= 0 A timeout occurred (if Timeout > 0), zero packet received (not every controller

supports this!) or the target was disconnected during the function call and no
data was read so far.

< 0 Error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_HID_Re-
ceivePoll() will return as much data as is currently available -- up to the size of the buffer
specified. This function also returns when the target is disconnected from the host or when
a USB reset occurred during the function call, it will then return USB_STATUS_ERROR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP(). This data can be retrieved by a later call to USBD_HID_Receive() /
USBD_HID_Read(). See also USBD_HID_GetNumBytesInBuffer().

If a timeout occurs, the read transfer is not affected. Data send from the host after the
timeout is stored into the internal buffer of the endpoint and can be read by later calls to
USBD_HID_ReceivePoll().

If Timeout = 0, the function behaves like USBD_HID_Receive().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

419 CHAPTER 11 Target API

11.5.2.10 USBD_HID_WaitForRX()

Description

This function is to be used in combination with USBD_HID_ReadOverlapped(). After the
read function has been called this function can be used to synchronize. It will block until
the transfer is completed.

Prototype

int USBD_HID_WaitForRX(USB_HID_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst Handle to a HID instance.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

0 Transfer completed.
1 Timeout occurred.

Additional information

In case of a timeout, a current transfer is canceled.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

420 CHAPTER 11 Target API

11.5.2.11 USBD_HID_WaitForTX()

Description

This function is to be used in combination with a non-blocking call to USBD_HID_Write().
After the write function has been called this function can be used to synchronise. It will
block until the transfer is completed.

Prototype

int USBD_HID_WaitForTX(USB_HID_HANDLE hInst,
 unsigned Timeout);

Parameters

Parameter Description

hInst Handle to a HID instance.

Timeout
Timeout given in milliseconds. A zero value results in an infi-
nite timeout.

Return value

0 Transfer completed.
1 Timeout occurred.

Additional information

In case of a timeout, a current transfer is canceled.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

421 CHAPTER 11 Target API

11.5.2.12 USBD_HID_Write()

Description

Writes data to the host. Depending on the Timeout parameter, the function may block until
NumBytes have been written or a timeout occurs.

Prototype

int USBD_HID_Write(USB_HID_HANDLE hInst,
 const void * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst Handle to an HID instance.
pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to write. Should match the report size.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Return value

= 0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NumBytes Number of bytes that have been written before a timeout oc-
curred.

= NumBytes Write transfer successful completed.
< 0 Error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (Timeout
= -1). If a write transfer is still in progress when this function is called and the USB stack
can not accept another write transfer request, the functions returns USB_STATUS_EP_BUSY.

In order to synchronize, USBD_HID_WaitForTX() needs to be called. Another synchroniza-
tion method would be to periodically call USBD_HID_GetNumBytesRemToWrite() in order to
see how many bytes still need to be written (this method is preferred when a non-blocking
solution is necessary).

The content of the buffer pointed to by pData must not be changed until the transfer has
been completed.

A transfer which does not match the report size will not be accepted by the host.

When using multiple reports the first byte must contain the report ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

422 CHAPTER 11 Target API

11.5.2.13 USBD_HID_SetOnGetReportRequest()

Description

Allows to set a callback for the GET_REPORT command. The GET_REPORT command is sent
from the host to the device.

Prototype

void USBD_HID_SetOnGetReportRequest
 (USB_HID_HANDLE hInst,
 USB_HID_ON_GETREPORT_REQUEST_FUNC * pfOnGetReportRequest);

Parameters

Parameter Description

hInst Handle to an HID instance.

pfOnGetReportRequest
Pointer to a function of type USB_HID_ON_GETREPORT_RE-
QUEST_FUNC.

Additional information

See the description of USB_HID_ON_GETREPORT_REQUEST_FUNC for more details.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

423 CHAPTER 11 Target API

11.5.2.14 USBD_HID_SetOnSetReportRequest()

Description

Allows to set a callback for the SET_REPORT control command. The SET_REPORT command
is sent from the host to the device.

Prototype

void USBD_HID_SetOnSetReportRequest
 (USB_HID_HANDLE hInst,
 USB_HID_ON_SETREPORT_REQUEST_FUNC * pfOnSetReportRequest);

Parameters

Parameter Description

hInst Handle to an HID instance.

pfOnSetReportRequest
Pointer to a function of type USB_HID_ON_SETREPORT_RE-
QUEST_FUNC .

Additional information

See the description of USB_HID_ON_SETREPORT_REQUEST_FUNC for more details.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

424 CHAPTER 11 Target API

11.5.2.15 USBD_HID_ReadReport()

Description

Reads report data that was sent from the host via the control EP. This function returns
immediately and will not wait for a report send from the host. Can be used in combination
with a callback function installed with USBD_HID_SetOnSetReportRequest().

Prototype

int USBD_HID_ReadReport(USB_HID_HANDLE hInst,
 void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

hInst Handle to a HID instance.
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Return value

> 0 Number of bytes that have been read.
= 0 No report was sent from the host.
< 0 Error.

Additional information

The host will always send transmissions which match the report size. In most cases it makes
sense to set NumBytes to the report size.

When using multiple reports the first byte will contain the report ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

425 CHAPTER 11 Target API

11.5.3 Data structures

11.5.3.1 USB_HID_INIT_DATA_EX

Description

Initialization structure that is needed when adding a HID interface to emUSB-Device.

Type definition

typedef struct {
 U16 Flags;
 U8 EPIn;
 U8 EPOut;
 const U8 * pReport;
 U16 NumBytesReport;
 U16 BuffSize;
 U8 * pBuff;
 const char * pInterfaceName;
} USB_HID_INIT_DATA_EX;

Structure members

Member Description

Flags Reserved, must be set to 0.
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.
pReport Pointer to a report descriptor.
NumBytesReport Size of the HID report descriptor in bytes.

BuffSize
Size of the buffer pointed to by pBuff. Must be at least the
size of the output report.

pBuff
Pointer to a buffer for receiving reports from the host via
endpoint 0 (Set_Report request).

pInterfaceName Name of the interface. May be NULL.

Additional information

To be able to receive input reports from the host either an endpoint must be allocated
(EPOut) or a buffer must be provided (BufferSize, pBuff). If both EPOut = 0 and BufferSize
= 0, then USBD_HID_Read() will not work and all requests from the host will be stalled by
the USB stack. To receive Set Feature Report control commands the buffer is required.

pReport points to a report descriptor. A report descriptor is a structure which is used to
transmit HID control data to and from a human interface device. A report descriptor de-
fines the format of a report and is composed of report items that define one or more top-
level collections. Each collection defines one or more HID reports. Refer to Universal Serial
Bus Specification, 1.0 Version and the latest version of the HID Usage Tables guide for
detailed information about HID input, output and feature reports. The USB Implementers
Forum provide an application that helps to build and modify HID report descriptors. The
HID Descriptor Tool can be downloaded from: www.usb.org/developers/hidpage/. The re-
port descriptor used in the supplied example application HID_Echo1.c should match to the
requirements of most “vendor specific HID” applications. The report size is defined to 64
bytes. As mentioned before, interrupt endpoints are limited to at most one packet of at
most 64 bytes per frame (on full speed devices).

Example 1 (configure to receive reports via separate endpoint)

static void _AddHID(void) {
 USB_HID_INIT_DATA_EX InitData;
 U8 Interval = 10;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

426 CHAPTER 11 Target API

 static U8 acBuffer[64];

 memset(&InitData, 0, sizeof(InitData));
 InitData.EPIn = USB_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_INT, Interval, NULL, 0);
 InitData.EPOut = USB_AddEP(USB_DIR_OUT, USB_TRANSFER_TYPE_INT, Interval,
 &acBuffer[0], sizeof(acBuffer));
 InitData.pReport = _aHIDReport;
 InitData.NumBytesReport = sizeof(_aHIDReport);
 InitData.pInterfaceName = "HID interface";
 USBD_HID_AddEx(&InitData);
}

Example 2 (configure to receive reports via endpoint 0)

static void _AddHID(void) {
 USB_HID_INIT_DATA_EX InitData;
 U8 Interval = 10;
 static U8 acBuffer[64];

 memset(&InitData, 0, sizeof(InitData));
 InitData.EPIn = USB_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_INT, Interval, NULL, 0);
 InitData.pBuff = &acBuffer[0];
 InitData.BufferSize = sizeof(acBuffer);
 InitData.pReport = _aHIDReport;
 InitData.NumBytesReport = sizeof(_aHIDReport);
 InitData.pInterfaceName = "HID interface";
 USBD_HID_AddEx(&InitData);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

427 CHAPTER 11 Target API

11.5.3.2 USB_HID_INIT_DATA

Description

Initialization structure that is needed when adding a HID interface to emUSB-Device.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 const U8 * pReport;
 U16 NumBytesReport;
 U16 BuffSize;
 U8 * pBuff;
} USB_HID_INIT_DATA;

Structure members

Member Description

EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.
pReport Pointer to a report descriptor.
NumBytesReport Size of the HID report descriptor in bytes.

BuffSize
Size of the buffer pointed to by pBuff. Must be at least the
size of the output report.

pBuff
Pointer to a buffer for receiving reports from the host via
endpoint 0 (Set_Report request).

Additional information

To be able to receive input reports from the host either an endpoint must be allocated
(EPOut) or a buffer must be provided (BufferSize, pBuff). If both EPOut = 0 and BufferSize
= 0, then USBD_HID_Read() will not work and all requests from the host will be stalled by
the USB stack. To receive Set Feature Report control commands the buffer is required.

pReport points to a report descriptor. A report descriptor is a structure which is used to
transmit HID control data to and from a human interface device. A report descriptor de-
fines the format of a report and is composed of report items that define one or more top-
level collections. Each collection defines one or more HID reports. Refer to Universal Serial
Bus Specification, 1.0 Version and the latest version of the HID Usage Tables guide for
detailed information about HID input, output and feature reports. The USB Implementers
Forum provide an application that helps to build and modify HID report descriptors. The
HID Descriptor Tool can be downloaded from: www.usb.org/developers/hidpage/. The re-
port descriptor used in the supplied example application HID_Echo1.c should match to the
requirements of most “vendor specific HID” applications. The report size is defined to 64
bytes. As mentioned before, interrupt endpoints are limited to at most one packet of at
most 64 bytes per frame (on full speed devices).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

428 CHAPTER 11 Target API

11.5.4 Type definitions

11.5.4.1 USB_HID_ON_GETREPORT_REQUEST_FUNC

Description

Callback function description which is set via USBD_HID_SetOnGetReportRequest().

Type definition

typedef int USB_HID_ON_GETREPORT_REQUEST_FUNC(USB_HID_REPORT_TYPE ReportType,
 unsigned ReportId,
 const U8 * * pData,
 U32 * pNumBytes);

Parameters

Parameter Description

ReportType

HID report type, possible values are:
• USB_HID_REPORT_TYPE_INPUT
• USB_HID_REPORT_TYPE_OUTPUT
• USB_HID_REPORT_TYPE_FEATURE

ReportId
The ID of the report for which the GET_REPORT request has
been sent.

pData
 in Pointer to a pointer to the data to send via GET_REPORT
request.

pNumBytes
IN: Number of bytes requested. Out: Number of bytes that
shall be sent.

Return value

= 0 No data available. The stack will send a zero length packet as a response.
= 1 Data is available. The stack will send data to the host.
< 0 Data is handled by user application. USBD_WriteEP0FromISR() needs to be

called from user context.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

429 CHAPTER 11 Target API

11.5.4.2 USB_HID_ON_SETREPORT_REQUEST_FUNC

Description

Callback function description which is set via USBD_HID_SetOnSetReportRequest(). The
function is called after a SET_REPORT command was sent from the host via the control
endpoint. The report should be read using USBD_HID_ReadReport().

Type definition

typedef void USB_HID_ON_SETREPORT_REQUEST_FUNC(USB_HID_REPORT_TYPE ReportType,
 unsigned ReportId,
 U32 NumBytes);

Parameters

Parameter Description

ReportType

HID report type, possible values are:
• USB_HID_REPORT_TYPE_INPUT
• USB_HID_REPORT_TYPE_OUTPUT
• USB_HID_REPORT_TYPE_FEATURE

ReportId
The ID of the report for which the SET_REPORT request has
been sent.

Additional information

In case no EP Out was used with the HID interface, and a USBD_HID_Read() or USB-
D_HID_ReadOverlapped() is currently executed, then this function is not called and the
read function is serviced instead.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

430 CHAPTER 11 Host API

11.6 Host API
This chapter describes the functions that can be used with host side (Windows, Linux,
macOS). These functions are only required if the emUSB-Device-HID component is used
to design a vendor specific HID.

General information

To communicate with the target USB-HID stack, the example application project includes
a USB-HID specific source and header file (USBHID.c, USBHID.h). These files contain API
functions to communicate with the USB-HID target through the host HID driver.

Purpose of the USB Host API functions

To have an easy start-up when writing an application on the host side, these API functions
have simple interfaces and handle all operations that need to be done to communicate with
the target USB-HID stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

431 CHAPTER 11 Host API

11.6.1 Host API function list

Function Description

API functions

USBHID_Close() Close the connection to an open device.
USBHID_Open() Opens a handle to a device.

USBHID_Init()
Sets the specific vendor page, initializes
the USB HID User API and retrieves the in-
formation of the HID device.

USBHID_Exit()
Closes the connection to all open devices
and de-initializes the HID module.

USBHID_Read()
Reads an input report from device via the
interrupt endpoint.

USBHID_Write() Writes an output report to device.
USBHID_GetNumAvailableDevices() Returns the number of available devices.

USBHID_GetProductName()
Stores the name of the device into
pBuffer.

USBHID_GetInputReportSize() Returns the input report size of the device.

USBHID_GetOutputReportSize()
Returns the output report size of the de-
vice.

USBHID_GetProductId() Returns the USB product ID of the device.
USBHID_GetVendorId() Returns the USB vendor ID of the device.
USBHID_RefreshList() Refreshes the connection info list.

USBHID_SetVendorPage()
Sets the vendor page so that all HID de-
vices with the specified page will be found.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

432 CHAPTER 11 Host API

11.6.2 HID Host API functions

11.6.2.1 USBHID_Close()

Description

Close the connection to an open device.

Prototype

void USBHID_Close(unsigned Id);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

433 CHAPTER 11 Host API

11.6.2.2 USBHID_Open()

Description

Opens a handle to a device.

Prototype

int USBHID_Open(unsigned Id);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

Return value

0 O.K. Opening was successful or already opened.
1 Error. Handle to the device could not opened.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

434 CHAPTER 11 Host API

11.6.2.3 USBHID_Init()

Description

Sets the specific vendor page, initializes the USB HID User API and retrieves the information
of the HID device.

Prototype

void USBHID_Init(U8 VendorPage);

Parameters

Parameter Description

VendorPage
This parameter specifies the lower 8 bits of the vendor-spe-
cific usage page number. It must be identical on both device
and host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

435 CHAPTER 11 Host API

11.6.2.4 USBHID_Exit()

Description

Closes the connection to all open devices and de-initializes the HID module.

Prototype

void USBHID_Exit(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

436 CHAPTER 11 Host API

11.6.2.5 USBHID_Read()

Description

Reads an input report from device via the interrupt endpoint.

Prototype

int USBHID_Read(unsigned Id,
 void * pBuffer,
 unsigned NumBytes);

Return value

On Error: -1, No valid device Id used or the report size does not match with device. On
success: Number of bytes that have be written.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

437 CHAPTER 11 Host API

11.6.2.6 USBHID_Write()

Description

Writes an output report to device.

Prototype

int USBHID_Write(unsigned Id,
 const void * pBuffer,
 unsigned NumBytes);

Return value

On Error: -1, No valid device Id used or the report size does not match with device. On
success: Number of bytes that have be written.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

438 CHAPTER 11 Host API

11.6.2.7 USBHID_GetNumAvailableDevices()

Description

Returns the number of available devices.

Prototype

unsigned USBHID_GetNumAvailableDevices(U32 * pMask);

Parameters

Parameter Description

pMask
Pointer to unsigned integer value which is used to store the
bit mask of available devices. This parameter may be NULL.

Return value

Number of available devices.

Additional information

pMask will be filled by this routine. It shall be interpreted as a bit mask where a bit set
means this device is available. For example, device 0 and device 2 are available, if pMask
has the value 0x00000005.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

439 CHAPTER 11 Host API

11.6.2.8 USBHID_GetProductName()

Description

Stores the name of the device into pBuffer.

Prototype

int USBHID_GetProductName(unsigned Id,
 char * pBuffer,
 unsigned NumBytes);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

pBuffer Pointer to a buffer for the product name.
NumBytes Size of the buffer in bytes.

Return value

0 An error occurred.
1 Success.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

440 CHAPTER 11 Host API

11.6.2.9 USBHID_GetInputReportSize()

Description

Returns the input report size of the device.

Prototype

int USBHID_GetInputReportSize(unsigned Id);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

Return value

= 0 An error occurred.
≠ 0 Size of the report in bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

441 CHAPTER 11 Host API

11.6.2.10 USBHID_GetOutputReportSize()

Description

Returns the output report size of the device.

Prototype

int USBHID_GetOutputReportSize(unsigned Id);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

Return value

= 0 An error occurred.
≠ 0 Size of the report in bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

442 CHAPTER 11 Host API

11.6.2.11 USBHID_GetProductId()

Description

Returns the USB product ID of the device.

Prototype

U16 USBHID_GetProductId(unsigned Id);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

Return value

= 0 An error occurred.
≠ 0 Product ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

443 CHAPTER 11 Host API

11.6.2.12 USBHID_GetVendorId()

Description

Returns the USB vendor ID of the device.

Prototype

U16 USBHID_GetVendorId(unsigned Id);

Parameters

Parameter Description

Id
Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumAvailableDevices().

Return value

= 0 An error occurred.
≠ 0 Vendor ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

444 CHAPTER 11 Host API

11.6.2.13 USBHID_RefreshList()

Description

Refreshes the connection info list.

Prototype

void USBHID_RefreshList(void);

Additional information

Note that any open handles will be closed while refreshing the connection list.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

445 CHAPTER 11 Host API

11.6.2.14 USBHID_SetVendorPage()

Description

Sets the vendor page so that all HID devices with the specified page will be found.

Prototype

void USBHID_SetVendorPage(U8 Page);

Parameters

Parameter Description

Page
This parameter specifies the lower 8 bits of the vendor-spe-
cific usage page number. It must be identical on both device
and host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 12

Printer Class

This chapter describes how to get emUSB-Device up and running as a printer device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

447 CHAPTER 12 Overview

12.1 Overview
The Printer Class is an abstract USB class protocol defined by the USB Implementers Forum.
This protocol delivers the existing printing command-sets to a printer over USB.

12.1.1 Configuration
The configuration section will later on be modified to match the real application. For the
purpose of getting emUSB-Device up and running as well as doing an initial test, the con-
figuration as delivered should not be modified.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

448 CHAPTER 12 The example application

12.2 The example application
The start application (in the Application subfolder) is a simple data sink, which can be
used to test emUSB-Device. The application receives data bytes from the host which it
displays in the terminal I/O window of the debugger.

Part of source code of USB_Printer.c:

<...>
/***
*
* _GetDeviceIdString
*
*/
static const char * _GetDeviceIdString(void) {
 const char * s = "CLASS:PRINTER;MODEL:HP LaserJet 6MP;"
 "MANUFACTURER:Hewlett-Packard;"
 "DESCRIPTION:Hewlett-Packard LaserJet 6MP Printer;"
 "COMMAND SET:PJL,MLC,PCLXL,PCL,POSTSCRIPT;";
 return s;
}
/***
*
* _GetHasNoError
*
*/
static U8 _GetHasNoError(void) {
 return 1;
}
/***
*
* _GetIsSelected
*
*/
static U8 _GetIsSelected(void) {
 return 1;
}
/***
*
* _GetIsPaperEmpty
*
*/
static U8 _GetIsPaperEmpty(void) {
 return 0;
}
/***
*
* _OnDataReceived
*
*/
static int _OnDataReceived(const U8 * pData, unsigned NumBytes) {
 USB_MEMCPY(_acData, pData, NumBytes);
 _acData[NumBytes] = 0;
 printf(_acData);
 return 0;
}
/***
*
* _OnReset
*
*/
static void _OnReset(void) {
}
static USB_PRINTER_API _PrinterAPI = {
 _GetDeviceIdString,
 _OnDataReceived,
 _GetHasNoError,

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

449 CHAPTER 12 The example application

 _GetIsSelected,
 _GetIsPaperEmpty,
 _OnReset
};
/***
*
* Public code
*
**
*/
static const USB_DEVICE_INFO _DeviceInfo = {
 0x8765, // VendorId
 0x2114, // ProductId, should be unique for this sample
 "Vendor", // VendorName
 "Printer", // ProductName
 "12345678901234567890" // SerialNumber
};
/***
*
* MainTask
*
* Function description
* USB handling task.
* Modify to implement the desired protocol
*/
void MainTask(void) {
 USBD_Init();
 USBD_SetDeviceInfo(&_DeviceInfo);
 USB_PRINTER_Init(&_PrinterAPI);
 USBD_Start();
 while (1) {
 //
 // Wait for configuration
 //
 while ((USBD_GetState() & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED))
 != USB_STAT_CONFIGURED)
 {
 BSP_ToggleLED(0);
 USB_OS_Delay(50);
 }
 //
 // Receive and process data.
 //
 USB_PRINTER_Task();
 }
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

450 CHAPTER 12 Target API

12.3 Target API
This chapter describes the functions and data structures that can be used with the target
application.

12.3.1 Interface function list

Function Description

API functions

USB_PRINTER_Init() Initializes the printer module.

USB_PRINTER_Task()
Processes the requests received from the
USB Host.

USB_PRINTER_TaskEx()
Processes the requests received from the
USB Host.

USB_PRINTER_ConfigIRQProcessing()
Configure printer class to process received
data in USB interrupt.

USB_PRINTER_Read() Reads data from the host.

USB_PRINTER_ReadTimed()
Reads data from the host with a given
timeout.

USB_PRINTER_Receive() Reads data from host.

USB_PRINTER_ReceiveTimed()
Reads data from host with a given time-
out.

USB_PRINTER_Write() Writes data to the host.

USB_PRINTER_WriteTimed()
Writes data to the host within a given
timeout.

USB_PRINTER_SetOnVendorRequest()
Sets a callback function that is called when
a setup vendor request is sent from the
host to the printer.

USB_PRINTER_SetClass()
Sets a custom class/subclass/protocol for
the printer class.

Data structures

USB_PRINTER_API
Initialization structure that is needed when
adding a printer interface to emUSB-De-
vice.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

451 CHAPTER 12 Target API

12.3.2 API functions

12.3.2.1 USB_PRINTER_Init()

Description

Initializes the printer module.

Prototype

void USB_PRINTER_Init(USB_PRINTER_API * pAPI);

Parameters

Parameter Description

pAPI
Pointer to an API table that contains all callback functions
that are necessary for handling the functionality of a printer.

Additional information

After the initialization of general emUSB-Device, this is the first function that needs to be
called when the printer class is used with emUSB-Device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

452 CHAPTER 12 Target API

12.3.2.2 USB_PRINTER_Task()

Description

Processes the requests received from the USB Host.

Prototype

void USB_PRINTER_Task(void);

Additional information

This function blocks as long as the USB device is connected to USB host. It handles the
requests by calling the functions registered in the call to USB_PRINTER_Init(). Do not call
this function if you used USB_PRINTER_ConfigIRQProcessing().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

453 CHAPTER 12 Target API

12.3.2.3 USB_PRINTER_TaskEx()

Description

Processes the requests received from the USB Host. Uses overlapped read operation for
higher performance.

Prototype

void USB_PRINTER_TaskEx(void);

Additional information

This function blocks as long as the USB device is connected to USB host. It handles the
requests by calling the function registered in the call to USB_PRINTER_Init().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

454 CHAPTER 12 Target API

12.3.2.4 USB_PRINTER_ConfigIRQProcessing()

Description

Configure printer class to process received data in USB interrupt. Must be called after
USB_PRINTER_Init() and before USBD_Start(). After calling this function, USB_PRIN-
TER_Task() should never be called.

Prototype

void USB_PRINTER_ConfigIRQProcessing(void);

Additional information

The printer API function USB_PRINTER_API -> pfOnDataReceived is called within the USB
interrupt context and must not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

455 CHAPTER 12 Target API

12.3.2.5 USB_PRINTER_Read()

Description

Reads data from the host.

Prototype

int USB_PRINTER_Read(void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Return value

= NumBytes Success.
< NumBytes Error occurred.

Additional information

This function blocks a task until all data has been read. In case of a reset or a disconnect
USB_STATUS_ERROR is returned.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

456 CHAPTER 12 Target API

12.3.2.6 USB_PRINTER_ReadTimed()

Description

Reads data from the host with a given timeout.

Prototype

int USB_PRINTER_ReadTimed(void * pData,
 unsigned NumBytes,
 unsigned ms);

Parameters

Parameter Description

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

ms
Timeout in milliseconds. A zero value results in an infinite
timeout.

Return value

= NumBytes Success.
≥ 0, < NumBytes Number of bytes that have been read within the given timeout.
< 0 Error.

Additional information

This function blocks a task until all data has been read or a timeout occurs. In case of a
reset or a disconnect USB_STATUS_ERROR is returned.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

457 CHAPTER 12 Target API

12.3.2.7 USB_PRINTER_Receive()

Description

Reads data from host. The function blocks until any data has been received. In contrast
to USB_PRINTER_Read() this function does not wait for all of NumBytes to be received, but
returns after the first packet has been received.

Prototype

int USB_PRINTER_Receive(void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Return value

> 0 Number of bytes that have been read.
= 0 Zero packet received (not every controller supports this!) or the target was dis-

connected during the function call.
< 0 Error.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USB_PRIN-
TER_Receive() will return as much data as is currently available up to the size of the buffer
specified. This function also returns when target is disconnected from host or when a USB
reset occurred, it will then return the number of bytes read.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

458 CHAPTER 12 Target API

12.3.2.8 USB_PRINTER_ReceiveTimed()

Description

Reads data from host with a given timeout. The function blocks until any data has been
received. In contrast to USB_PRINTER_ReadTimed() this function does not wait for all of
NumBytes to be received, but returns after the first packet has been received or after the
timeout has been reached.

Prototype

int USB_PRINTER_ReceiveTimed(void * pData,
 unsigned NumBytes,
 unsigned ms);

Parameters

Parameter Description

pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.
ms Timeout in milliseconds.

Return value

> 0 Number of bytes that have been read within the given timeout.
= 0 Zero packet received (not every controller supports this!) or the target was dis-

connected during the function call.
< 0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USB_PRIN-
TER_ReceiveTimed() will return as much data as is currently available up to the size of
the buffer specified within the specified timeout. This function also returns when target is
disconnected from host or when a USB reset occurred, it will then return the number of
bytes read.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

459 CHAPTER 12 Target API

12.3.2.9 USB_PRINTER_Write()

Description

Writes data to the host.

Prototype

int USB_PRINTER_Write(const void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

pData Pointer to a buffer that contains the data to be sent.
NumBytes Number of bytes to write.

Return value

≥ 0 Number of bytes that have been written.
< 0 Error.

Additional information

This function is blocking.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

460 CHAPTER 12 Target API

12.3.2.10 USB_PRINTER_WriteTimed()

Description

Writes data to the host within a given timeout.

Prototype

int USB_PRINTER_WriteTimed(const void * pData,
 unsigned NumBytes,
 int ms);

Parameters

Parameter Description

pData Pointer to a buffer that contains the data to be sent.
NumBytes Number of bytes to write.

ms
Timeout in milliseconds. A zero value results in an infinite
timeout. If ms is < 0, the function does not block and may
return USB_STATUS_EP_BUSY.

Return value

> 0 Number of bytes that have been written before timeout.
= 0 Timeout occurred.
< 0 Error.

Additional information

If ms ≥ 0, this function blocks the task until all data has been written or a timeout occurred.
In case of a reset or a disconnect USB_STATUS_ERROR is returned.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

461 CHAPTER 12 Target API

12.3.2.11 USB_PRINTER_SetOnVendorRequest()

Description

Sets a callback function that is called when a setup vendor request is sent from the host to
the printer. The callback must return “0” if it handled the request and “1” if it did not.

Prototype

void USB_PRINTER_SetOnVendorRequest(USB_ON_CLASS_REQUEST * pfOnVendorRequest);

Parameters

Parameter Description

pfOnVendorRequest Pointer to the callback function.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD_WriteEP0FromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef int USB_ON_CLASS_REQUEST(const USB_SETUP_PACKET * pSetupPacket);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

462 CHAPTER 12 Target API

12.3.2.12 USB_PRINTER_SetClass()

Description

Sets a custom class/subclass/protocol for the printer class. Can be used to interface with
proprietary manufacturer drivers.

Prototype

void USB_PRINTER_SetClass(U8 Class,
 U8 SubClass,
 U8 Protocol);

Parameters

Parameter Description

Class USB class ID overwrite (printer class default is 0x07)
SubClass USB sub-class ID overwrite (printer class default is 0x01)

Protocol
USB protocol ID overwrite (emUSB-Device printer class de-
fault is 0x02)

Additional information

This function must be called after USB_PRINTER_Init() and before USBD_Start().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

463 CHAPTER 12 Target API

12.3.2.13 USB_PRINTER_API

Description

Initialization structure that is needed when adding a printer interface to emUSB-Device.
It holds pointers to callback functions the interface invokes when it processes a request
from the USB host.

Type definition

typedef struct {
 USB_PRINTER_GET_DEVICE_ID_STRING * pfGetDeviceIdString;
 USB_PRINTER_ON_DATA_RECEIVED * pfOnDataReceived;
 USB_PRINTER_GET_HAS_NO_ERROR * pfGetHasNoError;
 USB_PRINTER_GET_IS_SELECTED * pfGetIsSelected;
 USB_PRINTER_GET_IS_PAPER_EMPTY * pfGetIsPaperEmpty;
 USB_PRINTER_ON_RESET * pfOnReset;
} USB_PRINTER_API;

Structure members

Member Description

pfGetDeviceIdString
The library calls this function when the USB host requests
the printer’s identification string.

pfOnDataReceived This function is called when data arrives from the USB host.

pfGetHasNoError
This function should return a non-zero value if the printer
has no error.

pfGetIsSelected
This function should return a non-zero value if the printer is
selected

pfGetIsPaperEmpty
This function should return a non-zero value if the printer is
out of paper.

pfOnReset
The library calls this function if the USB host sends a soft re-
set command.

Additional information

Detailed information can be found in USB_PRINTER_API in detail on page 465.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

464 CHAPTER 12 Printer API

12.4 Printer API
This section describes the emUSB-Device Printer API in detail.

12.4.1 General information
The interface includes multiple callback functions which have to be set by the user appli-
cation. These functions are called by the emUSB-Device stack when the host makes the
corresponding enquiries.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

465 CHAPTER 12 Printer API

12.4.2 USB_PRINTER_API in detail

12.4.2.1 USB_PRINTER_GET_DEVICE_ID_STRING

Description

The library calls this function when the USB host requests the printer’s identification string.
This string shall confirm to the IEEE 1284 Device ID Syntax.

Type definition

typedef const char * USB_PRINTER_GET_DEVICE_ID_STRING(void);

Return value

Pointer to the ID string.

Additional information

The return string shall confirm to the IEEE 1284 Device ID.

Example

"CLASS:PRINTER;
MODEL:HP LaserJet 6MP;
MANUFACTURER:Hewlett-Packard;
DESCRIPTION:Hewlett-Packard LaserJet 6MP Printer;
COMMAND SET:PJL,MLC,PCLXL,PCL,POSTSCRIPT;"

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

466 CHAPTER 12 Printer API

12.4.2.2 USB_PRINTER_ON_DATA_RECEIVED

Description

This function is called when data arrives from USB host.

Type definition

typedef int USB_PRINTER_ON_DATA_RECEIVED(const U8 * pData,
 unsigned NumBytes);

Parameters

Parameter Description

pData Pointer to the data.
NumBytes Data length.

Return value

= 0 More data can be accepted
≠ 0 No more data can be accepted, in this case a stall will be sent back to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

467 CHAPTER 12 Printer API

12.4.2.3 USB_PRINTER_GET_HAS_NO_ERROR

Description

This function should return a non-zero value if the printer has no error.

Type definition

typedef U8 USB_PRINTER_GET_HAS_NO_ERROR(void);

Return value

= 0 Error condition present.
≠ 0 No error.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

468 CHAPTER 12 Printer API

12.4.2.4 USB_PRINTER_GET_IS_SELECTED

Description

This function should return a non-zero value if the printer is selected.

Type definition

typedef U8 USB_PRINTER_GET_IS_SELECTED(void);

Return value

= 0 Not selected.
≠ 0 Selected.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

469 CHAPTER 12 Printer API

12.4.2.5 USB_PRINTER_GET_IS_PAPER_EMPTY

Description

This function should return a non-zero value if the printer is out of paper.

Type definition

typedef U8 USB_PRINTER_GET_IS_PAPER_EMPTY(void);

Return value

= 0 Has paper.
≠ 0 Out of paper.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

470 CHAPTER 12 Printer API

12.4.2.6 USB_PRINTER_ON_RESET

Description

The library calls this function if the USB host sends a soft reset command.

Type definition

typedef void USB_PRINTER_ON_RESET(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 13

IP-over-USB (IP)

This chapter gives a general overview of the IP component and describes how to get the
IP component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

472 CHAPTER 13 Overview

13.1 Overview
The IP component is a very convenient package when you need to use IP-based protocols
over USB with different host operating systems. It consist of two different components -
RNDIS and CDC-ECM Combined with the smart capabilities of emUSB-Device-IP to form
a cross-platform USB to Ethernet device that works on every common Host OS that can
handle USB devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

473 CHAPTER 13 Using only RNDIS or CDC-ECM

13.2 Using only RNDIS or CDC-ECM
Main problem between different Host OSes is that either one IP-over-USB class is supported
which is then not supported on the other Host OS.

Host OS/Protocol RNDIS CDC-ECM

Windows x -
Linux x x
macOS - x
Free/Net/OpenBSD x x

Linux and all BSD distribution work with any IP-over-USB interface and therefore can be
used with either RNDIS or CDC-ECM. macOS does not support RNDIS, third party tools may
work but are not fully compatible and using a new version of macOS the driver or package
may no longer work properly. Windows cannot handle CDC-ECM out-of-the-box. There
are third-party drivers which can handle this but the driver package has to be licensed.
Furthermore a new inf-file needs to be written for your device and as a consequence of
that the driver package itself needs to be certified which involves further costs. Adding new
CDC-ECM devices to the inf-file forces to resign that package once again.

SEGGER’s IP-over-USB solution eliminates these limitations.

13.2.1 Working with emUSB-Device-IP
A IP-over-USB device connected to a PC running the Windows operating system is listed
as a separate network interface in the “Network Connections” window as shown in this
screenshot:

The ping command line utility can be used to test the connection to target as shown below.
If the connection is correctly established the number of the lost packets should be 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

474 CHAPTER 13 Using only RNDIS or CDC-ECM

On macOS IP-over-USB is similarly available:

And on Ubuntu:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

475 CHAPTER 13 Configuration

13.3 Configuration

13.3.1 Initial Configuration
To get emUSB-Device-IP up and running as well as doing an initial test, the configuration
as delivered should not be modified.

13.3.2 Final configuration
The configuration must only be modified when emUSB-Device-IP is used in your final prod-
uct. Refer to section emUSB-Device Configuration on page 50 to get detailed information
about the general emUSB-Device configuration functions which have to be adapted.

Note

Due to an issue in Windows when using IP-over-USB within a multi-interface device
the IP-over-USB interface must be added first. Otherwise it will not be recognized.

Note

Due to an issue with Windows 7 USB 3.0 drivers USBD_EnableIAD() must be used,
even if the device containing the IP-over-USB interface is not a multi-interface device.
Otherwise the device will not be recognized on USB 3.0 ports of a PC running Windows
7.

13.3.3 Class specific configuration
emUSB-Device-IP specific device information must be provided by the application via the
function USBD_IP_Add(). A sample how to use this function can be found in the IP_Con-
fig_IP_over_USB.c. The file is located in the Sample\IP directory of the emUSB-Device
shipment. The IP_Config_IP_over_USB.c provides a ready to use layer and configuration
file to be used with embOS and emNet.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

476 CHAPTER 13 Running the sample application

13.4 Running the sample application
The sample application can be found in the Sample\IP\IP_Config_IP_over_USB.c file of
the emUSB-Device shipment. In order to use the sample application the SEGGER emNet
middleware component is required. To test the emUSB-Device-IP component any of the
emNet sample applications can be used in combination with IP_Config_IP_over_USB.c .
After the sample application is started the USB cable should be connected to the PC and
the chosen emNet sample can be tested by using the URL “usb.local”. The given IP_Con-
fig_IP_over_USB.c contains furhter information how the interfaces between emNet and
Host PC are connected. In most cases a DHCP-Server for the PC is necessary. In order to
recognize the emNet interface a dedicated name service is used to fascilate the handling.
Please refer to the sample for further details.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

477 CHAPTER 13 emUSB-Device-IP + emNet as a "USB
Webserver"

13.5 emUSB-Device-IP + emNet as a "USB Webserver"
This method of using emUSB-Device-IP provides a unique customer experience where a
USB device can provide a custom web page or any other service through which a customer
can interact with the device.

Initially the PC recognizes an RNDIS device. In case of Windows XP and Vista a driver will be
necessary (the corresponding inf-file can be found in the Windows\USB\RNDIS\WinXP_Vista
folder), Windows 7 and above as well as Linux recognize RNDIS automatically. RNDIS from
the viewpoint of the PC is a normal Network Interface Controller (NIC) and the PC handles it
as such. The default behaviour is to request an IP address from a DHCP server. The PC re-
trieves an IP address from the DHCP-Server in the device. In our standard sample code the
device has the local IP 100.127.<USBAddr>.1 and the PC will get 100.127.<USBAddr>.2
from the DHCP server. With this the configuration is complete and the user can access the
web-interface located on the USB device via the DNS entry - “usb.local”.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

478 CHAPTER 13 Target API

13.6 Target API
Function Description

API functions

USBD_IP_Add()
Adds support for the IP component to USB
stack.

USBD_IP_Task() Obsolete.
Data structures

USB_IP_INIT_DATA
Structure which stores the parameters of
the IP component.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

479 CHAPTER 13 Target API

13.6.1 API functions

13.6.1.1 USBD_IP_Add()

Description

Adds support for the IP component to USB stack. Internally CDC-ECM and RNDIS is initial-
ized. The IP component switches automatically between the two.

Prototype

void USBD_IP_Add(const USB_IP_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to a filled USB_IP_INIT_DATA structure data.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

480 CHAPTER 13 Target API

13.6.1.2 USBD_IP_Task()

Description

Obsolete. Returns when USB is disconnected.

Prototype

void USBD_IP_Task(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

481 CHAPTER 13 Target API

13.6.2 Data structures

13.6.2.1 USB_IP_INIT_DATA

Description

Structure which stores the parameters of the IP component.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
 const USB_IP_NI_DRIVER_API * pDriverAPI;
 USB_IP_NI_DRIVER_DATA DriverData;
 const USB_RNDIS_DEVICE_INFO * pRndisDevInfo;
} USB_IP_INIT_DATA;

Structure members

Member Description

EPIn Bulk IN endpoint to send data packets to the USB host.

EPOut
Bulk OUT endpoint to receive data packets from the USB
host.

EPInt Interrupt IN endpoint to send notifications to the USB host.
pDriverAPI Network interface driver API.
DriverData Data passed at initialization to low-level driver.
pRndisDevInfo Pointer to a filled USB_RNDIS_DEVICE_INFO structure.

Additional information

This structure holds the endpoints that should be used with the IP component. Refer to
USBD_AddEP() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 14

Remote NDIS (RNDIS)

This chapter gives a general overview of the Remote Network Driver Interface Specification
class and describes how to get the RNDIS component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

483 CHAPTER 14 Overview

14.1 Overview
The Remote Network Driver Interface Specification (RNDIS) is a Microsoft proprietary USB
class protocol which can be used to create a virtual Ethernet connection between a USB
device and a host PC. A TCP/IP stack like emNet is required on the USB device side to
handle the actual IP communication. Any available IP protocol (UDP, TPC, FTP, HTTP, etc.)
can be used to exchange data. On a typical Cortex-M CPU running at 120 MHz, a transfer
speed of about 5 MB/s can be achieved when using a high-speed USB connection.

USB RNDIS is supported by all Windows operating systems starting with Windows XP, as
well as by Linux with kernel versions newer than 2.6.34. An .inf file is required for the in-
stallation on Microsoft Windows systems older than Windows 7. The emUSB-Device-RNDIS
package includes .inf files for Windows versions older than Windows 7. macOS will require
a third-party driver to work with RNDIS, which can be downloaded from here: https://
joshuawise.com/horndis which will only work for certain macOS versions.

emUSB-Device-RNDIS contains the following components:
• Generic USB handling
• RNDIS device class implementation
• Network interface driver which uses emNet as TCP/IP stack.
• A sample application demonstrating how to work with RNDIS.

14.1.1 Working with RNDIS
Any USB RNDIS device connected to a PC running the Windows operating system is listed
as a separate network interface in the “Network Connections” window as shown in this
screenshot:

The ping command line utility can be used to test the connection to target as shown below.
If the connection is correctly established the number of the lost packets should be 0.

14.1.2 Additional information
More technical details about RNDIS can be found here:

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-
remote-ndis--rndis-

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://joshuawise.com/horndis
https://joshuawise.com/horndis
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-remote-ndis--rndis-
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-remote-ndis--rndis-

484 CHAPTER 14 Configuration

14.2 Configuration

14.2.1 Initial Configuration
To get emUSB-Device-RNDIS up and running as well as doing an initial test, the configu-
ration as delivered should not be modified.

14.2.2 Final configuration
The configuration must only be modified when emUSB-Device is used in your final product.
Refer to section emUSB-Device Configuration on page 50 to get detailed information about
the general emUSB-Device configuration functions which have to be adapted.

Note

Due to an issue in Windows when using RNDIS within a multi-interface device the
RNDIS interface must be added first. Otherwise it will not be recognized.

Note

Due to an issue with Windows 7 USB 3.0 drivers USBD_EnableIAD() must be used,
even if the device containing the RNDIS interface is not a multi-interface device. Oth-
erwise the device will not be recognized on USB 3.0 ports of a PC running Windows 7.

14.2.3 Class specific configuration
RNDIS specific device information must be provided by the application via the function USB-
D_RNDIS_SetDeviceInfo() before the USB stack is started using USBD_Start(). A sample
how to use this function can be found in the IP_Config_RNDIS.c. The file is located in the
Sample\RNDIS directory of the emUSB-Device shipment. The IP_Config_RNDIS.c provides
a ready to use layer and configuration file to be used with embOS and emNet.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

485 CHAPTER 14 Running the sample application

14.3 Running the sample application
The sample application can be found in the Sample\RNDIS\IP_Config_RNDIS.c file of the
emUSB-Device shipment. In order to use the sample application the SEGGER emNet mid-
dleware component is required. To test the emUSB-Device-RNDIS component any of the
emNet sample applications can be used in combination with IP_Config_RNDIS.c . After the
sample application is started the USB cable should be connected to the PC and the chosen
emNet sample can be tested using the appropriate methods.

14.3.1 IP_Config_RNDIS.c in detail
The main part of the sample application is implemented in the function MainTask() which
runs as an independent task.

// _Connect() - excerpt from IP_Config_RNDIS.c
static int _Connect(unsigned IFaceId) {
 U32 ServerIpAddr;
 U32 SubnetMask;

 ServerIpAddr = IP_BYTES2ADDR(10, 0, 0, 10);
 SubnetMask = IP_BYTES2ADDR(0xff,0xff,0xff,0xf8);
 IP_SetAddrMaskEx(IFaceId, ServerIpAddr, SubnetMask);
 IP_DHCPS_ConfigPool(IFaceId, ServerIpAddr + 1, SubnetMask, 4);
 // Setup IP pool to distribute.
 IP_DHCPS_ConfigDNSAddr(IFaceId, &ServerIpAddr, 1);
 IP_DHCPS_Init(IFaceId);
 IP_DHCPS_Start(IFaceId);
 IP_NETBIOS_Init(IFaceId, _aNetNames, 0);
 // Init NetBIOS.
 IP_NETBIOS_Start(IFaceId);
 // Start NetBIOS.
 USBD_Init();
 USBD_SetDeviceInfo(&USB_DeviceInfo);
 USBD_RNDIS_SetDeviceInfo(&USB_RNDIS_DeviceInfo);
 //
 // Although we do not have a composite device, we enable IAD as a workaround
 // for the buggy Intel USB driver on Windows 7
 //
 USBD_EnableIAD();
 _AddRNDIS();
 USBD_Start();
 return 0; // Successfully connected.
}

The first step is to initialize the DHCP server component which assigns the IP address to
the PC side. The target is configured with the IP address 10.0.0.10. The DHCP server is
configured to distribute IP addresses starting from 10.0.0.11, therefore the PC will receive
the IP address 10.0.0.11. Then the USB stack is initialized and the RNDIS interface is added
to it. The function _AddRNDIS() configures all required endpoints.

// _AddRNDIS() - excerpt from IP_Config_RNDIS.c
static U8 _abReceiveBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
static void _AddRNDIS(void) {
 USB_RNDIS_INIT_DATA InitData;

 memset(&InitData, 0, sizeof(InitData));
 InitData.EPOut = USBD_AddEP(USB_DIR_OUT,
 USB_TRANSFER_TYPE_BULK,
 0,
 _abReceiveBuffer, sizeof(_abReceiveBuffer));
 InitData.EPIn = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_BULK,
 0, NULL, 0);
 InitData.EPInt = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_INT,
 5, NULL, 0);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

486 CHAPTER 14 Running the sample application

 InitData.pDriverAPI = &USB_Driver_IP_NI;
 InitData.DriverData.pDriverData = (void *)_IFaceId;
 USBD_RNDIS_Add(&InitData);
}

The size of _acReceiveBuffer buffer must be a multiple of USB max packet size. USB_Dri-
ver_IP_NI is the network interface driver which implements the connection to the IP stack.
Optionally a HW address may be configured here, which is assigned to the PC network
interface. If not set (pHWAddr = NULL), the HW address is generated automatically later
while setting the interface up.

The IP stack is configured to use the network interface driver of emUSB-Device-RNDIS. For
more information about the configuration of the IP stack refer to emNet manual.

// IP_X_Config() - excerpt from IP_Config.c
#include "USB_Driver_IP_NI.h"
void IP_X_Config(void) {
 <...>
 //
 // Add and configure the RNDIS driver.
 // The local IP address is 10.0.0.10/8.
 //
 IFaceId = IP_AddEtherInterface(&USB_IP_Driver);
 IP_SetIFaceConnectHook(IFaceId, _Connect);
 IP_SetIFaceDisconnectHook(IFaceId, _Disconnect);
 _IFaceId = IFaceId;
 <...>
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

487 CHAPTER 14 RNDIS + emNet as a "USB Webserver"

14.4 RNDIS + emNet as a "USB Webserver"
This method of using RNDIS provides a unique customer experience where a USB device
can provide a custom web page or any other service through which a customer can interact
with the device.

Initially the PC recognizes an RNDIS device. In case of Windows XP and Vista a driver will be
necessary, Windows 7 and above as well as Linux recognize RNDIS automatically. RNDIS
from the viewpoint of the PC is a normal Network Interface Controller (NIC) and the PC
handles it as such. The default behaviour is to request an IP address from a DHCP server.
The PC retrieves an IP address from the DHCP-Server in the device. In our standard sample
code the device has the local IP 10.0.0.10 and the PC will get 10.0.0.11 from the DHCP
server. With this the configuration is complete and the user can access the web-interface
located on the USB device via 10.0.0.10. To improve the ease-of-use NetBIOS can be used
to give the device an easily readable name.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

488 CHAPTER 14 Target API

14.5 Target API
Function Description

API functions

USBD_RNDIS_Add()
Adds an RNDIS-class interface to the USB
stack.

USBD_RNDIS_Task() Obsolete.

USBD_RNDIS_SetDeviceInfo()
Provides device information used during
USB enumeration to the stack.

Data structures

USB_RNDIS_INIT_DATA
Structure which stores the parameters of
the RNDIS interface.

USB_RNDIS_DEVICE_INFO

Device information that must be provid-
ed by the application via the function USB-
D_RNDIS_SetDeviceInfo() before the USB
stack is started using USBD_Start().

USB_IP_NI_DRIVER_API
This structure contains the callback func-
tions for the network interface driver.

USB_IP_NI_DRIVER_DATA
Configuration data passed to network in-
terface driver at initialization.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

489 CHAPTER 14 Target API

14.5.1 API functions

14.5.1.1 USBD_RNDIS_Add()

Description

Adds an RNDIS-class interface to the USB stack.

Prototype

void USBD_RNDIS_Add(const USB_RNDIS_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to initialization data.

Additional information

This function should be called after the initialization of the USB core to add an RNDIS
interface to emUSB-Device. The initialization data is passed to the function in the structure
pointed to by pInitData. Refer to USB_RNDIS_INIT_DATA for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

490 CHAPTER 14 Target API

14.5.1.2 USBD_RNDIS_Task()

Description

Obsolete. Returns when USB is disconnected.

Prototype

void USBD_RNDIS_Task(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

491 CHAPTER 14 Target API

14.5.1.3 USBD_RNDIS_SetDeviceInfo()

Description

Provides device information used during USB enumeration to the stack.

Prototype

void USBD_RNDIS_SetDeviceInfo(const USB_RNDIS_DEVICE_INFO * pDeviceInfo);

Parameters

Parameter Description

pDeviceInfo
Pointer to a USB_RNDIS_DEVICE_INFO structure containing
the device information. Must point to static data that is not
changed while the stack is running.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

492 CHAPTER 14 Target API

14.5.2 Data structures

14.5.2.1 USB_RNDIS_INIT_DATA

Description

Structure which stores the parameters of the RNDIS interface.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
 const USB_IP_NI_DRIVER_API * pDriverAPI;
 USB_IP_NI_DRIVER_DATA DriverData;
 unsigned DataInterfaceNo;
} USB_RNDIS_INIT_DATA;

Structure members

Member Description

EPIn Bulk IN endpoint for sending data to the host.
EPOut Bulk OUT endpoint for receiving data from the host.
EPInt Interrupt IN endpoint for sending status information.
pDriverAPI Pointer to the Network interface driver API.
DriverData Configuration data for the network interface driver.
DataInterfaceNo Internal use.

Additional information

This structure holds the endpoints that should be used by the RNDIS interface (EPin, EPOut
and EPInt). Refer to USBD_AddEP() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

493 CHAPTER 14 Target API

14.5.2.2 USB_RNDIS_DEVICE_INFO

Description

Device information that must be provided by the application via the function USB-
D_RNDIS_SetDeviceInfo() before the USB stack is started using USBD_Start().

Type definition

typedef struct {
 U32 VendorId;
 char * sDescription;
 U16 DriverVersion;
} USB_RNDIS_DEVICE_INFO;

Structure members

Member Description

VendorId

A 24-bit Organizationally Unique Identifier (OUI) of the ven-
dor. This is the same value as the one stored in the first 3
bytes of a HW (MAC) address. Only the least significant 24
bits of the returned value are used.

sDescription
0-terminated ASCII string describing the device. The string
is then sent to the host system.

DriverVersion
16-bit value representing the firmware version. The high-or-
der byte specifies the major version and the low-order byte
the minor version.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

494 CHAPTER 14 Target API

14.5.3 Driver interface

14.5.3.1 USB_IP_NI_DRIVER_API

Description

This structure contains the callback functions for the network interface driver.

Type definition

typedef struct {
 USB_IP_NI_INIT * pfInit;
 USB_IP_NI_GET_PACKET_BUFFER * pfGetPacketBuffer;
 USB_IP_NI_WRITE_PACKET * pfWritePacket;
 USB_IP_NI_SET_PACKET_FILTER * pfSetPacketFilter;
 USB_IP_NI_GET_LINK_STATUS * pfGetLinkStatus;
 USB_IP_NI_GET_LINK_SPEED * pfGetLinkSpeed;
 USB_IP_NI_GET_HWADDR * pfGetHWAddr;
 USB_IP_NI_GET_STATS * pfGetStats;
 USB_IP_NI_GET_MTU * pfGetMTU;
 USB_IP_NI_RESET * pfReset;
 USB_IP_NI_SET_WRITE_PACKET_FUNC * pfSetWritePacketFunc;
 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC * pfSetReportLinkstateFunc;
} USB_IP_NI_DRIVER_API;

Structure members

Member Description

pfInit Initializes the driver.
pfGetPacketBuffer Returns a buffer for a data packet.
pfWritePacket Delivers a data packet to target IP stack.
pfSetPacketFilter Configures the type of accepted data packets.
pfGetLinkStatus Returns the status of the connection to target IP stack.
pfGetLinkSpeed Returns the connection speed.
pfGetHWAddr Returns the HW address of the PC.
pfGetStats Returns statistical counters.

pfGetMTU
Returns the size of the largest data packet which can be
transferred.

pfReset Resets the driver.

pfSetWritePacketFunc
Allows to change the WritePacket callback which was set by
pfInit.

pfSetReportLinkstate-
Func

Allows to set the report link state change.

Additional information

The emUSB-Device-RNDIS/emUSB-Device-CDC-ECM component calls the functions of this
API to exchange data and status information with the IP stack running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

495 CHAPTER 14 Target API

14.5.3.2 USB_IP_NI_DRIVER_DATA

Description

Configuration data passed to network interface driver at initialization.

Type definition

typedef struct {
 const U8 * pHWAddr;
 unsigned NumBytesHWAddr;
 void * pDriverData;
} USB_IP_NI_DRIVER_DATA;

Structure members

Member Description

pHWAddr
Optional pointer to a HW address (or MAC address) of the
host network interface.

NumBytesHWAddr Number of bytes in the HW address. Typically 6 bytes.
pDriverData Pointer to a user context.

Additional information

When pHWAddr is NULL the MAC is automatically generated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

496 CHAPTER 14 RNDIS IP Driver

14.6 RNDIS IP Driver
This section describes the emUSB-Device RNDIS IP stack interface in detail.

14.6.1 General information
This release comes with IP NI driver which uses emNet as the IP stack. If you are using
emNet this chapter can be ignored. This chapter is for those who wish to write their own
IP stack interface for a third-party IP stack.

The IP interface is handled through an API-table, which contains all relevant functions
necessary for read/write operations and initialization.

14.6.2 Interface function list
As described above, access to network functions is realized through an API-function table
of type USB_IP_NI_DRIVER_API. The structure is declared in USB_Driver_IP_NI.h and it
is described in section Data structures on page 481

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

497 CHAPTER 14 RNDIS IP Driver

14.6.3 USB_IP_NI_DRIVER_API in detail

14.6.3.1 USB_IP_NI_INIT

Description

Initializes the driver.

Type definition

typedef unsigned (USB_IP_NI_INIT)(const USB_IP_NI_DRIVER_DATA * pDriverData,
 USB_IP_WRITE_PACKET * pfWritePacket);

Parameters

Parameter Description

pDriverData in Pointer to driver configuration data.

pfWritePacket
Callback function called by the IP stack to transmit a packet
that should be sent to the USB host.

Return value

IP NI driver instance ID.

Additional information

This function is called when the RNDIS/ECM interface is added to the USB stack. Typically
the function makes a local copy of the HW address passed in the pDriverData structure.
For more information this structure refer to USB_IP_NI_DRIVER_DATA.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

498 CHAPTER 14 RNDIS IP Driver

14.6.3.2 USB_IP_NI_GET_PACKET_BUFFER

Description

Returns a buffer for a data packet.

Type definition

typedef void * (USB_IP_NI_GET_PACKET_BUFFER)(unsigned Id,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
NumBytes Size of the requested buffer in bytes.

Return value

≠ NULL Pointer to allocated buffer
= NULL No buffer available

Additional information

The function should allocate a buffer of the requested size. If the buffer can not be allocated
a NULL pointer should be returned. The function is called when a data packet is received
from PC. The packet data is stored in the returned buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

499 CHAPTER 14 RNDIS IP Driver

14.6.3.3 USB_IP_NI_WRITE_PACKET

Description

Delivers a data packet to target IP stack.

Type definition

typedef void (USB_IP_NI_WRITE_PACKET)(unsigned Id,
 const void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
pData in Data of the received packet.
NumBytes Number of bytes stored in the buffer.

Additional information

The function is called after a data packet has been received from USB. pData points to the
buffer returned by the USB_IP_NI_GET_PACKET_BUFFER function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

500 CHAPTER 14 RNDIS IP Driver

14.6.3.4 USB_IP_NI_SET_PACKET_FILTER

Description

Configures the type of accepted data packets.

Type definition

typedef void (USB_IP_NI_SET_PACKET_FILTER)(unsigned Id,
 U32 Mask);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
Mask Type of accepted data packets.

Additional information

The Mask parameter should be interpreted as a boolean value. A value different than 0
indicates that the connection to target IP stack should be established. When the function
is called with the Mask parameter set to 0 the connection to target IP stack should be
interrupted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

501 CHAPTER 14 RNDIS IP Driver

14.6.3.5 USB_IP_NI_GET_LINK_STATUS

Description

Returns the status of the connection to target IP stack.

Type definition

typedef int (USB_IP_NI_GET_LINK_STATUS)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

USB_IP_NI_LINK_STATUS_DISCONNECTED Not connected to target IP stack.
USB_IP_NI_LINK_STATUS_CONNECTED Connected to target IP stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

502 CHAPTER 14 RNDIS IP Driver

14.6.3.6 USB_IP_NI_GET_LINK_SPEED

Description

Returns the connection speed.

Type definition

typedef U32 (USB_IP_NI_GET_LINK_SPEED)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

≠ 0 The connection speed in units of 100 bits/sec (between the USB_IP_NI module
and the target IP stack).

= 0 Not connected to the target IP stack.

Additional information

In this implementation the return value is 0 when the instance Id was not found or 1000000
(100 Mbit/s).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

503 CHAPTER 14 RNDIS IP Driver

14.6.3.7 USB_IP_NI_GET_HWADDR

Description

Returns the HW address (MAC address) of the host network interface (PC).

Type definition

typedef void (USB_IP_NI_GET_HWADDR)(unsigned Id,
 U8 * pAddr,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
pAddr out The HW address.
NumBytes Maximum number of bytes to store into pAddr.

Additional information

The returned HW address is the one passed to the driver in the call to USB_IP_NI_INIT.
Typically the HW address is 6 bytes long.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

504 CHAPTER 14 RNDIS IP Driver

14.6.3.8 USB_IP_NI_GET_STATS

Description

Returns statistical counters.

Type definition

typedef U32 (USB_IP_NI_GET_STATS)(unsigned Id,
 int Type);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
Type The type of information requested. See table below.

Return value

Value of the requested statistical counter.

Additional information

The counters should be set to 0 when the USB_IP_NI_RESET function is called.

Permitted values for parameter Type

USB_IP_NI_STATS_CLEAR_ALL_STATS
Special type which will instruct the
module to reset all statistical counters
to zero.

USB_IP_NI_STATS_WRITE_PACKET_OK
Number of packets sent without errors
to target IP stack.

USB_IP_NI_STATS_WRITE_PACKET_ERROR
Number of packets sent with errors to
target IP stack.

USB_IP_NI_STATS_READ_PACKET_OK
Number of packets received without
errors from target IP stack.

USB_IP_NI_STATS_READ_PACKET_ERROR
Number of packets received with er-
rors from target IP stack.

USB_IP_NI_STATS_READ_NO_BUFFER
Number of packets received from tar-
get IP stack but dropped.

USB_IP_NI_STATS_READ_ALIGN_ERROR
Number of packets received from tar-
get IP stack with alignment errors.

USB_IP_NI_STATS_WRITE_ONE_COLLISION
Number of packets which were not
sent to target IP stack due to the oc-
currence of one collision.

USB_IP_NI_STATS_WRITE_MORE_COLLISIONS
Number of packets which were not
sent to target IP stack due to the oc-
currence of one or more collisions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

505 CHAPTER 14 RNDIS IP Driver

14.6.3.9 USB_IP_NI_GET_MTU

Description

Returns the maximum transmission unit, the size of the largest data packet which can be
transferred.

Type definition

typedef U32 (USB_IP_NI_GET_MTU)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

The MTU size in bytes. Typically 1500 bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

506 CHAPTER 14 RNDIS IP Driver

14.6.3.10 USB_IP_NI_RESET

Description

Resets the driver.

Type definition

typedef void (USB_IP_NI_RESET)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

507 CHAPTER 14 RNDIS IP Driver

14.6.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNC

Description

Changes the USB_IP_WRITE_PACKET callback which was added via USB_IP_NI_INIT to a
different callback function. This function is only called by the stack when IP-over-USB is
used. It is not called when RNDIS or ECM is used standalone.

Type definition

typedef void (USB_IP_NI_SET_WRITE_PACKET_FUNC)
 (unsigned Id,
 USB_IP_WRITE_PACKET * pfWritePacket);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

pfWritePacket
Callback function called by the IP stack to transmit a packet
that should be sent to the USB host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

508 CHAPTER 14 RNDIS IP Driver

14.6.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC

Description

Changes the USB_IP_REPORT_LINKSTATE callback. Normally this is called only once per
initialization in order to allow to send notification to the host that the link state has been
changed.

Type definition

typedef void (USB_IP_NI_SET_REPORT_LINKSTATE_FUNC)
 (unsigned Id,
 USB_IP_REPORT_LINKSTATE * pfReportLinkState);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

pfReportLinkState
Callback function called by the IP stack to notify the host
that the link state has been changed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 15

CDC-ECM

This chapter gives a general overview of the Communications Device Class / Ethernet Con-
trol Model class and describes how to get the ECM component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

510 CHAPTER 15 Overview

15.1 Overview
The Communications Device Class / Ethernet Control Model is a USB class protocol of the
USB Implementers Forum which can be used to create a virtual Ethernet connection be-
tween a USB device and a host PC. A TCP/IP stack like emNet is required on the USB device
side to handle the actual IP communication. Any available IP protocol (UDP, TPC, FTP, HTTP,
etc.) can be used to exchange data.

USB ECM is supported by the Linux operating system. To use it on Windows, a third party
driver (not contained in emUSB-Device-ECM) has to be installed on the Windows system.

emUSB-Device-ECM contains the following components:
• Generic USB handling
• ECM device class implementation
• Network interface driver which uses emNet as TCP/IP stack.
• A sample application demonstrating how to work with ECM.

15.1.1 Working with CDC-ECM
Any USB ECM device connected to a PC running the Windows operating system (with a third-
party CDC-ECM driver installed) is listed as a separate network interface in the “Network
Connections” window as shown in this screenshot:

The ping command line utility can be used to test the connection to target as shown below.
If the connection is correctly established the number of the lost packets should be 0. The
following screenshot shows a manual configuration and ping on Linux.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

511 CHAPTER 15 Overview

15.1.2 Additional information
More technical details about CDC-ECM can be found on https://www.usb.org in the Class
definitions for Communication Devices 1.2 package: CDC Subclass for Ethernet Control
Model Devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org

512 CHAPTER 15 Configuration

15.2 Configuration

15.2.1 Initial configuration
To get emUSB-Device-ECM up and running as well as doing an initial test, the configuration
as delivered should not be modified. When using on Windows with a third party driver, the
vendor id and product id must match the ids configured in the .inf file of the driver.

15.2.2 Final configuration
The configuration must only be modified when emUSB-Device is used in your final product.
Refer to section emUSB-Device Configuration on page 50 to get detailed information about
the general emUSB-Device configuration functions which have to be adapted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

513 CHAPTER 15 Running the sample application

15.3 Running the sample application
The sample application can be found in the Sample\ECM\IP_Config_ECM.c file of the
emUSB-Device shipment. In order to use the sample application the SEGGER emNet mid-
dleware component is required. To test the emUSB-Device-ECM component any of the em-
Net sample applications can be used in combination with IP_Config_ECM.c. After the sam-
ple application is started the USB cable should be connected to the PC and the chosen
emNet sample can be tested using the appropriate methods.

15.3.1 IP_Config_ECM.c in detail
The main part of the sample application is implemented in the function MainTask() which
runs as an independent task.

// _Connect() - excerpt from IP_Config_ECM.c
static int _Connect(unsigned IFaceId) {
 U32 Server = IP_BYTES2ADDR(10, 0, 0, 10);
 IP_DHCPS_ConfigPool(IFaceId, IP_BYTES2ADDR(10, 0, 0, 11), 0xFF000000, 20);
 IP_DHCPS_ConfigDNSAddr(IFaceId, &Server, 1);
 IP_DHCPS_Init(IFaceId);
 IP_DHCPS_Start(IFaceId);
 USBD_Init();
 USBD_SetDeviceInfo(&USB_DeviceInfo);
 _AddECM();
 USBD_Start();
 return 0; // Successfully connected.
}

The first step is to initialize the DHCP server component which assigns the IP address for
the PC side. The target is configured with the IP address 10.0.0.10. The DHCP server is
configured to distribute IP addresses starting from 10.0.0.11, therefore the PC will receive
the IP address 10.0.0.11. Then the USB stack is initialized and the ECM interface is added to
it. The function _AddECM() configures all required endpoints and configures the HW address
of the PC network interface.

// _AddECM() - excerpt from IP_Config_ECM.c
static U8 _abReceiveBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
static void _AddECM(void) {
 USB_ECM_INIT_DATA InitData;
 InitData.EPOut = USBD_AddEP(USB_DIR_OUT,
 USB_TRANSFER_TYPE_BULK,
 0,
 _abReceiveBuffer, sizeof(_abReceiveBuffer));
 InitData.EPIn = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_BULK,
 0, NULL, 0);
 InitData.EPInt = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_INT,
 32, NULL, 0);
 InitData.pDriverAPI = &USB_Driver_IP_NI;
 InitData.DriverData.pDriverData = (void *)_IFaceId;
#if 0
 InitData.DriverData.pHWAddr = "\x00\x22\xC7\xFF\xFF\xF3";
 InitData.DriverData.NumBytesHWAddr = 6;
#endif
 USBD_ECM_Add(&InitData);
}

The size of _acReceiveBuffer buffer must be a multiple of USB max packet size. USB_Dri-
ver_IP_NI is the network interface driver which implements the connection to the IP stack.
Optionally a HW address may be configured here, which is assigned to the PC network
interface. If not set (pHWAddr = NULL), the HW address is generated automatically later
while setting the interface up.

The IP stack is configured to use the network interface driver of emUSB-Device-ECM. For
more information about the configuration of the IP stack refer to emNet manual.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

514 CHAPTER 15 Running the sample application

// IP_X_Config() - excerpt from IP_Config.c
#include "USB_Driver_IP_NI.h"
void IP_X_Config(void) {
 <...>
 //
 // Add and configure the ECM driver.
 // The local IP address is 10.0.0.10/8.
 //
 IFaceId = IP_AddEtherInterface(&USB_IP_Driver);
 IP_SetAddrMask(0x0A00000A, 0xFF000000);
 IP_SetIFaceConnectHook(IFaceId, _Connect);
 IP_SetIFaceDisconnectHook(IFaceId, _Disconnect);
 _IFaceId = IFaceId;
 <...>
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

515 CHAPTER 15 Target API

15.4 Target API
Function Description

API functions

USBD_ECM_Add()
Adds an ECM-class interface to the USB
stack.

USBD_ECM_Task() Obsolete.
Data structures

USB_ECM_INIT_DATA Initialization data for ECM interface.

USB_IP_NI_DRIVER_API
This structure contains the callback func-
tions for the network interface driver.

USB_IP_NI_DRIVER_DATA
Configuration data passed to network in-
terface driver at initialization.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

516 CHAPTER 15 Target API

15.4.1 API functions

15.4.1.1 USBD_ECM_Add()

Description

Adds an ECM-class interface to the USB stack.

Prototype

void USBD_ECM_Add(const USB_ECM_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to a USB_ECM_INIT_DATA structure.

Additional information

This function should be called after the initialization of the USB core to add an ECM interface
to emUSB-Device. The initialization data is passed to the function in the structure pointed
to by pInitData. Refer to USB_ECM_INIT_DATA for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

517 CHAPTER 15 Target API

15.4.1.2 USBD_ECM_Task()

Description

Obsolete. Returns when USB is disconnected.

Prototype

void USBD_ECM_Task(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

518 CHAPTER 15 Target API

15.4.2 Data structures

15.4.2.1 USB_ECM_INIT_DATA

Description

Initialization data for ECM interface.

Type definition

typedef xxx {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
 const USB_IP_NI_DRIVER_API * pDriverAPI;
 USB_IP_NI_DRIVER_DATA DriverData;
 unsigned DataInterfaceNo;
} USB_ECM_INIT_DATA;

Structure members

Member Description

EPIn Bulk IN endpoint for sending data to the host.

EPOut
Bulk OUT endpoint for receiving data from the host. The
buffer associated to this endpoint must be big enough to
hold a complete IP packet.

EPInt Interrupt IN endpoint for sending status information.

pDriverAPI
Pointer to the Network interface driver API. See
USB_IP_NI_DRIVER_API.

DriverData Configuration data for the network interface driver.
DataInterfaceNo Internal use.

Additional information

This structure holds the endpoints that should be used by the ECM interface (EPIn, EPOut
and EPInt). Refer to USBD_AddEP() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

519 CHAPTER 15 Target API

15.4.3 Driver interface

15.4.3.1 USB_IP_NI_DRIVER_API

Description

This structure contains the callback functions for the network interface driver.

Type definition

typedef struct {
 USB_IP_NI_INIT * pfInit;
 USB_IP_NI_GET_PACKET_BUFFER * pfGetPacketBuffer;
 USB_IP_NI_WRITE_PACKET * pfWritePacket;
 USB_IP_NI_SET_PACKET_FILTER * pfSetPacketFilter;
 USB_IP_NI_GET_LINK_STATUS * pfGetLinkStatus;
 USB_IP_NI_GET_LINK_SPEED * pfGetLinkSpeed;
 USB_IP_NI_GET_HWADDR * pfGetHWAddr;
 USB_IP_NI_GET_STATS * pfGetStats;
 USB_IP_NI_GET_MTU * pfGetMTU;
 USB_IP_NI_RESET * pfReset;
 USB_IP_NI_SET_WRITE_PACKET_FUNC * pfSetWritePacketFunc;
 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC * pfSetReportLinkstateFunc;
} USB_IP_NI_DRIVER_API;

Structure members

Member Description

pfInit Initializes the driver.
pfGetPacketBuffer Returns a buffer for a data packet.
pfWritePacket Delivers a data packet to target IP stack.
pfSetPacketFilter Configures the type of accepted data packets.
pfGetLinkStatus Returns the status of the connection to target IP stack.
pfGetLinkSpeed Returns the connection speed.
pfGetHWAddr Returns the HW address of the PC.
pfGetStats Returns statistical counters.

pfGetMTU
Returns the size of the largest data packet which can be
transferred.

pfReset Resets the driver.

pfSetWritePacketFunc
Allows to change the WritePacket callback which was set by
pfInit.

pfSetReportLinkstate-
Func

Allows to set the report link state change.

Additional information

The emUSB-Device-RNDIS/emUSB-Device-CDC-ECM component calls the functions of this
API to exchange data and status information with the IP stack running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

520 CHAPTER 15 Target API

15.4.3.2 USB_IP_NI_DRIVER_DATA

Description

Configuration data passed to network interface driver at initialization.

Type definition

typedef struct {
 const U8 * pHWAddr;
 unsigned NumBytesHWAddr;
 void * pDriverData;
} USB_IP_NI_DRIVER_DATA;

Structure members

Member Description

pHWAddr
Optional pointer to a HW address (or MAC address) of the
host network interface.

NumBytesHWAddr Number of bytes in the HW address. Typically 6 bytes.
pDriverData Pointer to a user context.

Additional information

When pHWAddr is NULL the MAC is automatically generated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

521 CHAPTER 15 CDC-ECM IP Driver

15.5 CDC-ECM IP Driver
This section describes the emUSB-Device CDC-ECM IP stack interface in detail.

15.5.1 General information
This release comes with IP NI driver which uses emNet as the IP stack. If you are using
emNet this chapter can be ignored. This chapter is for those who wish to write their own
IP stack interface for a third-party IP stack.

The IP interface is handled through an API-table, which contains all relevant functions
necessary for read/write operations and initialization.

15.5.2 Interface function list
As described above, access to network functions is realized through an API-function table
of type USB_IP_NI_DRIVER_API. The structure is declared in USB_Driver_IP_NI.h and it
is described in section Data structures on page 481

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

522 CHAPTER 15 CDC-ECM IP Driver

15.5.3 USB_IP_NI_DRIVER_API in detail

15.5.3.1 USB_IP_NI_INIT

Description

Initializes the driver.

Type definition

typedef unsigned (USB_IP_NI_INIT)(const USB_IP_NI_DRIVER_DATA * pDriverData,
 USB_IP_WRITE_PACKET * pfWritePacket);

Parameters

Parameter Description

pDriverData in Pointer to driver configuration data.

pfWritePacket
Callback function called by the IP stack to transmit a packet
that should be sent to the USB host.

Return value

IP NI driver instance ID.

Additional information

This function is called when the RNDIS/ECM interface is added to the USB stack. Typically
the function makes a local copy of the HW address passed in the pDriverData structure.
For more information this structure refer to USB_IP_NI_DRIVER_DATA.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

523 CHAPTER 15 CDC-ECM IP Driver

15.5.3.2 USB_IP_NI_GET_PACKET_BUFFER

Description

Returns a buffer for a data packet.

Type definition

typedef void * (USB_IP_NI_GET_PACKET_BUFFER)(unsigned Id,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
NumBytes Size of the requested buffer in bytes.

Return value

≠ NULL Pointer to allocated buffer
= NULL No buffer available

Additional information

The function should allocate a buffer of the requested size. If the buffer can not be allocated
a NULL pointer should be returned. The function is called when a data packet is received
from PC. The packet data is stored in the returned buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

524 CHAPTER 15 CDC-ECM IP Driver

15.5.3.3 USB_IP_NI_WRITE_PACKET

Description

Delivers a data packet to target IP stack.

Type definition

typedef void (USB_IP_NI_WRITE_PACKET)(unsigned Id,
 const void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
pData in Data of the received packet.
NumBytes Number of bytes stored in the buffer.

Additional information

The function is called after a data packet has been received from USB. pData points to the
buffer returned by the USB_IP_NI_GET_PACKET_BUFFER function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

525 CHAPTER 15 CDC-ECM IP Driver

15.5.3.4 USB_IP_NI_SET_PACKET_FILTER

Description

Configures the type of accepted data packets.

Type definition

typedef void (USB_IP_NI_SET_PACKET_FILTER)(unsigned Id,
 U32 Mask);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
Mask Type of accepted data packets.

Additional information

The Mask parameter should be interpreted as a boolean value. A value different than 0
indicates that the connection to target IP stack should be established. When the function
is called with the Mask parameter set to 0 the connection to target IP stack should be
interrupted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

526 CHAPTER 15 CDC-ECM IP Driver

15.5.3.5 USB_IP_NI_GET_LINK_STATUS

Description

Returns the status of the connection to target IP stack.

Type definition

typedef int (USB_IP_NI_GET_LINK_STATUS)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

USB_IP_NI_LINK_STATUS_DISCONNECTED Not connected to target IP stack.
USB_IP_NI_LINK_STATUS_CONNECTED Connected to target IP stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

527 CHAPTER 15 CDC-ECM IP Driver

15.5.3.6 USB_IP_NI_GET_LINK_SPEED

Description

Returns the connection speed.

Type definition

typedef U32 (USB_IP_NI_GET_LINK_SPEED)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

≠ 0 The connection speed in units of 100 bits/sec (between the USB_IP_NI module
and the target IP stack).

= 0 Not connected to the target IP stack.

Additional information

In this implementation the return value is 0 when the instance Id was not found or 1000000
(100 Mbit/s).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

528 CHAPTER 15 CDC-ECM IP Driver

15.5.3.7 USB_IP_NI_GET_HWADDR

Description

Returns the HW address (MAC address) of the host network interface (PC).

Type definition

typedef void (USB_IP_NI_GET_HWADDR)(unsigned Id,
 U8 * pAddr,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
pAddr out The HW address.
NumBytes Maximum number of bytes to store into pAddr.

Additional information

The returned HW address is the one passed to the driver in the call to USB_IP_NI_INIT.
Typically the HW address is 6 bytes long.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

529 CHAPTER 15 CDC-ECM IP Driver

15.5.3.8 USB_IP_NI_GET_STATS

Description

Returns statistical counters.

Type definition

typedef U32 (USB_IP_NI_GET_STATS)(unsigned Id,
 int Type);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
Type The type of information requested. See table below.

Return value

Value of the requested statistical counter.

Additional information

The counters should be set to 0 when the USB_IP_NI_RESET function is called.

Permitted values for parameter Type

USB_IP_NI_STATS_CLEAR_ALL_STATS
Special type which will instruct the
module to reset all statistical counters
to zero.

USB_IP_NI_STATS_WRITE_PACKET_OK
Number of packets sent without errors
to target IP stack.

USB_IP_NI_STATS_WRITE_PACKET_ERROR
Number of packets sent with errors to
target IP stack.

USB_IP_NI_STATS_READ_PACKET_OK
Number of packets received without
errors from target IP stack.

USB_IP_NI_STATS_READ_PACKET_ERROR
Number of packets received with er-
rors from target IP stack.

USB_IP_NI_STATS_READ_NO_BUFFER
Number of packets received from tar-
get IP stack but dropped.

USB_IP_NI_STATS_READ_ALIGN_ERROR
Number of packets received from tar-
get IP stack with alignment errors.

USB_IP_NI_STATS_WRITE_ONE_COLLISION
Number of packets which were not
sent to target IP stack due to the oc-
currence of one collision.

USB_IP_NI_STATS_WRITE_MORE_COLLISIONS
Number of packets which were not
sent to target IP stack due to the oc-
currence of one or more collisions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

530 CHAPTER 15 CDC-ECM IP Driver

15.5.3.9 USB_IP_NI_GET_MTU

Description

Returns the maximum transmission unit, the size of the largest data packet which can be
transferred.

Type definition

typedef U32 (USB_IP_NI_GET_MTU)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

The MTU size in bytes. Typically 1500 bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

531 CHAPTER 15 CDC-ECM IP Driver

15.5.3.10 USB_IP_NI_RESET

Description

Resets the driver.

Type definition

typedef void (USB_IP_NI_RESET)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

532 CHAPTER 15 CDC-ECM IP Driver

15.5.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNC

Description

Changes the USB_IP_WRITE_PACKET callback which was added via USB_IP_NI_INIT to a
different callback function. This function is only called by the stack when IP-over-USB is
used. It is not called when RNDIS or ECM is used standalone.

Type definition

typedef void (USB_IP_NI_SET_WRITE_PACKET_FUNC)
 (unsigned Id,
 USB_IP_WRITE_PACKET * pfWritePacket);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

pfWritePacket
Callback function called by the IP stack to transmit a packet
that should be sent to the USB host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

533 CHAPTER 15 CDC-ECM IP Driver

15.5.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC

Description

Changes the USB_IP_REPORT_LINKSTATE callback. Normally this is called only once per
initialization in order to allow to send notification to the host that the link state has been
changed.

Type definition

typedef void (USB_IP_NI_SET_REPORT_LINKSTATE_FUNC)
 (unsigned Id,
 USB_IP_REPORT_LINKSTATE * pfReportLinkState);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

pfReportLinkState
Callback function called by the IP stack to notify the host
that the link state has been changed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 16

CDC-NCM

This chapter gives a general overview of the Communications Device Class / Network Con-
trol Model class and describes how to get the NCM component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

535 CHAPTER 16 Overview

16.1 Overview
The Communications Device Class / Network Control Model is a USB class protocol of the
USB Implementers Forum which can be used to create a virtual Ethernet connection be-
tween a USB device and a host PC. A TCP/IP stack like emNet is required on the USB device
side to handle the actual IP communication. Any available IP protocol (UDP, TPC, FTP, HTTP,
etc.) can be used to exchange data.

USB CDC-NCM is supported by the Linux (kernel > 2.6.38), macOS and Windows 10 (start-
ing with build 18362 from May 2019) operating systems out of the box. To use it on old
Windows versions, a third party driver (not contained in emUSB-Device-NCM) has to be
installed on the Windows system.

emUSB-Device-NCM contains the following components:
• Generic USB handling
• NCM device class implementation
• Network interface driver which uses emNet as TCP/IP stack.
• A sample application demonstrating how to work with NCM.

16.1.1 Working with CDC-NCM
The ping command line utility can be used to test the connection to target. If the connection
is correctly established the number of the lost packets should be 0.

16.1.2 Additional information
More technical details about CDC-NCM can be found on https://www.usb.org in the Network
Control Model Devices Specification v1.0 and errata and Adopters Agreement package.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org

536 CHAPTER 16 Configuration

16.2 Configuration

16.2.1 Initial configuration
To get emUSB-Device-NCM up and running as well as doing an initial test, the configuration
as delivered should not be modified. When using on old versions of Windows with a third
party driver, the vendor id and product id must match the ids configured in the .inf file
of the driver.

16.2.2 Final configuration
The configuration must only be modified when emUSB-Device is used in your final product.
Refer to section emUSB-Device Configuration on page 50 to get detailed information about
the general emUSB-Device configuration functions which have to be adapted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

537 CHAPTER 16 Running the sample application

16.3 Running the sample application
The sample application can be found in the Sample\NCM\IP_Config_NCM.c file of the
emUSB-Device shipment. In order to use the sample application the SEGGER emNet mid-
dleware component is required. To test the emUSB-Device-NCM component any of the
emNet sample applications can be used in combination with IP_Config_NCM.c. After the
sample application is started the USB cable should be connected to the PC and the chosen
emNet sample can be tested using the appropriate methods.

16.3.1 IP_Config_NCM.c in detail
The main part of the sample application is implemented in the function MainTask() which
runs as an independent task.

// _Connect() - excerpt from IP_Config_NCM.c
static int _Connect(unsigned IFaceId) {
 U32 Server = IP_BYTES2ADDR(10, 0, 0, 10);
 IP_DHCPS_ConfigPool(IFaceId, IP_BYTES2ADDR(10, 0, 0, 11), 0xFF000000, 20);
 IP_DHCPS_ConfigDNSAddr(IFaceId, &Server, 1);
 IP_DHCPS_Init(IFaceId);
 IP_DHCPS_Start(IFaceId);
 USBD_Init();
 USBD_SetDeviceInfo(&USB_DeviceInfo);
 _AddNCM();
 USBD_Start();
 return 0; // Successfully connected.
}

The first step is to initialize the DHCP server component which assigns the IP address for
the PC side. The target is configured with the IP address 10.0.0.10. The DHCP server is
configured to distribute IP addresses starting from 10.0.0.11, therefore the PC will receive
the IP address 10.0.0.11. Then the USB stack is initialized and the NCM interface is added to
it. The function _AddNCM() configures all required endpoints and configures the HW address
of the PC network interface.

// _AddNCM() - excerpt from IP_Config_NCM.c
static U8 _abReceiveBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
static void _AddNCM(void) {
 USB_NCM_INIT_DATA InitData;
 InitData.EPOut = USBD_AddEP(USB_DIR_OUT,
 USB_TRANSFER_TYPE_BULK,
 0,
 _abReceiveBuffer, sizeof(_abReceiveBuffer));
 InitData.EPIn = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_BULK,
 0, NULL, 0);
 InitData.EPInt = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_INT,
 32, NULL, 0);
 InitData.pDriverAPI = &USB_Driver_IP_NI;
 InitData.DriverData.pDriverData = (void *)_IFaceId;
 USBD_NCM_Add(&InitData);
}

The size of _acReceiveBuffer buffer must be a multiple of USB max packet size. USB_Dri-
ver_IP_NI is the network interface driver which implements the connection to the IP stack.
Optionally a HW address may be configured here, which is assigned to the PC network
interface. If not set (pHWAddr = NULL), the HW address is generated automatically later
while setting the interface up.

The IP stack is configured to use the network interface driver of emUSB-Device-NCM. For
more information about the configuration of the IP stack refer to emNet manual.

// IP_X_Config() - excerpt from IP_Config.c
#include "USB_Driver_IP_NI.h"
void IP_X_Config(void) {

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

538 CHAPTER 16 Running the sample application

 <...>
 //
 // Add and configure the NCM driver.
 // The local IP address is 10.0.0.10/8.
 //
 IFaceId = IP_AddEtherInterface(&USB_IP_Driver);
IP_SetAddrMask(0x0A00000A, 0xFF000000);
 IP_SetIFaceConnectHook(IFaceId, _Connect);
 IP_SetIFaceDisconnectHook(IFaceId, _Disconnect);
 _IFaceId = IFaceId;
 <...>
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

539 CHAPTER 16 Target API

16.4 Target API
Function Description

API functions

USBD_NCM_Add()
Adds an NCM-class interface to the USB
stack.

Data structures

USB_NCM_INIT_DATA Initialization data for NCM interface.

USB_IP_NI_DRIVER_API
This structure contains the callback func-
tions for the network interface driver.

USB_IP_NI_DRIVER_DATA
Configuration data passed to network in-
terface driver at initialization.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

540 CHAPTER 16 Target API

16.4.1 API functions

16.4.1.1 USBD_NCM_Add()

Description

Adds an NCM-class interface to the USB stack.

Prototype

void USBD_NCM_Add(const USB_NCM_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to a USB_NCM_INIT_DATA structure.

Additional information

This function should be called after the initialization of the USB core to add an NCM interface
to emUSB-Device. The initialization data is passed to the function in the structure pointed
to by pInitData. Refer to USB_NCM_INIT_DATA for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

541 CHAPTER 16 Target API

16.4.2 Data structures

16.4.2.1 USB_NCM_INIT_DATA

Description

Initialization data for NCM interface.

Type definition

typedef xxx {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
 const USB_IP_NI_DRIVER_API * pDriverAPI;
 USB_IP_NI_DRIVER_DATA DriverData;
 unsigned DataInterfaceNo;
} USB_NCM_INIT_DATA;

Structure members

Member Description

EPIn Bulk IN endpoint for sending data to the host.

EPOut
Bulk OUT endpoint for receiving data from the host. The
buffer associated to this endpoint must be big enough to
hold a complete IP packet.

EPInt Interrupt IN endpoint for sending status information.

pDriverAPI
Pointer to the Network interface driver API. See
USB_IP_NI_DRIVER_API.

DriverData Configuration data for the network interface driver.
DataInterfaceNo Internal use.

Additional information

This structure holds the endpoints that should be used by the NCM interface (EPIn, EPOut
and EPInt). Refer to USBD_AddEP() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

542 CHAPTER 16 Target API

16.4.3 Driver interface

16.4.3.1 USB_IP_NI_DRIVER_API

Description

This structure contains the callback functions for the network interface driver.

Type definition

typedef struct {
 USB_IP_NI_INIT * pfInit;
 USB_IP_NI_GET_PACKET_BUFFER * pfGetPacketBuffer;
 USB_IP_NI_WRITE_PACKET * pfWritePacket;
 USB_IP_NI_SET_PACKET_FILTER * pfSetPacketFilter;
 USB_IP_NI_GET_LINK_STATUS * pfGetLinkStatus;
 USB_IP_NI_GET_LINK_SPEED * pfGetLinkSpeed;
 USB_IP_NI_GET_HWADDR * pfGetHWAddr;
 USB_IP_NI_GET_STATS * pfGetStats;
 USB_IP_NI_GET_MTU * pfGetMTU;
 USB_IP_NI_RESET * pfReset;
 USB_IP_NI_SET_WRITE_PACKET_FUNC * pfSetWritePacketFunc;
 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC * pfSetReportLinkstateFunc;
} USB_IP_NI_DRIVER_API;

Structure members

Member Description

pfInit Initializes the driver.
pfGetPacketBuffer Returns a buffer for a data packet.
pfWritePacket Delivers a data packet to target IP stack.
pfSetPacketFilter Configures the type of accepted data packets.
pfGetLinkStatus Returns the status of the connection to target IP stack.
pfGetLinkSpeed Returns the connection speed.
pfGetHWAddr Returns the HW address of the PC.
pfGetStats Returns statistical counters.

pfGetMTU
Returns the size of the largest data packet which can be
transferred.

pfReset Resets the driver.

pfSetWritePacketFunc
Allows to change the WritePacket callback which was set by
pfInit.

pfSetReportLinkstate-
Func

Allows to set the report link state change.

Additional information

The emUSB-Device-RNDIS/emUSB-Device-CDC-ECM component calls the functions of this
API to exchange data and status information with the IP stack running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

543 CHAPTER 16 Target API

16.4.3.2 USB_IP_NI_DRIVER_DATA

Description

Configuration data passed to network interface driver at initialization.

Type definition

typedef struct {
 const U8 * pHWAddr;
 unsigned NumBytesHWAddr;
 void * pDriverData;
} USB_IP_NI_DRIVER_DATA;

Structure members

Member Description

pHWAddr
Optional pointer to a HW address (or MAC address) of the
host network interface.

NumBytesHWAddr Number of bytes in the HW address. Typically 6 bytes.
pDriverData Pointer to a user context.

Additional information

When pHWAddr is NULL the MAC is automatically generated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

544 CHAPTER 16 CDC-NCM IP Driver

16.5 CDC-NCM IP Driver
This section describes the emUSB-Device CDC-NCM IP stack interface in detail.

16.5.1 General information
This release comes with IP NI driver which uses emNet as the IP stack. If you are using
emNet this chapter can be ignored. This chapter is for those who wish to write their own
IP stack interface for a third-party IP stack.

The IP interface is handled through an API-table, which contains all relevant functions
necessary for read/write operations and initialization.

16.5.2 Interface function list
As described above, access to network functions is realized through an API-function table
of type USB_IP_NI_DRIVER_API. The structure is declared in USB_Driver_IP_NI.h and it
is described in section Data structures on page 481

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

545 CHAPTER 16 CDC-NCM IP Driver

16.5.3 USB_IP_NI_DRIVER_API in detail

16.5.3.1 USB_IP_NI_INIT

Description

Initializes the driver.

Type definition

typedef unsigned (USB_IP_NI_INIT)(const USB_IP_NI_DRIVER_DATA * pDriverData,
 USB_IP_WRITE_PACKET * pfWritePacket);

Parameters

Parameter Description

pDriverData in Pointer to driver configuration data.

pfWritePacket
Callback function called by the IP stack to transmit a packet
that should be sent to the USB host.

Return value

IP NI driver instance ID.

Additional information

This function is called when the RNDIS/ECM interface is added to the USB stack. Typically
the function makes a local copy of the HW address passed in the pDriverData structure.
For more information this structure refer to USB_IP_NI_DRIVER_DATA.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

546 CHAPTER 16 CDC-NCM IP Driver

16.5.3.2 USB_IP_NI_GET_PACKET_BUFFER

Description

Returns a buffer for a data packet.

Type definition

typedef void * (USB_IP_NI_GET_PACKET_BUFFER)(unsigned Id,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
NumBytes Size of the requested buffer in bytes.

Return value

≠ NULL Pointer to allocated buffer
= NULL No buffer available

Additional information

The function should allocate a buffer of the requested size. If the buffer can not be allocated
a NULL pointer should be returned. The function is called when a data packet is received
from PC. The packet data is stored in the returned buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

547 CHAPTER 16 CDC-NCM IP Driver

16.5.3.3 USB_IP_NI_WRITE_PACKET

Description

Delivers a data packet to target IP stack.

Type definition

typedef void (USB_IP_NI_WRITE_PACKET)(unsigned Id,
 const void * pData,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
pData in Data of the received packet.
NumBytes Number of bytes stored in the buffer.

Additional information

The function is called after a data packet has been received from USB. pData points to the
buffer returned by the USB_IP_NI_GET_PACKET_BUFFER function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

548 CHAPTER 16 CDC-NCM IP Driver

16.5.3.4 USB_IP_NI_SET_PACKET_FILTER

Description

Configures the type of accepted data packets.

Type definition

typedef void (USB_IP_NI_SET_PACKET_FILTER)(unsigned Id,
 U32 Mask);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
Mask Type of accepted data packets.

Additional information

The Mask parameter should be interpreted as a boolean value. A value different than 0
indicates that the connection to target IP stack should be established. When the function
is called with the Mask parameter set to 0 the connection to target IP stack should be
interrupted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

549 CHAPTER 16 CDC-NCM IP Driver

16.5.3.5 USB_IP_NI_GET_LINK_STATUS

Description

Returns the status of the connection to target IP stack.

Type definition

typedef int (USB_IP_NI_GET_LINK_STATUS)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

USB_IP_NI_LINK_STATUS_DISCONNECTED Not connected to target IP stack.
USB_IP_NI_LINK_STATUS_CONNECTED Connected to target IP stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

550 CHAPTER 16 CDC-NCM IP Driver

16.5.3.6 USB_IP_NI_GET_LINK_SPEED

Description

Returns the connection speed.

Type definition

typedef U32 (USB_IP_NI_GET_LINK_SPEED)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

≠ 0 The connection speed in units of 100 bits/sec (between the USB_IP_NI module
and the target IP stack).

= 0 Not connected to the target IP stack.

Additional information

In this implementation the return value is 0 when the instance Id was not found or 1000000
(100 Mbit/s).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

551 CHAPTER 16 CDC-NCM IP Driver

16.5.3.7 USB_IP_NI_GET_HWADDR

Description

Returns the HW address (MAC address) of the host network interface (PC).

Type definition

typedef void (USB_IP_NI_GET_HWADDR)(unsigned Id,
 U8 * pAddr,
 unsigned NumBytes);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
pAddr out The HW address.
NumBytes Maximum number of bytes to store into pAddr.

Additional information

The returned HW address is the one passed to the driver in the call to USB_IP_NI_INIT.
Typically the HW address is 6 bytes long.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

552 CHAPTER 16 CDC-NCM IP Driver

16.5.3.8 USB_IP_NI_GET_STATS

Description

Returns statistical counters.

Type definition

typedef U32 (USB_IP_NI_GET_STATS)(unsigned Id,
 int Type);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.
Type The type of information requested. See table below.

Return value

Value of the requested statistical counter.

Additional information

The counters should be set to 0 when the USB_IP_NI_RESET function is called.

Permitted values for parameter Type

USB_IP_NI_STATS_CLEAR_ALL_STATS
Special type which will instruct the
module to reset all statistical counters
to zero.

USB_IP_NI_STATS_WRITE_PACKET_OK
Number of packets sent without errors
to target IP stack.

USB_IP_NI_STATS_WRITE_PACKET_ERROR
Number of packets sent with errors to
target IP stack.

USB_IP_NI_STATS_READ_PACKET_OK
Number of packets received without
errors from target IP stack.

USB_IP_NI_STATS_READ_PACKET_ERROR
Number of packets received with er-
rors from target IP stack.

USB_IP_NI_STATS_READ_NO_BUFFER
Number of packets received from tar-
get IP stack but dropped.

USB_IP_NI_STATS_READ_ALIGN_ERROR
Number of packets received from tar-
get IP stack with alignment errors.

USB_IP_NI_STATS_WRITE_ONE_COLLISION
Number of packets which were not
sent to target IP stack due to the oc-
currence of one collision.

USB_IP_NI_STATS_WRITE_MORE_COLLISIONS
Number of packets which were not
sent to target IP stack due to the oc-
currence of one or more collisions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

553 CHAPTER 16 CDC-NCM IP Driver

16.5.3.9 USB_IP_NI_GET_MTU

Description

Returns the maximum transmission unit, the size of the largest data packet which can be
transferred.

Type definition

typedef U32 (USB_IP_NI_GET_MTU)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

Return value

The MTU size in bytes. Typically 1500 bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

554 CHAPTER 16 CDC-NCM IP Driver

16.5.3.10 USB_IP_NI_RESET

Description

Resets the driver.

Type definition

typedef void (USB_IP_NI_RESET)(unsigned Id);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

555 CHAPTER 16 CDC-NCM IP Driver

16.5.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNC

Description

Changes the USB_IP_WRITE_PACKET callback which was added via USB_IP_NI_INIT to a
different callback function. This function is only called by the stack when IP-over-USB is
used. It is not called when RNDIS or ECM is used standalone.

Type definition

typedef void (USB_IP_NI_SET_WRITE_PACKET_FUNC)
 (unsigned Id,
 USB_IP_WRITE_PACKET * pfWritePacket);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

pfWritePacket
Callback function called by the IP stack to transmit a packet
that should be sent to the USB host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

556 CHAPTER 16 CDC-NCM IP Driver

16.5.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNC

Description

Changes the USB_IP_REPORT_LINKSTATE callback. Normally this is called only once per
initialization in order to allow to send notification to the host that the link state has been
changed.

Type definition

typedef void (USB_IP_NI_SET_REPORT_LINKSTATE_FUNC)
 (unsigned Id,
 USB_IP_REPORT_LINKSTATE * pfReportLinkState);

Parameters

Parameter Description

Id Instance ID returned from USB_IP_NI_INIT.

pfReportLinkState
Callback function called by the IP stack to notify the host
that the link state has been changed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 17

Audio

This chapter gives a general overview of the Audio class and describes how to get the Audio
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

558 CHAPTER 17 Overview

17.1 Overview
The USB Audio device class is a USB class protocol which can be used to transfer sound
data from a device to a host and vice versa.

Audio is supported by most operating systems out of the box and the installation of addi-
tional drivers is not required.

emUSB-Device Audio provides the following features:
• Compatible to USB Audio version 1 and version 2 device class.
• Arbitrary number of input and output audio streams.
• Arbitrary number channels for each audio stream.
• Sample resolution from 8- to 32-Bit.
• Arbitrary number of audio control units.
• Synchronous, asynchronous, adaptive and implicit synchronization for each audio

stream.
• Audio interrupt messages.

emUSB-Device implementation of the Audio class is designed with minimal resource us-
age in mind, especially targeted to embedded devices. emUSB-Device-Audio supports the
transparent transport of audio data to and from a USB host, but does not care about the
format of the audio data (number of channels, bit resolution, encoding). Generation and
processing of correct formatted audio data is up to the application. The application also has
to consider how the stream of audio samples must be split into USB packets.

Note

Audio 2.0 is designed for high-speed USB devices and should not be used on full-
speed devices. It may work on full-speed devices with modified configurations, but
there is no official support in emUSB-Device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

559 CHAPTER 17 Creation of an audio device application

17.2 Creation of an audio device application
A USB audio device is a collection of audio control units, audio streaming interfaces and
alternate interface settings. To build an audio device, the design of this device must be
defined by creating an “USB audio design” file (extension .uad). This file specifies all char-
acteristics of the device and is converted by the USBAudioDeviceGenerator.exe tool into
a C source file and a C header file, that should be used to build the audio application.

emUSB-Device contains a couple of sample USB audio design files and sample application
code that can be used as a starting point to develop your own audio application.

The USB Audio Device Generator tool is a command line tool that can be invoked from a
command shell:

USBAudioDeviceGenerator.exe [-s] [-o=<output-file>] <USB-audio-design-file>

 -s Silent execution (except for errors).
 -o= Base name for the generated .c and .h files.
 If not specified, the name of the USB audio design file is used.

To register an audio class at the USB stack, the application has to create a USB-
D_AC_INIT_DATA structure and call the function USBD_AC_Add(). The structures has to con-
tain a pointer to the configuration data created by the generator and three callback func-
tion, that must be provided by the application: The function pfSetAlternate is called every
time, when the host selects a new alternate setting for any of the audio interfaces. The
other two functions must handle audio control get/set requests send by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

560 CHAPTER 17 Creation of an audio device application

For audio 2.0 devices, it is required to call USBD_EnableIAD() before USBD_AC_Add().

17.2.1 Configuration requirements
In order to the audio class, isochronous transfer support must be enabled in the USB stack
by setting USB_SUPPORT_TRANSFER_ISO to 1. Additionally it may be necessary to increase
the values of the following compile-time configuration options:
• USB_MAX_NUM_IF
• USB_MAX_NUM_ALT_IF
• USB_DESC_BUFFER_SIZE

17.2.2 Design of audio interfaces
An audio 1.0 interface usually has multiple alternate settings, one for each supported sam-
ple frequency. Alternate setting 0 does not contain any endpoints and is selected by the
host to switch off the interface. Selecting an alternate setting by the host (other than 0)
implies selecting a particular sample frequency.

An audio 2.0 interface usually has only alternate settings ’0’ and ’1’, which are used by
the host to switch the interface on and off. Different sample frequencies are handled using
audio control requests send to a clock unit. Audio 2.0 interfaces may have more alternate
settings as well to provide a variable bit resolution or a variable number of channels.

While audio 1.0 devices transfer one packet of audio data every millisecond, audio 2.0
devices may transfer 1, 2, 4 or 8 packets every millisecond (one packet every 1ms, 500µs,
250µs, 125µs respectively). Choosing a smaller interval for an interface leads to smaller
packet sizes but may required a more strict response time by the application to handle
data packets.

For each alternate setting of an interface containing an endpoint, a maximum packet size
(in bytes) must be configured. It must be large enough to hold all audio samples for the
given interval.

Example

16-bit stereo --> Sample size 4 bytes
Sample frequency 48000 Hz
Interval 1ms --> 48 samples per packet
 --> maximum packet size: 4 * 48 = 192 bytes

For configurations where not all packets contain the same number of audio samples, the
maximum packet size need to be rounded up.

Example

16-bit stereo --> Sample size 4 bytes
Sample frequency 44100 Hz
Interval 1ms --> packets contain 44 or 45 samples
 --> maximum packet size: 4 * 45 = 180 bytes

If explicit synchronization is used (asynchronous OUT or adaptive IN) the packet must be
able to hold at least one more audio sample to allow proper feedback response.

Example

24-bit stereo --> Sample size 6 bytes
Sample frequency 96000 Hz
Interval 250us --> 24 samples per packet
Asynchronous OUT --> maximum packet size: 6 * (24+1) = 150 bytes

Warning

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

561 CHAPTER 17 Creation of an audio device application

During enumeration of a device all alternate settings with endpoint configurations that
are not compatible with the enumerated speed are dropped from the configuration
descriptor. This will happen for example for alternate settings with an endpoint size
> 1023 or an interval < 1ms when enumerated in full-speed. As a result, the audio
device may not be usable when enumerated in a lower speed.

17.2.3 Handling of audio control requests
If an audio control request is received from the host, one of the callback function registered
with the USBD_AC_INIT_DATA structure is called. In this functions the application must han-
dle all controls that where configured in the USB audio description file with any “Controls:”
statement.

17.2.4 Receiving audio data
If the host wants to send audio data to the device, it will select an appropriate alternate
setting on an OUT interface. The application is notified via the pfSetAlternate callback
function. In order to receive audio data from the host, the application then has to create
and initialize a data structure of type USBD_AC_RX_CTX. This contains pointer to a function
of the application (pfCallback) that is called by the audio class every time audio data
was received from the host. Additionally the USBD_AC_RX_DATA structure (contained in USB-
D_AC_RX_CTX) must be initialized: The application has to provide a buffer where the audio
data is stored and can configure the audio class to read a single or multiple packets into
this buffer before the callback function is called.

Then the application has to call USBD_AC_OpenRXStream() which starts reading data. The
contents of the USBD_AC_RX_CTX structure (memory area) must be valid and must not be
modified while the stream is open.

Every time the requested amount of audio data was received, the callback function of the
application (pfCallback) is called. The received audio data must not be processed with-
in this function, because it is called from an interrupt context. Instead the function must
reinitialize the USBD_AC_RX_DATA structure (to enable reading of the next data) and return
immediately. Audio data should be processed in an application task, therefore at least dou-
ble buffering is recommended: The callback function should modify the USBD_AC_RX_DA-
TA structure to use a different buffer to not overwrite the data received before while it is
processed by the application.

17.2.4.1 Using explicit feedback
If explicit feedback is used for a RX audio stream, the application has to compute periodi-
cally the number of audio samples that are processed within the data transfer interval de-
fined by the USB host controller and provide this information to the host using the function
USBD_AC_SetFeedbackDataRate(). In order to synchronize with the USB clock of the host
the application may register a callback function that is called in regular intervals (related
to the USB clock) using the members pfSOFCallback and FeedbackInterval of the USB-
D_AC_RX_CTX structure. In this function the application can measure the number of samples
processed (using the clock source of the audio hardware) and calculate the feedback value.

17.2.5 Sending audio data
If the host wants to read audio data from the device, it will select an appropriate alternate
setting on an IN interface. The application is notified via the pfSetAlternate callback func-
tion. In order to send audio data to the host, the application then has to create and initialize
a data structure of type USBD_AC_TX_CTX and call the function USBD_AC_OpenTXStream().
The contents of the USBD_AC_TX_CTX structure (memory area) must be valid and must not
be modified while the stream is open.

After successful open, the application can start to send audio data with USBD_AC_Send().
This function returns immediately performing the data transfer asynchronously. A maxi-

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

562 CHAPTER 17 Creation of an audio device application

mum of two calls to USBD_AC_Send() can be queued by the audio class. Every time the data
from a USBD_AC_Send() was transferred to the host, a callback function provided by the
application (member pfCallback in USBD_AC_TX_CTX) is executed in order to signal that
new audio data can be accepted to be send. This function must not generate new audio data
itself, because it is called from an interrupt context. Instead it may trigger an application
task to create more audio data and call another USBD_AC_Send().

The send queue is used to support a double buffering of audio data: While a data packet is
send to the host, another data packet can be created by the application and queued with
USBD_AC_Send().

17.2.5.1 Using explicit feedback
If explicit feedback is used for a TX audio stream, the application has to fetch the feedback
information from the host using USBD_AC_GetFeedbackDataRate() periodically and adjust
the number of audio samples that are send accordingly.

17.2.6 Physical controls
If the audio device has any kind of physical controls, like a volume control button, there
are two different ways to handle these buttons by the application:

Physical button is a HID Control

In this case, the physical button is completely separate from the audio function and is
implemented within a separate HID interface. The audio function is not even aware of the
button’s existence. Any change of state for the button is communicated to the Host software
via HID reports. It is then up to the host software to interpret the button state change and
send an appropriate control request to the audio function.

Physical button is Integral Part of the Audio Control

In this case, the physical button directly interacts with the actual audio control, causing
the state of an audio control unit to change directly. The application should inform the host
through the audio control interrupt mechanism by calling the function USBD_AC_SendIn-
terruptMessage(). The host then can retrieve the current setting of the audio control unit
using a control get request.

In order to use the audio control interrupt mechanism, an interrupt endpoint must be con-
figured in the audio control interface, see member IntEP in USBD_AC_INIT_DATA.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

563 CHAPTER 17 Syntax definition of the USB audio design file

17.3 Syntax definition of the USB audio design file
The USB audio design file is an ASCII file containing the design description of a USB audio
device given in a syntax described within this section. To create such file, knowledge of
concepts and terms of USB audio devices are required, see document “Universal Serial Bus
Device Class Definition for Audio Devices” from www.usb.org.

The file can contain C++-like comments at any location which start with // and include
the rest of the current line. Any number of spaces or new lines can be present between
keywords. The following terms are used in the syntax definition in this section:

'<ID>' := Identifier. <ID> must begin with a letter and only consist
 of letters (A-z, a-z), digits (0-9) or underline characters

"<string>" := Arbitrary text description containing a maximum
 of 255 characters

0int := An integer number, either in decimal or
 in hexadecimal (preceded with "0x")

#placeholder# := Placeholder for an element described below in the section.

#item# ... := A list of one or more #item# elements

#item# ,... := A comma separated list of one or more #item# elements

An identifier uniquely identifies a control unit or streaming interface and can be used to
define connections between these entities. When used before a { it is defined and assigned
to the current unit. It then can be used as a reference in other units. Example:

CLOCK_SOURCE 'Clock1' { // Gives this unit the name "Clock1"
 ...
}

INPUT_TERMINAL 'Term1' { // Gives this unit the name "Term1"
 ...
 ClockSource: 'Clock1'; // References the Clock Source unit above
 // as clock input
 ...
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

564 CHAPTER 17 Syntax definition of the USB audio design file

17.3.1 Overall syntax of the design file

AudioDevice '<ID>' #version# {

 Category: #category#;
 Description: "<string>";
 Controls: #MainControl# ,... ;

 #ControlUnit# ...

 #Interface# ...

 #CompilerMacros#
}

The description must contain at least one #ControlUnit# and one #Interface#, other
elements are optional.

#ControlUnit# is one of the elements described in the section Control units description.

#Interface# is an interface description defined in the section Streaming interface descrip-
tion.

#version# is either 1.0 or 2.0

#category# is one of the following:
DESKTOP_SPEAKER
HOME_THEATER
MICROPHONE
HEADSET
TELEPHONE
CONVERTER
VOICE/SOUND_RECORDER
I/O_BOX
MUSICAL_INSTRUMENT
PRO-AUDIO
AUDIO/VIDEO
CONTROL_PANEL
OTHER

#MainControl# is one of the following:
LatencyControl

17.3.1.1 Compiler Macros
The #CompilerMacros# statement can be used to create user defined preprocessor defines
stored into the generated header file. These have no affect on the generated audio config-
uration and can be arbitrarily used by the audio application.

Example

CompilerMacros {
 'XXX_VALUE' "4711";
 'XXX_SIZE' "(sizeof(XXX) + 3)";
 'XXX_NAME' "\''Mega_XXX\''";
}

will create the following defines in the header file:

#define XXX_VALUE 4711
#define XXX_SIZE (sizeof(XXX) + 3)
#define XXX_NAME "Mega_XXX"

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

565 CHAPTER 17 Syntax definition of the USB audio design file

17.3.2 Control units description
#ControlUnit# is one of the elements described below.

17.3.2.1 Input Terminal

INPUT_TERMINAL '<ID>' {
 TerminalType: 0int;
 ClockSource: '<ID>';
 ChannelCluster: #ChannelLocation# ,... ;
 Controls: #InputTerminalControl# ,... ;
 AssocTerminal: '<ID>';
 Description: "<string>";
}

All items of this unit are optional, except ChannelCluster and ClockSource (for audio
version 2.0 devices only). Valid numbers for TerminalType can be found in the document
“Universal Serial Bus Device Class Definition for Terminal Types” from www.usb.org. [{Con-
trols} is valid for audio 2.0 devices only.

#ChannelLocation# is one of the following:

FrontLeft
LeftFront
FrontRight
RightFront
FrontCenter
CenterFront
LowFrequencyEffects
BackLeft
LeftSurround
BackRight
RightSurround
FrontLeftOfCenter
LeftOfCenter
FrontRightOfCenter
RightOfCenter
BackCenter
Surround
SideLeft
SideRight
TopCenter
Top
TopFrontLeft
TopFrontCenter
TopFrontRight
TopBackLeft
TopBackCenter
TopBackRight
TopFrontLeftOfCenter
TopFrontRightOfCenter
LeftLowFrequencyEffects
RightLowFrequencyEffects
TopSideLeft
TopSideRight
BottomCenter
BackLeftOfCenter
BackRightOfCenter
RawData
NoLocation // Unspecified non-standard Channel Cluster location
"<string>" // Non-standard Channel Cluster location described by <string>

#InputTerminalControl# is one of the following:

OverloadControl

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

566 CHAPTER 17 Syntax definition of the USB audio design file

ConnectorControl
CopyProtectControl
UnderflowControl
OverflowControl
ClusterControl
//
// All of these may optionally followed by the "ReadOnly" keyword
//

17.3.2.2 Output Terminal

OUTPUT_TERMINAL '<ID>' {
 TerminalType: 0int;
 ClockSource: '<ID>';
 Input: '<ID>' ,... ;
 Controls: #OutputTerminalControl# ,... ;
 AssocTerminal: '<ID>';
 Description: "<string>";
}

All items of this unit are optional, except Input and ClockSource (for audio version 2.0
devices only). Valid numbers for TerminalType can be found in the document “Universal
Serial Bus Device Class Definition for Terminal Types” from www.usb.org. [{Controls} is
valid for audio 2.0 devices only.

#OutputTerminalControl# is one of the following:

OverloadControl
ConnectorControl
CopyProtectControl
UnderflowControl
OverflowControl
//
// All of these may optionally followed by the "ReadOnly" keyword
//

17.3.2.3 Feature unit

FEATURE_UNIT '<ID>' {
 Input: '<ID>' ,... ;
 Controls: #FeatureControl# ,... ;
 Description: "<string>";
}

All items of this unit are optional, except Input.

#FeatureControl# is one of the following:

MuteControl
VolumeControl
BassControl
MidControl
TrebleControl
GraphicEqualizerControl
AutomaticGainControl
DelayControl
BassBoostControl
LoudnessControl
InputGainControl // Audio 2.0 only
InputGainPadControl // Audio 2.0 only
PhaseInverterControl // Audio 2.0 only
UnderflowControl // Audio 2.0 only
OverflowControl // Audio 2.0 only

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

567 CHAPTER 17 Syntax definition of the USB audio design file

//
// For audio version 2.0 devices all of these may
// optionally followed by the "ReadOnly" keyword
//

17.3.2.4 Mixer unit

MIXER_UNIT '<ID>' {
 Input: '<ID>' ,... ;
 Controls: #MixerControl# ,... ;
 ChannelCluster: #ChannelLocation# ,... ;
 MixerControls: #MixerMatrix#;
 Description: "<string>";
}

All items of this unit are required, except Controls and Description.

#MixerControl# is one of the following:

ClusterControl
UnderflowControl
OverflowControl
//
// For audio version 2.0 devices all of these may
// optionally followed by the "ReadOnly" keyword
//

#MixerMatrix# is a two-dimensional bit array that has a row for each logical input channel
and a column for each logical output channel. If a bit at position [x,y] is set, this means
that the Mixer Unit contains a programmable mixing Control that connects input channel
x to output channel y. If bit [x,y] is clear, this indicates that the connection between input
channel x and output channel y is non-programmable. The number of input channels are
defined by Input, the number of output channels are specified by ChannelCluster.

#MixerMatrix# is a comma separated a list of rows. Each row is a list of bits (’0’ and ’1’
characters) enclosed in square brackets. Example:

MIXER_UNIT 'Mixer' {
 Input: 'LineIN', 'MicIN';
 ChannelCluster: FrontLeft, FrontRight, "Floor Vibration";
 // Input channels (rows):
 MixerControls: [1 1 1], // Line Left
 [1 1 1], // Line Right
 [1 1 0], // Mic Left
 [1 1 0]; // Mic Right
 // Out channels: FrontLeft FrontRight Floor Vibration
 Description: "Line / Mic mixer";
}

17.3.2.5 Selector unit

SELECTOR_UNIT '<ID>' {
 Input: '<ID>' ,... ;
 Controls: #SelectorControl# ,... ;
 Description: "<string>";
}

All items of this unit are optional, except Input. Controls is valid for audio 2.0 devices only.

#SelectorControl# is one of the following:

SelectorControl
//

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

568 CHAPTER 17 Syntax definition of the USB audio design file

// All of these may optionally followed by the "ReadOnly" keyword
//

17.3.2.6 Clock source
This unit is allowed for audio 2.0 devices only.

CLOCK_SOURCE '<ID>' {
 Type: #ClockType# ;
 AssocTerminal: '<ID>';
 Controls: #ClockSourceControl# ,... ;
 Description: "<string>";
}

All items of this unit are optional.

#ClockType# is one of the following:

External
Internal fixed
Internal fixed SynchonizedToSOF
Internal variable
Internal variable SynchonizedToSOF
Internal programmable
Internal programmable SynchonizedToSOF

#ClockSourceControl# is one of the following:

ClockFrequencyControl
ClockValidityControl
//
// All of these may optionally followed by the "ReadOnly" keyword
//

17.3.2.7 Clock selector
This unit is allowed for audio 2.0 devices only.

CLOCK_SELECTOR '<ID>' {
 Input: '<ID>' ,... ;
 Controls: #ClockSelectorControl# ,... ;
 Description: "<string>";
}

All items of this unit are optional, except Input.

#ClockSelectorControl# is one of the following:

ClockSelectorControl
//
// All of these may optionally followed by the "ReadOnly" keyword
//

17.3.2.8 Clock multiplier
This unit is allowed for audio 2.0 devices only.

CLOCK_MULTIPLIER '<ID>' {
 Input: '<ID>' ,... ;
 Controls: #ClockMultiplierControl# ,... ;
 Description: "<string>";
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

569 CHAPTER 17 Syntax definition of the USB audio design file

All items of this unit are optional, except Input.

#ClockMultiplierControl# is one of the following:

ClockNumeratorControl
ClockDenominatorControl
//
// All of these may optionally followed by the "ReadOnly" keyword
//

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

570 CHAPTER 17 Syntax definition of the USB audio design file

17.3.3 Streaming interface description
The overall syntax of an interface description #Interface# is:

StreamingInterface '<ID>' {
 #AlternateConfig# ...
 #CompilerMacros#
}

#CompilerMacros# are defined in Compiler Macros on page 564.

#AlternateConfig# is defined as:

Alternate {
 AUDIO_STREAM {
 Description: "<string>";
 Terminal: '<ID>'; // Reference to an Input- or
 // Output Terminal control unit
 //
 // The following items are valid for USB audio 1.0 devices only
 //
 FormatTag: 0int;
 Delay: 0int;
 //
 // The following items are valid for USB audio 2.0 devices only
 //
 ChannelCluster: #ChannelLocation# ,... ;
 FormatType: #FormatType#;
 Formats: 0int;
 Controls: #StreamControl# ,... ;
 }

 ENDPOINT {
 Direction: #Direction#;
 MaxPacketSize: 0int;
 Interval: 0int;
 FeedbackInterval: 0int;
 Sync: #Synchronisation#;
 Attributes: #EndpointAttribute# ,... ;
 Controls: #EndpointControl# ,... ;
 LockDelay: 0int 0int;
 }

 #StreamUnit# ...
}

The AUDIO_STREAM section is mandatory and must contain at least the Terminal and Chan-
nelCluster entries.

The ENDPOINT section is optional but must contain at least the Direction and MaxPack-
etSize entries if present.

#StreamUnit# is one of the elements described in the section Stream units description.

17.3.3.1 AUDIO_STREAM section
FormatTag describes the Audio Data Format that should be used when exchanging data
with this endpoint. A complete list of supported Audio Data Formats is provided in the
document “Universal Serial Bus Device Class Definition for Audio Data Formats 1.0” from
www.usb.org.

Delay specifies the delay (δ) introduced by the data path expressed in number of frames.

#ChannelLocation# is defined in section Input Terminal.

#FormatType# is one of the following:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

571 CHAPTER 17 Syntax definition of the USB audio design file

1
2
3
4
Extended 1
Extended 2
Extended 3

Formats specifies an integer containing a bitmap that lists the Audio Data Format(s) that
can be used to communicate with this interface. See the document “Universal Serial Bus
Device Class Definition for Audio Data Formats 2.0” from www.usb.org for further details.

#StreamControl# is one of the following:

ActiveAlternateSetting
ValidAlternateSetting

17.3.3.2 ENDPOINT section
#Direction# is either IN (data transfer from the device to the host) or OUT (data transfer
from the host to the device).

MaxPacketSize specifies maximum number of bytes transferred within one packet. Up to
1023 bytes are allowed for full-speed devices and up to 3072 bytes for high-speed devices.
More information about the maximum packet size can be found in section Design of audio
interfaces on page 560.

Interval defines the time between sending two audio packets. For audio 1.0 devices it
must be given in milliseconds (default is 1ms). For audio 2.0 devices it must be specified
in units of 125µs. A value of 1, 2, 4 or 8 defines an interval of 125µs, 250µs, 500µs or 1ms
respectively. The value must always be a power of 2.

FeedbackInterval defines the interval the feedback endpoint should be polled. It must be
specified only if a feedback endpoint is used for this interface.

#Synchronisation# is one of the following:

Synchronous
Asynchronous
Asynchronous Implicit
Adaptive
Adaptive Implicit

#EndpointAttribute# is one of the following:

SamplingFrequencyControl // audio 1.0 only
PitchControl // audio 1.0 only
MaxPacketsOnly

#EndpointControl# is valid for audio 2.0 only and is one of the following:

PitchControl
DataOverrunControl
DataUnderrunControl
//
// All of these may optionally followed by the "ReadOnly" keyword
//

LockDelay specifies values for the bLockDelayUnits and wLockDelay parameters. These
are used to indicate to the Host how long it takes for the clock recovery circuitry of this
endpoint to lock and reliably produce or consume the audio data stream.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

572 CHAPTER 17 Syntax definition of the USB audio design file

17.3.4 Stream units description
#StreamUnit# is one of the elements described below.

17.3.4.1 Format I section

FORMAT_I {
 SubframeSize: 0int; // Audio 1.0
 SubslotSize: 0int; // Audio 2.0
 BitResolution: 0int;
 //
 // The following items are valid for USB audio 1.0 devices only
 //
 NrChannels: 0int;
 SamplingFrequency: 0int ...;
 SamplingFrequencyRange: 0intMin 0intMax;
}

SubframeSize / SubslotSize defines the number of bytes occupied by one audio sample
for a single channel. Can be 1, 2, 3 or 4.

BitResolution specifies the number of effectively used bits from the available bits in an
audio subframe / subslot. The value must be ≤ 8 * SubframeSize or SubslotSize.

NrChannels indicate the number of physical channels in the audio data stream.

Supported sample frequencies can be specified either with a list of discrete frequencies
(SamplingFrequency) or by a frequency range with minimum and maximum values (Sam-
plingFrequencyRange). All frequency values must be given in Hz.

17.3.4.2 Format II section
This format is used to transfer encoded audio data.

FORMAT_II {
 MaxBitRate: 0int;
 SamplesPerFrame: 0int; // Audio 1.0
 SlotsPerFrame: 0int; // Audio 2.0
 //
 // The following items are valid for USB audio 1.0 devices only
 //
 SamplingFrequency: 0int ...;
 SamplingFrequencyRange: 0intMin 0intMax;
}

MaxBitRate specifies the maximum number of bits per second this interface can handle. It
is a measure for the buffer size available in the interface.

SamplesPerFrame indicates the number of PCM audio samples contained in one encoded
audio frame.

SlotsPerFrame contains the number of PCM audio slots contained within a single encoded
audio frame.

Supported sample frequencies can be specified either with a list of discrete frequencies
(SamplingFrequency) or by a frequency range with minimum and maximum values (Sam-
plingFrequencyRange). All frequency values must be given in Hz.

17.3.4.3 Format III section
This format is used to transfer 16-bit stereo data (two channels).

FORMAT_III {
 BitResolution: 0int;
 //

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

573 CHAPTER 17 Syntax definition of the USB audio design file

 // The following items are valid for USB audio 1.0 devices only
 //
 SamplingFrequency: 0int ...;
 SamplingFrequencyRange: 0intMin 0intMax;
}

BitResolution specifies the number of effectively used bits from the available bits in an
audio subframe / subslot. The value must be ≤ 16.

Supported sample frequencies can be specified either with a list of discrete frequencies
(SamplingFrequency) or by a frequency range with minimum and maximum values (Sam-
plingFrequencyRange). All frequency values must be given in Hz.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

574 CHAPTER 17 Target API

17.4 Target API
Function Description

API functions

USBD_AC_Add() Adds an Audio interface to the USB stack.

USBD_AC_GetCurrentAltSetting()
Returns the current alternate setting of an
interface, that was set by the host.

USBD_AC_GetStreamInfo()

Returns information about a streaming in-
terface for a given alternate setting or for
the current alternate setting, that was set
by the host.

USBD_AC_OpenRXStream()
Opens an interface and starts reading au-
dio data, depending of the current alter-
nate setting, that was set by the host.

USBD_AC_CloseRXStream()
Stops data transfers of an audio receive
stream and closes the stream.

USBD_AC_OpenTXStream()

Opens an interface and prepare for send-
ing audio data with USBD_AC_Send(), de-
pending of the current alternate setting,
that was set by the host.

USBD_AC_Send() Provide audio data to be send to the host.

USBD_AC_CloseTXStream()
Stops data transfers of an audio send
stream and closes the stream.

USBD_AC_SetFeedbackDataRate()
Provides sample rate feedback for an OUT
endpoint using explicit asynchronous syn-
chronization.

USBD_AC_GetFeedbackDataRate()
Gets the sample rate feedback that was
send by the host for an IN endpoint using
explicit adaptive synchronization.

USBD_AC_SendInterruptMessage()
Writes an interrupt message via the op-
tional interrupt IN endpoint to the host.

Data structures

USBD_AC_INIT_DATA
Initialization data for the Audio class in-
stance.

USBD_AC_STREAM_INTF_INFO
This structure contains information about
an audio streaming interface.

USBD_AC_RX_CTX
Contains all information about an active in-
terface receiving audio data.

USBD_AC_RX_DATA
This structure is used to forward audio da-
ta to the application.

USBD_AC_TX_CTX
Contains all information about an active in-
terface for sending audio data.

USBD_AC_CONTROL_INFO
This structure contains information about
the type of a control request.

USBD_AC_EVENT Event types for RX / TX callback functions.
Function definitions

USBD_AC_SET_ALT_INTERFACE
Definition of the callback which is called
when the hosts sets an alternate setting
on an audio interface.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

575 CHAPTER 17 Target API

Function Description

USBD_AC_CONTROL_GET_FUNC
Definition of the callback which is called
when an audio control get requests is re-
ceived.

USBD_AC_CONTROL_SET_FUNC
Definition of the callback which is called
when an audio control set requests is re-
ceived.

USBD_AC_RX_CALLBACK
Definition of the callback which is called
when audio data was received from the
host.

USBD_AC_TX_CALLBACK
Definition of the callback which is called
when audio data was send to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

576 CHAPTER 17 Target API

17.4.1 API functions

17.4.1.1 USBD_AC_Add()

Description

Adds an Audio interface to the USB stack.

Prototype

int USBD_AC_Add(const USBD_AC_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData
Pointer to a USBD_AC_INIT_DATA structure containing values
for the initialization.

Return value

≥ 0 on success.
< 0 on error.

Additional information

This function registers Audio interface class with the USB stack. It must be called after
USBD_Init() and before USBD_Start(). The structure USBD_AC_INIT_DATA has to be ini-
tialized before USBD_AC_Add() is called. Refer to USBD_AC_INIT_DATA for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

577 CHAPTER 17 Target API

17.4.1.2 USBD_AC_GetCurrentAltSetting()

Description

Returns the current alternate setting of an interface, that was set by the host.

Prototype

unsigned USBD_AC_GetCurrentAltSetting(unsigned Interface);

Parameters

Parameter Description

Interface
Index of the audio interface, see generated USBD_AC_INTER-
FACE_… defines.

Return value

Current alternate setting.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

578 CHAPTER 17 Target API

17.4.1.3 USBD_AC_GetStreamInfo()

Description

Returns information about a streaming interface for a given alternate setting or for the
current alternate setting, that was set by the host.

Prototype

USBD_AC_STREAM_INTF_INFO *USBD_AC_GetStreamInfo(unsigned Interface,
 int AltSetting);

Parameters

Parameter Description

Interface
Index of the audio interface, see generated USBD_AC_INTER-
FACE_… defines.

AltSetting
Number of the alternate setting for which the information
should be returned. Can be set to -1, then the current alter-
nate setting selected by the host is used.

Return value

Pointer to a USBD_AC_STREAM_INTF_INFO structure containing the information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

579 CHAPTER 17 Target API

17.4.1.4 USBD_AC_OpenRXStream()

Description

Opens an interface and starts reading audio data, depending of the current alternate setting,
that was set by the host.

Prototype

int USBD_AC_OpenRXStream(USBD_AC_RX_CTX * pCtx);

Parameters

Parameter Description

pCtx

Receive stream context. The public part of the structure
must be initialized before calling USBD_AC_OpenRXStream().
After the stream was opened successfully, the data (memory
area) must remain valid and must not be changed by the ap-
plication.

Return value

= 0 Stream was successfully opened and receiving data has started.
≠ 0 Error.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

580 CHAPTER 17 Target API

17.4.1.5 USBD_AC_CloseRXStream()

Description

Stops data transfers of an audio receive stream and closes the stream.

Prototype

void USBD_AC_CloseRXStream(USBD_AC_RX_CTX * pCtx);

Parameters

Parameter Description

pCtx

Receive context of a RX stream, that was successfully
opened using USBD_AC_OpenRXStream(). After the function
returns, the context is not used any more and can be de-
stroyed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

581 CHAPTER 17 Target API

17.4.1.6 USBD_AC_OpenTXStream()

Description

Opens an interface and prepare for sending audio data with USBD_AC_Send(), depending
of the current alternate setting, that was set by the host.

Prototype

int USBD_AC_OpenTXStream(USBD_AC_TX_CTX * pCtx);

Parameters

Parameter Description

pCtx

Send stream context. The public part of the structure must
be initialized before calling USBD_AC_OpenTXStream(). After
the stream was opened successfully, data can be send with
the function USBD_AC_Send().

Return value

= 0 Stream was successfully opened.
≠ 0 Error.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

582 CHAPTER 17 Target API

17.4.1.7 USBD_AC_Send()

Description

Provide audio data to be send to the host. The caller need to know the current sample rate
and how the audio samples have to be distributed over the USB frames / micro frames.

This function returns immediately performing the data transfer asynchronously. After suc-
cessful transfer of the data, the callback function provided in the USBD_AC_TX_CTX structure
is called to indicate that new audio data can be accepted to be send.

A maximum of two calls to USBD_AC_Send() can be queued. The send queue is used to
support a double buffering of audio data: While a data packet is send to the host, another
data packet can be created by the application and queued with USBD_AC_Send().

Prototype

int USBD_AC_Send(USBD_AC_TX_CTX * pCtx,
 U16 NumFrames,
 U32 NumBytes,
 const void * pData);

Parameters

Parameter Description

pCtx
Send context of a TX stream, that was successfully opened
using USBD_AC_OpenTXStream().

NumFrames
Number of frames (full-speed) or micro frames (high-speed)
the provided data is used for. The data is equally distributed
over this number of frames / micro frames. Must be ≤ 1024.

NumBytes
Number of bytes of the audio data. Must be ≤ NumFrames *
MaxPacketSize. If NumFrames > 1, then NumBytes must be a
multiple of USBD_AC_TX_CTX.SampleSize.

pData
Pointer to the audio data. To achieve best performance the
data should be word aligned or cache aligned if the system is
using a data cache.

Return value

= 0 Success.
≠ 0 Error.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

583 CHAPTER 17 Target API

17.4.1.8 USBD_AC_CloseTXStream()

Description

Stops data transfers of an audio send stream and closes the stream.

Prototype

void USBD_AC_CloseTXStream(USBD_AC_TX_CTX * pCtx);

Parameters

Parameter Description

pCtx
Send context of a TX stream, that was successfully opened
using USBD_AC_OpenTXStream(). After the function returns,
the context is not used any more and can be destroyed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

584 CHAPTER 17 Target API

17.4.1.9 USBD_AC_SetFeedbackDataRate()

Description

Provides sample rate feedback for an OUT endpoint using explicit asynchronous synchro-
nization.

Prototype

void USBD_AC_SetFeedbackDataRate(USBD_AC_RX_CTX * pCtx,
 U32 DataRate);

Parameters

Parameter Description

pCtx
Receive context of a RX stream, that was successfully
opened using USBD_AC_OpenRXStream().

DataRate

Number of samples that are processed by the device with-
in one interval (endpoint configuration) multiplied by 2^16.
As the actual sample rate per interval may not be an integer,
the multiplication with 2^16 results in a fixed point num-
ber, where the upper 16 bits are the integer part and and
the lower 16 bits contain the fractional part. Example: A da-
ta rate of 44.25 samples per interval is coded as DataRate =
0x002C4000.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

585 CHAPTER 17 Target API

17.4.1.10 USBD_AC_GetFeedbackDataRate()

Description

Gets the sample rate feedback that was send by the host for an IN endpoint using explicit
adaptive synchronization.

Prototype

U32 USBD_AC_GetFeedbackDataRate(USBD_AC_TX_CTX * pCtx);

Parameters

Parameter Description

pCtx
Send context of a TX stream, that was successfully opened
using USBD_AC_OpenTXStream().

Return value

DataRate: Number of samples that are processed by the device within one interval (end-
point configuration) multiplied by 2^16. As the actual sample rate per interval may not be
an integer, the multiplication with 2^16 results in a fixed point number, where the upper 16
bits are the integer part and and the lower 16 bits contain the fractional part. Example: A
data rate of 44.25 samples per interval is coded as DataRate = 0x002C4000. The functions
returns 0, if there was no feedback from the host so far.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

586 CHAPTER 17 Target API

17.4.1.11 USBD_AC_SendInterruptMessage()

Description

Writes an interrupt message via the optional interrupt IN endpoint to the host.

Prototype

int USBD_AC_SendInterruptMessage(unsigned Interface,
 U32 ID,
 U8 ChannelNumber,
 int ms);

Parameters

Parameter Description

Interface
Index of the audio interface, use one of the generated USB-
D_AC_INTERFACE_… macros.

ID

Interrupt source: Unit / terminal / entity ID and audio
control selector. Use one of the generated USBD_AC_ID_…
macros added with one of the USB_AC_xx_…_CONTROL
macros.

ChannelNumber
Channel number of the control unit or 0 if not used. Ignored
for audio 1.0 devices.

ms
Timeout in milliseconds. 0 means infinite. If Timeout is
-1, the function returns immediately and the transfer is
processed asynchronously.

Return value

= 0 Successful started an asynchronous write transfer (Timeout = -1) or a timeout
has occurred and no data was written.

> 0 Write transfer successful completed.
< 0 An error occurred.

Additional information

Endpoint related interrupt messages are not (yet) supported.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

587 CHAPTER 17 Target API

17.4.2 Data structures

17.4.2.1 USBD_AC_INIT_DATA

Description

Initialization data for the Audio class instance.

Type definition

typedef struct {
 const USBD_AC_CONFIG * pACConfig;
 USBD_AC_CONTROL_GET_FUNC * pfControlGet;
 USBD_AC_CONTROL_SET_FUNC * pfControlSet;
 USBD_AC_SET_ALT_INTERFACE * pfSetAlternate;
 USBD_AC_GET_ALT_INTERFACE * pfGetInterfaceInfo;
 U8 IntEP;
} USBD_AC_INIT_DATA;

Structure members

Member Description

pACConfig Pointer to configuration data created by the generator.
pfControlGet Callback function to handle audio control get requests.
pfControlSet Callback function to handle audio control set requests.

pfSetAlternate
Callback to inform the application about Set Interface control
requests.

pfGetInterfaceInfo
Callback to inform the application about Get Interface con-
trol requests.

IntEP

Optional interrupt EP. If used, it must be allocated by call-
ing USBD_AddEP(1, USB_TRANSFER_TYPE_INT, Interval, NULL,
PacketSize), where PacketSize must be 2 for audio 1.0 de-
vices and 6 for audio 2.0 devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

588 CHAPTER 17 Target API

17.4.2.2 USBD_AC_STREAM_INTF_INFO

Description

This structure contains information about an audio streaming interface.

Type definition

typedef struct {
 U16 MaxPacketSize;
 U8 IntervalExp;
 U8 NrChannels;
 U8 SubframeSize;
 U8 BitResolution;
} USBD_AC_STREAM_INTF_INFO;

Structure members

Member Description

MaxPacketSize Maximum packet size of the endpoint.

IntervalExp
Specifies the interval of the endpoint in micro frames
(125us): Interval = 2^IntervalExp

NrChannels
Number of audio channels. If not specified in the audio de-
scription file, contains 0.

SubframeSize
Number of byte for a single audio sample (one channel). If
not specified in the audio description file, contains 0.

BitResolution
Number of relevant bits in a single audio sample. If not
specified in the audio description file, contains 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

589 CHAPTER 17 Target API

17.4.2.3 USBD_AC_RX_CTX

Description

Contains all information about an active interface receiving audio data. The public part
of this structure must be initialized by the application before passed to the function USB-
D_AC_OpenRXStream(). The data must remain valid and must not be modified by the ap-
plication while the stream is open and used.

Type definition

typedef struct {
 U16 Interface;
 U16 Flags;
 typedef void (* pfSOFCallback((void * pCtx);
 U16 FeedbackInterval;
 USBD_AC_RX_CALLBACK * pfCallback;
 USBD_AC_RX_DATA RxData;
} USBD_AC_RX_CTX;

Structure members

Member Description

Interface
Index of the audio interface, see generated USBD_AC_INTER-
FACE_… defines.

Flags Reserved for future extensions, must be set to 0.
pfSOFCallback Internal use.

FeedbackInterval
Interval (Number of SOFs) used for calling pfSOFCallback.
Measured in units of 1ms for full-speed / 125us in high-
speed.

pfCallback
Function that is called when data was received from the host
or a ’close’ event or timeout has occurred on the stream.

RxData Data transfer information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

590 CHAPTER 17 Target API

17.4.2.4 USBD_AC_RX_DATA

Description

This structure is used to forward audio data to the application.

Type definition

typedef struct {
 void * pBuffer;
 U32 NumBytes;
 U16 NumPackets;
 U16 Timeout;
 void * pUserContext;
} USBD_AC_RX_DATA;

Structure members

Member Description

pBuffer

Pointer to the buffer which is used to receive audio data. The
buffer must be provided by the application and must have
a size of at least the maximum packet size of the current-
ly selected audio stream endpoint. To achieve best perfor-
mance the buffer should be word aligned or cache aligned if
the system is using a data cache. Must be initialized before
calling USBD_AC_OpenRXStream() (within USBD_AC_RX_CTX)
and in the pfCallback function before it returns.

NumBytes
Must be initialized by the application to the size of the buffer
’pBuffer’. When the function pfCallback is called, it con-
tains the number of bytes actually received.

NumPackets

Must be initialized by the application to the maximum num-
ber of audio packets that are read into the buffer before
the application is notified via the callback function. When
the function pfCallback is called, it contains the number of
packets actually received.

Timeout

Timeout in units of SOFs (1ms for full-speed / 125us in high-
speed). If no packets were received within the specified
time, the application is notified with a USBD_AC_EVENT_TI-
MOUT event. A value of 0 means no timeout.

pUserContext Can be arbitrarily used by the application.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

591 CHAPTER 17 Target API

17.4.2.5 USBD_AC_TX_CTX

Description

Contains all information about an active interface for sending audio data. The public part
of this structure must be initialized by the application before passed to the function USB-
D_AC_OpenTXStream(). The data must remain valid and must not be modified by the ap-
plication while the stream is open and used.

Type definition

typedef struct {
 U16 Interface;
 U16 Flags;
 U16 SampleSize;
 U16 Timeout;
 USBD_AC_TX_CALLBACK * pfCallback;
 void * pUserContext;
} USBD_AC_TX_CTX;

Structure members

Member Description

Interface
Index of the audio interface, see generated USBD_AC_INTER-
FACE_… defines.

Flags Reserved for future extensions, must be set to 0.

SampleSize
Number of bytes for a single audio sample (all channels).
The value is not required (and is ignored) if only single audio
packets is send via USBD_AD_Send().

Timeout

Timeout in units of SOFs (1ms for full-speed / 125us in high-
speed). If no packets were send within the specified time,
the application is notified with a USBD_AC_EVENT_TIMOUT
event. A value of 0 means no timeout.

pfCallback
Function that is called when data was send to the host or a
’close’ event or timeout has occurred on the stream.

pUserContext Can be arbitrarily used by the application.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

592 CHAPTER 17 Target API

17.4.2.6 USBD_AC_CONTROL_INFO

Description

This structure contains information about the type of a control request.

Type definition

typedef struct {
 U32 ID;
 U8 bRequest;
 U8 ChannelNumber;
} USBD_AC_CONTROL_INFO;

Structure members

Member Description

ID

Request ID: Bits 20..16 contain the interface index (0 = con-
trol interface, 1,… = streaming interfaces) Bits 15..8 contain
the unit / terminal / entity ID. Is set to 0xFF if recipient is
the endpoint. Bits 7..0 contain the control selector.

bRequest
Audio Class-Specific Request Code, see USB_AC_REQ… de-
fines.

ChannelNumber Internal use.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

593 CHAPTER 17 Target API

17.4.2.7 USBD_AC_EVENT

Description

Event types for RX / TX callback functions.

Type definition

typedef enum {
 USBD_AC_EVENT_DATA_RECEIVED,
 USBD_AC_EVENT_DATA_SEND,
 USBD_AC_EVENT_TIMOUT,
 USBD_AC_EVENT_CLOSED
} USBD_AC_EVENT;

Enumeration constants

Constant Description

USBD_AC_EVENT_DA-
TA_RECEIVED

Data was read from the host.

USBD_AC_EVENT_DA-
TA_SEND

Data was send to the host.

USBD_AC_EVENT_TIMOUT Timeout on read or write.
USBD_AC_EVENT_CLOSED Interface was closed by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

594 CHAPTER 17 Target API

17.4.3 Function definitions

17.4.3.1 USBD_AC_SET_ALT_INTERFACE

Description

Definition of the callback which is called when the hosts sets an alternate setting on an
audio interface. This callback is called in interrupt context and must not block.

Type definition

typedef void USBD_AC_SET_ALT_INTERFACE(unsigned InterfaceNo,
 unsigned NewAltSetting);

Parameters

Parameter Description

InterfaceNo
Number of the audio streaming interface. Corresponds to the
USBD_AC_INTERFACE_… defines.

NewAltSetting Alternate setting selected by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

595 CHAPTER 17 Target API

17.4.3.2 USBD_AC_CONTROL_GET_FUNC

Description

Definition of the callback which is called when an audio control get requests is received.
This callback is called in interrupt context and must not block.

Type definition

typedef int USBD_AC_CONTROL_GET_FUNC(const USBD_AC_CONTROL_INFO * pReqInfo,
 U8 * pBuffer);

Parameters

Parameter Description

pReqInfo Contains information about the type of the control request.

pBuffer
Pointer to a buffer into which the callback should write the
reply (max. 64 bytes).

Return value

≥ 0 Audio control request was handled by the callback and response data was put
into pBuffer. The callback function must return the length of the response data
which will be send to the host.

< 0 Audio control request was not handled by the callback (i.e. illegal request or pa-
rameters). The stack will STALL the request.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

596 CHAPTER 17 Target API

17.4.3.3 USBD_AC_CONTROL_SET_FUNC

Description

Definition of the callback which is called when an audio control set requests is received.
This callback is called in interrupt context and must not block.

Type definition

typedef int USBD_AC_CONTROL_SET_FUNC(const USBD_AC_CONTROL_INFO * pReqInfo,
 U32 NumBytes,
 const U8 * pBuffer);

Parameters

Parameter Description

pReqInfo Contains information about the type of the control request.
NumBytes Number of bytes in pBuffer.
pBuffer Pointer to a buffer containing the request data.

Return value

= 0 Audio control request was handled by the callback.
≠ 0 Audio control request was not handled by the callback (i.e. illegal request or pa-

rameters). The stack will STALL the request.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

597 CHAPTER 17 Target API

17.4.3.4 USBD_AC_RX_CALLBACK

Description

Definition of the callback which is called when audio data was received from the host. pRx-
Data->Numbytes bytes of data were received into pRxData->pBuffer. The function must
reinitialize the members pBuffer, NumBytes and MaxPackets before it returns. This call-
back is called in interrupt context and must not block. The audio data must not be processed
inside this function, instead a task should be triggered that does the audio processing and
this function should return as fast as possible. After this function has returned, the next
USB transfer is started immediately. Therefore the member ’pBuffer’ should be initialized
to point to a different buffer to avoid overwriting the data just received (double buffering
mechanism is recommended).

Type definition

typedef void USBD_AC_RX_CALLBACK(USBD_AC_EVENT Event,
 USBD_AC_RX_DATA * pRxData);

Parameters

Parameter Description

Event Event occurred on the audio stream.

pRxData
Pointer to a USBD_AC_RX_DATA structure. The contents is
valid only, if Event = USBD_AC_EVENT_DATA_RECEIVED.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

598 CHAPTER 17 Target API

17.4.3.5 USBD_AC_TX_CALLBACK

Description

Definition of the callback which is called when audio data was send to the host. The function
should initiate to send more data.

Type definition

typedef void USBD_AC_TX_CALLBACK(USBD_AC_EVENT Event,
 const void * pData,
 void * pUserContext);

Parameters

Parameter Description

Event Event occurred on the audio stream.

pData
Pointer to the data send, that was provided to the USB-
D_AC_Send() function.

pContext Pointer from the USBD_AC_RX_CTX structure.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 18

Legacy Audio 1.0

This chapter gives a general overview of the legacy Audio class and describes how to get
the Audio component running on the target. If designing new audio applications, it’s rec-
ommended to use the new Audio class.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

600 CHAPTER 18 Overview

18.1 Overview

Note

For new audio applications the new Audio class should be used, even for Audio 1.0,
see Audio on page 557.

The USB Audio device class is a USB class protocol which can be used to transfer sound
data from a device to a host and vice versa.

Audio is supported by most operating systems out of the box and the installation of addi-
tional drivers is not required.

emUSB-Device-Audio comes as a complete package and contains the following:
• Generic USB handling
• USB Audio V1 device class implementation
• Sample application showing how to work with Audio

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

601 CHAPTER 18 Introduction

18.2 Introduction
SEGGER’s implementation of the Audio class V1.0 is designed with minimal resource usage
in mind, especially targeted to embedded devices. The implementation supports the usage
of a “speaker” (input/output audio terminal with a feature terminal for controls) and a
“microphone” (input/output audio terminal).

The speaker and microphone can be used independently of each other, both can be enabled
at the same time allowing audio transfer in either direction (headset-like operation).

The Audio class supports adaptive synchronization for OUT endpoints and asynchronous
synchronization for IN endpoints, synchronous synchronization type for both directions,
commands SET_CUR, GET_CUR, SET_MIN, GET_MIN, SET_MAX, GET_MAX, SET_RES, GET_RES,
for the speaker interface feature unit controls are supported (volume, mute, etc.).

Warning

emUSB-Device-Audio does not provide drivers/codecs for any audio peripherals, writ-
ing a driver to interface with the audio hardware is the responsibility of the customer.

With emUSB-Device-Audio Audio data is transferred in the PCM encoding. The Audio class
transfers multiple audio samples in a single packet. In the following sample the audio class
is configured with 2 channels (stereo) and 16 bit data per channel:

The length of a complete audio packet is equal to the bits per sample rounded up to bytes,
multiplied by the number of channels and the sample rate, then divided by 1000 as a packet
is sent every millisecond. For a sample rate of 48000, 16 bits per sample, 2 channels the
calculation is as follows:

48000 * 16/8 * 2 / 1000 = 192 bytes

For a sample rate of 44100, 16 bits per sample, 2 channels the calculation is as follows:

44100 * 16/8 * 2 / 1000 = 176.4 bytes

Since we can not transfer 0.4 bytes the audio packets need to be 176 bytes (44 samples)
and each 10th packet (sample size divided by the remainder: 4 / 0.4) should contain 45
samples (180 bytes) to make sure the sample rate remains at 44100.

Note

On macOS (tested with Big Sur) when a device is using USB high-speed for an audio
device the speaker interface will not be shown, unless the ISO endpoint type of the
out endpoint is “USB_ISO_SYNC_TYPE_ASYNCHRONOUS”. Microphone interfaces are not
affected.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

602 CHAPTER 18 Configuration

18.3 Configuration

18.3.1 Initial configuration
To get emUSB-Device-Audio up and running as well as doing an initial test, the configuration
as delivered with the sample application should not be modified.

18.3.2 Final configuration
The configuration must only be modified when emUSB-Device is integrated in your final
product. Refer to section emUSB-Device Configuration on page 50 for detailed information
about the generic information functions which have to be adapted.

Windows

Windows systems save the audio settings for each USB Audio device inside the Windows
registry (interfaces, number of channels, sub-frame-size, bit resolution and sample fre-
quency). These values are saved for the USB Vendor ID and the USB Product ID. When
a device with the same USB Vendor ID and USB Product ID enumerates a second time
the audio settings are checked against the saved values inside the Windows registry. If
the settings do not match the device will not function (Windows will not request any audio
data from it).

It is not known why Windows behaves this way, other operating systems are not affected.

When developing a USB Audio device and experimenting with different sample rates, bit
resolutions, etc. it is advised to remove the device from the registry after each change to
the audio settings or to use a different USB product ID after every change.

18.3.3 Using the microphone interface
When using the microphone sample applications with a PC it is not immediately clear
whether they work as the PC only receives the audio data. To listen to the data being sent
from the target running emUSB-Device-Audio to your PC it is necessary to enable a loop-
back mode which will transfer the audio data from the microphone interface to the physical
speakers connected to your PC.

Linux

This guide assumes you are using pulse audio.
• Make sure the device running emUSB-Device-Audio microphone sample is selected as

the default sound input device.
• Make sure your speakers (or headphones) are selected as the default sound output

device.
• Run pactl load-module module-loopback to enable loopback.
• At this point your should hear the sound being produced by the microphone sample.
• You can run pactl unload-module module-loopback to disable the loopback mode.

Windows
• Make sure your speakers (or headphones) are selected as the default sound output

device.
• In the sound configuration of the device running emUSB-Device-Audio microphone

sample tick the “Listen to this device” checkbox and click “Apply”.
• At this point your should hear the sound being produced by the microphone sample.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

603 CHAPTER 18 Configuration

Mac

At the time of writing no built-in way of looping back audio is known. But there are a couple
of third party applications out there which can enable loopback mode for macOS.

18.3.4 Using the speaker interface
When using the speaker sample applications the PC merely needs to be configured to use
the device running emUSB-Device-Audio as the default output sound device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

604 CHAPTER 18 Target API

18.4 Target API
Function Description

API functions

USBD_AUDIO_Add() Adds an Audio interface to the USB stack.

USBD_AUDIO_Read_Task()
Task function of the Audio component
which processes data received from host.

USBD_AUDIO_Write_Task()
Task function of the Audio component
which processes data sent to the host.

USBD_AUDIO_Start_Play()
Starts providing audio data to the host us-
ing the microphone terminal of the audio
class.

USBD_AUDIO_Stop_Play() Stops providing audio data to the host.

USBD_AUDIO_Start_Listen()
Starts receiving audio data from the host
using the speaker terminal of the audio
class.

USBD_AUDIO_Stop_Listen() Stops receiving audio data from the host.

USBD_AUDIO_Set_Timeouts()

Sets the timeouts used by the USB-
D_AUDIO_Read_Task() and USBD_AU-
DIO_Write_Task() when listen/play is ac-
tive.

Data structures

USBD_AUDIO_INIT_DATA
Initialization data for the Audio class in-
stance.

USBD_AUDIO_IF_CONF
Initialization structure for an audio micro-
phone/speaker interface.

USBD_AUDIO_FORMAT
Initialization data for a single audio for-
mat.

USBD_AUDIO_UNITS
This structure contains IDs used for a par-
ticular audio interface.

Function definitions

USBD_AUDIO_TX_FUNC
Definition of the callback which is called
when audio data is sent.

USBD_AUDIO_RX_FUNC
Definition of the callback which is called
when audio data is received.

USBD_AUDIO_CONTROL_FUNC
Definition of the callback which is called
when audio commands are received.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

605 CHAPTER 18 Target API

18.4.1 API functions

18.4.1.1 USBD_AUDIO_Add()

Description

Adds an Audio interface to the USB stack.

Prototype

USBD_AUDIO_HANDLE USBD_AUDIO_Add(const USBD_AUDIO_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData

Pointer to a USBD_AUDIO_INIT_DATA structure containing val-
ues for the initialization. This structure’s memory must re-
main available while the audio class is being used. The appli-
cation should not put this structure on the stack.

Return value

USBD_AUDIO_HANDLE - Handle for the added Audio instance.

Additional information

After the initialization of USB core, this is the first function that needs to be called when
an Audio interface is used with emUSB-Device. The structure USBD_AUDIO_INIT_DATA has
to be initialized before USBD_AUDIO_Add() is called. Refer to USBD_AUDIO_INIT_DATA for
more information.

For the Audio component to be functional one or both of the following functions have to be
created as a task: USBD_AUDIO_Read_Task(), USBD_AUDIO_Write_Task().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

606 CHAPTER 18 Target API

18.4.1.2 USBD_AUDIO_Read_Task()

Description

Task function of the Audio component which processes data received from host. Handles
operations of the speaker interface. Has to be created as a separate task.

Prototype

void USBD_AUDIO_Read_Task(void);

Additional information

Only necessary if the speaker interface is used. The function returns only when USB-
D_DeInit() is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

607 CHAPTER 18 Target API

18.4.1.3 USBD_AUDIO_Write_Task()

Description

Task function of the Audio component which processes data sent to the host. Handles
operations of the microphone interface. Has to be created as a separate task.

Prototype

void USBD_AUDIO_Write_Task(void);

Additional information

Only necessary if the microphone interface is used. The function returns only when USB-
D_DeInit() is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

608 CHAPTER 18 Target API

18.4.1.4 USBD_AUDIO_Start_Play()

Description

Starts providing audio data to the host using the microphone terminal of the audio class.

Prototype

int USBD_AUDIO_Start_Play(USBD_AUDIO_HANDLE hInst,
 const U8 * pBufIn);

Parameters

Parameter Description

hInst
Handle to a valid Audio instance, returned by USBD_AU-
DIO_Add().

pBufIn
Buffer initially used with IN transfers (microphone interface).
Can be changed inside the USBD_AUDIO_TX_FUNC callback.

Return value

= 0 Success.
< 0 An error occurred.

Additional information

This function enables the registered TX user function (USBD_AUDIO_TX_FUNC). The callback
is called after every successful transfer and should move the buffer pointer to the next
audio packet accordingly or fill the same buffer with new data. The callback is called in an
interrupt context. The execution of the callback together with the internal routines must
never take longer than 1 millisecond because the audio class must send one packet every
millisecond.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

609 CHAPTER 18 Target API

18.4.1.5 USBD_AUDIO_Stop_Play()

Description

Stops providing audio data to the host.

Prototype

void USBD_AUDIO_Stop_Play(USBD_AUDIO_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid Audio instance, returned by USBD_AU-
DIO_Add().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

610 CHAPTER 18 Target API

18.4.1.6 USBD_AUDIO_Start_Listen()

Description

Starts receiving audio data from the host using the speaker terminal of the audio class.

Prototype

int USBD_AUDIO_Start_Listen(USBD_AUDIO_HANDLE hInst,
 U8 * pBufOut);

Parameters

Parameter Description

hInst
Handle to a valid Audio instance, returned by USBD_AU-
DIO_Add().

pBufOut
Buffer initially used with OUT transfers (speaker interface).
Can be changed inside the USBD_AUDIO_RX_FUNC callback.

Return value

= 0 Success.
< 0 An error occurred.

Additional information

This function enables the registered user callback function (USBD_AUDIO_RX_FUNC) which
is called before the host sends data to the target. Inside the callback you may read the
received data. The callback is called in an interrupt context. The execution of the callback
together with the internal routines must never take longer than 1 millisecond because the
audio class must send one packet every millisecond.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

611 CHAPTER 18 Target API

18.4.1.7 USBD_AUDIO_Stop_Listen()

Description

Stops receiving audio data from the host.

Prototype

void USBD_AUDIO_Stop_Listen(USBD_AUDIO_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid Audio instance, returned by USBD_AU-
DIO_Add().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

612 CHAPTER 18 Target API

18.4.1.8 USBD_AUDIO_Set_Timeouts()

Description

Sets the timeouts used by the USBD_AUDIO_Read_Task() and USBD_AUDIO_Write_Task()
when listen/play is active.

Prototype

void USBD_AUDIO_Set_Timeouts(USBD_AUDIO_HANDLE hInst,
 unsigned ReadTimeout,
 unsigned WriteTimeout);

Parameters

Parameter Description

hInst
Handle to a valid Audio instance, returned by USBD_AU-
DIO_Add().

ReadTimeout Read (OUT) timeout in milliseconds.
WriteTimeout Write (IN) timeout in milliseconds.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

613 CHAPTER 18 Target API

18.4.2 Data structures

18.4.2.1 USBD_AUDIO_INIT_DATA

Description

Initialization data for the Audio class instance.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 unsigned OutPacketSize;
 USBD_AUDIO_RX_FUNC * pfOnOut;
 USBD_AUDIO_TX_FUNC * pfOnIn;
 USBD_AUDIO_CONTROL_FUNC * pfOnControl;
 void * pControlUserContext;
 U8 NumInterfaces;
 const USBD_AUDIO_IF_CONF * paInterfaces;
 void * pOutUserContext;
 void * pInUserContext;
} USBD_AUDIO_INIT_DATA;

Structure members

Member Description

EPIn
Isochronous IN endpoint for sending data to the host. If mi-
crophone functionality is not desired set this to 0.

EPOut
Isochronous OUT endpoint for receiving data from the host.
If speaker functionality is not desired set this to 0.

OutPacketSize
Size of a single audio OUT packet. Must be calculated as
follows: (highest used) SampleRate * NumChannels *
BitsPerSample / 8 / 1000

pfOnOut
Pointer to a function of type USBD_AUDIO_RX_FUNC which
handles incoming audio data. Needs to be set when the
speaker interface is used.

pfOnIn
Pointer to a function of type USBD_AUDIO_TX_FUNC which
handles outgoing audio data. Needs to be set when the mi-
crophone interface is used.

pfOnControl
Pointer to a function of type USBD_AUDIO_CONTROL_FUNC
which handles audio commands. Always needs to be set.

pControlUserContext
Pointer to a user context which is passed to the pfOnCon-
trol function. Optional, can be NULL.

NumInterfaces Number of elements in the paInterfaces array.

paInterfaces
Pointer to an array of structures of type USBD_AU-
DIO_IF_CONF which contain configuration data for the audio
interfaces.

pOutUserContext
Pointer to a user context which is passed to the pfOnOut
function. Optional, can be NULL.

pInUserContext
Pointer to a user context which is passed to the pfOnIn func-
tion. Optional, can be NULL.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

614 CHAPTER 18 Target API

18.4.2.2 USBD_AUDIO_IF_CONF

Description

Initialization structure for an audio microphone/speaker interface. Only one speaker and
one microphone is supported.

Type definition

typedef struct {
 U8 Flags;
 U8 Controls;
 U8 TotalNrChannels;
 U8 NumFormats;
 const USBD_AUDIO_FORMAT * paFormats;
 U16 bmChannelConfig;
 U16 TerminalType;
 USBD_AUDIO_UNITS * pUnits;
} USBD_AUDIO_IF_CONF;

Structure members

Member Description

Flags Reserved. Set to zero.

Controls

Bitmask, a bit set to 1 indicates that the mentioned Control
is supported:
• b0: Mute
• b1: Volume
• b2: Bass
• b3: Mid
• b4: Treble
• b5: Graphic Equalizer
• b6: Automatic Gain
• b7: Delay

TotalNrChannels Number of audio channels for this interface.
NumFormats Number of elements inside the paFormats array.
paFormats Pointer to any array of USBD_AUDIO_FORMAT structures.

bmChannelConfig

Bit map indicating the spatial locations of channels. Impor-
tant: this value should not be left at 0 to avoid an issue with
Windows. The bits correspond to the following locations:
• b0: Left Front (L)
• b1: Right Front (R)
• b2: Center Front (C)
• b3: Low Frequency Enhancement (LFE)
• b4: Left Surround (LS)
• b5: Right Surround (RS)
• b6: Left of Center (LC)
• b7: Right of Center (RC)
• b8: Surround (S)
• b9: Side Left (SL)
• b10: Side Right (SR)
• b11: Top (T)
• b15..12: Reserved
Channels are assigned to locations in ascending oder. E.g.
if b6 and b11 are set and the other bits are zero channel 0
will be “LC” and channel 1 will be “T”. Having more channels
than bits set in this bit map is valid, the channels which do
not have a bit set will be considered to have a non-prede-
fined spatial position.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

615 CHAPTER 18 Target API

Member Description

TerminalType

Defines the type of speaker/microphone for this interface.
Only one speaker and one microphone is supported! The fol-
lowing defines can be used:
• USB_AUDIO_TERMTYPE_INPUT_UNDEFINED
• USB_AUDIO_TERMTYPE_INPUT_MICROPHONE
• USB_AUDIO_TERMTYPE_INPUT_DESKTOP_MICROPHONE
• USB_AUDIO_TERMTYPE_INPUT_PERSONAL_MICROPHONE
• USB_AUDIO_TERMTYPE_INPUT_OMNI_DIRECTIONAL_MICRO-

PHONE
• USB_AUDIO_TERMTYPE_INPUT_MICROPHONE_ARRAY
• USB_AUDIO_TERMTYPE_INPUT_PROCESSING_MICRO-

PHONE_ARRAY
• USB_AUDIO_TERMTYPE_OUTPUT_UNDEFINED
• USB_AUDIO_TERMTYPE_OUTPUT_SPEAKER
• USB_AUDIO_TERMTYPE_OUTPUT_HEADPHONES
• USB_AUDIO_TERMTYPE_OUTPUT_HEAD_MOUNTED_DIS-

PLAY_AUDIO
• USB_AUDIO_TERMTYPE_OUTPUT_DESKTOP_SPEAKER
• USB_AUDIO_TERMTYPE_OUTPUT_ROOM_SPEAKER
• USB_AUDIO_TERMTYPE_OUTPUT_COMMUNICATION_SPEAKER
• USB_AUDIO_TERMTYPE_OUTPUT_LOW_FREQUENCY_EFFEC-

TS_SPEAKER

pUnits
Pointer to a structure of type USBD_AUDIO_UNITS. This struc-
ture is filled by the emUSB-Device Audio class during initial-
ization.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

616 CHAPTER 18 Target API

18.4.2.3 USBD_AUDIO_FORMAT

Description

Initialization data for a single audio format.

Type definition

typedef struct {
 U8 Flags;
 U8 NrChannels;
 U8 SubFrameSize;
 U8 BitResolution;
 U32 SamFreq;
} USBD_AUDIO_FORMAT;

Structure members

Member Description

Flags Reserved. Set to zero.

NrChannels

Number of channels in this format. Muster never be greater
than USBD_AUDIO_IF_CONF->TotalNrChannels While it is pos-
sible to configure less then the total number of channels for
a format most host operating systems do not support such
configurations.

SubFrameSize
Size of an audio frame in bytes. Must be able to hold Bi-
tResolution bits.

BitResolution
Number of bits inside the audio frame dedicated to audio da-
ta. (Any remaining bits are padding.)

SamFreq Supported sample frequency in Hz.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

617 CHAPTER 18 Target API

18.4.2.4 USBD_AUDIO_UNITS

Description

This structure contains IDs used for a particular audio interface. The application should
leave those values at zero, they are set by the stack after USBD_AUDIO_Add() has been
called.

Type definition

typedef struct {
 U8 Flags;
 U8 InterfaceNo;
 U8 AltInterfaceNo;
 U8 InputTerminalID;
 U8 OutputTerminalID;
 U8 FeatureUnitID;
} USBD_AUDIO_UNITS;

Structure members

Member Description

Flags Reserved. Set to zero.

InterfaceNo
USB Interface number of the audio interface. Set by the
emUSB-Device stack.

AltInterfaceNo
Alternate setting number of the USB interface. Set by the
emUSB-Device stack.

InputTerminalID ID of the input terminal. Set by the emUSB-Device stack.
OutputTerminalID ID of the output terminal. Set by the emUSB-Device stack.
FeatureUnitID ID of the feature unit. Set by the emUSB-Device stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

618 CHAPTER 18 Target API

18.4.3 Function definitions

18.4.3.1 USBD_AUDIO_TX_FUNC

Description

Definition of the callback which is called when audio data is sent. This callback is called in
the context of USBD_AUDIO_Write_Task()

Type definition

typedef void USBD_AUDIO_TX_FUNC(void * pUserContext,
 const U8 * * ppNextBuffer,
 U32 * pNextPacketSize);

Parameters

Parameter Description

pUserContext User context which is passed to the callback.

ppNextBuffer

Buffer containing audio samples which should match the
configuration from microphone USBD_AUDIO_IF_CONF. Initial-
ly this points to the pBufIn from the call to USBD_AUDIO_S-
tart_Play function. The user can change this pointer to a
different buffer which will be used in the next transaction or
fill the same buffer with new data.

pNextBufferSize Size of the next buffer.

Example

static void _cbOnIn(void * pUserContext,
 const U8 ** ppNextBuffer,
 U32 * pNextPacketSize) {
 USB_MEMCPY(_pBufMic, _pDataSource, PACKET_SIZE_IN);
 *ppNextBuffer = _pBufMic;
 *pNextPacketSize = PACKET_SIZE_IN;
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

619 CHAPTER 18 Target API

18.4.3.2 USBD_AUDIO_RX_FUNC

Description

Definition of the callback which is called when audio data is received. This callback is called
in the context of USBD_AUDIO_Read_Task(). The default timeout is 50 milliseconds.

Type definition

typedef void USBD_AUDIO_RX_FUNC(void * pUserContext,
 int NumBytesReceived,
 U8 * * ppNextBuffer,
 U32 * pNextBufferSize);

Parameters

Parameter Description

pUserContext User context which is passed to the callback.

NumBytesReceived
The number of bytes which have been read in this transac-
tion.

ppNextBuffer

Buffer containing audio samples which should match the
configuration from speaker USBD_AUDIO_IF_CONF. Initially
this points to the pBufOut from the USBD_AUDIO_INIT_DA-
TA structure. The user can change this pointer to a different
buffer which will be used in the next transaction or leave it
as it is and copy the data from this buffer elsewhere.

pNextBufferSize Size of the next buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

620 CHAPTER 18 Target API

Example

static U8 _acBuf1[BUFFER_SIZE];
static U8 _acBuf2[BUFFER_SIZE];
static U8 * _pBuf;
static U8 * _pBufComplete;
static U32 _NumBytesInFullBuffer;
static U32 _NumBytesInBuffer;

// Receive callback function.
static void _cbOnOut(void * pUserContext,
 int NumBytesReceived,
 U8 ** ppNextBuffer,
 U32 * pNextBufferSize) {
 char MBEvent;

 //
 // Check if the _next_ transfer would still fit into the buffer.
 // If not - switch the buffer.
 //
 if ((_NumBytesInBuffer + NumBytesReceived + PACKET_SIZE_OUT) > BUFFER_SIZE) {
 //
 // Switch buffers.
 //
 if (_CurrentBuffer == 1) {
 _CurrentBuffer = 2;
 _pBuf = _acBuf2;
 } else {
 _CurrentBuffer = 1;
 _pBuf = _acBuf1;
 }
 _NumBytesInFullBuffer = _NumBytesInBuffer + NumBytesReceived;
 _NumBytesInBuffer = 0;
 MBEvent = BUFFER_FULL;
 //
 // Notify the task that a buffer is full.
 //
 if (OS_PutMailCond1(&_MailBox, &MBEvent) != 0) {
 printf("Missed packet.");
 }
 } else {
 _pBuf += NumBytesReceived;
 _NumBytesInBuffer += NumBytesReceived;
 }
 *ppNextBuffer = _pBuf;
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

621 CHAPTER 18 Target API

18.4.3.3 USBD_AUDIO_CONTROL_FUNC

Description

Definition of the callback which is called when audio commands are received. This callback
is called in an interrupt context.

Type definition

typedef int USBD_AUDIO_CONTROL_FUNC(void * pUserContext,
 U8 Event,
 U8 Unit,
 U8 ControlSelector,
 U8 * pBuffer,
 U32 NumBytes,
 U8 InterfaceNo,
 U8 AltSetting);

Parameters

Parameter Description

pUserContext User context which is passed to the callback.
Event Audio event ID.

Unit
ID of the feature unit. In case of USB_AUDIO_PLAYBACK_*
and USB_AUDIO_RECORD_*: 0.

ControlSelector
ID of the control. In case of USB_AUDIO_PLAYBACK_* and
USB_AUDIO_RECORD_*: 0.

pBuffer

In case of GET events: pointer to a buffer into which the
callback should write the reply. In case of SET events: point-
er to a buffer containing the command value. In case of
USB_AUDIO_PLAYBACK_* and USB_AUDIO_RECORD_*: NULL.

NumBytes
In case of GET events: requested size of the reply in bytes.
In case of SET events: number of bytes in pBuffer. In case
of USB_AUDIO_PLAYBACK_* and USB_AUDIO_RECORD_*: 0.

InterfaceNo
The number of the USB interface for which the event was is-
sued.

AltSetting
The alternative setting number of the USB interface for
which the event was issued.

Return value

= 0 Audio command was handled by the callback. The stack will send the reply.
≠ 0 Audio command was not handled by the callback. The stack will STALL the re-

quest.

Additional information

USB_AUDIO_PLAYBACK_* & USB_AUDIO_RECORD_* events are sent upon receiving a Set In-
terface USB request for Alternate Setting 1 for the respective interface (microphone or
speaker). By default an Audio interface is set to Alternative Setting 0 in which it can not
send or receive anything. The host switches the Alternative Setting to 1 when it has to
send data to the device, this can be e.g. triggered by pressing “play” in your music player.
Normally the host should switch the device back to Alternative Interface 0 when it has
stopped sending audio data. This works well on Linux and OS X, but does not work reliably
on Windows. When using Windows as a host it seems to depend on the application whether
these events are generated or not. E.g. with some applications you will receive USB_AU-
DIO_PLAYBACK_START when “play” is pressed, but USB_AUDIO_PLAYBACK_STOP will not be
sent when “pause” or “stop” is pressed. Relying on these events to check when the host has
stopped sending data is not advised, instead set timeouts via USBD_AUDIO_Set_Timeouts
and check for timeouts inside your USBD_AUDIO_RX_FUNC and USBD_AUDIO_TX_FUNC .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

622 CHAPTER 18 Target API

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

623 CHAPTER 18 Target API

Example

// Control callback function.
static int _cbOnControl(void * pUserContext,
 U8 Event,
 U8 Unit,
 U8 ControlSelector,
 U8 * pBuffer,
 U32 NumBytes) {
 int r;

 r = 0;
 switch (Event) {
 case USB_AUDIO_SET_CUR:
 switch (ControlSelector) {
 case USB_AUDIO_MUTE_CONTROL:
 if (*pBuffer == 1) {
 _SetMute(1);
 } else {
 _SetMute(0);
 }
 break;
 default:
 r = 1;
 break;
 }
 break;
 <...>
 <handle other commands>
 <...>
 }
 return r;
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 19

USB Video device Class (UVC)

This chapter gives a general overview of the UVC class and describes how to get the UVC
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

625 CHAPTER 19 Overview

19.1 Overview
The USB video device class (UVC) is a USB class protocol which can be used to transfer
video data from a device to a host.

UVC is supported by most operating systems out of the box and the installation of additional
drivers is not required.

emUSB-Device-UVC comes as a complete package and contains the following:
• Generic USB handling
• USB video device class implementation
• Sample application showing how to work with UVC

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

626 CHAPTER 19 Configuration

19.2 Configuration

19.2.1 Initial configuration
To get emUSB-Device-UVC up and running as well as doing an initial test, the configuration
as delivered with the sample application should not be modified.

19.2.1.1 Uncompressed video format
Video data is transmitted using emUSB-Device Video in the uncompressed format. YUYV422
is the specific format used by the USB video device class. The format uses luminance (the
brightness) and chrominance (the coloration) to display pictures. This is best explained by
taking a look at the actual data, the first 8 bytes of a YUYV422 frame are defined as follows:
• 1 byte luminance of the first pixel (Y)
• 1 byte chrominance (blue) of the first and second pixel (U)
• 1 byte luminance of the second pixel (Y)
• 1 byte chrominance (red) of the first and second pixel (V)
• 1 byte luminance of the third pixel (Y)
• 1 byte chrominance (blue) of the third and fourth pixel (U)
• 1 byte luminance of the fourth pixel (Y)
• 1 byte chrominance (red) of the third and fourth pixel (V)

Using 1 byte for the chrominance of two pixels allows this format to save a byte per pixel
when compared to the common RGB format (2 pixels YUYV422 - 4 bytes, 2 pixels RGB888
- 6 bytes).

Data must be provided in the YUYV422 format when using USBD_UVC_Write() or USBD_U-
VC_WriteEx().

19.2.2 Final configuration
The configuration must only be modified when emUSB-Device is integrated in your final
product. Refer to section emUSB-Device Configuration on page 50 for detailed information
about the generic information functions which have to be adapted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

627 CHAPTER 19 Target API

19.3 Target API
Function Description

API functions

USBD_UVC_Add() Adds a UVC interface to the USB stack.
USBD_UVC_Write() Writes frame data to the host.

USBD_UVC_WriteEx()
Writes frame data to the host using single
packets.

USBD_UVC_SetOnResolutionChange()
Allows to set a callback which is called
when the host changes the resolution of
the UVC frame.

Data structures

USBD_UVC_INIT_DATA Initialization data for UVC interface.

USBD_UVC_BUFFER
Structure which contains information about
the UVC ring buffer.

USBD_UVC_DATA_BUFFER
Structure which contains values for a sin-
gle buffer.

USBD_UVC_RESOLUTION
Structure describing a valid image resolu-
tion.

Function prototypes

USB_UVC_ON_RESOLUTION_CHANGE
Callback function description which is set
via USBD_UVC_SetOnResolutionChange().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

628 CHAPTER 19 Target API

19.3.1 API functions

19.3.1.1 USBD_UVC_Add()

Description

Adds a UVC interface to the USB stack.

Prototype

int USBD_UVC_Add(const USBD_UVC_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData
Pointer to a USBD_UVC_INIT_DATA structure containing val-
ues for the initialization of the UVC module.

Return value

0 - Successfully added. 1 - An error occurred.

Additional information

After the initialization of USB core, this is the first function that needs to be called when a
UVC interface is used with emUSB-Device. The structure USBD_UVC_INIT_DATA has to be
initialized before USBD_UVC_Add() is called. Refer to USBD_UVC_INIT_DATA for more infor-
mation.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

629 CHAPTER 19 Target API

19.3.1.2 USBD_UVC_Write()

Description

Writes frame data to the host.

Prototype

int USBD_UVC_Write(const U8 * pData,
 unsigned NumBytes,
 U8 UserFlags);

Parameters

Parameter Description

pData Pointer to a buffer containing the frame data.
NumBytes Number of bytes in the buffer.

UserFlags

Flags to be added to the frame. Following flags are currently
supported:
• USBD_UVC_END_OF_FRAME - Should be set with the last
USBD_UVC_Write() call for a single frame.

Return value

0 - All data written to the buffer. -1 - An error occurred (device disconnected).

Additional information

It is up to the application how much data it provides through this function, but providing
a buffer containing a whole video frame will cause the least overhead. The application has
to set the flag USBD_UVC_END_OF_FRAME when the last data part of a frame was written via
USBD_UVC_Write(). Internally this function will write data into the buffers which have been
initialized by the call to USBD_UVC_Add(). This allows for the buffers to be filled with video
data before data is requested by the host application. The data transmission itself happens
inside an interrupt triggered event callback inside the UVC module.

With every transmission the UVC module must add a payload header to the transfer. There-
fore if the application needs to achieve maximum throughput the application should write
MaxPacketSize - USBD_UVC_PAYLOAD_HEADER_SIZE chunks.

Do not mix usage of USBD_UVC_Write() and USBD_UVC_WriteEx().

Example

Sample describing a write operation where a frame is entirely available in a single buffer:

USBD_UVC_Write(h, WholeFrame, sizeof(WholeFrame), USBD_UVC_END_OF_FRAME);

Sample describing a write operation where a frame is only available in chunks:

U32 NumBytesAtOnce;
U32 NumBytesTotal;
U8 Flags;

NumBytesTotal = 153600; // Fixed frame size.
NumBytesAtOnce = SEGGER_MIN(sizeof(SmallBuffer), NumBytesTotal);
Flags = 0;
while (NumBytesTotal) {
 USBD_UVC_Write(h, SmallBuffer, NumBytesAtOnce, Flags);
 NumBytesTotal -= NumBytesAtOnce;
 NumBytesAtOnce = SEGGER_MIN(sizeof(SmallBuffer), NumBytesTotal);
 if (NumBytesTotal <= sizeof(SmallBuffer)) {
 Flags = USBD_UVC_END_OF_FRAME; // This will be the last write for this frame.
 }

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

630 CHAPTER 19 Target API

}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

631 CHAPTER 19 Target API

19.3.1.3 USBD_UVC_WriteEx()

Description

Writes frame data to the host using single packets.

Prototype

int USBD_UVC_WriteEx(U8 * pData,
 unsigned NumBytes,
 U8 UserFlags);

Parameters

Parameter Description

pData
Pointer to a buffer containing the frame data. The buffer
must provide USBD_UVC_PAYLOAD_HEADER_SIZE bytes space
at the start of the buffer.

NumBytes
Size of the buffer. Must only contain one packet, up to a
maximum size of USB_HS_ISO_HB_MAX_PACKET_SIZE.

UserFlags

Flags to be added to the frame. Following flags are currently
supported:
• USBD_UVC_END_OF_FRAME - Should be set with the last
USBD_UVC_Write() call for a single frame.

Return value

0 - All data written to the buffer. -1 - An error occurred (device disconnected).

Additional information

This version of the write routine is optimized to be used with DMA capable targets. But
can also speed up transfers with regular drivers. This write routine does not copy the UVC
packet data internally, but sends it from the user buffer directly. When using DMA and
cache the buffer should be aligned to a cache line boundary. The buffer must provide space
(USBD_UVC_PAYLOAD_HEADER_SIZE bytes) at the start of the buffer for the UVC module to
insert the UVC packet header. The application must insert the video data after the header.
The UVC module will automatically insert the correct header information and send the whole
buffer to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

632 CHAPTER 19 Target API

19.3.1.4 USBD_UVC_SetOnResolutionChange()

Description

Allows to set a callback which is called when the host changes the resolution of the UVC
frame. The callback receives a frame index, which is a direct mapping of the aResolutions
array in USBD_UVC_INIT_DATA.

Prototype

void USBD_UVC_SetOnResolutionChange(USB_UVC_ON_RESOLUTION_CHANGE * pfOnResChange);

Parameters

Parameter Description

pfOnResChange User callback of type USB_UVC_ON_RESOLUTION_CHANGE .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

633 CHAPTER 19 Target API

19.3.2 Data structures

19.3.2.1 USBD_UVC_INIT_DATA

Description

Initialization data for UVC interface.

Type definition

typedef struct {
 U8 EPIn;
 USBD_UVC_BUFFER * pBuf;
 const USBD_UVC_RESOLUTION * aResolutions;
 U8 NumResolutions;
 U8 StillCaptureMethod;
 U8 Flags;
 USBD_UVC_CONTROLS * Controls;
} USBD_UVC_INIT_DATA;

Structure members

Member Description

EPIn Isochronous IN endpoint for sending data to the host.
pBuf Pointer to a USBD_UVC_BUFFER structure.
aResolutions Pointer to an array of USBD_UVC_RESOLUTION structures.
NumResolutions Number of elements inside the aResolutions array.

StillCaptureMethod

Method of “still image capture” to use. Valid values:
• 1 - The host software will extract the next available
video frame. (default)
• 2 - When the host requests a still image a callback
will be called which has to provide a new (still) image frame.
It only makes sense to use this method if your data source
is able to provide better quality still images than the default
quality of the video stream.

Flags

Various flags. Valid bits:
• USBD_UVC_USE_BULK_MODE - In this mode UVC uses bulk

endpoints
instead of isochronous endpoints.

Controls
Pointer to a structure of type USBD_UVC_CONTROLS. The
structure memory must remain available to the UVC class.

Additional information

This structure holds the endpoint that should be used by the UVC interface (EPIn). Refer
to USBD_AddEPEx() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

634 CHAPTER 19 Target API

19.3.2.2 USBD_UVC_BUFFER

Description

Structure which contains information about the UVC ring buffer.

Type definition

typedef struct {
 USBD_UVC_DATA_BUFFER Buf[];
 volatile U8 NumBlocksIn;
 U8 RdPos;
 U8 WrPos;
 U8 Flags;
} USBD_UVC_BUFFER;

Structure members

Member Description

Buf Array of USBD_UVC_DATA_BUFFER elements.
NumBlocksIn Number of currently used buffers.
RdPos Buffer read position.
WrPos Buffer write position.

Flags
Used by the UVC module automatically. Do not modify. 1 -
WriteEx used.

Additional information

The number of buffers can be set with the USBD_UVC_NUM_BUFFERS define. Generally the
user does not have to interact with this structure, but he has to provide the memory for it.
When USBD_UVC_USE_BULK_MODE is used USBD_UVC_NUM_BUFFERS can be reduced to 1.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

635 CHAPTER 19 Target API

19.3.2.3 USBD_UVC_DATA_BUFFER

Description

Structure which contains values for a single buffer.

Type definition

typedef struct {
 U8 * pData;
 unsigned NumBytesIn;
 U8 Flags;
 U8 FrameID;
} USBD_UVC_DATA_BUFFER;

Structure members

Member Description

pData

Pointer to a data buffer. When USBD_UVC_Write() is used
the user must set this pointer to a valid buffer of size USB-
D_UVC_DATA_BUFFER_SIZE. When USBD_UVC_WriteEx() is
used the user must not modify this value.

NumBytesIn Size of the packet.
Flags Flags which will be sent with the packet.
FrameID ID of the frame.

Additional information

The size of the buffers can be set with the USBD_UVC_DATA_BUFFER_SIZE define. Ideally it
should match the MaxPacketSize for the isochronous endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

636 CHAPTER 19 Target API

19.3.2.4 USBD_UVC_RESOLUTION

Description

Structure describing a valid image resolution.

Type definition

typedef struct {
 unsigned Width;
 unsigned Height;
} USBD_UVC_RESOLUTION;

Structure members

Member Description

Width Width in pixels.
Height Height in pixels.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

637 CHAPTER 19 Target API

19.3.3 Function prototypes

19.3.3.1 USB_UVC_ON_RESOLUTION_CHANGE

Description

Callback function description which is set via USBD_UVC_SetOnResolutionChange().

Type definition

typedef void USB_UVC_ON_RESOLUTION_CHANGE(unsigned FrameIndex);

Parameters

Parameter Description

FrameIndex 1-based index of the frame resolution.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 20

Device Firmware Upgrade
(DFU)

This chapter gives a general overview of the DFU class and describes how to get the DFU
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

639 CHAPTER 20 Overview

20.1 Overview
The Device Firmware Upgrade class (DFU) is a USB class protocol which can be used to
download and upload firmware images to and from a device.

emUSB-Device-DFU comes as a complete package and contains the following:
• Generic USB handling
• USB DFU class implementation (version 1.1)
• Sample application showing how to work with DFU

DFU is supported on most operating systems by common tools like dfu-util, see dfu-
util.sourceforge.net.

20.1.1 Using DFU on Windows
In order to get emUSB DFU running with the WinUSB driver the function USBD_DFU_Set-
MSDescInfo() must be called in the target application.

Microsoft’s Windows operating systems (Starting with XP Service Pack 2) contains a generic
driver called WinUSB.sys that is used to handle all communication to a emUSB-Device
running a DFU interface. If such device is connected to a Windows 8, 8.1 and 10 PC for
the first time, Windows will install the WinUSB driver automatically. For Windows versions
less than Windows 8, Microsoft provides a driver for Windows Vista and Windows 7 but this
needs to be installed manually. A driver installation tool including the mentioned driver is
available in the Windows\USB\Bulk\WinUSBInstall. Windows XP user can use the driver
package located under Windows\USB\Bulk\WinUSB_USBBulk_XP.

Additionally the correct driver may not be loaded on Windows 7 systems because of an
issue in the USB 3.0 stack of Windows 7, see Issues on Windows 7 on page 709.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

http://dfu-util.sourceforge.net/
http://dfu-util.sourceforge.net/

640 CHAPTER 20 Configuration

20.2 Configuration

20.2.1 Dual configuration mode
Typically a device that supports DFU has to provide two different configurations. It starts up
in runtime mode with the DFU interface and other interfaces used for normal operation of
the device. In this configuration the device does not allow download or upload of firmware
files.

If the host sends a DFU detach request, the device has to reconfigure to DFU mode, usually
providing only a single DFU interface. DFU mode may for example be implemented by
running a bootloader build into the device. In order to switch to DFU mode after receiving
the detach request from the host, the device has to shutdown and de-initialize the USB stack
and start-up it again using the DFU configuration. Then firmware files can be downloaded.

This procedure is compliant to the USB Device Firmware Upgrade class specification. See
sample application USB_DFU_Start.c.

20.2.2 Single configuration
However, some DFU capable devices do not offer two configurations. Instead they are
always in runtime mode, but allow up- and download of firmware files without changing the
configuration. emUSB-Device DFU class also supports this behavior which is called ’Mixed
Mode’, see sample application USB_DFU_MixedMode_Start.c.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

641 CHAPTER 20 Target API

20.3 Target API
Function Description

API functions

USBD_DFU_Add() Adds a DFU class interface.

USBD_DFU_Add_RunTime()
Adds a DFU class interface for runtime
mode only.

USBD_DFU_AddAlternateInterface()
Adds an alternative interface to the DFU
configuration.

USBD_DFU_SetMSDescInfo() Enables use of Microsoft OS Descriptors.

USBD_DFU_SetPollTimeout()
Set the poll timeout to be reported to the
host on the next GET_STATUS setup re-
quest.

USBD_DFU_Ack()
Acknowledge download data received via
the USBD_DFU_DOWNLOAD function.

USBD_DFU_SetError() Signal an error to the host.

USBD_DFU_ManifestComplt()
Must be called by the application after the
new firmware was installed successfully.

USBD_DFU_GetStatusReqCnt()

Return the number of times, the host has
requested a status after calling one of the
functions USBD_DFU_Ack(), USBD_DFU_Man-
ifestComplt() or USBD_DFU_GetStatus-
ReqCnt().

USBD_DFU_GetAlternateSetting()
Returns the alternate interface setting that
was set by the host.

Data structures

USB_DFU_INIT_DATA Initialization data for the DFU interface.
Function prototypes

USBD_DFU_DETACH_REQUEST
Callback function is called when the host
requests a DETACH, prompting the device
to enter DFU mode.

USBD_DFU_DOWNLOAD
Callback function to handle download data
to the application that was received from
the host.

USBD_DFU_UPLOAD
Callback function to get upload data to be
transferred to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

642 CHAPTER 20 Target API

20.3.1 API functions

20.3.1.1 USBD_DFU_Add()

Description

Adds a DFU class interface.

Prototype

void USBD_DFU_Add(const USB_DFU_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to USB_DFU_INIT_DATA structure.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

643 CHAPTER 20 Target API

20.3.1.2 USBD_DFU_Add_RunTime()

Description

Adds a DFU class interface for runtime mode only. Using this function results in a smaller
footprint than USBD_DFU_Add().

Prototype

void USBD_DFU_Add_RunTime(const USB_DFU_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData
Pointer to USB_DFU_INIT_DATA structure. The field ’Mode’
must be set to USB_DFU_MODE_RUNTIME.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

644 CHAPTER 20 Target API

20.3.1.3 USBD_DFU_AddAlternateInterface()

Description

Adds an alternative interface to the DFU configuration. Must be called after USBD_DFU_Add()
and before USBD_Start(). This function must not be called in runtime only mode.

Prototype

void USBD_DFU_AddAlternateInterface(const char * pInterfaceName);

Parameters

Parameter Description

pInterfaceName
Pointer to a string containing the name of the alternate in-
terface. The pointer must remain valid during all USB opera-
tions (until USBD_DeInit() is called).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

645 CHAPTER 20 Target API

20.3.1.4 USBD_DFU_SetMSDescInfo()

Description

Enables use of Microsoft OS Descriptors. A USB DFU device providing these descriptors is
detected by Windows to be handled by the generic WinUSB driver.

Prototype

void USBD_DFU_SetMSDescInfo(void);

Additional information

This function must be called after the call to the function USBD_DFU_Add() and before USB-
D_Start().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

646 CHAPTER 20 Target API

20.3.1.5 USBD_DFU_SetPollTimeout()

Description

Set the poll timeout to be reported to the host on the next GET_STATUS setup request.

Prototype

void USBD_DFU_SetPollTimeout(U32 PollTimeout);

Parameters

Parameter Description

PollTimeout Poll timeout in milliseconds.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

647 CHAPTER 20 Target API

20.3.1.6 USBD_DFU_Ack()

Description

Acknowledge download data received via the USBD_DFU_DOWNLOAD function.

Prototype

void USBD_DFU_Ack(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

648 CHAPTER 20 Target API

20.3.1.7 USBD_DFU_SetError()

Description

Signal an error to the host. Can be called by the application at any time. The device will
respond with that error on the next ’Get Status’ request from the host.

Prototype

void USBD_DFU_SetError(USB_DFU_ERROR_STATE Err);

Parameters

Parameter Description

Err Error code.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

649 CHAPTER 20 Target API

20.3.1.8 USBD_DFU_ManifestComplt()

Description

Must be called by the application after the new firmware was installed successfully.

Prototype

void USBD_DFU_ManifestComplt(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

650 CHAPTER 20 Target API

20.3.1.9 USBD_DFU_GetStatusReqCnt()

Description

Return the number of times, the host has requested a status after calling one of the func-
tions USBD_DFU_Ack(), USBD_DFU_ManifestComplt() or USBD_DFU_GetStatusReqCnt().

Prototype

unsigned USBD_DFU_GetStatusReqCnt(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

651 CHAPTER 20 Target API

20.3.1.10 USBD_DFU_GetAlternateSetting()

Description

Returns the alternate interface setting that was set by the host.

Prototype

unsigned USBD_DFU_GetAlternateSetting(void);

Return value
• 0 - No alternate interface was selected by the host.
• 1..n - Number of alternate interface selected by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

652 CHAPTER 20 Target API

20.3.2 Data structures

20.3.2.1 USB_DFU_INIT_DATA

Description

Initialization data for the DFU interface.

Type definition

typedef struct {
 I8 Mode;
 U8 Attributes;
 U16 DetachTimeout;
 U16 TransferSize;
 U16 Flags;
 const char * pInterfaceName;
 USBD_DFU_DETACH_REQUEST * pfDetachRequest;
 USBD_DFU_DOWNLOAD * pfDownload;
 U8 * pBuffer;
 USBD_DFU_UPLOAD * pfUpload;
} USB_DFU_INIT_DATA;

Structure members

Member Description

Mode

Operation mode of the DFU interface:
USB_DFU_MODE_RUNTIME: The interface is in runtime mode
only. Download of firmware data is not supported.
USB_DFU_MODE_DFU: The interface is in DFU mode.
USB_DFU_MODE_MIXED: The interface is in runtime mode
but allows download of firmware data in this mode.

Attributes
Bit mask containing the DFU attributes. Combination of the
USB_DFU_ATTR_… flags.

DetachTimeout
Time, in milliseconds, that the device will wait after receipt
of the DFU_DETACH request.

TransferSize
Maximum number of bytes that the device can accept per
control-write transaction.

Flags RFU. Must be 0.
pInterfaceName Name of the interface. Optional, may be NULL.

pfDetachRequest
Pointer to the callback function to request a detach. Used for
Mode = USB_DFU_MODE_RUNTIME only.

pfDownload
Pointer to the callback function to receive download data.
Used for Mode ≠ USB_DFU_MODE_RUNTIME only.

pBuffer
Pointer to a buffer to store download data. The size of the
buffer must be ’TransferSize’ bytes.

pfUpload
Pointer to the callback function to get upload data. Optional.
Used for Mode ≠ USB_DFU_MODE_RUNTIME only.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

653 CHAPTER 20 Target API

20.3.3 Function prototypes

20.3.3.1 USBD_DFU_DETACH_REQUEST

Description

Callback function is called when the host requests a DETACH, prompting the device to enter
DFU mode. This function is executed in interrupt context. The detach and/or reinitialization
must not be performed inside this function. Instead this function should only trigger a task
to perform the required operation.

Type definition

typedef void USBD_DFU_DETACH_REQUEST(U16 Timeout);

Parameters

Parameter Description

Timeout Timeout provided by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

654 CHAPTER 20 Target API

20.3.3.2 USBD_DFU_DOWNLOAD

Description

Callback function to handle download data to the application that was received from the
host. The function is called in interrupt context and should return as fast as possible. Es-
pecially flash programming must not be done within this function. If NumBytes ≥ 0, the ap-
plication must respond either with a call to USBD_DFU_Ack() if the data could be processed
successfully or by calling USBD_DFU_SetError() if an error occurred. These functions need
not to be called from the USBD_DFU_DOWNLOAD function, but may be called later after pro-
cessing the data. The host will wait for either USBD_DFU_Ack() or USBD_DFU_SetError()
before starting another download.

Type definition

typedef void USBD_DFU_DOWNLOAD(int NumBytes,
 U16 BlockNum);

Parameters

Parameter Description

NumBytes

Number of bytes received from the host. The data is stored
in the buffer provided by USB_DFU_INIT_DATA.pBuffer. A
value of 0 indicates the end of the data to be downloaded. A
negative value means that the host has aborted the down-
load.

BlockNum Block sequence number provided by the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

655 CHAPTER 20 Target API

20.3.3.3 USBD_DFU_UPLOAD

Description

Callback function to get upload data to be transferred to the host. The function is called in
interrupt context and should return as fast as possible.

Type definition

typedef int USBD_DFU_UPLOAD(int bStart,
 U16 BlockNum,
 U16 NumBytes,
 const U8 ** ppData);

Parameters

Parameter Description

bStart 1 = Start upload, 0 = continue upload.
BlockNum Block sequence number provided by the host.
NumBytes Number of bytes requested by the host.
ppData out Pointer to the data to be transfered to the host.

Return value

Size of the data provided by the function (in bytes). A value < NumBytes (including 0)
indicate the last part of the data. A negative value indicates an error. In case of an error,
the function should also call USBD_DFU_SetError().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 21

Musical Instrument Digital
Interface (MIDI)

This chapter gives a general overview of the Musical Instrument Digital Interface class and
describes how to get the MIDI component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

657 CHAPTER 21 Overview

21.1 Overview
The USB MIDI device class is a subclass of the USB audio class. Despite being a subclass of
the audio class the protocol is almost entirely different. The MIDI class is able to transfer
MIDI commands and MIDI data from a device to a host and vice versa.

MIDI is supported by most operating systems out of the box and the installation of additional
drivers is not required.

emUSB-Device-MIDI comes as a complete package and contains the following:
• Generic USB handling
• USB MIDI V1.0 device class implementation
• Sample application showing how to work with MIDI

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

658 CHAPTER 21 Introduction

21.2 Introduction
SEGGER’s implementation of the MIDI class V1.0 is designed with minimal resource usage in
mind, especially targeted to embedded devices. The implementation supports an arbitrary
jack configuration as well as writing USB MIDI packets from a MIDI stream and receiving
USB MIDI from a host.

The following graphic describes the basic structure of a USB MIDI packet.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

659 CHAPTER 21 Introduction

Below the MIDI commands “note ON” and “note OFF” can be seen in their decoded form.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

660 CHAPTER 21 Configuration

21.3 Configuration

21.3.1 Initial configuration
To get emUSB-Device-MIDI up and running as well as doing an initial test, the configuration
as delivered with the sample application should not be modified.

21.3.2 Final configuration
The configuration must only be modified when emUSB-Device is integrated in your final
product. Refer to section emUSB-Device Configuration on page 50 for detailed information
about the generic information functions which have to be adapted.

21.3.3 Testing MIDI on different operating systems

Linux

Install the third-party amidi command-line utility.
• Connect the device and call amidi -l, you should see a list of connected MIDI devices:

Dir Device Name
IO hw:2,0,0 MIDI device MIDI 1

• Using the device name you can either send data to the device or receive data from
the device.

Sending:

amidi -p hw:2,0,0 -S '90 4E 30 80 4E 30' // 90 - Note on
 // 4E - Note "F#5"
 // 30 - Velocity value
 // 80 - Note off
 // 4E - Note "F#5"
 // 30 - Velocity value

Receiving:

amidi -p hw:2,0,0 -d

Windows

On Windows a third-party utility such as MIDI-OX can be used to monitor MIDI events.

Mac

On macOS a third-party utility such as Snoize MIDI Monitor can be used to monitor MIDI
events.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

http://www.midiox.com/
https://www.snoize.com/MIDIMonitor/

661 CHAPTER 21 Target API

21.4 Target API
Function Description

API functions

USBD_MIDI_Init() Initialize the MIDI component.

USBD_MIDI_Add()
Adds a MIDI class interface to the USB
stack.

USBD_MIDI_ReceivePackets() Receives USB MIDI packets from the host.

USBD_MIDI_GetNumPacketsInBuffer()
Returns the number of MIDI packets that
are available in the internal OUT endpoint
buffer.

USBD_MIDI_ConvertPackets()
Converts USB MIDI packets to pure MIDI
commands by stripping the USB header.

USBD_MIDI_WritePackets() Writes USB MIDI packets to the host.
USBD_MIDI_WriteStream() Sends MIDI data to the USB host.

Data structures

USBD_MIDI_INIT_DATA
Initialization structure that is needed when
adding a MIDI interface to emUSB-Device.

USBD_MIDI_JACK
Structure describing a MIDI IN or OUT
jack.

USBD_MIDI_PACKET Structure describing a MIDI packet.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

662 CHAPTER 21 Target API

21.4.1 API functions

21.4.1.1 USBD_MIDI_Init()

Description

Initialize the MIDI component.

Prototype

void USBD_MIDI_Init(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

663 CHAPTER 21 Target API

21.4.1.2 USBD_MIDI_Add()

Description

Adds a MIDI class interface to the USB stack.

Prototype

USBD_MIDI_HANDLE USBD_MIDI_Add(const USBD_MIDI_INIT_DATA * pInitData);

Parameters

Parameter Description

pInitData Pointer to USBD_MIDI_INIT_DATA structure.

Return value

Handle to a valid MIDI instance. The handle of the first MIDI instance is always 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

664 CHAPTER 21 Target API

21.4.1.3 USBD_MIDI_ReceivePackets()

Description

Receives USB MIDI packets from the host. The function blocks until any data has been
received or a timeout occurs (if Timeout ≥ 0). In case of a timeout, the read transfer is
aborted.

Prototype

int USBD_MIDI_ReceivePackets(USBD_MIDI_HANDLE hInst,
 USBD_MIDI_PACKET * paPacket,
 unsigned NumPackets,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid MIDI instance, returned by USBD_MIDI_Ad-
d().

paPacket Pointer to an array of USBD_MIDI_PACKET structures.
NumPackets Number of packets inside the paPacket array.

Timeout
Timeout in milliseconds. 0 means infinite. If Timeout is -1,
the function never blocks and only reads data from the inter-
nal endpoint buffer.

Return value

> 0 Number of MIDI packets read.
= 0 A timeout occurred (if Timeout > 0), no data in buffer (if Timeout < 0) or the

target was disconnected during the function call and no data was read so far.
< 0 Error occurred.

Additional information

This function also returns when the target is disconnected from the host or when a USB
reset occurred during the function call, it will then return USB_STATUS_ERROR.

Periodically calling this function with timeout = -1 can be used to poll for data.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided via
USBD_AddEP(). This data can be retrieved by a later call to USBD_MIDI_ReceivePackets().
See also USBD_MIDI_GetNumPacketsInBuffer().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

665 CHAPTER 21 Target API

21.4.1.4 USBD_MIDI_GetNumPacketsInBuffer()

Description

Returns the number of MIDI packets that are available in the internal OUT endpoint buffer.

Prototype

unsigned USBD_MIDI_GetNumPacketsInBuffer(USBD_MIDI_HANDLE hInst);

Parameters

Parameter Description

hInst
Handle to a valid MIDI instance, returned by USBD_MIDI_Ad-
d().

Return value

Number of packets that are available in the internal OUT endpoint buffer.

Additional information

If the host is sending more data than your target application has requested, the remaining
data will be stored in an internal buffer. This function shows how many bytes are available
in this buffer.

The number of packets returned by this function can be read using USBD_MIDI_Re-
ceivePackets().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

666 CHAPTER 21 Target API

21.4.1.5 USBD_MIDI_ConvertPackets()

Description

Converts USB MIDI packets to pure MIDI commands by stripping the USB header. USB
MIDI packets are usually provided through the use of the USBD_MIDI_ReceivePackets()
function.

Prototype

int USBD_MIDI_ConvertPackets(const USBD_MIDI_PACKET * paPacket,
 unsigned NumPackets,
 U8 * pBuf);

Parameters

Parameter Description

paPacket Pointer to an array of USBD_MIDI_PACKET structures.
NumPackets Number of packets inside the paPacket array.

pBuf
Buffer to write the MIDI commands into. The buffer must be
3 * NumPackets bytes large.

Return value

≥ 0 Number of MIDI packets converted.
< 0 Error occurred.

Additional information

The jack ID is lost in this conversion. When using multiple jacks the user should take care
not to mix packets addressed to different jacks.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

667 CHAPTER 21 Target API

21.4.1.6 USBD_MIDI_WritePackets()

Description

Writes USB MIDI packets to the host. Unlike with USBD_MIDI_WriteStream() the user must
set the correct values for the USB MIDI header (CIN and jack ID) as these are not auto-
matically filled in.

Prototype

int USBD_MIDI_WritePackets(USBD_MIDI_HANDLE hInst,
 const USBD_MIDI_PACKET * paPacket,
 unsigned NumPackets,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid MIDI instance, returned by USBD_MIDI_Ad-
d().

paPacket
Pointer to an array of USBD_MIDI_PACKET structures. The
user must fill all fields. For MIDI events which do not use all
3 MIDI bytes the user must fill the unused bytes with zeroes.

NumPackets Number of packets inside the paPacket array.
Timeout Timeout in milliseconds. 0 means infinite.

Return value

> 0 Number of written USB MIDI packets.
= 0 A timeout occurred (if Timeout > 0).
< 0 Error occurred.

Additional information

This function also returns when the target is disconnected from the host or when a USB
reset occurred during the function call, it will then return USB_STATUS_ERROR.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

668 CHAPTER 21 Target API

21.4.1.7 USBD_MIDI_WriteStream()

Description

Sends MIDI data to the USB host. This function accepts a stream of MIDI commands and
automatically adds the necessary USB MIDI header byte. Depending on the Timeout para-
meter, the function may block until NumBytes have been written or a timeout occurs.

Prototype

int USBD_MIDI_WriteStream(USBD_MIDI_HANDLE hInst,
 U8 JackID,
 const U8 * pData,
 unsigned NumBytes,
 int Timeout);

Parameters

Parameter Description

hInst
Handle to a valid MIDI instance, returned by USBD_MIDI_Ad-
d().

JackID Jack ID to use.
pData Data that should be written.
NumBytes Number of bytes to write.
Timeout Timeout in milliseconds. 0 means infinite.

Return value

= 0 Timeout has occurred and no data was written.
> 0 && < NumBytes Number of bytes that have been written before a timeout oc-

curred.
= NumBytes Write transfer successful completed.
< 0 Error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

669 CHAPTER 21 Target API

21.4.2 Data structures

21.4.2.1 USBD_MIDI_INIT_DATA

Description

Initialization structure that is needed when adding a MIDI interface to emUSB-Device.

Type definition

typedef struct {
 U16 Flags;
 U8 EPIn;
 U8 EPOut;
 const USBD_MIDI_JACK * paJackList;
 unsigned NumJacks;
} USBD_MIDI_INIT_DATA;

Structure members

Member Description

Flags Reserved for future use, must be 0.
EPIn Bulk IN endpoint for sending data to the host.
EPOut Bulk OUT endpoint for receiving data from the host.

paJackList
Pointer to an array containing all jacks for the MIDI inter-
face.

NumJacks Number of elements inside the paJackList array.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

670 CHAPTER 21 Target API

21.4.2.2 USBD_MIDI_JACK

Description

Structure describing a MIDI IN or OUT jack.

Type definition

typedef struct {
 U8 JackType;
 U8 JackID;
 U8 JackDir;
 U8 NrInputPins;
 U8 * paSourceID;
 U8 * paSourcePin;
 const char * pJackName;
} USBD_MIDI_JACK;

Structure members

Member Description

JackType
USB_AUDIO_MIDI_EMBEDDED_JACK or USB_AUDIO_MIDI_EX-
TERNAL_JACK

JackID Unique ID for the jack. Must not be zero.

JackDir
Jack direction, USB_AUDIO_MIDI_IN_JACK or USB_AU-
DIO_MIDI_OUT_JACK

NrInputPins
For IN jacks - set to zero. For OUT jacks - number of input
pins for this MIDI OUT jack.

paSourceID
Only for OUT jacks. Pointer to an array containing the IDs
of the entities to which the pin of this MIDI OUT Jack is con-
nected.

paSourcePin
Only for OUT jacks. Pointer to an array containing the output
pin numbers of the entities to which the input pins of this
MIDI OUT Jack are connected.

pJackName String describing the jack. Can be NULL.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

671 CHAPTER 21 Target API

21.4.2.3 USBD_MIDI_PACKET

Description

Structure describing a MIDI packet.

Type definition

typedef struct {
 U8 CableNumber_and_CIN;
 U8 MIDI_0;
 U8 MIDI_1;
 U8 MIDI_2;
} USBD_MIDI_PACKET;

Structure members

Member Description

CableNumber_and_CIN
b0-b3 - Code Index Number (CIN). b4-b7 - Cable Number
(embedded MIDI Jack ID).

MIDI_0
First MIDI byte: b0-b3 - For CIN < 0xF: MIDI channel num-
ber. b4-b7 - Code Index Number (same as in b0-b3 of Ca-
bleNumber_and_CIN).

MIDI_1 Second MIDI byte - Content depends on CIN.
MIDI_2 Third MIDI byte - Content depends on CIN.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 22

Smart Card Device Class
(CCID)

This chapter gives a general overview of the CCID class.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

673 CHAPTER 22 Overview

22.1 Overview
The Smart Card Device Class (CCID) allows the implementation of CCID compatible smart
card readers. The Integrated Circuit(s) Cards Interface is an abstract USB class protocol
defined by the USB Implementers Forum.

The emUSBD CCID class only handles the transport of CCID commands via USB. Processing
of the smart card commands, including physical access to a smart card (if any) has to be
done by the application.

A typical application will contain a loop, that
• Reads a CCID command from the host using USBD_CCID_ReceiveCmd().
• Processes the command depending on the message type and parameters.
• Sends an answer back to the host using one of the USBD_CCID_Send…() functions.

emUSB-Device CCID comes as a complete package and contains the following:
• Generic USB handling
• USB CCID class implementation (version 1.1)
• Sample application showing how to implement a simple card reader

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

674 CHAPTER 22 Target API

22.2 Target API
Function Description

API functions

USBD_CCID_Init() Initialize the CCID component.

USBD_CCID_Add()
Adds interface for USB-CCID communica-
tion to emUSB-Device.

USBD_CCID_ReceiveCmd() Receive a CCID command from the host.

USBD_CCID_SendStatus()

Send a response to a CCID command
with message types USB_CCID_MSG_IC-
C_POWER_OFF, USB_CCID_MSG_GET_SLOT_S-
TATUS, USB_CCID_MSG_ICC_CLOCK,
USB_CCID_MSG_T0APDU or USB_C-
CID_MSG_MECHANICAL.

USBD_CCID_SendDataBlock()

Send a response to a CCID command with
message types USB_CCID_MSG_XFR_BLOCK,
USB_CCID_MSG_ICC_POWER_ON, or USB_C-
CID_MSG_SECURE.

USBD_CCID_SendEscape()
Send a response to a CCID command with
message type USB_CCID_MSG_ESCAPE_CMD.

USBD_CCID_SendParameters()
Send a response to a CCID com-
mand with message type USB_C-
CID_MSG_SET_RATE_AND_CLOCK.

USBD_CCID_SendDataRateAndClockFre-
quency()

Send a response to a CCID com-
mand with message type USB_C-
CID_MSG_SET_RATE_AND_CLOCK.

USBD_CCID_NotifySlotState()
Send a notification about a new slot state
to the host (via interrupt EP).

USBD_CCID_NotifyHwError()
Send a notification about a hardware error
to the host (via interrupt EP).

Data structures

USB_CCID_INIT_DATA
Initialization structure that is needed when
adding a CCID interface to emUSB-Device.

USB_CCID_PROPERTIES Declares all properties of a CCID device.

USB_CCID_CMD
Contains information about a CCID com-
mand send from the host.

USB_CCID_PROTOCOL_DATA_T0 Protocol parameters for T=0 protocol.
USB_CCID_PROTOCOL_DATA_T1 Protocol parameters for T=1 protocol.

Function prototypes

USBD_CCID_ABORT_CB
Callback function to forward a CCID abort
request from the host to the application.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

675 CHAPTER 22 Target API

22.2.1 API functions

22.2.1.1 USBD_CCID_Init()

Description

Initialize the CCID component.

Prototype

void USBD_CCID_Init(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

676 CHAPTER 22 Target API

22.2.1.2 USBD_CCID_Add()

Description

Adds interface for USB-CCID communication to emUSB-Device.

Prototype

void USBD_CCID_Add(const USB_CCID_INIT_DATA * pInitData,
 const USB_CCID_PROPERTIES * pProperties);

Parameters

Parameter Description

pInitData Pointer to a USB_CCID_INIT_DATA structure.

pProperties
Pointer to a USB_CCID_PROPERTIES containing all properties
of the CCID device. The pointer must remain valid during all
CCID operations.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

677 CHAPTER 22 Target API

22.2.1.3 USBD_CCID_ReceiveCmd()

Description

Receive a CCID command from the host.

Prototype

int USBD_CCID_ReceiveCmd(USB_CCID_CMD * pCmd,
 unsigned BuffSize,
 U8 * pBuff,
 unsigned Timeout);

Parameters

Parameter Description

pCmd
Pointer to a USB_CCID_CMD structure that will be filled by
the function with information about the CCID command re-
ceived.

BuffSize

Size of the buffer pointed to by pBuff. If a CCID command
contains more data bytes than ’BuffSize’, then only ’Buf-
fSize’ bytes are copied to the buffer and the remaining
bytes are discarded.

pBuff Buffer to receive the command data (abData).
Timeout Timeout in ms to wait for a CCID command from the host.

Return value

> 0 Success.
= 0 A timeout has occurred.
< 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

678 CHAPTER 22 Target API

22.2.1.4 USBD_CCID_SendStatus()

Description

Send a response to a CCID command with message types USB_CCID_MSG_ICC_POWER_OFF,
USB_CCID_MSG_GET_SLOT_STATUS, USB_CCID_MSG_ICC_CLOCK, USB_CCID_MSG_T0APDU or
USB_CCID_MSG_MECHANICAL.

Prototype

int USBD_CCID_SendStatus(const USB_CCID_CMD * pCmd,
 U8 Status,
 U8 Error,
 U8 ClockStatus);

Parameters

Parameter Description

pCmd
Pointer to a USB_CCID_CMD structure returned from a call to
USBD_CCID_ReceiveCmd().

Status
Status code. One of the USB_CCID_STATUS_CMD_.. macros
or’ed together with one of the USB_CCID_STATUS_ICC_..
macros.

Error Error code, if Status bit USB_CCID_STATUS_CMD_FAIL is set.

ClockStatus

• 0: Clock running.
• 1: Clock stopped in state L.
• 2: Clock stopped in state H.
• 3: Clock stopped in an unknown state.

Return value

> 0 Success.
= 0 A timeout has occurred.
< 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

679 CHAPTER 22 Target API

22.2.1.5 USBD_CCID_SendDataBlock()

Description

Send a response to a CCID command with message types USB_CCID_MSG_XFR_BLOCK,
USB_CCID_MSG_ICC_POWER_ON, or USB_CCID_MSG_SECURE.

Prototype

int USBD_CCID_SendDataBlock(const USB_CCID_CMD * pCmd,
 U8 Status,
 U8 Error,
 U8 ChainParameter,
 unsigned DataLen,
 const U8 * pData);

Parameters

Parameter Description

pCmd
Pointer to a USB_CCID_CMD structure returned from a call to
USBD_CCID_ReceiveCmd().

Status
Status code. One of the USB_CCID_STATUS_CMD_.. macros
or’ed together with one of the USB_CCID_STATUS_ICC_..
macros.

Error Error code, if Status bit USB_CCID_STATUS_CMD_FAIL is set.

ChainParameter
For extended APDU level, indicates if the response is com-
plete, to be continued or if the command APDU can continue.

DataLen Number of data bytes to be returned to the host.
pData Pointer to the data to be returned to the host (abData).

Return value

> 0 Success.
= 0 A timeout has occurred.
< 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

680 CHAPTER 22 Target API

22.2.1.6 USBD_CCID_SendEscape()

Description

Send a response to a CCID command with message type USB_CCID_MSG_ESCAPE_CMD.

Prototype

int USBD_CCID_SendEscape(const USB_CCID_CMD * pCmd,
 U8 Status,
 U8 Error,
 unsigned DataLen,
 const U8 * pData);

Parameters

Parameter Description

pCmd
Pointer to a USB_CCID_CMD structure returned from a call to
USBD_CCID_ReceiveCmd().

Status
Status code. One of the USB_CCID_STATUS_CMD_.. macros
or’ed together with one of the USB_CCID_STATUS_ICC_..
macros.

Error Error code, if Status bit USB_CCID_STATUS_CMD_FAIL is set.
DataLen Number of data bytes to be returned to the host.
pData Pointer to the data to be returned to the host (abData).

Return value

> 0 Success.
= 0 A timeout has occurred.
< 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

681 CHAPTER 22 Target API

22.2.1.7 USBD_CCID_SendParameters()

Description

Send a response to a CCID command with message type USB_C-
CID_MSG_SET_RATE_AND_CLOCK.

Prototype

int USBD_CCID_SendParameters(const USB_CCID_CMD * pCmd,
 U8 Status,
 U8 Error,
 U8 ProtocolNum,
 const void * pProtocolData);

Parameters

Parameter Description

pCmd
Pointer to a USB_CCID_CMD structure returned from a call to
USBD_CCID_ReceiveCmd().

Status
Status code. One of the USB_CCID_STATUS_CMD_.. macros
or’ed together with one of the USB_CCID_STATUS_ICC_..
macros.

Error Error code, if Status bit USB_CCID_STATUS_CMD_FAIL is set.

ProtocolNum
• 0: Protocol data for T=0
• 1: Protocol data for T=1

pProtocolData
Pointer to the protocol data structure (USB_CCID_PROTO-
COL_DATA_T0 or USB_CCID_PROTOCOL_DATA_T1)

Return value

> 0 Success.
= 0 A timeout has occurred.
< 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

682 CHAPTER 22 Target API

22.2.1.8 USBD_CCID_SendDataRateAndClockFrequency()

Description

Send a response to a CCID command with message type USB_C-
CID_MSG_SET_RATE_AND_CLOCK.

Prototype

int USBD_CCID_SendDataRateAndClockFrequency(const USB_CCID_CMD * pCmd,
 U8 Status,
 U8 Error,
 U32 ClockFrequency,
 U32 DataRate);

Parameters

Parameter Description

pCmd
Pointer to a USB_CCID_CMD structure returned from a call to
USBD_CCID_ReceiveCmd().

Status
Status code. One of the USB_CCID_STATUS_CMD_.. macros
or’ed together with one of the USB_CCID_STATUS_ICC_..
macros.

Error Error code, if Status bit USB_CCID_STATUS_CMD_FAIL is set.
ClockFrequency Current setting of the ICC clock frequency in KHz.
DataRate Current setting of the ICC data rate in bps.

Return value

> 0 Success.
= 0 A timeout has occurred.
< 0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

683 CHAPTER 22 Target API

22.2.1.9 USBD_CCID_NotifySlotState()

Description

Send a notification about a new slot state to the host (via interrupt EP).

Prototype

void USBD_CCID_NotifySlotState(unsigned Slot,
 unsigned State);

Parameters

Parameter Description

Slot Slot index (counting from 0).

State
New slot state.
• 0: No ICC present.
• 1: ICC Present.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

684 CHAPTER 22 Target API

22.2.1.10 USBD_CCID_NotifyHwError()

Description

Send a notification about a hardware error to the host (via interrupt EP).

Prototype

void USBD_CCID_NotifyHwError(unsigned Slot,
 U8 SeqNum,
 U8 ErrorCode);

Parameters

Parameter Description

Slot Slot index (counting from 0).

SeqNum
Sequence number of bulk out command when the hardware
error occurred.

ErrorCode Error code.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

685 CHAPTER 22 Target API

22.2.2 Data structures

22.2.2.1 USB_CCID_INIT_DATA

Description

Initialization structure that is needed when adding a CCID interface to emUSB-Device.

Type definition

typedef struct {
 U8 EPIn;
 U8 EPOut;
 U8 EPInt;
 U8 * pBuff;
 USBD_CCID_ABORT_CB * pfAbort;
} USB_CCID_INIT_DATA;

Structure members

Member Description

EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.

EPInt
Endpoint for sending notification to the host. Optional, may
be 0.

pBuff
Pointer to endpoint buffer for EPIn. Buffer should be able to
hold one USB packet.

pfAbort
Callback function to signal an abort by the host. Optional,
may be NULL.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

686 CHAPTER 22 Target API

22.2.2.2 USB_CCID_PROPERTIES

Description

Declares all properties of a CCID device.

Type definition

typedef struct {
 U16 Flags;
 U8 NumSlots;
 U8 VoltageSupport;
 U8 Protocols;
 U8 NumClocks;
 U8 DefaultClockIdx;
 U8 NumDataRates;
 U8 DefaultDataRateIdx;
 const U32 * pClocks;
 const U32 * pDataRates;
 U32 MaxIFSD;
 U32 Features;
 U32 MaxMessageLength;
 U8 ClassGetResponse;
 U8 ClassEnvelope;
 U8 LCDLines;
 U8 LCDColumns;
 U8 PINSupport;
 const char * pInterfaceName;
} USB_CCID_PROPERTIES;

Structure members

Member Description

Flags Reserved for future use, must be 0.
NumSlots Number of card slots supported by the device (max. 4).
VoltageSupport Supported voltages, see USB_CCID_VOLTAGE… macros.

Protocols
Supported protocols (T=0, T=1), see USB_CCID_PROTOCOL…
macros.

NumClocks
Number of supported clock rates (number of entries in the
table pointed to by pClocks). Must be ≥ 1.

DefaultClockIdx Index of the default clock within the table pClocks.

NumDataRates

Number of supported data rates (number of entries in the
table pointed to by pDataRates). May be 0 to indicate a
range. In this case pDataRates must contain 2 entries (min,
max) and DefaultDataRateIdx must be 0.

DefaultDataRateIdx Index of the default data rate within the table pDataRates.
pClocks Table of all supported clock rates in KHz in increasing order.
pDataRates Table of all supported data rates in bps in increasing order.

MaxIFSD
Indicates the maximum IFSD supported by CCID for protocol
T=1.

Features
This value indicates what intelligent features the CCID has.
The value is a bitwise OR operation performed on the macros
USB_CCID_FEATURE…

MaxMessageLength Maximum CCID message length.

ClassGetResponse
Significant only for CCID that offers an APDU level for ex-
changes. Indicates the default class value used by the CCID
when it sends a Get Response command to perform the

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

687 CHAPTER 22 Target API

Member Description
transportation of an APDU by T=0 protocol. Value 0xFF indi-
cates that the CCID echoes the class of the APDU.

ClassEnvelope

Significant only for CCID that offers an extended APDU level
for exchanges. Indicates the default class value used by the
CCID when it sends an Envelope command to perform the
transportation of an extended APDU by T=0 protocol. Value
0xFF indicates that the CCID echoes the class of the APDU.

LCDLines
Number of lines of the LCD display. 0 if no display support-
ed.

LCDColumns
Number of characters per line of the LCD display. 0 if no dis-
play supported.

PINSupport This value indicates what PIN support features the CCID has.
pInterfaceName Name of the interface.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

688 CHAPTER 22 Target API

22.2.2.3 USB_CCID_CMD

Description

Contains information about a CCID command send from the host.

Type definition

typedef struct {
 U8 MessageType;
 U8 Slot;
 U8 SeqNum;
 U8 PowerSelect;
 U8 BWI;
 U8 LevelParameter;
 U8 ProtocolNumber;
 U8 ClockCommand;
 U8 ClassValid;
 U8 ClassGetResponse;
 U8 ClassEnvelope;
 U8 Function;
 unsigned DataLen;
} USB_CCID_CMD;

Structure members

Member Description

MessageType Message type, see USB_CCID_MSG_… macros.
Slot Card slot index (counting from 0).
SeqNum Command sequence number.

PowerSelect

Only valid for message type USB_CCID_MSG_ICC_POWER_ON.
Contains voltage that is applied to the ICC:
• 0 - Automatic Voltage Selection
• 1 - 5.0 volts
• 2 - 3.0 volts
• 3 - 1.8 volts.

BWI

Only valid for message types USB_CCID_MSG_XFR_BLOCK and
USB_CCID_MSG_SECURE. Used to extend the CCIDs Block
Waiting Timeout for this current transfer. The CCID shall
timeout the block after “this number multiplied by the Block
Waiting Time” has expired.

LevelParameter

Only valid for message types USB_CCID_MSG_XFR_BLOCK and
USB_CCID_MSG_SECURE. Use changes depending on the ex-
change level reported by the class descriptor in dwFeatures
field:
• Character level: Size of expected data to be returned by

the bulk-IN endpoint.
• Extended APDU level: Indicates if APDU begins or ends in

this command.

ProtocolNumber

Only valid for message types USB_CCID_MSG_SET_PARAME-
TERS.
• 0: Structure for protocol T=0.
• 1: Structure for protocol T=1.

ClockCommand
Only valid for message types USB_CCID_MSG_ICC_CLOCK.
• 0: restarts Clock.
• 1: Stops Clock.

ClassValid
Only valid for message types USB_CCID_MSG_T0APDU. Bit 0 =
1 indicates, that the field ClassGetResponse is valid. Bit 1 =
1 indicates, that the field ClassEnvelope is valid.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

689 CHAPTER 22 Target API

Member Description

ClassGetResponse

Only valid for message types USB_CCID_MSG_T0APDU. Value
to force the class byte of the header in a Get Response com-
mand. Value = 0xFF indicates that the class byte of the Get
Response command echoes the class byte of the APDU.

ClassEnvelope

Only valid for message types USB_CCID_MSG_T0APDU. Val-
ue to force the class byte of the header in a Envelope com-
mand. Value = 0xFF indicates that the class byte of the En-
velope command echoes the class byte of the APDU.

Function

Only valid for message types USB_CCID_MSG_MECHANICAL.
This value corresponds to the mechanical function being re-
quested:
• 1 - Accept Card.
• 2 - Eject Card.
• 3 - Capture Card.
• 4 - Lock Card.
• 5 - Unlock Card.

DataLen Size of data send with this command.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

690 CHAPTER 22 Target API

22.2.2.4 USB_CCID_PROTOCOL_DATA_T0

Description

Protocol parameters for T=0 protocol.

Type definition

typedef struct {
 U8 FindexDindex;
 U8 TCCKST0;
 U8 GuardTimeT0;
 U8 WaitingIntegerT0;
 U8 ClockStop;
} USB_CCID_PROTOCOL_DATA_T0;

Structure members

Member Description

FindexDindex see USB CCID specification.
TCCKST0 see USB CCID specification.
GuardTimeT0 see USB CCID specification.
WaitingIntegerT0 see USB CCID specification.
ClockStop see USB CCID specification.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

691 CHAPTER 22 Target API

22.2.2.5 USB_CCID_PROTOCOL_DATA_T1

Description

Protocol parameters for T=1 protocol.

Type definition

typedef struct {
 U8 FindexDindex;
 U8 TCCKST1;
 U8 GuardTimeT1;
 U8 WaitingIntegerT1;
 U8 ClockStop;
 U8 IFSC;
 U8 NadValue;
} USB_CCID_PROTOCOL_DATA_T1;

Structure members

Member Description

FindexDindex see USB CCID specification.
TCCKST1 see USB CCID specification.
GuardTimeT1 see USB CCID specification.
WaitingIntegerT1 see USB CCID specification.
ClockStop see USB CCID specification.
IFSC see USB CCID specification.
NadValue see USB CCID specification.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

692 CHAPTER 22 Target API

22.2.3 Function prototypes

22.2.3.1 USBD_CCID_ABORT_CB

Description

Callback function to forward a CCID abort request from the host to the application. The
function is called in interrupt context and should return as fast as possible.

Type definition

typedef void USBD_CCID_ABORT_CB(U8 Slot,
 U8 SeqNum);

Parameters

Parameter Description

Slot Card slot index (counting from 0).
SeqNum Sequence number of the command to abort.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 23

emUSB-Web add-on

This chapter gives a general overview of the emUSB-Web add-on and describes how to get
the emUSB-Web add-on running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

694 CHAPTER 23 Overview

23.1 Overview
The emUSB-Web add-on allows users to easily facilitate web-server access via USB.

emUSB-Web uses a PC tool to receive communication requests from a browser application
and forward those via USB to an embedded device without using a TCP/IP stack.

emUSB-Web comes as a complete package and contains the following:
• emUSB-Web embedded sample application containing abstraction for the emWeb web-

server
• emUSB-Web PC tool (Linux / macOS / Windows)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

695 CHAPTER 23 Requirements

23.2 Requirements
In order to use emUSB-Web the emUSB BULK component as well as the emWeb web-server
are required.

The emUSB-Web PC application is required:

https://www.segger.com/products/connectivity/emusb-device/add-ons/emusb-web/

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/products/connectivity/emusb-device/add-ons/emusb-web/

696 CHAPTER 23 Configuration

23.3 Configuration

23.3.1 Initial configuration
The emUSB-Web PC application should be started, it will open the default browser and
show a page instructing the user to connect a device running the emUSB-Web embedded
counterpart.

The target device should be programmed with the emUSB-Web embedded application and
connected to the PC.

As soon as a device running emUSB-Web is connected the content of the web page is
automatically substituted for the content provided by the embedded device.

23.3.1.1 emUSB-Web diagram

23.3.2 emUSB-Web operation in detail
The following chapter describes emUSB-Web internals and is relevant for users who wish
to write their own PC application

The USB web server consists of two parts: a PC application and an embedded application.

The PC application is responsible for opening a socket that a browser can connect to and
forwarding any requests the browser sends to the embedded application via USB.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

697 CHAPTER 23 Configuration

The embedded application receives HTTP requests and processes them using the integrat-
ed web server. The response is sent back via USB, received by the PC application, and
forwarded to the browser.

23.3.2.1 Device recognition
In order for the PC application to communicate with the embedded application, it must be
able to identify which USB device it can communicate with. The embedded application must
therefore provide a USB interface with the following characteristics:
• USB class ID: 0xFF (Vendor specific)
• USB subclass ID: 0x57 (ASCII “W”)
• USB protocol ID: 0x45 (ASCII “E”)
• Interface string descriptor must contain the string “http”

23.3.2.2 emUSB-Web protocol
Communication between the PC application and the embedded application works via USB
Bulk. The USB interface should contain one USB bulk IN endpoint and one USB bulk OUT
endpoint.

After enumeration, the embedded application should start listening to commands from the
PC application.

Commands from the PC application are preceded by an 8-byte-long header containing the
following value:
• 4 Bytes “NumBytesDataDown” value indicating the number of data bytes following this

header.
• 2 Bytes “Reserved1” - value reserved for future use.
• 2 Bytes “Reserved2” - value reserved for future use.

After reading the header, the embedded application should pass all following data to the
embedded web server.

The reply from the web server must be sent back to the PC application. The reply must be
preceded by an 8-byte-long header containing the following values:
• 4 Bytes “NumBytesDataUp” value indicating the number of data bytes following this

header.
• 2 Bytes “RetVal” value. A value of zero indicates that more data will be sent by the web

server for the current HTTP request. A value of 2 indicates that the current HTTP request
will be completed with this transfer and that the PC can start the next HTTP request.

• 2 Bytes “Reserved” - value reserved for future use.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 24

Combining USB components
(Multi-Interface)

In some cases, it is necessary to combine different USB components in one device. This
chapter will describe how to do this and which steps are necessary.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

699 CHAPTER 24 Overview

24.1 Overview
The USB specification allows implementation of more than one component (function) in a
single device. This is achieved by combining two or more components. These devices will
be recognized by the USB host as composite device and each component will be recognized
as an independent device.

One device, for example a data logger, can have two components: This device can show
log data files that were stored on a NAND flash through the MSD component. And the con-
figuration of the data logger can be changed by using a BULK component, CDC component
or even HID component.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

700 CHAPTER 24 Overview

24.1.1 Single interface device classes
Components can be combined because most USB device classes are based on one interface.
This means that those components describe themselves at the interface descriptor level and
thus makes it easy to combine different or even the same device classes into one device.
Such devices classes are MSD, HID and generic bulk.

24.1.2 Multiple interface device classes
In contrast to the single interfaces classes there are classes with multiple interfaces such
as CDC and AUDIO or VIDEO class. These classes define their class identifier in the device
descriptor. All interface descriptors are recognized as part of the component that is defined
in the device descriptor. This normally would prevent the combination of multiple interface
device classes (for example, CDC) with any other component, but this can be avoided by
using IAD.

24.1.3 IAD class
To remove the limitation described above the USB protocol defines a descriptor type that
allows the combination of single interface device classes with multiple interface device
classes. This descriptor is called an Interface Association Descriptor (IAD). It decouples the
multi-interface class from other interfaces.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

701 CHAPTER 24 Overview

Since IAD is an extension to the original USB specification, it is not supported by all hosts,
especially older host software. If IAD is not supported, the device may not be enumerated
correctly.

Supported hosts

At the time of writing, IAD is supported by:
• Windows XP with Service pack 2 and newer
• Linux Kernel 2.6.22 and higher
• macOS

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

702 CHAPTER 24 Configuration

24.2 Configuration
In general, no configuration is required. By default, emUSB-Device supports up to four
interfaces. If more interfaces are needed the following macros must be modified:

Type Macro Default Description

Numeric USB_MAX_NUM_IF 4 Defines the maximum number of in-
terfaces emUSB-Device shall handle.

Numeric USB_MAX_NUM_IAD 3
Defines the maximum number of
Interface Association Descriptors
emUSB-Device shall handle.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

703 CHAPTER 24 How to combine

24.3 How to combine
Combining different single interface emUSB-Device components (Bulk, HID, MSD) is an
easy step, all that needs to be done is calling the appropriate USBD_xxx_Add() function. For
adding the CDC component additional steps need to be taken. For detailed information refer
to emUSB-Device component specific modification on page 707 and check the following
sample.

Requirements
• Sufficient endpoints for all used device classes. Make sure that your USB device

controller has enough endpoints available to handle all the interfaces that shall be
integrated. The number of endpoints is limited by the USB controller hardware, this
information is usually found in the specific MCU’s reference manual.

Sample application

The following sample application uses embOS as the RTOS. This listing is taken from
USB_CompositeDevice_CDC_MSD.c.

/***
* (c) SEGGER Microcontroller GmbH *
* The Embedded Experts *
* www.segger.com *
**

-------------------------- END-OF-HEADER -----------------------------

File : USB_CompositeDevice_CDC_MSD.c
Purpose : Sample showing a USB device with multiple interfaces (CDC+MSD).
 This sample combines the functionality of USB_CDC_Echo.c
 and USB_MSD_FS_Start.c samples.

Additional information:
 Preparations:
 For CDC:
 On Windows 8.1 and below the "usbser" driver is not automatically
 assigned to the CDC-ACM device. To install the "usbser" driver
 see \Windows\USB\CDC . The device can be accessed via COM port
 emulation programs e.g. PuTTY.

 On Linux no drivers are needed, the device should show up as
 /dev/ttyACM0 or similar. "sudo screen /dev/ttyACM0 115200"
 can be used to access the device.

 On macOS no drivers are needed, the device should show up as
 /dev/tty.usbmodem13245678 or similar. The "screen" terminal
 program can be used to access the device.

 For MSD:
 The correct emFile configuration file has
 to be included in the project. Depending on the hardware
 it can be one of the following:
 * FS_ConfigRAMDisk_23k.c
 * FS_ConfigNAND_*.c
 * FS_ConfigMMC_CardMode_*.c
 * FS_ConfigNAND_*.c

 Expected behavior:
 For CDC:
 After connecting the USB cable the PC registers a new COM port appears.
 Terminal programs are able to open the COM port.
 Any data sent should be received back from the target.

 For MSD:
 A new MSD volume is recognized by the PC.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

704 CHAPTER 24 How to combine

 Sample output:
 The target side does not produce terminal output.
*/

/***
*
* #include section
*
**
*/
#include "USB.h"
#include "USB_CDC.h"
#include "BSP.h"
#include "USB_MSD.h"
#include "FS.h"
#include "RTOS.h"

/***
*
* Static const data
*
**
*/
//
// Information that is used during enumeration.
//
static const USB_DEVICE_INFO _DeviceInfo = {
 0x8765, // VendorId
 0x1256, // ProductId
 "Vendor", // VendorName
 "MSD/CDC Composite device", // ProductName
 "1234567890ABCDEF" // SerialNumber
};
//
// String information used when inquiring the volume 0.
//
static const USB_MSD_LUN_INFO _Lun0Info = {
 "Vendor", // MSD VendorName
 "MSD Volume", // MSD ProductName
 "1.00", // MSD ProductVer
 "134657890" // MSD SerialNo
};

/***
*
* Static data
*
**
*/
// Data for MSD Task
static OS_STACKPTR int _aMSDStack[512]; /* Task stacks */
static OS_TASK _MSDTCB; /* Task-control-blocks */

/***
*
* Static code
*
**
*/

/***
*
* _AddMSD
*
* Function description
* Add mass storage device to USB stack
*/

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

705 CHAPTER 24 How to combine

static void _AddMSD(void) {
 static U8 _abOutBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
 USB_MSD_INIT_DATA InitData;
 USB_MSD_INST_DATA InstData;

 InitData.EPIn = USBD_AddEP(1, USB_TRANSFER_TYPE_BULK, 0, NULL, 0);
 InitData.EPOut = USBD_AddEP(0, USB_TRANSFER_TYPE_BULK, 0, _abOutBuffer, sizeof(_abOutBuffer));
 USBD_MSD_Add(&InitData);
 //
 // Add logical unit 0: RAM drive, using SDRAM
 //
 memset(&InstData, 0, sizeof(InstData));
 InstData.pAPI = &USB_MSD_StorageByName;
 InstData.DriverData.pStart = (void *)"";
 InstData.pLunInfo = &_Lun0Info;
 USBD_MSD_AddUnit(&InstData);
}
/***
*
* _MSDTask
*
* Function description
* Add mass storage device to USB stack
*/
static void _MSDTask(void) {
 while (1) {
 while ((USBD_GetState() & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED)) !
= USB_STAT_CONFIGURED) {
 USB_OS_Delay(50);
 }
 USBD_MSD_Task();
 }
}

/***
*
* _OnLineCoding
*
* Function description
* Called whenever a "SetLineCoding" Packet has been received
*
* Notes
* (1) Context
* This function is called directly from an ISR in most cases.
*/
static void _OnLineCoding(USB_CDC_LINE_CODING * pLineCoding) {
#if 0
 USBD_Logf_Application("DTERate=%u, CharFormat=%u, ParityType=%u, DataBits=%u
\n",
 pLineCoding->DTERate,
 pLineCoding->CharFormat,
 pLineCoding->ParityType,
 pLineCoding->DataBits);
#else
 BSP_USE_PARA(pLineCoding);
#endif
}

/***
*
* _AddCDC
*
* Function description
* Add communication device class to USB stack
*/
static USB_CDC_HANDLE _AddCDC(void) {
 static U8 _abOutBuffer[USB_HS_BULK_MAX_PACKET_SIZE];
 USB_CDC_INIT_DATA InitData;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

706 CHAPTER 24 How to combine

 USB_CDC_HANDLE hInst;

 InitData.EPIn = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_BULK, 0, NULL, 0);
 InitData.EPOut = USBD_AddEP(USB_DIR_OUT, USB_TRANSFER_TYPE_BULK, 0, _abOutBuffer, USB_HS_BULK_MAX_PACKET_SIZE);
 InitData.EPInt = USBD_AddEP(USB_DIR_IN, USB_TRANSFER_TYPE_INT, 64, NULL, 0);
 hInst = USBD_CDC_Add(&InitData);
 USBD_CDC_SetOnLineCoding(hInst, _OnLineCoding);
 return hInst;
}
/***
*
* Public code
*
**
*/

/***
*
* MainTask
*
* USB handling task.
* Modify to implement the desired protocol
*/
#ifdef __cplusplus
extern "C" { /* Make sure we have C-declarations in C++ programs */
#endif
void MainTask(void);
#ifdef __cplusplus
}
#endif
void MainTask(void) {
 USB_CDC_HANDLE hInstCDC;

 USBD_Init();
 USBD_EnableIAD();
 USBD_SetDeviceInfo(&_DeviceInfo);
 hInstCDC = _AddCDC();
 _AddMSD();
 USBD_Start();
 OS_CREATETASK(&_MSDTCB, "MSDTask", _MSDTask, 200, _aMSDStack);

 while (1) {
 char ac[64];
 int NumBytesReceived;

 //
 // Wait for configuration
 //
 while ((USBD_GetState() & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED)) !
= USB_STAT_CONFIGURED) {
 BSP_ToggleLED(0);
 USB_OS_Delay(50);
 }
 BSP_SetLED(0);
 NumBytesReceived = USBD_CDC_Receive(hInstCDC, &ac[0], sizeof(ac), 0);
 if (NumBytesReceived > 0) {
 USBD_CDC_Write(hInstCDC, &ac[0], NumBytesReceived, 0);
 }
 }
}

/**************************** end of file ***************************/

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

707 CHAPTER 24 emUSB-Device component specific modification

24.4 emUSB-Device component specific modification
There are different steps for each emUSB-Device component. The next section shows what
needs to be done on both sides: device and host-side.

24.4.1 CDC component

24.4.1.1 Device side
In order to combine the CDC component with other components, the function USBD_En-
ableIAD() needs to be called, otherwise the device will not enumerate correctly. Refer to
section How to combine on page 390 and check the listing of the sample application.

24.4.1.2 Host side
Due to a limitation of the internal CDC serial driver of Windows, a composite device with
CDC component and another device component(s) is only properly recognized by Windows
XP SP3 and above. Linux kernel supports IAD with version 2.6.22. For Windows before
Windows 10 the .inf file needs to be modified. The provided .inf file:

;
; Device installation file for
; USB 2 COM port emulation
;
;
;
[Version]
Signature="$Windows NT$"
Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%MFGNAME%
LayoutFile=layout.inf
DriverVer=03/26/2007,6.0.2600.1
CatalogFile=usbser.cat

[Manufacturer]
%MFGNAME%=CDCDevice,NT,NTamd64

[DestinationDirs]
DefaultDestDir = 12

[CDCDevice.NT]
%DESCRIPTION%=DriverInstall,USB\VID_8765&PID_1111&Mi_xx

[CDCDevice.NTamd64]
%DESCRIPTION%=DriverInstall,USB\VID_8765&PID_0234&Mi_xx
%DESCRIPTION%=DriverInstall,USB\VID_8765&PID_1111&Mi_xx

[DriverInstall.NT]
Include=mdmcpq.inf
CopyFiles=FakeModemCopyFileSection
AddReg=DriverInstall.NT.AddReg

[DriverInstall.NT.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,usbser.sys
HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

[DriverInstall.NT.Services]
AddService=usbser, 0x00000002, DriverServiceInst

[DriverServiceInst]
DisplayName=%SERVICE%
ServiceType=1
StartType=3

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

708 CHAPTER 24 emUSB-Device component specific modification

ErrorControl=1
ServiceBinary=%12%\usbser.sys

[Strings]
MFGNAME = "Manufacturer"
DESCRIPTION = "USB CDC serial port emulation"
SERVICE = "USB CDC serial port emulation"

red - required modifications

Please add the red colored text to your .inf file and change xx with the interface number
of the CDC component.

The interface number is a zero based index and is assigned by the emUSB-Device stack
when calling USBD_CDC_Add() function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

709 CHAPTER 24 Issues on Windows 7

24.5 Issues on Windows 7
When connecting a Multi-interface device to Windows 7, sometimes a wrong driver is in-
stalled causing the device not to work.

The device needs to be handled as a composite device whereas Windows/Third party USB
host software installs the driver of the first interface only.

This problem can be fixed manually using SEGGER’s USB Composite Device Driver Fixer
tool: https://www.segger.com/downloads/free-utilities/CompositeDeviceFixer.

24.5.1 Detailed description
The cause why the driver was wrongly selected is that some USB 3.0 controller drivers
which also include their own USB 3.0 stack since the native USB host stack of Windows
7 cannot handle USB 3.0 devices (Microsoft introduced a native USB 3.0 stack only on
Windows 8 and higher).

Normally the third-party USB 3.0 stacks handle the enumeration and data transfers cor-
rectly. Unless it comes to the MS OS descriptor handling. Almost all third-party stacks han-
dle them incorrectly. Especially when it comes to devices which have multiple interfaces
such as RNDIS+MSD or MTP+Bulk or RNDIS+WinuSB etc. or RNDIS+CDC. Even when IAD
is used it is wrongly passed. In normal cases Windows would initially report that a compos-
ite device is detected. Afterwards the single interfaces are enumerated and the driver for
each interface will be loaded. When MS OS Descriptors are used the information is passed
to the dedicated interfaces. Those third-party USB 3.0 stack are NOT doing this. They pass
this information to the device instead of the interface, which is wrong. Microsoft says in
the MS OS Descriptor 2.0 Specification that the MS OS Descriptor information needs to be
passed to the interfaces: [Microsoft OS 2.0 Descriptors Specification /April 2017 - Chapter
Overview] “Scoping of MS OS descriptors With MS OS version 1.0 descriptors, Windows
USB driver stack does not query for any MS OS descriptors if the device is a composite
device, instead defers such queries to the USB Generic Parent Driver (Usbccgp.sys). The
effect is that all MS OS descriptors are applied to specific composite functions, and none
can be applied to the entire device itself.”

Neither do those third-party USB host stacks implement a proper handling of the MS OS
Desriptors nor do they pass the information properly to other drivers/stacks.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/downloads/free-utilities/CompositeDeviceFixer

Chapter 25

Target OS Interface

This chapter describes the functions of the operating system abstraction layer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

711 CHAPTER 25 General information

25.1 General information
emUSB-Device includes an OS abstraction layer which should make it possible to use an
arbitrary operating system together with emUSB-Device. To adapt emUSB-Device to a new
OS one only has to map the functions listed below in section Interface function list to the
native OS functions.

SEGGER took great care when designing this abstraction layer, to make it easy to under-
stand and to adapt to different operating systems.

25.1.1 Operating system support supplied with this release
emUSB-Device packages contain an abstraction layer for embOS (USB_OS_embOSv5.c). A
kernel abstraction layer for using emUSB-Device without any RTOS (superloop) is also
supplied (USB_OS_None.c).

Abstraction layers for the following operating systems are readily available:
• FreeRTOS
• µC/OS-II
• µC/OS-III
• CMSIS-RTX
• Keil-RTX
• ThreadX
• chibiOS
• CMX RTOS

Abstraction layers for other operating systems can be written upon request.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

712 CHAPTER 25 Interface function list

25.2 Interface function list
Name Description

API functions

USB_OS_DeInit() Frees all resources used by the OS layer.
USB_OS_Delay() Delays for a given number of ms.

USB_OS_DecRI()
Leave a critical region for the USB stack:
Decrements interrupt disable count and
enable interrupts if counter reaches 0.

USB_OS_GetTickCnt()
Returns the current system time in mil-
liseconds or system ticks.

USB_OS_IncDI()
Enter a critical region for the USB stack:
Increments interrupt disable count and
disables interrupts.

USB_OS_Init()
This function initializes all OS objects that
are necessary.

USB_OS_Panic()
Is called if the stack encounters a fatal er-
ror.

USB_OS_Signal() Wakes the task waiting for signal.

USB_OS_Wait()
Blocks the task until USB_OS_Signal() is
called for a given transaction.

USB_OS_WaitTimed()
Blocks the task until USB_OS_Signal() is
called for a given transaction or a timeout
occurs.

USB_OS_MutexAlloc()
Allocates a new mutex to be used by
USB_OS_MutexLock() / USB_OS_MutexUn-
lock() calls.

USB_OS_MutexFree()
Releases all mutexes allocated by
USB_OS_MutexAlloc().

USB_OS_MutexLock()
This function locks a mutex object that
was allocated by USB_OS_MutexAlloc().

USB_OS_MutexUnlock()
This function unlocks a mutex object that
was allocated by USB_OS_MutexAlloc().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

713 CHAPTER 25 Interface function list

25.2.1 USB_OS_DeInit()

Description

Frees all resources used by the OS layer.

Prototype

void USB_OS_DeInit(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

714 CHAPTER 25 Interface function list

25.2.2 USB_OS_Delay()

Description

Delays for a given number of ms.

Prototype

void USB_OS_Delay(int ms);

Parameters

Parameter Description

ms Number of ms.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

715 CHAPTER 25 Interface function list

25.2.3 USB_OS_DecRI()

Description

Leave a critical region for the USB stack: Decrements interrupt disable count and enable
interrupts if counter reaches 0.

Prototype

void USB_OS_DecRI(void);

Additional information

The USB stack will perform nested calls to USB_OS_IncDI() and USB_OS_DecRI(). This
function may be called from a task context or from within an interrupt. If called from an
interrupt, it need not do anything.

An alternate implementation would be to
• enable the USB interrupts,
• unlock the mutex or semaphore locked in USB_OS_IncDI()

if the disable count reaches 0.

This may be more efficient, because interrupts of other peripherals can be serviced while
inside a critical section of the USB stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

716 CHAPTER 25 Interface function list

25.2.4 USB_OS_GetTickCnt()

Description

Returns the current system time in milliseconds or system ticks.

Prototype

U32 USB_OS_GetTickCnt(void);

Return value

Current system time.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

717 CHAPTER 25 Interface function list

25.2.5 USB_OS_IncDI()

Description

Enter a critical region for the USB stack: Increments interrupt disable count and disables
interrupts.

Prototype

void USB_OS_IncDI(void);

Additional information

The USB stack will perform nested calls to USB_OS_IncDI() and USB_OS_DecRI(). This
function may be called from a task context or from within an interrupt. If called from an
interrupt, it need not do anything.

An alternate implementation would be to
• perform a lock using a mutex or semaphore and
• disable the USB interrupts.

This may be more efficient, because interrupts of other peripherals can be serviced while
inside a critical section of the USB stack.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

718 CHAPTER 25 Interface function list

25.2.6 USB_OS_Init()

Description

This function initializes all OS objects that are necessary.

Prototype

void USB_OS_Init(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

719 CHAPTER 25 Interface function list

25.2.7 USB_OS_Signal()

Description

Wakes the task waiting for signal.

Prototype

void USB_OS_Signal(unsigned EPIndex,
 unsigned TransactCnt);

Parameters

Parameter Description

EPIndex
Endpoint index. Signaling must be independent for all end-
points.

TransactCnt
Transaction counter. Specifies which transaction has been
finished.

Additional information

This routine is typically called from within an interrupt service routine.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

720 CHAPTER 25 Interface function list

25.2.8 USB_OS_Wait()

Description

Blocks the task until USB_OS_Signal() is called for a given transaction.

Prototype

void USB_OS_Wait(unsigned EPIndex,
 unsigned TransactCnt);

Parameters

Parameter Description

EPIndex
Endpoint index. Signaling must be independent for all end-
points.

TransactCnt Transaction counter. Specifies the transaction to wait for.

Additional information

The function must ignore signaling transactions other than given in TransactCnt. If this
transaction was signaled before this function was called, it must return immediately.

This routine is called from a task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

721 CHAPTER 25 Interface function list

25.2.9 USB_OS_WaitTimed()

Description

Blocks the task until USB_OS_Signal() is called for a given transaction or a timeout occurs.

Prototype

int USB_OS_WaitTimed(unsigned EPIndex,
 unsigned ms,
 unsigned TransactCnt);

Parameters

Parameter Description

EPIndex
Endpoint index. Signaling must be independent for all end-
points.

ms Timeout time given in ms.
TransactCnt Transaction counter. Specifies the transaction to wait for.

Return value

0 Task was signaled within the given timeout.
1 Timeout occurred.

Additional information

The function must ignore signaling transactions other than given in TransactCnt. If this
transaction was signaled before this function was called, it must return immediately.

USB_OS_WaitTimed() is called from a task. This function is used by all available timed
routines.

Alternatively this function may take the given timeout in units of system ticks of the under-
lying operating system instead of milliseconds. In this case all API functions that support a
timeout parameter should also use system ticks for the timeout.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

722 CHAPTER 25 Interface function list

25.2.10 USB_OS_MutexAlloc()

Description

Allocates a new mutex to be used by USB_OS_MutexLock() / USB_OS_MutexUnlock() calls.

Prototype

int USB_OS_MutexAlloc(void);

Return value

≥ 0 Valid index to be used for USB_OS_MutexLock() / USB_OS_MutexUnlock().
< 0 Error: No mutex available.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

723 CHAPTER 25 Interface function list

25.2.11 USB_OS_MutexFree()

Description

Releases all mutexes allocated by USB_OS_MutexAlloc()

Prototype

void USB_OS_MutexFree(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

724 CHAPTER 25 Interface function list

25.2.12 USB_OS_MutexLock()

Description

This function locks a mutex object that was allocated by USB_OS_MutexAlloc().

Prototype

void USB_OS_MutexLock(int Idx);

Parameters

Parameter Description

Idx
Index of the mutex to be locked (from USB_OS_MutexAl-
loc()).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

725 CHAPTER 25 Interface function list

25.2.13 USB_OS_MutexUnlock()

Description

This function unlocks a mutex object that was allocated by USB_OS_MutexAlloc().

Prototype

void USB_OS_MutexUnlock(int Idx);

Parameters

Parameter Description

Idx
Index of the mutex to be unlocked (from USB_OS_MutexAl-
loc()).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 26

Target USB Driver

This chapter describes how to configure a USB driver for emUSB-Device in detail.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

727 CHAPTER 26 General information

26.1 General information
Purpose of the USB hardware interface

emUSB-Device does not contain any hardware dependencies. These are encapsulated
through a hardware abstraction layer, which consists of the interface functions described
in this chapter. All of these functions for a particular USB controller are typically located
in a single file, the USB driver. Drivers for hardware which have already been tested with
emUSB-Device are available.

Range of supported USB hardware

The interface has been designed in such a way that it should be possible to use the most
common USB device controllers. This includes USB 1.1, USB 2.0 and USB 3.0 controllers.

26.1.1 Available USB drivers
An always up to date list can be found at:

https://www.segger.com/emusb-drivers.html

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/emusb-drivers.html

728 CHAPTER 26 Adding a driver to emUSB-Device

26.2 Adding a driver to emUSB-Device
USBD_Init() initializes the internals of the USB stack and is always the first function which
the USB application has to call. USBD_Init() will then call USBD_X_Config(). This function
should be used to perform the following tasks:
• Perform device specific hardware initialization if necessary.
• Add a USB driver to your project.
• Enable SuperSpeed by calling the function USBD_EnableSuperSpeed() if possible and

desired.
• Assign a memory area to be used for endpoint buffers if required by the driver, see

USBD_AssignMemory().
• Optionally install a HWAttach function.
• Install interrupt management functions.

You have to specify the USB device driver which should be used with emUSB-Device. For
this, USBD_AddDriver() should be called in USBD_X_Config() with the identifier of the
driver which is compatible to your hardware as parameter. Refer to the header file USB.h
for a list of all supported devices and their valid identifiers.

The _HWAttach() function should be used to perform hardware-specific actions which are
not part of the USB controller logic (for example, enabling the peripheral clock for USB port).
This function is called from every device driver, but may not be present if your hardware
does not need to perform such actions. A _HWAttach() function may be registered to the
stack by calling USBD_SetAttachFunc() within USBD_X_Config().

Additionally a function to enable the USB interrupt must be installed using the function
USBD_SetISREnableFunc().

Modify USBD_X_Config(), _EnableISR() and if required, _HWAttach().

26.2.1 USBD_X_Config()

Description

Configure the USB stack.

Prototype

void USBD_X_Config(void)

Additional information

This function is always called from USBD_Init().

Example

/* Example excerpt from USB_Config_SAM7A3.c */
#define PID_USB (27) // USB Identifier
#define _AT91C_PIOA_BASE (0xFFFFF400)
#define _AT91C_PIOB_BASE (0xFFFFF600)
#define _AT91C_PMC_BASE (0xFFFFFC00)
#define _PIO_PER_OFFS (0x00)
#define _PIO_OER_OFFS (0x10)
#define _PIO_CODR_OFFS (0x34) /* Clear output data register */
#define _PMC (*(volatile unsigned int*) _AT91C_PMC_BASE)
#define _USB_ID (_PIOB_ID)
#define _USB_OER
 (*(volatile unsigned int*) (_AT91C_PIOB_BASE + _PIO_OER_OFFS))
#define _USB_CODR
 (*(volatile unsigned int*) (_AT91C_PIOB_BASE + _PIO_CODR_OFFS))
#define _USB_DP_PUP_BIT (1)

static void _HWAttach(void) {
 _PMC = (1 << _USB_ID); /* Enable peripheral clock for USB-Port */
 _USB_OER = (1 << _USB_DP_PUP_BIT); /* set USB_DP_PUP to output */

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

729 CHAPTER 26 Adding a driver to emUSB-Device

 _USB_CODR = (1 << _USB_DP_PUP_BIT); /* set _USB_DP_PUP_BIT to low state */
}

static void _EnableISR(USB_ISR_HANDLER * pfISRHandler) {
 (U32)(0xFFFFF080 + 4 * PID_USB) = (U32)pfISRHandler; // Set interrupt vector
 (U32)(0xFFFFF128) = (1 << PID_USB);
 // Clear pending interrupt
 (U32)(0xFFFFF120) = (1 << PID_USB); // Enable Interrupt
}

void USBD_X_Config(void) {
 USBD_AddDriver(&USB_Driver_AtmelSAM7A3);
 USBD_SetAttachFunc(_HWAttach);
 USBD_SetISREnableFunc(_EnableISR);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

730 CHAPTER 26 Adding a driver to emUSB-Device

26.2.2 USBD_X_DisableInterrupt()

Description

This function is called by the stack in cases where the stack must perform a critical operation
which can not be interrupted by a new incoming USB interrupt event.

Prototype

void USBD_X_DisableInterrupt(void);

Additional information

This function is MCU/USB controller specific. Normally it is defined in the hardware specific
USB_Config_*.c file.

This function is only called by the stack if the define USBD_OS_USE_USBD_X_INTERRUPT is
set to 1 in USB_Conf.h. If this is not the case interrupts are disabled/enabled globally.

Example

/* Example excerpt from USB_Config_SEGGER_emPower.c */
void USBD_X_DisableInterrupt(void) {
 NVIC_DisableIRQ(USBHS_IRQn);
}

/* Example excerpt from USB_Config_Renesas_RSKRX71M.c */
void USBD_X_DisableInterrupt(void) {
 USB0_IER_USB0 &= ~(1uL << USB0_IER_USB0_BIT);
 USB0_IER_USBR0 &= ~(1uL << USB0_IER_USBR0_BIT);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

731 CHAPTER 26 Adding a driver to emUSB-Device

26.2.3 USBD_X_EnableInterrupt()

Description

This function is called by the stack to enable USB interrupt(s) after they have been disabled
by USBD_X_DisableInterrupt().

Prototype

void USBD_X_EnableInterrupt(void);

Additional information

This function is MCU/USB controller specific. Normally it is defined in the hardware specific
USB_Config_*.c file.

This function is only called by the stack if the define USBD_OS_USE_USBD_X_INTERRUPT is
set to 1 in USB_Conf.h. If this is not the case interrupts are disabled/enabled globally.

Example

/* Example excerpt from USB_Config_SEGGER_emPower.c */
void USBD_X_EnableInterrupt(void) {
 NVIC_EnableIRQ(USBHS_IRQn);
}

/* Example excerpt from USB_Config_Renesas_RSKRX71M.c */
void USBD_X_EnableInterrupt(void) {
 USB0_IER_USB0 |= (1uL << USB0_IER_USB0_BIT);
 USB0_IER_USBR0 |= (1uL << USB0_IER_USBR0_BIT);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

732 CHAPTER 26 Device driver specifics

26.3 Device driver specifics
For emUSB-Device different USB controller drivers are provided. Normally, the drivers are
ready and do not need to be configured at all. Some drivers may need to be configured in
a special manner, due to some limitation of the controller.

This section lists the drivers which require special configuration and describes how to con-
figure those drivers.

Restrictions caused by the USB controller hardware are also listed in this section.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

733 CHAPTER 26 Device driver specifics

26.3.1 LPC54/55xxx full-speed driver
This driver is used for the MCUs:
• LPC54608
• LPC540xx/54S0xx
• LPC55xxx
• LPC51U68

Configuration

This driver needs a memory area to store the endpoint table and endpoint transfer buffers.
By default the dedicated USB RAM attached to the high-speed controller is used. If the
full-speed and high-speed controllers are used simultaneously, then a different memory
area must be assigned to the driver by calling the function USBD_AssignMemory() in USB-
D_X_Config().

Minimum required memory: 256 bytes + ’maximum packet size’ for each used non-control
endpoint.

The memory area must be aligned to a 256-byte boundary.

26.3.2 LPC54/55xxx high-speed driver
This driver is used for the MCUs:
• LPC54608
• LPC540xx/54S0xx
• LPC55xxx
• iMXRT5xx

Restrictions

In some versions of the LPC54xxx MCUs, the high-speed device controller contains a serious
bug: Under some circumstances the first byte of a data packet transferred to the host is
changed to 0x00 (See LPC546xx errata sheet, Rev. 2.1, 23 October 2018, USB.15). Although
the workaround suggested by NXP is implemented in the driver, data packets may still get
corrupted if IN and OUT endpoints are active at the same time. This can’t be avoided in
many applications. This problem is known for the LPC54608 and some early samples of
the LPC54018/LPC54S018. We recommend not to use the high-speed device controller on
devices with this issue. When in doubt, check with NXP for a specific device.

The high-speed device controller is not able to send ISO packets of size 1024 to the host.
Only packet sizes up to 1023 bytes will work.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

734 CHAPTER 26 Device driver specifics

26.3.3 EHCI driver
This driver is used for the MCUs:
• LPC18xx
• LPC43xx
• Kinets (HS controller)
• iMX RT105x/RT106x/RT118x
• Zynq70xx

Configuration

This driver needs a memory area to store the DMA descriptors and endpoint transfer buffers.
The memory must be provided by the application and must be passed to the USB stack
using the function USBD_AssignMemory().

Example

 USBD_AddDriver(&USB_Driver_NXP_LPC43xx_DynMem);
 USBD_AssignMemory(_MemPool, sizeof(_MemPool));

Minimum required memory (for systems without cached memory):
• 918 to 1536 bytes (depending on the number of endpoints the controller provides)
• For each used non-control OUT (RX) endpoint: 32 bytes + ’maximum packet size’ of

the endpoint
• For each used non-control IN (TX) endpoint: 64 bytes

Minimum required memory (for systems using cached memory):
• 1046 to 1664 bytes (depending on the number of endpoints the controller provides)
• For each used non-control endpoint (IN or OUT): 96 bytes + 2 * ’maximum packet size’

of the endpoint

Warning

The memory area must be valid for DMA access by the USB controller.

The memory area should be aligned to a 2048-byte boundary to avoid wasting of memory.

For some targets there also exists a variant of the driver, that uses a memory area de-
clared inside the driver code. When selecting this kind of driver (without the “_DynMem”
suffix in the driver name), USBD_AssignMemory() must not be called. Instead the size
of the memory area can be configured by setting the preprocessor symbol USB_ENDPOIN-
T_BUFFER_POOL_SIZE in USB_Conf.h.

Cache support

If the driver is installed on a system using cached (data) memory, cache functions for clean-
ing and invalidating cache lines must be provided and set with USBD_SetCacheConfig().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

735 CHAPTER 26 Device driver specifics

26.3.4 Synopsys DWC2 driver (slave mode)
This driver does not use DMA and is applicable for the MCUs:
• STM32F105/107
• STM32F2xx
• STM32F4xx
• STM32F7xx
• STM32H7xx
• STM32L4x5/4x6/4x7/4x9
• STM32U575/585
• XMC45xx
• EFM32GGxxx

Configuration

This driver needs a memory area for endpoint transfer buffers. By default a memory area
declared inside the driver code is used. The size of this area can be configured by setting
the preprocessor symbol USB_ENDPOINT_BUFFER_POOL_SIZE in USB_Conf.h.

For the STM32F7xx and STM32H7xx drivers the memory may be provided by the application
instead. In this case the dynamic memory variant of the driver must be added to the USB
stack and the function USBD_AssignMemory() must be called.

Example

 USBD_AddDriver(&USB_Driver_ST_STM32F7xxHS_DynMem);
 USBD_AssignMemory(_MemPool, sizeof(_MemPool));

Minimum required memory:
• 64 bytes
• For each used non-control OUT (RX) endpoint: The ’maximum packet size’ of the

endpoint

Restrictions

High bandwidth ISO transactions are not supported, therefore a maximum of 1024 bytes
can be transferred per micro frame in high-speed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

736 CHAPTER 26 Device driver specifics

26.3.5 Synopsys DWC2 driver (DMA mode)
This driver can be used for the high-speed controllers of the MCUs:
• STM32F4xx
• STM32F7xx
• STM32H7xx
• STM32U5A9
• DA148xx

Configuration

This driver needs a memory area for endpoint transfer buffers, which must be provided by
the application by calling the function USBD_AssignMemory() after USBD_AddDriver().

Minimum required memory:
• 128 bytes
• For each used non-control endpoint (IN and OUT each): The ’maximum packet size’ of

the endpoint

All sizes must be rounded up to a multiple of 4 bytes or the cache line size, if the system
uses a cache.

Warning

The memory area must be valid for DMA access by the USB controller.

Cache support

If the driver is installed on a system using cached (data) memory, cache functions for clean-
ing and invalidating cache lines must be provided and set with USBD_SetCacheConfig().

Some devices only use a data cache for specific memory areas (e.g. the STM32U5A9 for
external memory). On such devices a driver version without cache management can be
used, if the cached area is not used (or not used for USB).

Restrictions

For ISO OUT endpoints the maximum packets size must meet the following requirements:
• The maximum packet size should be a multiple of 4 bytes to avoid performance

drawbacks.
• If the total packet size (number of bytes per micro frame) is > 1024 and ≤ 2048 (high

bandwidth transactions), it MUST be a multiple of 8 bytes.
• If the total packet size (number of bytes per micro frame) is > 2048 and ≤ 3072 (high

bandwidth transactions), it MUST be a multiple of 12 bytes.

Large packet sizes require large FIFO buffers which are usually not available in STM32
devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

737 CHAPTER 26 Device driver specifics

26.3.6 XHCI driver

Configuration

The function USBD_EnableSuperSpeed() must be called within USBD_X_Config(), if the
device shall be able to operate at SuperSpeed. If the function is not called, the USB con-
troller will enumerate in high-speed only.

This driver needs a memory area for endpoint transfer buffers which must be provided by
the application using the USBD_AssignMemory() function.

Typical required memory (on a system with a data cache line size of 64 bytes):
• 1152 bytes
• For each used non-control OUT (RX) endpoint: The ’maximum packet size’ of the

endpoint + 512 bytes
• For each used non-control IN (TX) endpoint: 192 bytes

For optimal and reproducible memory allocation behavior the memory area provided to
USBD_AssignMemory() should be cache aligned and should not span a 64KB boundary.

Cache support

Cache functions for cleaning and invalidating cache lines must be provided and set with
USBD_SetCacheConfig().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

738 CHAPTER 26 Device driver specifics

26.3.7 Renesas RX driver
This driver is used for the MCUs:
• RX113
• RX231
• RX71M (full-speed controller)
• RX62N
• RX63N
• RX64M
• RX65N
• Synergy series
• RA4xx series

Restrictions

Due to a hardware limitation the maximum packet size of isochronous endpoints is limited
to 256 bytes (instead of the normally possible 1023 bytes).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

739 CHAPTER 26 Device driver specifics

26.3.8 AT91RM9200 driver

Restrictions

SETUP OUT transfers with more than 8 bytes can cause the controller to lock-up. A setup
OUT transfer consists of a SETUP stage, an optional DATA OUT stage and a STATUS IN
stage. The usage of status IN with preceding data is relatively rare, certain HID commands
can trigger this, e.g. “SetFeature”, in most other protocols setup transfers are rarely done
in the OUT direction with a data stage. Usage of common protocols (MSD, CDC, etc.) should
not be affected. The USB controller in this MCU appears to have a critical bug with status
IN transactions which results in a complete lock-up of the controller until power cycle. The
issue occurs during the status stage of setup transfers consisting of more than one data
packet:

Works:
• SETUP packet
• 7 byte data OUT
• 0 byte status IN

Does not work:
• SETUP packet
• 8 byte data OUT
• 1 byte data OUT
• 0 byte status IN <-- During this transaction the IN token can be seen and on the device

side, the ZLP transaction is started, but the controller locks up. After this the controller
will no longer receive any interrupts.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

740 CHAPTER 26 Device driver specifics

26.3.9 Giga Device GD32F4xx driver (full-speed controller)
The driver was tested on the GD32F450, GD32F470 and GD32F407.

Restrictions

Due to a hardware issue of the USB controller on the GD32F407, concurrent data transfers
over multiple endpoints may result in data corruption. Therefore using multiple independent
USB classes in a device is not recommended.

For ISO transactions the maximum packet size is 512 bytes.

26.3.10 Giga Device GD32F4xx driver (high-speed controller)
The driver was tested on the GD32F450, GD32F470 and GD32F407.

Configuration

The driver needs a memory area for endpoint transfer buffers, which must be provided by
the application by calling the function USBD_AssignMemory() after USBD_AddDriver().

Minimum required memory:
• 128 bytes
• For each used non-control endpoint (IN and OUT each): The ’maximum packet size’ of

the endpoint

All sizes must be rounded up to a multiple of 4 bytes.

Restrictions

Due to a hardware issue of the USB controller, concurrent data transfers over multiple
endpoints may result in data corruption or may cause an endpoint getting stuck. Therefore
using multiple independent USB classes in a device is not recommended.

On the GD32F407 the USB controller doesn’t work reliable. Sporadic corruption of data
packets may happen.

ISO IN transactions only work with interval 125us.

For ISO transactions the maximum packet size is 800 bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

741 CHAPTER 26 Device driver specifics

26.3.11 Atmel ATSAMV7x driver
This driver can be used for MCUs:
• ATSAMV70
• ATSAMV71
• ATSAMV72
• ATSAME70

Restrictions

Due to a controller limitation USBD_Write* functions can return before data was actually
sent out. E.g. If the application calls USBD_BULK_Write(hInst, pBuff, 50, 0) and there is
space in the endpoint’s memory banks the function will immediately return 50 even if the
host is not currently reading on the IN endpoint.

Normally this is not an issue, as the data can still be read normally by the host later on.
But this can lead to confusion or can cause problems if a protocol is used which depends
on knowing whether the host really received the packet.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

742 CHAPTER 26 Device driver specifics

26.3.12 PSoC6 driver
Two USB drivers for the PSoC6 are available: One is using DMA for data transfer (USB_Dri-
ver_Cypress_PSoC6_DMA), the other does not use DMA (USB_Driver_Cypress_PSoC6).

The DMA capable driver needs a memory area for endpoint transfer buffers which must be
provided by the application using the USBD_AssignMemory() function. The memory area
should be word aligned. The required memory size can be calculated as follows:
• For each used non-control endpoint: The ’maximum packet size’ of the endpoint,

rounded up to a multiple of 32 bytes + 84 bytes

Additionally the DMA routines and DMA channels must be configured using a call to
USB_DRIVER_Cypress_PSoC6_ConfigDMA().

26.3.12.1 Restrictions
Because the USB controller of the PSoC6 is not able to signal a suspend state of the USB
bus via interrupt, the application has to call a driver function every millisecond in order to
get suspend events handled, see USB_DRIVER_Cypress_PSoC6_SysTick().

For the non-DMA driver ISO endpoints are limited to a maximum packet size of 192 bytes.
Also the sum of all endpoint’s maximum packet sizes must be less than 512 bytes.

There are no such limits for the DMA driver.

26.3.12.2 PSoC6 driver specific functions

26.3.12.2.1 USB_DRIVER_Cypress_PSoC6_SysTick()

Description

The USB controller of the PSoC6 is not able to automatic detect a suspend issued by the
host. In order to allow the driver to detect the suspend state, this function has to be called
by the application every millisecond.

If this function is not used, the USB stack works well, only suspend is not handled.

Prototype

void USB_DRIVER_Cypress_PSoC6_SysTick(void);

26.3.12.2.2 USB_DRIVER_Cypress_PSoC6_Resume()

Description

If the device was set into deep sleep mode while USB was active, some registers of the
USB controller are reset. This function can be called after the device has left deep sleep
mode to restore the state of the USB controller.

Prototype

void USB_DRIVER_Cypress_PSoC6_Resume(void);

26.3.12.2.3 USB_DRIVER_Cypress_PSoC6_ConfigDMA()

Description

Configure DMA parameters and DMA routines to be used by the USB driver. This function
must be called after USBD_AddDriver() when the DMA version of the PSoC6 USB driver
was selected.

Prototype

void USB_DRIVER_Cypress_PSoC6_ConfigDMA(const USB_CYPRESS_PSoC6_DMA_API * pAPI,
 const USB_CYPRESS_PSoC6_DMA_CONFIG * pCFG);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

743 CHAPTER 26 Device driver specifics

Parameters

Parameter Description

pAPI
Pointer to a set of DMA driver functions to be used by the
USB driver.

pCFG
Pointer to a structure that contains the DMA channel and pri-
ority for each USB endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

744 CHAPTER 26 Device driver specifics

26.3.13 ST full-speed driver
This driver can be used for MCUs:
• STM32H5xx
• STM32U545

This driver needs a memory area used as endpoint transfer buffer which must be provided
by the application using the USBD_AssignMemory() function.

The memory area must be word (32-bit) aligned and it’s size must be the maximum packet
size of the largest OUT (RX) endpoint used in the USB configuration. So usually 64 bytes
are sufficient, except if any ISO OUT endpoint is used.

Restrictions

The maximum packet size of an interrupt endpoint must be even. The maximum packet size
of an isochronous endpoint must be a multiple of 32 bytes and must not exceed 992 bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 27

Support

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

746 CHAPTER 27 Contacting support

27.1 Contacting support
Before contacting support please make sure that you are using the latest version of the
emUSB-Device package. Also please check the chapter Configuring debugging output on
page 46 and run your application with enabled debug support.

If you are a registered emUSB-Device user there are different ways to contact the emUSB-
Device support:
1. You can create a support ticket via email to ticket_emusb@segger.com*

2. You can create a support ticket at {segger.com/ticket}.

Please include the following information in the email or ticket:
• The emUSB-Device version.
• Your emUSB-Device license number.
• If you are unsure about the above information you can also use the name of the emUSB-

Device zip file (which contains the above information).
• A detailed description of the problem
• The configuration files USB_Conf*.*
• Any error messages.

Please also take a few moments to help us improve our services by providing a short
feedback once your support case has been solved.

27.1.1 Where can I find the license number?
The license number is part of the shipped zip file name.
For example emUSBD_BASE_STM32F2F4F7_V3.60.0_USBD-01234_308746BB_230530.zip
where USBD-01234 is the license number. The license number is also part of every *.c-
and *.h-file header. For example, if you open USB.h you should find the license number
as with the example below:

**
* *
* emUSB-Device version: V3.60.0 *
* *
**
--
Licensing information
Licensor: SEGGER Microcontroller GmbH
Licensed to: Customer name
Licensed SEGGER software: emUSB-Device
License number: USBD-01234
License model: SSL
Licensed product: -
Licensed platform: Cortex-M, GCC
Licensed number of seats: 1
--
Support and Update Agreement (SUA)
SUA period: 2023-05-30 - 2023-11-30
Contact to extend SUA: sales@segger.com
--
Purpose : USB stack API

*By sending us an email your (personal) data will automatically be processed. For further information
please refer to our privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

mailto:ticket_emusb@segger.com
https://segger.com/ticket

Chapter 28

Profiling with SystemView

This chapter describes how to configure and enable profiling of emUSB-Device using Sys-
temView.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

748 CHAPTER 28 Profiling overview

28.1 Profiling overview
emUSB-Device is instrumented to generate profiling information of API functions and dri-
ver-level functions.

These profiling information expose the run-time behavior of emUSB-Device in an applica-
tion, recording which API functions have been called, how long the execution took, and
revealing which driver-level functions have been called by API functions or events like in-
terrupts.

The profiling information is recorded using SystemView.

SystemView is a real-time recording and visualization tool for profiling data. It exposes
the true run-time behavior of a system, going far deeper than the insight provided by de-
buggers. This is particularly effective when developing and working with complex systems
comprising an OS with multiple threads and interrupts, and one or more middleware com-
ponents.

SystemView can ensure a system performs as designed, can track down inefficiencies, and
show unintended interactions and resource conflicts.

The recording of profiling information with SystemView is minimally intrusive to the system
and can be done on virtually any system. With SEGGER’s Real Time Technology (RTT) and
a J-Link, SystemView can record data in real-time and analyze the data live, while the
system is running.

The emUSB-Device profiling instrumentation can be easily configured and set up.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

749 CHAPTER 28 Additional files for profiling

28.2 Additional files for profiling
Additional files are required on target and PC side for full functionality of SystemView.

28.2.1 Additional files on target side
The SystemView module needs to be added to the application to enable profiling. If
not already part of the project, download the sources from https://www.segger.com/sys-
temview.html and add them to the project.

Also make sure that USB_SYSVIEW.c from the /USB/ directory is included in the project.

28.2.2 Additional files on PC side
For fully functional and readable outputs in the SystemView PC application, a description
file for the corresponding middleware is required. This description file extends the values
sent from the target to fully readable text outputs.

While SystemView already comes with the most recent description files at the time the
SystemView release has been built, these files might not be the latest available. The latest
SystemView description files can be found in the emUSB-Device shipment in the folder
/Shared/SystemView/Description/. You can copy these files over to the Description
folder that comes with the SystemView package.

The version at the end of the SystemView description file does not have to match the exact
version of the middleware it is used with. They are valid from this version onwards until a
description file for a newer version is required.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

750 CHAPTER 28 Enable profiling

28.3 Enable profiling
Profiling can be included or excluded at compile-time and enabled at run-time. When pro-
filing is excluded, no additional overhead in performance or memory usage is generated.
Even when profiling is enabled the overhead is minimal, due to the efficient implementation
of SystemView.

To include profiling, define USBD_SUPPORT_PROFILE as 1 in the emUSB-Device configuration
(USB_Conf.h) or in the project preprocessor defines.

Per default profiling is included when the global define SUPPORT_PROFILE is set.

#if defined(SUPPORT_PROFILE) && (SUPPORT_PROFILE)
 #ifndef USBD_SUPPORT_PROFILE
 #define USBD_SUPPORT_PROFILE 1
 #endif
#endif

To enable profiling at run-time, USBD_SYSVIEW_Init() needs to be called. Profiling can
be enabled at any time, it is recommended to do this in the user-provided configuration
USBD_X_Config():

/***
*
* USBD_X_Config
*
*/
void USBD_X_Config(void) {
 ...
#if USBD_SUPPORT_PROFILE
 USBD_SYSVIEW_Init();
#endif
 ...

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

751 CHAPTER 28 Recording and analyzing profiling information

28.4 Recording and analyzing profiling information
When profiling is included and enabled emUSB-Device generates profiling events. On a
system which supports RTT (i.e. ARM Cortex-M and Renesas RX) the data can be read and
analyzed with SystemView and a J-Link. Connect the J-Link to the target system using the
default debug interface and start the SystemView host application. If the system does not
support RTT, SystemView can be configured for single-shot or postmortem mode. Please
refer to the SystemView User Manual for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 29

Debugging

emUSB-Device comes with various debugging options. These includes optional warning and
log outputs, as well as other run-time options which perform checks at run time as well
as options to drop incoming or outgoing packets to test stability of the implementation on
the target system.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

753 CHAPTER 29 Message output

29.1 Message output
The debug builds of emUSB-Device include a fine grained debug system which helps to
analyze the correct implementation of the stack in your application. All modules of the USB
stack can output logging and warning messages via terminal I/O, if the specific message
type identifier is added to the log and/or warn filter mask. This approach provides the
opportunity to get and interpret only the logging and warning messages which are relevant
for the part of the stack that you want to debug.

By default, all of the warning messages and none of the logging messages are activated.
All activated messages are forwarded to the functions USB_X_Log() and USB_X_Warn().
These functions are located in the source file USB_ConfigIO.c and may be customized or
replaced if necessary.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

754 CHAPTER 29 API functions

29.2 API functions
Function Description

Filter functions

USBD_AddLogFilter()
Adds one or more message types to the
logging filter.

USBD_AddWarnFilter()
Adds one or more message types to the
warning filter.

USBD_SetLogFilter()
Sets the message type(s) for the logging
filter.

USBD_SetWarnFilter()
Sets the message type(s) for the warning
filter.

General debug functions/macros

USB_PANIC
Called if the stack encounters a critical sit-
uation.

General helper prototypes

USB_X_Log()
This function is called by the stack in de-
bug builds with log output.

USB_X_Warn()
This function is called by the stack in de-
bug builds with warning output.

USB_OS_Panic()
Is called if the stack encounters a fatal er-
ror.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

755 CHAPTER 29 API functions

29.2.1 USBD_AddLogFilter()

Description

Adds one or more message types to the logging filter.

Prototype

void USBD_AddLogFilter(U32 FilterMask);

Parameters

Parameter Description

FilterMask
Specifies which logging messages should be added to the fil-
ter mask. Refer to Message types on page 763 for a list of
valid values for parameter FilterMask.

Additional information

USBD_AddLogFilter() can also be used to remove a filter condition which was set before.
It adds the specified filter to the filter mask via a disjunction.

Example

void Application (void) {
 USBD_AddLogFilter(USB_MTYPE_DRIVER); // Activate driver logging messages
 USBD_Init();
 /*
 * Do something
 */
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

756 CHAPTER 29 API functions

29.2.2 USBD_AddWarnFilter()

Description

Adds one or more message types to the warning filter.

Prototype

void USBD_AddWarnFilter(U32 FilterMask);

Parameters

Parameter Description

FilterMask
Specifies which warning messages should be added to the
filter mask. Refer to Message types on page 763 for a list of
valid values for parameter FilterMask.

Additional information

USBD_AddWarnFilter() can also be used to remove a filter condition which was set before.
It adds the specified filter to the filter mask via a disjunction.

Example

void Application (void) {
 USBD_AddWarnFilter(USB_MTYPE_DRIVER); // Activate driver warning messages
 USBD_Init();
 /*
 * Do something
 */
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

757 CHAPTER 29 API functions

29.2.3 USBD_SetLogFilter()

Description

Sets the message type(s) for the logging filter.

Prototype

void USBD_SetLogFilter(U32 FilterMask);

Parameters

Parameter Description

FilterMask
Specifies which logging messages should be set to the filter
mask. Refer to Message types on page 763 for a list of valid
values for parameter FilterMask.

Additional information

This function can be called before USBD_Init(). By default, none of filter conditions are
set. The sample application contain a simple implementation which can be easily modified.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

758 CHAPTER 29 API functions

29.2.4 USBD_SetWarnFilter()

Description

Sets the message type(s) for the warning filter.

Prototype

void USBD_SetWarnFilter(U32 FilterMask);

Parameters

Parameter Description

FilterMask
Specifies which warning messages should be set to the filter
mask. Refer to Message types on page 763 for a list of valid
values for parameter FilterMask.

Additional information

This function can be called before USBD_Init(). By default, none of filter conditions are
set. The sample application contain a simple implementation which can be easily modified.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

759 CHAPTER 29 API functions

29.2.5 USB_PANIC

Description

This macro is called by the stack code when it detects a situation that should not be occur-
ring and the stack can not continue. The intention for the USB_PANIC() macro is to invoke
whatever debugger may be in use by the programmer. In this way, it acts like an embed-
ded breakpoint. This macro is mostly used in cases where emUSB-Device was configured
improperly.

Prototype

USB_PANIC (const char * sError);

Additional information

This macro maps to a function in debug builds only. If USB_DEBUG > 0, the macro maps to
the stack internal function USB_OS_Panic(). It disables all interrupts to avoid further task
switches, outputs sError via terminal I/O and loops forever. When using an emulator, you
should set a breakpoint at the beginning of this routine or simply stop the program after a
failure. The error message is passed to the function as parameter. In a release build, this
macro is defined empty, so that no additional code will be included by the linker.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

760 CHAPTER 29 API functions

29.2.6 USB_X_Log()

Description

This function is called by the stack in debug builds with log output. In a release build, this
function is not be linked in.

Prototype

void USB_X_Log(const char * s);

Parameters

Parameter Description

s Pointer to a string holding the log message.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

761 CHAPTER 29 API functions

29.2.7 USB_X_Warn()

Description

This function is called by the stack in debug builds with warning output. In a release build,
this function is not be linked in.

Prototype

void USB_X_Warn(const char * s);

Parameters

Parameter Description

s Pointer to a string holding the warning message.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

762 CHAPTER 29 API functions

29.2.8 USB_OS_Panic()

Description

Is called if the stack encounters a fatal error.

Prototype

void USB_OS_Panic(const char * pErrMsg);

Parameters

Parameter Description

pErrMsg Pointer to a string holding the error message.

Additional information

In a release build this function is not linked in. The default implementation of this function
disables all interrupts to avoid further task switches, outputs the error string via terminal I/
O and loops forever. When using an emulator, you should set a break-point at the beginning
of this routine or simply stop the program after a failure.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

763 CHAPTER 29 Message types

29.3 Message types
Description

The same message types are used for log and warning messages. Separate filters can be
used for both log and warnings. For details, refer to USBD_SetLogFilter() and USBD_Set-
WarnFilter() as wells as USBD_AddLogFilter() and USBD_AddWarnFilter() for more in-
formation about using the message types.

Definition

#define USB_MTYPE_INIT (1UL << 0)
#define USB_MTYPE_CORE (1UL << 1)
#define USB_MTYPE_CONFIG (1UL << 2)
#define USB_MTYPE_DRIVER (1UL << 3)
#define USB_MTYPE_ENUMERATION (1UL << 4)
#define USB_MTYPE_CDC (1UL << 7)
#define USB_MTYPE_HID (1UL << 8)
#define USB_MTYPE_MSD (1UL << 9)
#define USB_MTYPE_MSD_CDROM (1UL << 10)
#define USB_MTYPE_MSD_PHY (1UL << 11)
#define USB_MTYPE_MTP (1UL << 12)
#define USB_MTYPE_PRINTER (1UL << 13)
#define USB_MTYPE_RNDIS (1UL << 14)
#define USB_MTYPE_VIRTUAL_MSD (1UL << 16)
#define USB_MTYPE_UVC (1UL << 17)
#define USB_MTYPE_ECM (1UL << 18)
#define USB_MTYPE_AUDIO (1UL << 19)
#define USB_MTYPE_NCM (1UL << 20)
#define USB_MTYPE_MIDI (1UL << 21)
#define USB_MTYPE_INFO (1UL << 31)

Symbols

Definition Description

USB_MTYPE_INIT
Activates output of messages from the initialization of the
stack that should be logged.

USB_MTYPE_CORE
Activates output of messages from the core of the stack that
should be logged.

USB_MTYPE_CONFIG
Activates output of messages from the configuration of the
stack.

USB_MTYPE_DRIVER
Activates output of messages from the driver that should be
logged.

USB_MTYPE_ENUMERATION
Activates output of messages from enumeration that should
be logged. Note: Since enumeration is handled in an ISR,
use this with care as the timing will be changed greatly.

USB_MTYPE_CDC
Activates output of messages from CDC module that should
be logged when a CDC connection is used.

USB_MTYPE_HID
Activates output of messages from HID module that should
be logged when a HID connection is used.

USB_MTYPE_MSD
Activates output of messages from MSD module that should
be logged when a MSD connection is used.

USB_MTYPE_MSD_CDROM
Activates output of messages from MSD CDROM module that
should be logged.

USB_MTYPE_MSD_PHY
Activates output of messages from MSD Physical layer that
should be logged.

USB_MTYPE_MTP
Activates output of messages from MTP module that should
be logged when a MTP connection is used.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

764 CHAPTER 29 Message types

Definition Description

USB_MTYPE_PRINTER
Activates output of messages from Printer module that
should be logged when Printer connection is used.

USB_MTYPE_RNDIS
Activates output of messages from RNDIS module that
should be logged when a RNIDS connection is used.

USB_MTYPE_VIRTUAL_MSD
Activates output of messages from VirtualMSD module that
should be logged when a VirtualMSD connection is used.

USB_MTYPE_UVC
Activates output of messages from UVC module that should
be logged when a UVC connection is used.

USB_MTYPE_ECM
Activates output of messages from ECM module that should
be logged when a ECM connection is used.

USB_MTYPE_AUDIO
Activates output of messages from Audio module that should
be logged when an audio connection is used.

USB_MTYPE_NCM
Activates output of messages from NCM module that should
be logged when a NCM connection is used.

USB_MTYPE_MIDI
Activates output of messages from MIDI module that should
be logged when a MIDI connection is used.

USB_MTYPE_INFO Non-maskable info messages

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 30

Performance & resource usage

This chapter covers the performance and resource usage of emUSB-Device. It contains
information about the memory requirements in typical systems which can be used to obtain
sufficient estimates for most target systems.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

766 CHAPTER 30 Memory footprint

30.1 Memory footprint
emUSB-Device is designed to fit many kinds of embedded design requirements. Several
features can be excluded from a build to get a minimal system. The code size depends on
the API functions called by the application. The code was compiled for a Cortex-M4 CPU
with the SEGGER compiler and size optimization. Note that the values are only valid for
an average configuration.

The following table shows the approximate RAM and ROM requirement of emUSB-Device
in bytes:

Component ISO ROM RAM Note

USB core no 5400 1000
USB core yes 5600 1000
Bulk no 2000 200
CDC no 1200 100
HID no 1600 200

MSD no 4900 500
+ size of file system + config-
urable sector buffer of mini-
mum 512 bytes (RAM)

MTP no 15900 1500

+ size of file system + config-
urable file data buffer of mini-
mum 512 bytes RAM) + config-
urable object buffer (typically 4
kBytes RAM)

Printer no 900 2100
RNDIS no 5700 1600 + size of the IP stack
ECM no 3000 300 + size of the IP stack
NCM no 3500 2900 + size of the IP stack
IP-Over-USB no 7800 1700 + size of the IP stack

VirtualMSD no 8300 1000 + heap of minimum 1700
bytes RAM

DFU no 900 0
AUDIO yes 3600 200 + static configuration data
MIDI no 1700 0
CCID no 1100 0
Driver Atmel SAM3U no 2000 600
Driver Atmel SAM3U yes 2000 1100
Driver Atmel SAM3X no 1900 500
Driver Atmel SAM3S no 2100 100
Driver Atmel SAM7S no 2100 100
Driver Atmel SAM9X25 no 1900 600
Driver Atmel SAM9X25 yes 1900 1100
Driver Atmel SAMA5D2x no 2200 600
Driver Atmel SAMA5D2x yes 2200 1200
Driver Atmel SAMV7 no 1700 600
Driver EM EFM32GG990 no 2900 700
Driver EM EFM32GG990 yes 3400 1800
Driver Freescale KHCI no 2100 400

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

767 CHAPTER 30 Memory footprint

Component ISO ROM RAM Note

Driver Freescale KinetisEHCI no 2700 2600
Driver Freescale KinetisEHCI yes 2800 3700
Driver Infineon XMC45xx no 2900 700
Driver Infineon XMC45xx yes 3400 1800
Driver NXP LPC17xx no 1600 100
Driver NXP LPC18xx no 2700 4200
Driver NXP LPC18xx yes 2800 5200
Driver NXP LPC23xx no 1400 100
Driver NXP LPC43xx no 2700 4200
Driver NXP LPC43xx yes 2800 5200
Driver Renesas RZ no 2500 7900
Driver Renesas RZ yes 2700 7900
Driver Renesas RX no 2300 700
Driver Renesas RX yes 2400 700
Driver Renesas SynergyS1 no 2200 600
Driver Renesas SynergyS1 yes 2300 600
Driver Renesas SynergyFS no 2300 700
Driver Renesas SynergyFS yes 2500 700
Driver Renesas SynergyHS no 2600 4800
Driver Renesas SynergyHS yes 2700 4800
Driver ST STM32x32 no 1600 300
Driver ST STM32x32 yes 1900 1200
Driver ST STM32F107 no 2900 400
Driver ST STM32F107 yes 3400 1500
Driver ST STM32F4xxFS no 2900 400
Driver ST STM32F4xxFS yes 3400 1500
Driver ST STM32F4xxHS no 3100 2900
Driver ST STM32F4xxHS yes 3500 3900
Driver ST STM32F7xxFS Dyn-
Mem no 3100 200 + endpoint buffer RAM

Driver ST STM32F7xxFS Dyn-
Mem yes 3600 300 + endpoint buffer RAM

Driver ST STM32F7xxHS DMA no 3100 300 + endpoint buffer RAM
Driver ST STM32F7xxHS DMA yes 3800 400 + endpoint buffer RAM
Driver ST STM32L4xx no 3000 600
Driver ST STM32L4xx yes 3500 1700
Driver ST STR91x no 1300 0
Driver TI AM335x no 1300 500
Driver TI OMAP L138 no 1400 500
Driver TI OMAP L138 yes 1400 500
Driver Xilinx Ultrascale0 no 3700 200 + endpoint buffer RAM
Driver Xilinx Ultrascale0 yes 4700 300 + endpoint buffer RAM

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

768 CHAPTER 30 Memory footprint

Additionally 64 or 512 bytes of RAM (64 for full-speed and 512 for high-speed devices)
are necessary for each OUT-endpoint as a data buffer. This buffer is assigned within the
application.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

769 CHAPTER 30 Performance

30.2 Performance
The tests were run on a LPC4357 CPU running at 180 MHz using the USB Bulk component
connected to a Linux host.

The following table shows the transfer speed of emUSB-Device:

Description Speed

USB high-Speed controller (device to host) 44.1 MB/s
USB high-Speed controller (host to device) 41.8 MB/s
USB full-Speed controller 1200 kB/s

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 31

FAQ

This chapter answers some frequently asked questions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

771 CHAPTER 31

Q: When designing my hardware can I just permanently connect the D+ 1.5 kOhm
pull-up resistor to 3.3V to save a MCU pin?

A: No, the pull-up being connected tells the USB host that the device is ready to
communicate. Permanently connecting the pull-up is dangerous as the host may start
to communicate with the device prematurely, before it has finished with the start-up.
Furthermore, when using USB high-speed the device must disconnect the pull-up from D
+ according to the USB 2.0 specification. Any currently know USB high-speed controller
(with internal or external USB high-speed PHY) have internal logic to enable an internal
pull-up initially. So for those controller an external pull-up is not necessary.

Q: When using MSD can I read/write onto the storage medium when the device
is connected to a USB host?

A: No, when a MSC device is connected to a USB host the host is the sole master of
the storage medium. It can write or read at any point in time. Should the application
try to access the storage medium at the same time as the host the results are
unpredictable. To resolve this issue the device needs to detach the storage medium
from the host, see USBD_MSD_RequestDisconnect(), USBD_MSD_Disconnect() and
USBD_MSD_WaitForDisconnection().

Q: Can I combine different USB components together?
A: Yes. See Combining USB components (Multi-Interface) on page 698.

Q: Do I need a real-time operating system (RTOS) to use the emUSB-Device-MSD?
A: No, if your target application is a pure storage application. You do not need an RTOS if

all you want to do is running emUSB-Device-MSD as the only task on the target device.
If your target application is more than just a storage device and needs to perform
other tasks simultaneously, you need an RTOS which handles the multi-tasking. We
recommend using our embOS Real-time OS, since all example and trial projects are
based on it.

Q: Do I need extra file system code to use the emUSB-Device-MSD?
A: No, if you access the target data only from the host. Yes, if you want to access the target

data from within the target itself. There is no extra file system code needed if you only
want to access the data on the target from the host side. The host OS already provides
several file systems. You have to provide file system program code on the target only
if you want to access the data from within the target application itself.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Introduction
	Overview
	emUSB-Device features
	emUSB-Device components
	emUSB-Device-Bulk
	emUSB-Device-MSD
	Purpose of emUSB-Device-MSD
	Typical applications
	emUSB-Device-MSD features
	How does it work?

	emUSB-Device IP-over-USB
	Typical applications

	emUSB-Device-VirtualMSD
	Typical applications

	emUSB-Device-CDC
	Typical applications

	emUSB-Device-HID
	Typical applications

	emUSB-Device-MTP
	Typical applications

	emUSB-Device-Printer
	Typical applications

	emUSB-Device-RNDIS
	Typical applications

	emUSB-Device-CDC-ECM
	Typical applications

	Requirements
	Target system
	Development environment (compiler)

	File structure
	Multithreading

	Background information
	USB
	Short Overview
	Important USB Standard Versions
	USB System Architecture
	Transfer Types
	Setup phase / Enumeration
	Product / Vendor IDs

	Predefined device classes
	USB hardware analyzers
	References

	Getting started
	How to setup your target system
	Take a running project
	Add emUSB-Device files
	Configuring debugging output
	Add hardware dependent configuration
	Prepare and run the application

	Updating emUSB-Device
	emUSB-Device Configuration
	USB_DEVICE_INFO
	Additional required configuration for emUSB-MSD
	Descriptors

	Compile-time configuration
	Compile-time switches for debugging
	USB_DEBUG_LEVEL
	USB_LOG_BUFFER_SIZE

	Use of standard C-library functions
	General USB configuration
	USB_SUPPORT_TRANSFER_ISO
	USB_SUPPORT_TEST_MODE
	USB_NUM_EPS
	USB_MAX_NUM_IF
	USB_MAX_NUM_ALT_IF
	USB_DESC_BUFFER_SIZE
	USBD_SUPPORT_PROFILE
	USBD_OS_USE_USBD_X_INTERRUPT
	USBD_OS_USE_ISR_FLAG

	Host OS specifics
	Windows registry
	Cleaning the Windows registry

	USB Core
	Overview
	Target API
	USB basic functions
	USBD_GetState()
	USBD_GetSpeed()
	USBD_GetDeviceState()
	USBD_Init()
	USBD_IsConfigured()
	USBD_Start()
	USBD_Stop()
	USBD_DeInit()
	USBD_GetVersion()

	USB configuration functions
	USBD_AddDriver()
	USBD_SetISREnableFunc()
	USBD_SetAttachFunc()
	USBD_AddEP()
	USBD_AddEPEx()
	USBD_SetDeviceInfo()
	USBD_SetClassRequestHook()
	USBD_SetVendorRequestHook()
	USBD_SetIsSelfPowered()
	USBD_SetMaxPower()
	USBD_SetOnEvent()
	USBD_RemoveOnEvent()
	USBD_SetOnRxEP0()
	USBD_SetOnRXHookEP()
	USBD_SetOnSetup()
	USBD_SetOnSetupHook()
	USBD_SetOnSOF()
	USBD_RemoveOnSOF()
	USBD_WriteEP0FromISR()
	USBD_EnableIAD()
	USBD_SetCacheConfig()
	USBD_RegisterSCHook()
	USBD_AssignMemory()
	USBD_UseV210()
	USBD_SetBESLValues()
	USBD_SetOnLPMChange()
	USBD_SetLPMResponse()
	USBD_EnableSuperSpeed()
	USBD_SetWebUSBInfo()
	USBD_SetCheckAddress()
	USBD_SetGetStringHook()

	USB I/O functions
	USBD_Read()
	USBD_ReadOverlapped()
	USBD_Receive()
	USBD_ReceivePoll()
	USBD_ReadAsync()
	USBD_Write()
	USBD_WriteAsync()
	USBD_CancelIO()
	USBD_WaitForEndOfTransferEx()
	USBD_WaitForTXReady()
	USBD_GetNumBytesInBuffer()
	USBD_GetNumBytesRemToRead()
	USBD_GetNumBytesRemToWrite()
	USBD_StallEP()

	USB Remote wakeup functions
	USBD_SetAllowRemoteWakeUp()
	USBD_DoRemoteWakeup()

	Data structures
	USB_ADD_EP_INFO
	USB_SETUP_PACKET
	SEGGER_CACHE_CONFIG
	USB_CHECK_ADDRESS_FUNC
	USB_ASYNC_IO_CONTEXT
	USB_WEBUSB_INFO

	Function Types
	USB_ON_CLASS_REQUEST
	USB_ON_SETUP
	USB_GET_STRING_FUNC
	USB_ON_LPM_CHANGE

	Timeout handling
	Low power mode
	USB suspend
	Link Power Management (LPM)

	Bulk communication
	Generic bulk stack
	Requirements for the Host (PC)
	Windows
	Linux
	macOS

	Example application
	Running the example applications
	Compiling the PC example application
	Windows
	Linux
	macOS

	Target API
	Target interface function list
	USB-Bulk functions
	USBD_BULK_Add()
	USBD_BULK_Add_Ex()
	USBD_BULK_AddAlternateInterface()
	USBD_BULK_SetMSDescInfo()
	USBD_BULK_CancelRead()
	USBD_BULK_CancelWrite()
	USBD_BULK_GetNumBytesInBuffer()
	USBD_BULK_GetNumBytesRemToRead()
	USBD_BULK_GetNumBytesRemToWrite()
	USBD_BULK_Read()
	USBD_BULK_ReadAsync()
	USBD_BULK_ReadOverlapped()
	USBD_BULK_Receive()
	USBD_BULK_ReceivePoll()
	USBD_BULK_SetContinuousReadMode()
	USBD_BULK_SetOnSetupRequest()
	USBD_BULK_SetOnRXEvent()
	USBD_BULK_SetOnTXEvent()
	USBD_BULK_TxIsPending()
	USBD_BULK_WaitForRX()
	USBD_BULK_PollForRX()
	USBD_BULK_WaitForTX()
	USBD_BULK_PollForTX()
	USBD_BULK_WaitForTXReady()
	USBD_BULK_Write()
	USBD_BULK_WriteAsync()
	USBD_BULK_WriteEx()

	Data structures
	USB_BULK_INIT_DATA
	USB_BULK_INIT_DATA_EX

	C Host API
	Bulk Host API list
	USB-Bulk basic functions
	USBBULK_Init()
	USBBULK_Exit()
	USBBULK_AddAllowedDeviceItem()
	USBBULK_GetNumAvailableDevices()
	USBBULK_Open()
	USBBULK_Close()

	USB-Bulk direct input/output functions
	USBBULK_Read()
	USBBULK_ReadTimed()
	USBBULK_Write()
	USBBULK_WriteTimed()
	USBBULK_CancelRead()
	USBBULK_FlushRx()

	USB-Bulk control functions
	USBBULK_SetMode()
	USBBULK_GetMode()
	USBBULK_SetReadTimeout()
	USBBULK_SetWriteTimeout()
	USBBULK_ResetINPipe()
	USBBULK_ResetOUTPipe()
	USBBULK_ResetDevice()

	USB-Bulk general GET functions
	USBBULK_GetVersion()
	USBBULK_GetDevInfo()
	USBBULK_GetDevInfoByIdx()
	USBBULK_GetUSBId()
	USBBULK_GetProductName()
	USBBULK_GetVendorName()
	USBBULK_GetSN()
	USBBULK_GetConfigDescriptor()

	USB-Bulk data structures
	USBBULK_DEV_INFO

	Vendor Specific Class (VSC)
	Vendor Specific Class
	Requirements for the Host (PC)
	Windows
	Linux
	macOS

	Example application
	Running the example applications
	Compiling the PC example application
	Windows
	Linux
	macOS

	Target API
	Target interface function list
	USB-VSC functions
	USBD_VSC_Add()
	USBD_VSC_AddAlternateInterface()
	USBD_VSC_CancelIO()
	USBD_VSC_GetNumBytesInBuffer()
	USBD_VSC_GetNumBytesRemToRead()
	USBD_VSC_GetNumBytesRemToWrite()
	USBD_VSC_Read()
	USBD_VSC_ReadAsync()
	USBD_VSC_SetContinuousReadMode()
	USBD_VSC_SetOnSetupRequest()
	USBD_VSC_SetOnEPEvent()
	USBD_VSC_TxIsPending()
	USBD_VSC_WaitEP()
	USBD_VSC_PollEP()
	USBD_VSC_WaitForTXReady()
	USBD_VSC_Write()
	USBD_VSC_WriteAsync()

	Data structures
	USB_VSC_INIT_DATA
	USB_VSC_MSOSDESC_INFO
	USB_VSC_ON_ADD_FUNCTION_DESC
	USB_VSC_ON_SET_INTERFACE

	C++ Host API

	Mass Storage Device Class (MSD)
	Overview
	MSD Configuration
	Initial configuration
	Final configuration
	MSD class specific configuration functions
	Running the example application
	MSD_Start_StorageRAM.c in detail

	Target API
	API functions
	USBD_MSD_Add()
	USBD_MSD_AddUnit()
	USBD_MSD_AddCDRom()
	USBD_MSD_SetPreventAllowRemovalHook()
	USBD_MSD_SetReadWriteHook()
	USBD_MSD_Task()
	USBD_MSD_Poll()
	USBD_MSD_PollEx()
	USBD_MSD_SetStartStopUnitHook()

	Extended API functions
	USBD_MSD_Connect()
	USBD_MSD_Disconnect()
	USBD_MSD_RequestDisconnect()
	USBD_MSD_RequestRefresh()
	USBD_MSD_UpdateWriteProtect()
	USBD_MSD_WaitForDisconnection()

	Data structures
	USB_MSD_INIT_DATA
	USB_MSD_INFO
	USB_MSD_INST_DATA
	USB_MSD_LUN_INFO
	PREVENT_ALLOW_REMOVAL_HOOK
	READ_WRITE_HOOK
	USB_MSD_INST_DATA_DRIVER
	USB_MSD_STORAGE_API
	START_STOP_UNIT_HOOK

	MSD Storage Driver
	General information
	Supported storage types
	Storage drivers supplied with this release

	Interface function list
	USB_MSD_STORAGE_API in detail
	USB_MSD_STORAGE_INIT
	USB_MSD_STORAGE_GETINFO
	USB_MSD_STORAGE_GETREADBUFFER
	USB_MSD_STORAGE_READ
	USB_MSD_STORAGE_GETWRITEBUFFER
	USB_MSD_STORAGE_WRITE
	USB_MSD_STORAGE_MEDIUMISPRESENT
	USB_MSD_STORAGE_DEINIT

	Virtual Mass Storage Component (VirtualMSD)
	Overview
	Configuration
	Initial configuration
	Final configuration
	Class specific configuration functions
	USB_VMSD_X_Config()

	Running the example application
	Calculation of RAM memory usage for VirtualMSD

	Target API
	API functions
	USBD_VMSD_Add()
	USB_VMSD_X_Config()
	USBD_VMSD_AssignMemory()
	USBD_VMSD_SetUserAPI()
	USBD_VMSD_SetNumRootDirSectors()
	USBD_VMSD_SetVolumeInfo()
	USBD_VMSD_AddConstFiles()
	USBD_VMSD_SetNumSectors()
	USBD_VMSD_SetSectorsPerCluster()

	Data structures
	USB_VMSD_CONST_FILE
	USB_VMSD_USER_FUNC_API
	USB_VMSD_FILE_INFO
	USB_VMSD_DIR_ENTRY_SHORT

	Function definitions
	USB_VMSD_ON_READ_FUNC
	USB_VMSD_ON_WRITE_FUNC
	USB_VMSD_MEM_ALLOC
	USB_VMSD_MEM_FREE

	Media Transfer Protocol Class (MTP)
	Overview
	Getting access to files
	Additional information

	Configuration
	Initial configuration
	Final configuration
	emFile and MTP configuration for UTF8 characters
	Class specific configuration
	Compile time configuration

	Running the sample application
	Target API
	API functions
	USBD_MTP_Add()
	USBD_MTP_AddStorage()
	USBD_MTP_RemoveStorage()
	USBD_MTP_Task()
	USBD_MTP_Poll()
	USBD_MTP_SendEvent()
	USBD_MTP_SetObjectAllocFailCb()
	USBD_MTP_SetOperationCb()

	Data structures
	USB_MTP_FILE_INFO
	USB_MTP_INIT_DATA
	USB_MTP_INFO
	USB_MTP_INST_DATA
	USB_MTP_INST_DATA_DRIVER
	USB_MTP_STORAGE_API
	USB_MTP_STORAGE_INFO
	USB_MTP_OPERATION_INFO

	Enums
	USB_MTP_EVENT
	USB_MTP_OPERATION_CB_TYPE

	Prototypes
	USB_MTP_OBJECT_ALLOC_FAIL
	USB_MTP_OPERATION_CB

	MTP Storage Driver
	General information
	Interface function list
	USB_MTP_STORAGE_API in detail
	USB_MTP_STORAGE_INIT
	USB_MTP_STORAGE_GET_INFO
	USB_MTP_STORAGE_FIND_FIRST_FILE
	USB_MTP_STORAGE_FIND_NEXT_FILE
	USB_MTP_STORAGE_OPEN_FILE
	USB_MTP_STORAGE_CREATE_FILE
	USB_MTP_STORAGE_READ_FROM_FILE
	USB_MTP_STORAGE_WRITE_TO_FILE
	USB_MTP_STORAGE_CLOSE_FILE
	USB_MTP_STORAGE_REMOVE_FILE
	USB_MTP_STORAGE_CREATE_DIR
	USB_MTP_STORAGE_REMOVE_DIR
	USB_MTP_STORAGE_FORMAT
	USB_MTP_STORAGE_RENAME_FILE
	USB_MTP_STORAGE_DEINIT
	USB_MTP_STORAGE_GET_FILE_ATTRIBUTES
	USB_MTP_STORAGE_MODIFY_FILE_ATTRIBUTES
	USB_MTP_STORAGE_GET_FILE_CREATION_TIME
	USB_MTP_STORAGE_GET_FILELAST_WRITE_TIME
	USB_MTP_STORAGE_GET_FILE_ID
	USB_MTP_STORAGE_GET_FILE_SIZE
	USB_MTP_STORAGE_GET_FILE_INFO

	Communication Device Class (CDC)
	Overview
	Configuration
	CDC-ACM issues on Windows 10

	The example application
	Testing communication to the USB device

	Target API
	Interface function list
	USBD_CDC_Add()
	USBD_CDC_CancelRead()
	USBD_CDC_CancelWrite()
	USBD_CDC_Read()
	USBD_CDC_ReadOverlapped()
	USBD_CDC_Receive()
	USBD_CDC_ReceivePoll()
	USBD_CDC_ReadAsync()
	USBD_CDC_SetOnBreak()
	USBD_CDC_SetOnLineCoding()
	USBD_CDC_SetOnControlLineState()
	USBD_CDC_SetOnRXEvent()
	USBD_CDC_SetOnTXEvent()
	USBD_CDC_UpdateSerialState()
	USBD_CDC_Write()
	USBD_CDC_WriteAsync()
	USBD_CDC_WaitForRX()
	USBD_CDC_PollForRX()
	USBD_CDC_WaitForTX()
	USBD_CDC_PollForTX()
	USBD_CDC_WaitForTXReady()
	USBD_CDC_WriteSerialState()
	USBD_CDC_GetNumBytesRemToRead()
	USBD_CDC_GetNumBytesRemToWrite()
	USBD_CDC_GetNumBytesInBuffer()

	Data structures
	USB_CDC_INIT_DATA
	USB_CDC_LINE_CODING
	USB_CDC_SERIAL_STATE
	USB_CDC_CONTROL_LINE_STATE

	Human Interface Device Class (HID)
	Overview
	Further reading
	Categories
	True HIDs
	Vendor specific HIDs

	Background information
	HID descriptors
	HID descriptor
	Report descriptor
	Physical descriptor

	Configuration
	Initial configuration
	Final configuration

	Example application
	USB_HID_Mouse.c
	USB_HID_Echo1.c
	Running the example
	Compiling the PC example application

	Target API
	Target interface function list
	HID Target API functions
	USBD_HID_AddEx()
	USBD_HID_Add()
	USBD_HID_GetNumBytesInBuffer()
	USBD_HID_GetNumBytesRemToRead()
	USBD_HID_GetNumBytesRemToWrite()
	USBD_HID_Read()
	USBD_HID_ReadOverlapped()
	USBD_HID_Receive()
	USBD_HID_ReceivePoll()
	USBD_HID_WaitForRX()
	USBD_HID_WaitForTX()
	USBD_HID_Write()
	USBD_HID_SetOnGetReportRequest()
	USBD_HID_SetOnSetReportRequest()
	USBD_HID_ReadReport()

	Data structures
	USB_HID_INIT_DATA_EX
	USB_HID_INIT_DATA

	Type definitions
	USB_HID_ON_GETREPORT_REQUEST_FUNC
	USB_HID_ON_SETREPORT_REQUEST_FUNC

	Host API
	Host API function list
	HID Host API functions
	USBHID_Close()
	USBHID_Open()
	USBHID_Init()
	USBHID_Exit()
	USBHID_Read()
	USBHID_Write()
	USBHID_GetNumAvailableDevices()
	USBHID_GetProductName()
	USBHID_GetInputReportSize()
	USBHID_GetOutputReportSize()
	USBHID_GetProductId()
	USBHID_GetVendorId()
	USBHID_RefreshList()
	USBHID_SetVendorPage()

	Printer Class
	Overview
	Configuration

	The example application
	Target API
	Interface function list
	API functions
	USB_PRINTER_Init()
	USB_PRINTER_Task()
	USB_PRINTER_TaskEx()
	USB_PRINTER_ConfigIRQProcessing()
	USB_PRINTER_Read()
	USB_PRINTER_ReadTimed()
	USB_PRINTER_Receive()
	USB_PRINTER_ReceiveTimed()
	USB_PRINTER_Write()
	USB_PRINTER_WriteTimed()
	USB_PRINTER_SetOnVendorRequest()
	USB_PRINTER_SetClass()
	USB_PRINTER_API

	Printer API
	General information
	USB_PRINTER_API in detail
	USB_PRINTER_GET_DEVICE_ID_STRING
	USB_PRINTER_ON_DATA_RECEIVED
	USB_PRINTER_GET_HAS_NO_ERROR
	USB_PRINTER_GET_IS_SELECTED
	USB_PRINTER_GET_IS_PAPER_EMPTY
	USB_PRINTER_ON_RESET

	IP-over-USB (IP)
	Overview
	Using only RNDIS or CDC-ECM
	Working with emUSB-Device-IP

	Configuration
	Initial Configuration
	Final configuration
	Class specific configuration

	Running the sample application
	emUSB-Device-IP + emNet as a "USB Webserver"
	Target API
	API functions
	USBD_IP_Add()
	USBD_IP_Task()

	Data structures
	USB_IP_INIT_DATA

	Remote NDIS (RNDIS)
	Overview
	Working with RNDIS
	Additional information

	Configuration
	Initial Configuration
	Final configuration
	Class specific configuration

	Running the sample application
	IP_Config_RNDIS.c in detail

	RNDIS + emNet as a "USB Webserver"
	Target API
	API functions
	USBD_RNDIS_Add()
	USBD_RNDIS_Task()
	USBD_RNDIS_SetDeviceInfo()

	Data structures
	USB_RNDIS_INIT_DATA
	USB_RNDIS_DEVICE_INFO

	Driver interface
	USB_IP_NI_DRIVER_API
	USB_IP_NI_DRIVER_DATA

	RNDIS IP Driver
	General information
	Interface function list
	USB_IP_NI_DRIVER_API in detail
	USB_IP_NI_INIT
	USB_IP_NI_GET_PACKET_BUFFER
	USB_IP_NI_WRITE_PACKET
	USB_IP_NI_SET_PACKET_FILTER
	USB_IP_NI_GET_LINK_STATUS
	USB_IP_NI_GET_LINK_SPEED
	USB_IP_NI_GET_HWADDR
	USB_IP_NI_GET_STATS
	USB_IP_NI_GET_MTU
	USB_IP_NI_RESET
	USB_IP_NI_SET_WRITE_PACKET_FUNC
	USB_IP_NI_SET_REPORT_LINKSTATE_FUNC

	CDC-ECM
	Overview
	Working with CDC-ECM
	Additional information

	Configuration
	Initial configuration
	Final configuration

	Running the sample application
	IP_Config_ECM.c in detail

	Target API
	API functions
	USBD_ECM_Add()
	USBD_ECM_Task()

	Data structures
	USB_ECM_INIT_DATA

	Driver interface
	USB_IP_NI_DRIVER_API
	USB_IP_NI_DRIVER_DATA

	CDC-ECM IP Driver
	General information
	Interface function list
	USB_IP_NI_DRIVER_API in detail
	USB_IP_NI_INIT
	USB_IP_NI_GET_PACKET_BUFFER
	USB_IP_NI_WRITE_PACKET
	USB_IP_NI_SET_PACKET_FILTER
	USB_IP_NI_GET_LINK_STATUS
	USB_IP_NI_GET_LINK_SPEED
	USB_IP_NI_GET_HWADDR
	USB_IP_NI_GET_STATS
	USB_IP_NI_GET_MTU
	USB_IP_NI_RESET
	USB_IP_NI_SET_WRITE_PACKET_FUNC
	USB_IP_NI_SET_REPORT_LINKSTATE_FUNC

	CDC-NCM
	Overview
	Working with CDC-NCM
	Additional information

	Configuration
	Initial configuration
	Final configuration

	Running the sample application
	IP_Config_NCM.c in detail

	Target API
	API functions
	USBD_NCM_Add()

	Data structures
	USB_NCM_INIT_DATA

	Driver interface
	USB_IP_NI_DRIVER_API
	USB_IP_NI_DRIVER_DATA

	CDC-NCM IP Driver
	General information
	Interface function list
	USB_IP_NI_DRIVER_API in detail
	USB_IP_NI_INIT
	USB_IP_NI_GET_PACKET_BUFFER
	USB_IP_NI_WRITE_PACKET
	USB_IP_NI_SET_PACKET_FILTER
	USB_IP_NI_GET_LINK_STATUS
	USB_IP_NI_GET_LINK_SPEED
	USB_IP_NI_GET_HWADDR
	USB_IP_NI_GET_STATS
	USB_IP_NI_GET_MTU
	USB_IP_NI_RESET
	USB_IP_NI_SET_WRITE_PACKET_FUNC
	USB_IP_NI_SET_REPORT_LINKSTATE_FUNC

	Audio
	Overview
	Creation of an audio device application
	Configuration requirements
	Design of audio interfaces
	Handling of audio control requests
	Receiving audio data
	Using explicit feedback

	Sending audio data
	Using explicit feedback

	Physical controls

	Syntax definition of the USB audio design file
	Overall syntax of the design file
	Compiler Macros

	Control units description
	Input Terminal
	Output Terminal
	Feature unit
	Mixer unit
	Selector unit
	Clock source
	Clock selector
	Clock multiplier

	Streaming interface description
	AUDIO_STREAM section
	ENDPOINT section

	Stream units description
	Format I section
	Format II section
	Format III section

	Target API
	API functions
	USBD_AC_Add()
	USBD_AC_GetCurrentAltSetting()
	USBD_AC_GetStreamInfo()
	USBD_AC_OpenRXStream()
	USBD_AC_CloseRXStream()
	USBD_AC_OpenTXStream()
	USBD_AC_Send()
	USBD_AC_CloseTXStream()
	USBD_AC_SetFeedbackDataRate()
	USBD_AC_GetFeedbackDataRate()
	USBD_AC_SendInterruptMessage()

	Data structures
	USBD_AC_INIT_DATA
	USBD_AC_STREAM_INTF_INFO
	USBD_AC_RX_CTX
	USBD_AC_RX_DATA
	USBD_AC_TX_CTX
	USBD_AC_CONTROL_INFO
	USBD_AC_EVENT

	Function definitions
	USBD_AC_SET_ALT_INTERFACE
	USBD_AC_CONTROL_GET_FUNC
	USBD_AC_CONTROL_SET_FUNC
	USBD_AC_RX_CALLBACK
	USBD_AC_TX_CALLBACK

	Legacy Audio 1.0
	Overview
	Introduction
	Configuration
	Initial configuration
	Final configuration
	Using the microphone interface
	Using the speaker interface

	Target API
	API functions
	USBD_AUDIO_Add()
	USBD_AUDIO_Read_Task()
	USBD_AUDIO_Write_Task()
	USBD_AUDIO_Start_Play()
	USBD_AUDIO_Stop_Play()
	USBD_AUDIO_Start_Listen()
	USBD_AUDIO_Stop_Listen()
	USBD_AUDIO_Set_Timeouts()

	Data structures
	USBD_AUDIO_INIT_DATA
	USBD_AUDIO_IF_CONF
	USBD_AUDIO_FORMAT
	USBD_AUDIO_UNITS

	Function definitions
	USBD_AUDIO_TX_FUNC
	USBD_AUDIO_RX_FUNC
	USBD_AUDIO_CONTROL_FUNC

	USB Video device Class (UVC)
	Overview
	Configuration
	Initial configuration
	Uncompressed video format

	Final configuration

	Target API
	API functions
	USBD_UVC_Add()
	USBD_UVC_Write()
	USBD_UVC_WriteEx()
	USBD_UVC_SetOnResolutionChange()

	Data structures
	USBD_UVC_INIT_DATA
	USBD_UVC_BUFFER
	USBD_UVC_DATA_BUFFER
	USBD_UVC_RESOLUTION

	Function prototypes
	USB_UVC_ON_RESOLUTION_CHANGE

	Device Firmware Upgrade (DFU)
	Overview
	Using DFU on Windows

	Configuration
	Dual configuration mode
	Single configuration

	Target API
	API functions
	USBD_DFU_Add()
	USBD_DFU_Add_RunTime()
	USBD_DFU_AddAlternateInterface()
	USBD_DFU_SetMSDescInfo()
	USBD_DFU_SetPollTimeout()
	USBD_DFU_Ack()
	USBD_DFU_SetError()
	USBD_DFU_ManifestComplt()
	USBD_DFU_GetStatusReqCnt()
	USBD_DFU_GetAlternateSetting()

	Data structures
	USB_DFU_INIT_DATA

	Function prototypes
	USBD_DFU_DETACH_REQUEST
	USBD_DFU_DOWNLOAD
	USBD_DFU_UPLOAD

	Musical Instrument Digital Interface (MIDI)
	Overview
	Introduction
	Configuration
	Initial configuration
	Final configuration
	Testing MIDI on different operating systems

	Target API
	API functions
	USBD_MIDI_Init()
	USBD_MIDI_Add()
	USBD_MIDI_ReceivePackets()
	USBD_MIDI_GetNumPacketsInBuffer()
	USBD_MIDI_ConvertPackets()
	USBD_MIDI_WritePackets()
	USBD_MIDI_WriteStream()

	Data structures
	USBD_MIDI_INIT_DATA
	USBD_MIDI_JACK
	USBD_MIDI_PACKET

	Smart Card Device Class (CCID)
	Overview
	Target API
	API functions
	USBD_CCID_Init()
	USBD_CCID_Add()
	USBD_CCID_ReceiveCmd()
	USBD_CCID_SendStatus()
	USBD_CCID_SendDataBlock()
	USBD_CCID_SendEscape()
	USBD_CCID_SendParameters()
	USBD_CCID_SendDataRateAndClockFrequency()
	USBD_CCID_NotifySlotState()
	USBD_CCID_NotifyHwError()

	Data structures
	USB_CCID_INIT_DATA
	USB_CCID_PROPERTIES
	USB_CCID_CMD
	USB_CCID_PROTOCOL_DATA_T0
	USB_CCID_PROTOCOL_DATA_T1

	Function prototypes
	USBD_CCID_ABORT_CB

	emUSB-Web add-on
	Overview
	Requirements
	Configuration
	Initial configuration
	emUSB-Web diagram

	emUSB-Web operation in detail
	Device recognition
	emUSB-Web protocol

	Combining USB components (Multi-Interface)
	Overview
	Single interface device classes
	Multiple interface device classes
	IAD class

	Configuration
	How to combine
	emUSB-Device component specific modification
	CDC component
	Device side
	Host side

	Issues on Windows 7
	Detailed description

	Target OS Interface
	General information
	Operating system support supplied with this release

	Interface function list
	USB_OS_DeInit()
	USB_OS_Delay()
	USB_OS_DecRI()
	USB_OS_GetTickCnt()
	USB_OS_IncDI()
	USB_OS_Init()
	USB_OS_Signal()
	USB_OS_Wait()
	USB_OS_WaitTimed()
	USB_OS_MutexAlloc()
	USB_OS_MutexFree()
	USB_OS_MutexLock()
	USB_OS_MutexUnlock()

	Target USB Driver
	General information
	Available USB drivers

	Adding a driver to emUSB-Device
	USBD_X_Config()
	USBD_X_DisableInterrupt()
	USBD_X_EnableInterrupt()

	Device driver specifics
	LPC54/55xxx full-speed driver
	LPC54/55xxx high-speed driver
	EHCI driver
	Synopsys DWC2 driver (slave mode)
	Synopsys DWC2 driver (DMA mode)
	XHCI driver
	Renesas RX driver
	AT91RM9200 driver
	Giga Device GD32F4xx driver (full-speed controller)
	Giga Device GD32F4xx driver (high-speed controller)
	Atmel ATSAMV7x driver
	PSoC6 driver
	Restrictions
	PSoC6 driver specific functions
	USB_DRIVER_Cypress_PSoC6_SysTick()
	USB_DRIVER_Cypress_PSoC6_Resume()
	USB_DRIVER_Cypress_PSoC6_ConfigDMA()

	ST full-speed driver

	Support
	Contacting support
	Where can I find the license number?

	Profiling with SystemView
	Profiling overview
	Additional files for profiling
	Additional files on target side
	Additional files on PC side

	Enable profiling
	Recording and analyzing profiling information

	Debugging
	Message output
	API functions
	USBD_AddLogFilter()
	USBD_AddWarnFilter()
	USBD_SetLogFilter()
	USBD_SetWarnFilter()
	USB_PANIC
	USB_X_Log()
	USB_X_Warn()
	USB_OS_Panic()

	Message types

	Performance & resource usage
	Memory footprint
	Performance

	FAQ

