emUSB-Device

USB Device stack

User Guide & Reference Manual

Document: UM09001
Software Version: 3.64.2
Revision: 0
Date: May 16, 2024

\\—
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/emUSB-Device.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2024 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.
Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0

Fax. +49 2173-99312-28

E-mail: ti cket _emusb@egger. com"

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

As of version 3.00 the history has been reset. Older history entries can be found in older versions
of this document.

Print date: May 16, 2024

Software Date By Description

3.64.2 2024-05-16 | RH | Update to latest software version.

3.64.1 2024-04-09 | RH | Updated section PSoC6 driver.

Updated section Compile-time configuration.
Added section C++ Host API.

3.62.0 2023-11-21 | RH | Update to latest software version.

3.64.0 2024-02-13 | RH

3.60.4 2023-10-18 | RH | Update to latest software version.

3.60.2 2023-07-10 | YR | Update to latest software version.

3.60.1 2023-06-30 | RH | Update to latest software version.

Link Power Management (LPM)
¢ Added function USBD_Set LPMResponse() .

MTP class:
e Added function USBD_MIP_Set Oper ati onCh() .

Link Power Management (LPM)

¢ Added function USBD_Get Devi ceSt at e() .

e Added function USBD_Set BESLVal ues() .

¢ Added function USBD_Set OnLPMChange() .
MTP class:

¢ Added function USBD_MIP_RenoveSt or age() .

3.60.0 2023-04-12 | RH

3.58.0 2023-02-28 | YR

3.56.0 2023-01-12 | RH

3.54.0 2022-12-07 | RH | Update to latest software version.

Added functions USB_DRI VER_Cypr ess_PSoC6_SysTi ck() and USB_DRI VER Cy-
press_PSoC6_Resune() .

3.52.2 2022-10-25 | RH

3.52.1 2022-08-24 | SR | Updated section PSoC6 driver.

Added section Link Power Management (LPM).

3.52.0 2022-08-15 | RH | HID class:
e Added functions USBD_HI D_Recei ve() and USBD_HI D_Recei vePol | ().

3.50.2 2022-06-23 | RH | Updated section Giga Device GD32F4xx driver (high-speed controller).

3.50.1 2022-06-01 | RH | Updated section Giga Device GD32F4xx driver (full-speed controller).

BULK and VSC class

¢ Update section Example Application.
3.50.0 2022-05-13 | RH | Communication Device Class (CDC)

e Updated driver requirements for Host system
Updated section Synopsys DWC2 driver (DMA mode)

Core functions:
¢ Added function USBD_Set OnSOF() .
Getting Started:
e Wrong path to emUSB-Device was used (USBD instead of USB).

MTP class:
e Added function USBD_MIP_Set Chj ect Al | ocFai | Ch() .

3.46.0 2021-10-15 | RH | Added section Low power mode.

3.46.4 2022-03-14 | SR

3.46.3 2022-02-22 | YR

3.44.0 | 2021-09-17 | RH | Added description for USB_ON_CLASS REQUEST and USB_ON_SETUP.

3.42.1 2021-07-29 | RH | Added section Giga Device GD32F450 driver.

HID class:
¢ Added function USBD_HI D_AddEx() .

3.40.0 2021-03-31 | RH | Add new chapter Vendor Specific Class (VSC).

DFU class:
e Added function USBD_DFU_AddAl t er nat el nterface() .

3.42.0 2021-07-12 | RH

3.38.0 2021-01-29 | RH

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Software

Date

By

Description

Printer class:
¢ Added function USB_PRI NTER_Set Cl ass() .

3.36.3

2020-12-18

YR

Update to latest software version.

3.36.2

2020-12-15

RH

BULK class:
¢ Added function USBD_BULK_Pol | For TX() .
CDC class:
¢ Added functions USBD_CDC_Pol | For RX() , USBD_CDC Pol | For TX() and USBD_CD-
C_Recei vePol | ().
Added new section Timeout handling
Update to latest software version.

3.36.1

2020-10-30

YR

Update to latest software version.

3.36.0

2020-10-12

YR

Audio class:
e Updated API with new function and structure names.
Update to latest software version.

3.34.3

2020-08-25

YR

Update to latest software version.

3.34.2

2020-07-23

YR

Update to latest software version.

3.34.1

2020-06-10

RH

Added section Synopsys DWC2 driver (DMA mode)

3.34.0

2020-03-20

RH

BULK class:
¢ Added function USBD_BULK_AddAl t er nat el nt erf ace() .

3.32.0

2020-02-26

RH

Added CCID chapter.

3.30.0

2020-01-27

YR

Added MIDI chapter.

3.28.1

2019-12-13

YR

Update to latest software version.
HID class: Added USBHI D_Read() and USBH D Wi te() functions.

3.28.0

2019-11-29

YR

Printer class:
¢ Added function USB_PRI NTER_Set OnVendor Request () .

3.26

2019-08-30

RH

USB Core:

e Added function USBD_Get Ver si on() .

¢ Added function USBD_Set CheckAddr ess() .
UVC class:

e Added function USBD_UVC Wit eEx() .

3.24

2019-07-01

RH

Added chapter USB Device Firmware Upgrade (DFU)

3.22

2019-06-17

RH

BULK class:
¢ Added function USBD_BULK_Pol | For RX() .
¢ Added function USBD_BULK_Recei vePol | ().
USB Core:
e Added function USBD_Wai t For EndOf Tr ansf er Ex() .
e Added function USBD_Recei vePol | ().
¢ Added function USBD_Enabl eSuper Speed() .
¢ Added function USBD_Set WebUSBI nf o() .
MSD class:
¢ Added function USBD_MSD Pol | ().
Add section XHCI driver
Add chapter USB Video device Class (UVC)

3.20

2019-05-15

YR

Update to latest software version.

SmartMSD was renamed to VirtualMSD. Function prefixes changed from “SMSD” to
“VMSD".

HID class: Added USBD_HI D_ReadReport () function.

3.18b

2019-03-04

YR

Update to latest software version.

3.18a

2019-02-28

YR

Update to latest software version.
Bulk Host API:
e Removed USBBULK_Reset Pi pe()
e Added USBBULK_Reset | NPi pe()
e Added USBBULK_Reset QUTPi pe()
e USBBULK_DEV_I NFO received an additional member - “Speed”

2018-11-26

RH

Update to latest software version.

2018-10-05

YR

Update to latest software version.
MTP class:
e USBD MTP_SendEvent () description updated.

emUSB-Device User Guide & Reference Manual

2018-07-19

RH

Added section Device driver specifics on page 732
BULK class:
¢ Added functions USBD_BULK_ReadAsync() and USBD_BULK_ Wit eAsync().

© 2010-2024 SEGGER Microcontroller GmbH

emUSB-Device User Guide & Reference Manual

Software Date By Description
CDC class:
¢ Added functions USBD_CDC ReadAsync() and USBD _CDC Wit eAsync().
USB Core:
¢ Added function USBD_RenoveOnEvent () .
e e Removed functions USBD_Set LogFunc() and USBD_Set War nFunc() .
3.12 2018-05-04 | RH Audio class:
e Added function USBD_AUDI O Read_Task() .
¢ Added function USBD_AUDI O Wi te_Task().
BULK class:
e Added function USBD BULK_Add_Ex() .
3.10 2018-03-22 | RH Update to latest software version.
Added Audio chapter.
USB Core:
3.08 2018-02-12 | RH e Added function USBD_Regi st er SCHook() .
e Added function USBD_AddEPEX() .
3.06e 2018-01-12 | RH | Update to latest software version.
3.06d 2017-12-19 | YR | Update to latest software version.
USB Core:
3.06¢ 2017-12-04 | RH ¢ Added I/0O functions.
Update to latest software version.
3.06b | 2017-10-13 | YR |~ rected USBD Wi t eéEPOFT onf SR name (was USB_ W i t eéEPOFT onf SR).
Printer class:
e Added function USB_PRI NTER_Conf i gl RQProcessi ng() .
¢ Added function USB_PRI NTER _TaskEx() .
3.06 2017-09-15 | RH USB Core:
 Added USBD_Set CacheConfi g().
Chapter “Getting started” revised.
Update to latest software version.
3.04 2017-07-24 | YR | Aqded chapter “emUSB-Device-IP”
3.02qg 2017-07-17 | YR | Update to latest software version.
3.02p 2017-07-14 | RH | Update to latest software version.
Chapter Combining USB components:
3.020 2017-07-10 | YR ¢ Added information on the MSD+MTP combination feature.
Added Chapter “Profiling with SystemView”.
Major revision of the manual.
3.02 2017-07-01 | RH e Manual converted to text processor emDoc.
3.02n 2017-06-12 | SR | Update to latest software version.
3.02m 2017-06-08 | RH | Update to latest software version.
3.02I 2017-06-02 | SR | Update to latest software version.
3.02k 2017-04-10 | RH | Function USBD_AddEP() : Parameter ‘Interval’ changed.
3.02j 2017-03-01 | RH | Update to latest software version.
3.02i 2017-01-26 | SR | Update to latest software version.
3.02h 2017-01-26 | SR | Update to latest software version.
3.02g 2017-01-23 | SR | Update to latest software version.
3.02f 2017-01-04 | RH | Update to latest software version.
3.02e 2016-12-15 | RH | Update to latest software version.
3.02d 2016-11-18 | RH | Update to latest software version.
3.02c 2016-11-03 | RH | Update to latest software version.
Chapter VirtualMSD:
3.02b 2016-10-28 | RH e Renamed functions according to the emUSB V3 conventions.
3.02a 2016-10-18 | RH | Update to latest software version.
Chapter CDC:
¢ Updated Overview - Added Windows 10 Support.
3.02 2016-10-07 | SR e Updated Installing the driver. Section verification combined with Installing dri-
ver.
e Updated section The .inf file

© 2010-2024 SEGGER Microcontroller GmbH

Software Date By Description
¢ Added new section: Signing the package
e Testing communication to the USB device updated.
Chapter CDC Data structures:
e Removed CTS from USB_CDC_SERI AL_STATE.
Chapter BULK communication:
e Removed description of the Segger USB driver(not necessary any more)
e BULK host API and sample applications support for Linux and MacOSX added.
3.02 2016-09-30 | RH e Added new function USBD BULK_Set MsDescl nf o() .
e Added new function USBBULK_Get Devl nf oByl dx() .
e Removed description of deprecated host API functions.
Chapter VirtualMSD:
e Added memory usage calculation.
Many minor corrections.
Update to latest software version.
Chapter Target OS Interface:
3.00g 2016-08-22 | RH ¢ New advanced OS layer interface.
Chapter Mass Storage Device Class (MSD):
e Added new function USBD_MsSD_Request Ref r esh()
Update to latest software version.
Chapter VirtualMSD:
3.00f 2016-07-20 | YR e Changed function prefix to VMSD.
e Removed obsolete functions.
3.00e 2016-07-08 | RH | Update to latest software version.
3.00d 2016-06-08 | YR | Update to latest software version.
Update to latest software version.
3.00c 2016-05-23 | YR | Chapter Bulk communication:
e Added paragraph “Writing your own host driver”.
3.00b 2016-04-27 | YR | Update to latest software version.
Chapter USB Core functions:
e Updated prototype for USBD_Set MaxPower .
Chapter HID:
=008 2016-04-15 | SR e Added new function for Setting a callback for SET_REPORT.
Chapter Debugging:
e Changed all prototypes from USB_* to USBD_*.
3.00 2016-02-12 | YR | Initial Version

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
e The software tools used for building your application (compiler, linker, Integrated Development

Environment).

The C programming language.

The target processor.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Table of contents

N 11 0 o 11 o 1o o SRR 26
B N O V7T VT 27
1.2 emUSB-DeViICe fRatUMES ..viiriiiiiiii i e e e e e s e e reans 28
1.3 emUSB-DeviCe COMPONENTS ..uviiiiiiii i e e e s e s saae e s sannneesaanneenns 29

1.3.1 emUSB-DeVvice-BUIKcoiiiiiiii i e e e 29
1.3.2 emUSB-DeVIiCE-MSD ...ttt e e e 29
1.3.2.1 Purpose of emUSB-Device-MSDcoiiiiiiiiiiiiiii e 29

1.3.2.2 Typical applicalions ...coiiriiiiiiiii e 30

1.3.2.3 emUSB-Device-MSD featuresc.covviiiiiiiiiiiii e e 30

1.3.2.4 HOW d0€S it WOIK? et aae e e 30

1.3.3 emUSB-Device IP-0Ver-USBc.coiiiiiiiii e 31
1.3.3.1 Typical applicalions ...coiiriiiiiii i e 31

1.3.4 emUSB-Device-VirtualMSDcciiiiiiiiiii i e ee e 31
1.3.4.1 Typical applicalions ...coiiriiiiiii 31

1.3.5 emMUSB-DeViCe-CDC ..ottt s it sanrae s sarsaas e e e s e aaneaneannans 31
1.3.5.1 Typical applicalions ...cocieiiiiiiiii e 31

1.3.6 emUSB-DeViCe-HIDccciiiiiiiiiiiiiis i ae e e s ne e e annennens 31
1.3.6.1 Typical applicalions ...coiiuiiiiiiiii i e 31

1.3.7 emUSB-DeVIiCe-MTP ...ttt e nnennens 32
1.3.7.1 Typical applicalions ...cociriiiiiiiii e 32

1.3.8 emUSB-DeVIiCe-PriNtar ...ciiiiiiiiii i e e 32
1.3.8.1 Typical applicalions ...cociriiiiiiiii 32

1.3.9 emUSB-DeVvice-RNDIS ..ottt e e e e s e aaee e eeenes 32
1.3.9.1 Typical applicalions ...coiiiiiiiiiiii e 32

1.3.10 emUSB-DeVICe-CDC-ECMciiiiiiiiiiiii it e e e e nneneans 33
1.3.10.1 Typical applications ...cccoiiiiiiiii i 33

B S =T U 1T =T o 1= o 34
1.4.1 Targel SY S eI .ottt e e 34
1.4.2 Development environment (COMPpIler) ...cooviiiiiiiiiiiii e 34

B T o1 [o o Lo o B = PP 35
1.6 MUENIrEading oo e 36

2 Background infOrMAatioNoooiioiiiiiiiiii e 37

B L U Y S PP 38
0 N A Y o 1o Y O 1 7Y VT 38
2.1.2 Important USB Standard Versionscciiiiiiiiiiiii i i eieenne e 38
2.1.3 USB System ArChite@CtUrecciviiiiiiiiiiiiii i e aeas 39
B B S 1 o= |] =Tl Y/ o 1= PP 41
2.1.5 Setup phase / EnNUMerationccooiiiiiiiiii i e 41
2.1.6 ProducCt / Vendor IDS .uiiiiiiiiiiiiiiiiiiisseriisessiisssssanssssransnessinnssesransneeins 41

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

10

emUSB-Device User Guide & Reference Manual

2.2 Predefined deViCe ClaSSeSuiuiiiiiii i e 42
2.3 USB hardware analyzZersocviieiiiiiiiiiiieie i se e saas e e sae e anesne e anneaneanes 43
B S) =] < o [0l == PP 44
(€= 11 To] = 1 (=T o SR 45
3.1 How to setup your target systemocoiiiiii e 46
3.1.1 Take a running ProjJeCt ...uiuiiiiiii i e aeas 46
3.1.2 Add emUSB-DeViCe fil@€S ...iuiiriieiiiiiiiei i 46
3.1.3 Configuring debugging ouUtpULccoiiiiiiii e 46
3.1.4 Add hardware dependent configurationcooiiiiiiiiii 47
3.1.5 Prepare and run the applicationc.cooiiiiiiiiiiii 47

3.2 Updating emMUSB-DEVICEciiiiiiiiiiiiie e s e e e aeaeans 49
3.3 emUSB-Device Configurationccoiieiiiiiiiii i 50
3.3.1 USB_DEVICE_INFO ettt ittt et e ate e reanenesesneneaaesneananens 50
3.3.2 Additional required configuration for emUSB-MSDcocvviiiiiiiiiniennnns 51

G TG TG T B 7=t~ o g o) o] =P 51

3.4 Compile-time coNfigurationoiriiiiii e 53
3.4.1 Compile-time switches for debuggingccooviiiiiiiiiiiii e 53
3.4.1.1 USB_DEBUG_LEVEL ..ciuiiiiiiiii ettt nae e 53

3.4.1.2 USB_LOG_BUFFER_SIZEcitiitiiiiiiiiiii et senene s nenanne e 53

3.4.2 Use of standard C-library functionsc.cooiiiiiiiiiiiii e 53
3.4.3 General USB configurationociiiiiiiii e 54
3.4.3.1 USB_SUPPORT_TRANSFER_ISO ...ctiiiiiiiiiiiieiiieiienennenennennennnnens 54

3.4.3.2 USB_SUPPORT_TEST_MODE ...citiitiiiiiiiiiiiiieinie e eenaaneeaens 54

3.4.3.3 USB_NUM_EPS ..ottt et et ae e e e e e e e e 54

3.4.3.4 USB_MAX_NUM_IF .ottt r e e nen e e 54

3.4.3.5 USB_MAX_NUM_ALT _IF ittt e ae e e e e enaeneaeenes 54

3.4.3.6 USB_DESC_BUFFER_SIZE ..ottt naene e e eaens 55

3.4.3.7 USBD_SUPPORT_PROFILE ..ottt nee e e e 55

3.4.3.8 USBD_O0S_USE_USBD_X_INTERRUPTcccciiiiiiiiiiiiiiiiiiieieeeeaes 55

3.4.3.9 USBD_OS_USE_ISR_FLAG ..iitiitiiiiiiitiit it neniennenenenneneanes 56

3.5 HOSE OS SPECIICS 1uvitiitiitiiiit ittt e et 57
3.5.1 WINAOWS FeGIStIY ottt s e e e e e 57
3.5.1.1 Cleaning the WIindows registryccooviiiiiiiiiiiiiii e 57

(010 = I O 0] ¢ PSPPI 58
N 0 1Y T Y 1 59
N = 1 e =] 60
4.2.1 USB basiC fUNCLIONS ...uoieiiii e 63
4.2.1.1 USBD_GetState() .oveveieeieiieie i 63

4.2.1.2 USBD_GetSPeed() «eeeuerrieeieieineeeae et 64

4.2.1.3 USBD_GetDeviceState() .ccvviviiriiiiiiii i neaaes 65

4.2.1.4 USBD_INIE() tueieiieiiiii ettt e e s 66

4.2.1.5 USBD_ISCONfigured() .vioeiiiieiieiieiieiinsnnsiinrasssesnesanssiesnnannernens 67

4.2.1.6 USBD_SEart() eeeeeeiieieiiie it 68

4.2.1.7 USBD_SEOP() terueiniieieieieie et et 69

4.2.1.8 USBD_DEeINIE() «euerueiniieiiieii et e e e e eeaens 70

4.2.1.9 USBD_GetVersion() «iuviieiieiieeiiiiieaeiiesasssesnesaneinesnnssernesansanens 71

4.2.2 USB configuration functionsccoiiiiiii e 72
4.2.2.1 USBD_AdADIIVEI() tviiriiitiireitiieeineiiesassiesassanssnesnssanesnesnnsaneannans 72

4.2.2.2 USBD_SetISRENAbIEFUNC() +ivviiriiriiieiiei i riee s ennennennnans 73

4.2.2.3 USBD_SetAttachFUNC() +.iviiiiiiiiiiii s s ne e 74

4.2.2.4 USBD_AdAEP() «iuiueieiiieeie ittt aaas 75

4.2.2.5 USBD_AdAEPEX() «euetueiueeieieiaae et eeaeeae et ee e saeaeeeraeneeeenenes 76

4.2.2.6 USBD_SetDeVviceINfo() «iiieiiriiiiiiiiieiiiiie e snesnnesesnnennerneannss 77

4.2.2.7 USBD_SetClassRequestHOOK() ...viveiiriiiiiiiiii i neenaeeneaees 78

4.2.2.8 USBD_SetVendorRequestHOOK() ..vvvviiiiiiiiiiiiiii e 79

4.2.2.9 USBD_SetIsSelfPowered() ...voevviriiiiiiieiie i iennsiernesnnenns 80

4.2.2.10 USBD_SetMaxXPOWEI() .uuvriiieririreiinsnseiiernsennernesanssesnesnnenneannens 81

© 2010-2024 SEGGER Microcontroller GmbH

11

emUSB-Device User Guide & Reference Manual

4.2.2.11 USBD_SetOnEVENt() ivviiiiiiiii i e e e e 82
4.2.2.12 USBD_RemoveOnEVENt() .iiiviiiiiii i ieen i s e e e e 84
4.2.2.13 USBD_SetONRXEPO() tvvriiiriireriiineieiiesnsssesnesnsssernnsnnssnesnnanes 85
4.2.2.14 USBD_SetOnRXHOOKEP() ..cviiviiiiiiii i enne e e 86
4.2.2.15 USBD_SetONnSetupP() «evverereririiriieiieiiereiiesansiierasssnesnesnnsaneanss 87
4.2.2.16 USBD_SetOnSetupHOOK() +iiiriiriiiiiiiii i riee s snesnnennenneas 88
4.2.2.17 USBD_SetONSOF() +iireiitiiriiiiiniineiieraneaeransasssesnssaneaneannsaneanens 89
4.2.2.18 USBD_RemoVEONSOF() tiviiiiiiriiiiiiiieiieiieeneiiesnesnnesnesnnenneannss 90
4.2.2.19 USBD_WriteEPOFrOMISR() .vviviiiiiniieiiiiieii i s nieennennenneanes 91
4.2.2.20 USBD_ENAbIEIAD() +iireieiiriieiitiiereiaesanesnesanssnesnnsanssnesnnanneenes 92
4.2.2.21 USBD_SetCacheConfig() «eveevererirrierieiieiineiieiieenneriernssnneeneannanns 93
4.2.2.22 USBD_RegisterSCHOOK() tvvvriiiriiniiieiineiiiieiie i iieannennesnnennennens 94
4.2.2.23 USBD_ASSIGNMEMOIY() +iveerrerieeineiierassineinesnnsrnernsssneenesnnsaneennens 95
4.2.2.24 USBD_USEV210() +iirerrtriniinerinianeieianeanernesnnssesnesnnssnernnsasrnenns 96
4.2.2.25 USBD_SetBESLVAlUES() vvirriiriineiitiineiie i rneennsrneennsnnenneanes 97
4.2.2.26 USBD_SetOnLPMChange() «.iovvrviieiieiieiieiineiiesinennesneannsnneannanes 98
4.2.2.27 USBD_SetLPMRESPONSE() tuvvvrrrrrrnennriinranerneineannsrernnssnsrneennenes 99
4.2.2.28 USBD_EnableSuperSpeed() ..ccivverviiiiriineiieiiesnneiieinesnnsaeannans 100
4.2.2.29 USBD_SetWebUSBINfO() tovviriiriiiiiriineiiisine i riesnesnesnnsnnens 101
4.2.2.30 USBD_SetCheckAddress() «.ivevvreierraeriiraesaneriernnssnernesnnssnernnnns 102
4.2.2.31 USBD_SetGetStringHOOK() tovvvriiiiiieiii i i nne e 103
4.2.3 USB I/O fUNCLIONS tutiitiiiiitsiiiittesiitressinresranssreransssesranseesransnesrannneenns 104
4.2.3.1 USBD_ReEAA() +iviieiiriiitiiniiieiineiieiiesinssieiassnnesiesasssnesnnsanssneannens 104
4.2.3.2 USBD_ReadOverlapped() ..ioeierieiieiiiiieiiinneiieiiesnnssnennnsaneannnns 105
4.2.3.3 USBD_RECEIVE() triiiriiriiiiiitiiiianiieiieiasesesaesansserasssesneannsanenns 106
4.2.3.4 USBD_RecCeiVEPOII() +iiviiiriiiiiii it s nenenas 107
4.2.3.5 USBD_REAAASYNC() tirvvrriiriiriiitrinenneineranssnrnsssnernesanssesnnsaneanens 108
4.2.3.6 USBD_WIIEE() ttvvuerireiniiieiinerniaeereinesasssneranesnernesnnssiernnsnnernenns 109
4.2.3.7 USBD_WrItEASYNC() eririireiieiiniineiinsanerirranesernesanssesneannsaernnans 110
4.2.3.8 USBD_CanCelIO() tuvvieiiriineiieiinerniaesaneinnsasssernesnnssneennsaneeneanns 111
4.2.3.9 USBD_WaitForEndOfTransferEX() ..vvevviriieiiriiiiiininiiinnennennennens 112
4.2.3.10 USBD_WaitForTXReady() «ieeveeerirrieeiniiierinsiernesnnerernnsnnesnesnnss 113
4.2.3.11 USBD_GetNumBytesINBUffer()ccvveviiiiiiiiiii i insnennennnans 114
4.2.3.12 USBD_GetNumBytesRemToRead()coovvirviieiiniiiiiiiniineiiennnns 115
4.2.3.13 USBD_GetNumBytesRemMTOWNIte() +vovvvrriiriiiiiiiei i nieennennens 116
4.2.3.14 USBD_STallEP() +eiviiriieiiii i i s e nnsne e s e nneaneees 117
4.2.4 USB Remote wakeup fUNCLIONSciiiiiiiiiiiii i e e e e 118
4.2.4.1 USBD_SetAllowRemoteWakeUp() ..ccoviviiiiieiiiiiiiiii e 119
4.2.4.2 USBD_DoRemoteWakeup() ..ovvvevirriieiiriineiirraneieinesnnesesnnsnneanes 120
I B 1= | o= I 1 f B ot B == 121
4.2.5.1 USB_ADD_EP_INFO .iiitiiiiiiiii i i iese s annesesnnannennnneans 121
4.2.5.2 USB_SETUP_PACKET ..riiitiiiiiiiiteiie i i sneesne e sanssnesnnannenneans 122
4.2.5.3 SEGGER_CACHE_CONFIG ...tiitiiitiieiii i inesnne e snesnnennesnnans 123
4.2.5.4 USB_CHECK_ADDRESS_FUNC ...cciiiiiiiiiiiiii i nnenneeeas 124
4.2.5.5 USB_ASYNC_IO_CONTEXT iitiiiiitiineinerinenneiernnssnernesnnsnnssnnanns 125
4.2.5.6 USB_WEBUSB_INFO ...cciiiiiiiiiiiiii i rennesnnenneaes 126
L S I o ¥ 1 [t o o N 1Y 0= 127
4.2.6.1 USB_ON_CLASS_REQUEST ..tiiiiiiiitiiii i iieenne e nnnennenneanes 127
4.2.6.2 USB_ON_SETUP ..ttt i s ne e e s nn e aneenaneens 128
4.2.6.3 USB_GET_STRING_FUNC ...ttt i e snes e e nnnenneens 129
4.2.6.4 USB_ON_LPM_CHANGE ...cictiitiiiiitiii s it ne e nnnsnneneans 130

4.3 Timeout handliNgcooiniieiii e e 131
L W0 1V A o Yo Y V7T ol o o Y = PP 132
T U 1Y = B YU 1= o =T T P 132
4.4.2 Link Power Management (LPM)iiiiiiiiiiii i ee e naea 133
BUIK COMMUNICALION ...ceeeiiiiiiiiee e s e e e e e e e e e e e e e e e e e e e aaaeeees 134
5.1 Generic bUlK SEaCK ..iiiuiiiiiiii i i e e e e 135
5.2 Requirements for the HOSt (PC) ..iiiriiriiiii e e 136

© 2010-2024 SEGGER Microcontroller GmbH

12

emUSB-Device User Guide & Reference Manual

5.3

5.4

5.5

5.2.1 WiNAOWS ettt e e e e e 136
T 1 | o)G 136
5.2.3 MACOS i 136
EXample appliCation .o e 137
5.3.1 Running the example applicationscoceviiiiiiiii i e 137
5.3.2 Compllmg the PC example applicationccoooviiiiiiiiiii i nenaeas 138
5.3.2.1 WIiNAOWS uiiiiiiiiiiiiie i s rae s e s e e s e s e e e aeans 138
T T 0 1 o 139
5.3.2.3 MACOS ottt 139
TArget AP i e 140
5.4.1 Target interface function list ... 140
5.4.2 USB-BUIK fUNCLIONS .iiiriiiiiiii i s e e e ea e e e an e a e e 142
5.4.2.1 USBD_BULK_AdA() +eitiiriineiiniieeirianenneienass e rnesnnssesnnsnneeneanes 142
5.4.2.2 USBD_BULK_AdA_EX() +iirtiiriiriieiieneiierinenesiesnsssesnnsnneanesnnens 143
5.4.2.3 USBD_BULK_AddAlternatelnterface()cccoeiiiiiiiiiiiiiiiii i, 144
5.4.2.4 USBD_BULK_SetMSDESCINFO() tviiriiiiiiiiiiiiiiii i i i i iiaeanas 145
5.4.2.5 USBD_BULK_CancelRead()cevvrvrrriirrineiiriineneiiesnnsresneannsnnenns 146
5.4.2.6 USBD_BULK_CancelWrite() ..iveviiriieiiiiieiiiie i iienesiesnnennennenns 147
5.4.2.7 USBD_BULK_GetNumBytesInBuffer()ccooevviiiieiiiiiiiinnnnennens 148
5.4.2.8 USBD_BULK_GetNumBytesRemToRead() . .cvvvvrrrrieiiriiiniinninninnnns 149
5.4.2.9 USBD_BULK_GetNumBytesRemToWrite()oovvvevirviieiiniiniiinnnnnns 150
5.4.2.10 USBD_BULK_REAA() trerrrrrririineiierineineiieransiieinsssnesnesnnsnnerneanes 151
5.4.2.11 USBD_BULK_REAAASYNC() trvrrrrrririineieiinesseriesnnssnernnsnnssnesnnens 152
5.4.2.12 USBD_BULK_ReadOverlapped()ccvieiiriiriiriiiiineieiiennnennenns 153
5.4.2.13 USBD_BULK_RECEIVE() +ivriiriiriiiriiniiieiineieiiesinssesneannsnneannanns 154
5.4.2.14 USBD_BULK_ReCEIVEPOII() .ivvriiriiiiiiiii i s eiaenneeaeas 155
5.4.2.15 USBD_BULK_SetContinuousReadMode()ccovviiiiiiiiiiiiiiiniinnnns 156
5.4.2.16 USBD_BULK_SetOnSetupRequest()ccovvriiiiiiiiiiiiiiininnenens, 157
5.4.2.17 USBD_BULK_SetOnRXEVENL() .ivvvviriiiiiiiiiiiiiiesi i neeneaees 158
5.4.2.18 USBD_BULK_SetONTXEVENT() svevvrririiriiieiineiieiiennneneinnennennennes 160
5.4.2.19 USBD_BULK_TXISPENdiNg() «.cvviriieiineiiiiieiiiiiee e iienansnnennens 162
5.4.2.20 USBD_BULK_WaitFOrRX() veiieiiriiiiieiieiiiieiie i innennennennnsnnens 163
5.4.2.21 USBD_BULK_POIHFOIrRX() teveiitiitiiieiieiiiiieiineieiiesnnssnesnnsnnennnns 164
5.4.2.22 USBD_BULK_WaitFOrTX() .ceiireiiriiniiiiiniineiiiiesnne e enssnnesnennnans 165
5.4.2.23 USBD_BULK_POHFOITX() tirviieiitiiiiieiineiininneneinesanesesnnanneanenns 166
5.4.2.24 USBD_BULK_WaitFOrTXREady() ..icevvrviriiieiiniieiinnineriennnannennens 167
5.4.2.25 USBD_BULK_WrEE() +ioviiriiiiitiie i i iierine e rnesnnesnesnnsnnennens 168
5.4.2.26 USBD_BULK_WrteASYNC() +iovvireiriiiriineiieiineieiiesnneneinnsnnennenns 170
5.4.2.27 USBD_BULK_WIEtEEX() tvvvrrrirrineiieiieiiiiieiineiieiinsnnesiesnnsnnesnenns 171
o G B D T) = [=3 o o {1 = 172
5.4.3.1 USB_BULK _INIT DATA ittt i raesane e snesnnesneannsaneanenns 172
5.4.3.2 USB_BULK_INIT_DATA_EX iitiiiiiiiitiiiiiteine e eiesnnesesnnsnnesneannss 173
LG o 101y Y = PP 174
5.5.1 BUIK HOSE API 1iSt 1.viiriiiiiii i s e e e e neeeaeas 175
5.5.2 USB-Bulk basiC fUNCLIONS ...iuiiiiiiiiiii i s e e e e anans 177
5.5.2.1 USBBULK_INIT() tireiiriiniiiniineiinerane i rasssnesnesasssesnnssnesnesnnsanenns 177
5.5.2.2 USBBULK_EXIT() ttvveerirerirrinineiinrineriesnseseinnsnnssesnnsnnernesnnsnnenns 178
5.5.2.3 USBBULK_AddAllowedDeviceItem() ...oceiiriiriiiiiieiiniiieiinnnneiennens 179
5.5.2.4 USBBULK_GetNumAvailableDevices()ccoviviiiiiiiiiiiiiiiieienn, 180
5.5.2.5 USBBULK_OPEN() teirtiiriintiieiinereiieeineiiesasesnesnesnnssesnnsnnsrneannens 181
5.5.2.6 USBBULK_ClIOSE() ttvireiutriniineianiinerriassnneinesanssernnennsinesnnsnneenes 182
5.5.3 USB-Bulk direct input/output functionsc.ccviiiiiiiiiiiii e 183
5.5.3.1 USBBULK_REAA() ttvrurririrnriiriineiirrinesneiinsnnssernnsnnssesnnsanssnnsnnens 183
5.5.3.2 USBBULK_ReadTimed() ..ceiveririieiiriieirieenne e snesnneenennnsnnesnenns 184
5.5.3.3 USBBULK _WHIte() +ivreiiriiriiiiiiriie i riseiaesnne s snesnnesnesnnsnnennenns 185
5.5.3.4 USBBULK_Write€Timed() ..covveiiriiniiiiiiieiiesineneinesnnssnesnesnnennenns 186
5.5.3.5 USBBULK_CancelREad() .tiervrrrririiriiieiineieiinenneriernnesnesnesnnsnnenns 187
5.5.3.6 USBBULK_FIUSHRX() +eiutiitiiniiiiiineiieiiise i snne e nnesnnesnesnnsnneannans 188
5.5.4 USB-Bulk control fuNCtioNSccviviiiiiiii i e e eaeas 189
5.5.4.1 USBBULK_SetMOAE() vivrviriiriiniiieiineieiinenneiiesnnssnesnesnnsanesnnanns 189

© 2010-2024 SEGGER Microcontroller GmbH

13

5.5.4.2 USBBULK_GEIMOAE() «uiuriuiiiiiiieiie et neee e 190

5.5.4.3 USBBULK_SetReadTimeoUut() ...ccviriirriiiiiiiin i ienieenneneanens 191

5.5.4.4 USBBULK_SetWriteTimeout() - .coeveeiniieiieiiiieiii e e 192

5.5.4.5 USBBULK_RESEtINPIPE() «viueieiiieiiii i e 193

5.5.4.6 USBBULK_ReSEtOUTPIPE() viueiuiiniieiiiiie i eeeeeeenens 194

5.5.4.7 USBBULK_RESEDEVICE() uerueinieiiiiieie et ee e e eaeaeeneees 195

5.5.5 USB-Bulk general GET fUuNCtionSccoiuiiiiiiiiii e 196
5.5.5.1 USBBULK_GetVersion() ..cciiiiiiiiieiireiieiiesansiieinssnnesnesnnssneannnns 196

5.5.5.2 USBBULK_GetDeVvINfO() ...iveiiieiieii it ee e 197

5.5.5.3 USBBULK_GetDeVvINfOBYIAX() +ivreiierireieiiniiieiieiinsineriennnennesnnanes 198

5.5.5.4 USBBULK_GEUSBIA() .eirieineiniieie e eeneeereaeeneeenneaaneanens 199

5.5.5.5 USBBULK_GetProductName() ...cceiverireiiiieiinerieinnsnneiiernnennennenns 200

5.5.5.6 USBBULK_GetVendorName() ..c.ooviiviiiiiiiiiiiiiieeneiiennnsnnennens 201

5.5.5.7 USBBULK_GEESN() .eirieiiiiiieii et e e eneaaeees 202

5.5.5.8 USBBULK_GetConfigDescriptor() ...coviviieiiriiieiieiineieiinenneinennnanns 203

5.5.6 USB-Bulk data Structuresccoooiiiiiii e 204
5.5.6.1 USBBULK_DEV_INFO ...cuiiiiiiiiii i e e e e e e 204

6 Vendor SPeCific Class (WSC) ..iiiiiii ettt e e e 205
(ST Y/ o Vo [o] gy o= Tol) ol @ 1= =7 PP 206
6.2 Requirements for the HOSt (PC) ..uiiriiiiiiii i s naeas 207
LT R L T o Y= 207
(ST A N | o [) PP 207
TG N o ¢ 1= [0 1 207

6.3 Example appliCation ..o e 208
6.3.1 Running the example applicationsc.ccoiiiiiiiiii 208
6.3.2 Compiling the PC example applicationc.coviiiiiiiiiiiiii e 209

(ST T A 1 T T o £ 209

B.3.2.2 LINMUX ¢ttt 209

6.3.2.3 MACOS ittt 209

LT S = e = Y P 210
6.4.1 Target interface fuNCtion IStcvieiiiiiii e 210
6.4.2 USB-VSC fUNCHIONS .iiviiiiiiiii i et e e neaaens 212
6.4.2.1 USBD_VSC_AdA() trriirriiriitneiieitaaiie e eeneanerennennaneaneneanes 212

6.4.2.2 USBD_VSC_AddAlternateInterface()cooviviiiiiiiiiiiiiiiiinennns 213

6.4.2.3 USBD_VSC_CancCeIIO() «ivvireruiiriitieineiiiaeriereanaierenesneeneanannanens 214

6.4.2.4 USBD_VSC_GetNumBytesINBUffer()ccvveviiiiiiiiiiiiiieinnnnnens 215

6.4.2.5 USBD_VSC_GetNumBytesRemToRead()oovvieiieiiniiieniniineinnnns 216

6.4.2.6 USBD_VSC_GetNumBytesRemToWrite() ...c.oovvvviiiiiiiiiiiiiiinnnenns, 217

6.4.2.7 USBD_VSC_REAA() +iviutiutiriitiiiiitiieiieiteatsnesteneraesneananeeennanens 218

6.4.2.8 USBD_VSC_ReAdASYNC() +iurrirriiriieeriiinianeiinaaseseinnaaserneaansanens 220

6.4.2.9 USBD_VSC_SetContinuousReadMode()covvvviviiiiiiiieiiinniinennns. 221

6.4.2.10 USBD_VSC_SetOnSetupRequest() ...ccvvvviiiiiiiiiiiiiiiinieiienanns 222

6.4.2.11 USBD_VSC_SetOnEPEVENT() tivvuviriiiiiiiii i nieeeneneenens 223

6.4.2.12 USBD_VSC_TXISPENdiNG() +eeviurrriieiieiiiteieiiiiieneineienenneenennanens 227

6.4.2.13 USBD_VSC_WaItEP() ..eiviieiiiiiiiiii i rine s reee e e nenanennens 228

6.4.2.14 USBD_VSC_POIEP() +iuiiriitiiiiiiia it nae e naenenaens 229

6.4.2.15 USBD_VSC_WaitFOrTXReady() .oevverrerriieiiiiiiniieiiiinenenneinennnnens 231

6.4.2.16 USBD_VSC_WHEE() toviuiiriitiieieitiie it seae e senesnessnnanennes 232

6.4.2.17 USBD_VSC_WHEEASYNC() +eurrrerriitiiiiierieiieitaneanerenneneeeneanens 234

6.4.3 Data StrUCTUIES ..o e 235
6.4.3.1 USB_VSC _INIT _DATA ittt et aeaneneaens 235

6.4.3.2 USB_VSC_MSOSDESC_INFO ..itiitiiiiiiiiiiiiieinie e eeneneeaens 236

6.4.3.3 USB_VSC_ON_ADD_FUNCTION_DESC ...ccictiiiiiiiiiiiiieienieeennnnens 237

6.4.3.4 USB_VSC_ON_SET_INTERFACEcciiitiitiiiiiiieii i eienienenaens 238

B.5 G HOSE APl i 239
7 Mass Storage Device Class (MSD) ...uuuiiiiiiiiiiiiiiiaeeeeeeee e 240
0 R © 1 1= T 1 241

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

14

7.2 MSD ConfigUurationcouiieii it e 242
7.2.1 Initial configurationc.cooiiiii e 242
7.2.2 Final configurationocoieiiiiiii e 242
7.2.3 MSD class specific configuration functions ... 242
7.2.4 Running the example applicationc.coiiiiiiiiiiii e 242

7.2.4.1 MSD_Start_StorageRAM.c in detailc.covvviiiiiiiiiici 243

7.3 TArgel APl i e 244

/4G T R A =0 A 1 ¥ T oo 1= PP 246
7.3.1.1 USBD_MSD_AdA() sreireiiriineiieiinenneinniane e 246
7.3.1.2 USBD_MSD_AddURNIE() +iieiiriiiiiiiii i snns e sneennennenneenes 247
7.3.1.3 USBD_MSD_AdACDROM() «euueirieieiniieeeieaeee e eaeneeeeneneeeenenes 248
7.3.1.4 USBD_MSD_SetPreventAllowRemovalHook()cccoovviiiiiiiiiinnnnns 249
7.3.1.5 USBD_MSD_SetReadWriteHOOK() ..ovvvvieiieiiiiiiii e 250
7.3.1.6 USBD_MSD_TaSK() «tveerrrertrinerneiirrnneriernsssnernesnnsrnernesnnsanernnsnnes 251
7.3.1.7 USBD_MSD_POII() ttiireiitiiniiiiiiieiiaee s iaesanssesnnsnnssennnsnnennens 252
7.3.1.8 USBD_MSD_POIEX() +ioeveriitiieiineiierieeneiiesansinesnesnnesnesnnsnneannans 253
7.3.1.9 USBD_MSD_SetStartStopUnitHOOK() ..ovvvvvviiiiiiiiiiiie e 254

7.3.2 Extended API fUNCLIONS ..iiiviiiiiiiii i e e ane e e 255
7.3.2.1 USBD_MSD_CoNNECE() +iirtiiitiiiiiiiii i i i e i ria e aeenaeas 255
7.3.2.2 USBD_MSD_DiSCONNECE() .ttvitiiiiiiiiieiii i iiesi i riaeaaeeaaneas 256
7.3.2.3 USBD_MSD_RequestDiscoNNeCt() ..vvevvrriieiieiieiieiineieiinsnnennennens 257
7.3.2.4 USBD_MSD_RequestRefresh() ..iccverviiiiiiiiiiiiieiie i iieenneiennnnns 258
7.3.2.5 USBD_MSD_UpdateWriteProtect()covviviiriiiiiiiiiiiiinennennens 259
7.3.2.6 USBD_MSD_WaitForDisconnection()ccccviiiiiiiiiiiiiiiiiii i, 260

/20 3G TR D T- | = [=3 o 1 L {1 = 261
7.3.3.1 USB_MSD _INIT _DATA ittt e i e re e aneaneans 261
7.3.3.2 USB_MSD_INFO ..iiiiiiiiiiitii it s ses s ne s nsanenneannees 262
7.3.3.3 USB_MSD _INST _DATA ..ttt e e e eaeaeeaes 263
7.3.3.4 USB_MSD_LUN_INFO ...cuiiiiiiii it et eeeaeeea 264
7.3.3.5 PREVENT_ALLOW_REMOVAL_HOOKciiiiiiiiii e 265
7.3.3.6 READ_WRITE_HOOK ...ttt iitiie s s e nnsnesesnnennenneans 266
7.3.3.7 USB_MSD_INST_DATA_DRIVERciiiiiiiiiiiii i e ene e 267
7.3.3.8 USB_MSD_STORAGE_APT ...t 269
7.3.3.9 START_STOP_UNIT_HOOK ...eiiiiiiiieiiiiiie e e ee e 270

7.4 MSD StOrage DIiVEI ..uiiuiiiiiiiiiiii i s 271

7.4.1 General informationciiiiiii i e 271
7.4.1.1 Supported Storage tyPeS ...viiiiiiiiiii i e 271
7.4.1.2 Storage drivers supplied with this releasecccoviiiiiinnnns 271

7.4.2 Interface function listc.coviiiiiiii i e 271

7.4.3 USB_MSD_STORAGE_API in detailccouiiiiiiiii e 272
7.4.3.1 USB_MSD_STORAGE_INIT ...iiitiiiiiiiiie i e rerneenneeneas 272
7.4.3.2 USB_MSD_STORAGE_GETINFO ...t 273
7.4.3.3 USB_MSD_STORAGE_GETREADBUFFERcccciiiiiiiiiiiiiiieenns 274
7.4.3.4 USB_MSD_STORAGE_READciiiiiiiii e 275
7.4.3.5 USB_MSD_STORAGE_GETWRITEBUFFERcciciiiiiiiiiiiiiienens 276
7.4.3.6 USB_MSD_STORAGE_WRITE ..ottt eee e eenaeeenens 277
7.4.3.7 USB_MSD_STORAGE_MEDIUMISPRESENTcccciiiiiiiiiiiiiineennes 278
7.4.3.8 USB_MSD_STORAGE_DEINIT ..ottt eeeeeeeaees 279

8 Virtual Mass Storage Component (VirtualMSD)ooovviiiiiiiiiiiiiiie e, 280

S T A @ Y7 oV 1< PP 281

8.2 CONfIGUIATION e e 282
8.2.1 Initial configurationcociiriiiiiii i 282
8.2.2 Final configurationoceiiiiiii i 282
8.2.3 Class specific configuration fuNCiONSc.ocviiiiiiii e 282

8.2.3.1 USB_VMSD_X_CONfig() seererrrieiiriiieiieiiaeiieiiineeieiieneanennennenennes 283

8.2.4 Running the example applicationc.coviiiiiiiiiii 283

8.2.5 Calculation of RAM memory usage for VirtualMSDc.ccvviiiiiiiiiiinnnnnns 284

S 7 T =T e = Y PP 286

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

15

emUSB-Device User Guide & Reference Manual

S 7 T R AN =3 A 1 o o 1= PP 287
8.3.1.1 USBD_VMSD_AdA() eieiriieiieiiieeie e e e e 287

8.3.1.2 USB_VMSD_X_CoNfig() eeeeiereieieiaiie e renee e 288

8.3.1.3 USBD_VMSD_ASSIGNMEMOIY() +ivviiieiiriieiieenneiiernssanerinsansrneannens 289

8.3.1.4 USBD_VMSD_SetUSErAPI() ..ooeieiieiieiiiiae e 290

8.3.1.5 USBD_VMSD_SetNumRootDirSectors()ccoeviiviiiiiiiiiiiicieenne, 291

8.3.1.6 USBD_VMSD_SetVolumeInfo() ..ccoviiiiiiiiiiiiiiiii i e 292

8.3.1.7 USBD_VMSD_AddCoNStFIles() «..evevieieiiieii i 293

8.3.1.8 USBD_VMSD_SetNumSectors() ..ccvvveiiiiiiiiiiiiiiiiii i niaee e 294

8.3.1.9 USBD_VMSD_SetSectorsPerCluster()cccoviiiiiiiiiiiiiiiiiinenns 295

S J0C T A B I | = = o o U o U] =1 296
8.3.2.1 USB_VMSD_CONST_FILE ..cuuiiiiiie e e e 296

8.3.2.2 USB_VMSD_USER_FUNC_APT ...ttt neeeeaeas 297

8.3.2.3 USB_VMSD_FILE_INFO ...ttt e e e e 298

8.3.2.4 USB_VMSD_DIR_ENTRY_SHORT ..ot e 299

8.3.3 Function definitions . ..ciiiiii i e 301
8.3.3.1 USB_VMSD_ON_READ_FUNC ..ot 301

8.3.3.2 USB_VMSD_ON_WRITE_FUNC ...t e 302

8.3.3.3 USB_VMSD_MEM_ALLOC ...uiiiiiiieie et e e e 303

8.3.3.4 USB_VMSD_MEM_FREE ..ottt 304

9 Media Transfer Protocol Class (MTP)uuuuiiiiiiii i 305
1S T A O Y7t oY1 PP 306
9.1.1 Getting acCess t0 filES ..oviiiiiiiiiiii i 307
9.1.2 Additional informationcoiiiiiiiiii 310

9.2 CONfIGUIATION et e e e 311
9.2.1 Initial configurationcocoiriiiiiii e 311
9.2.2 Final configurationoceiriiiiiiiiiiii i 311
9.2.3 emfFile and MTP configuration for UTF8 characterscccevviiiiiinnnnen. 311
9.2.4 Class specific configurationcoviiiiiii e 311
9.2.5 Compile time configurationccoiiiiiiiii e 311

9.3 Running the sample application ..o 313
1S T S = e) Y P 314
9.4.1 API fUNCHIONS ittt e 315
9.4.1.1 USBD_MTP_AAA() «errirrneiriitieiintaat et iaaeeieseaeanereneenesneanennanes 315

9.4.1.2 USBD_MTP_AddSEOrage() «eoeveeeeererieieniiieiiernaneeieneaenneeennaneenes 316

9.4.1.3 USBD_MTP_RemoveStorage() ...oceveeiieririiieriiereinernnesernnanneaness 317

9.4.1.4 USBD_MTP_TaSK() +euerrtrriatieiiiitiie it rieasenesnesnenesaeenennannanenes 318

9.4.1.5 USBD_MTP_POIH() territitinintiatiieniaae et seneeeseneenensananeanes 319

9.4.1.6 USBD_MTP_SendEVENT() uvveiiiiiiiiiiiiiiiieiiiieeieiieneeieeeneenennenens 320

9.4.1.7 USBD_MTP_SetObjectAlloCFailCb() ...ccvviviiiiiiiiiiiii e 322

9.4.1.8 USBD_MTP_SetOperatioNCb()cooviiiiiiiiiiiiiiiiie s e 323

9.4.2 Data StrUCTUIES ..o e e e 324
9.4.2.1 USB_MTP_FILE_INFO ..ottt e e e ae e e e 324

9.4.2.2 USB_MTP _INIT _DATA ittt ettt eanaaeaens 325

9.4.2.3 USB_MTP_INFO ..ttt et e e s e e e e e e 326

9.4.2.4 USB_MTP _INST _DAT A ottt aaaeanens 327

9.4.2.5 USB_MTP_INST_DATA_DRIVER ...ttt 328

9.4.2.6 USB_MTP_STORAGE_API ...ttt eeneans 329

9.4.2.7 USB_MTP_STORAGE_INFO ...ciiiiitiiiiiiiii e naeeeenaee s 331

9.4.2.8 USB_MTP_OPERATION_INFO ..couiiiiiiiiiiiiiiiiiiiieeie e e eneneaaes 332

1S B T = o [1o o = PR 333
9.4.3.1 USB_MTP_EVENT ittt it eree e e aane e e naaneeaens 333

9.4.3.2 USB_MTP_OPERATION_CB_TYPE ..ottt e e 335

0.4.4 PrOtOlY DS ittt e 335
9.4.4.1 USB_MTP_OBJECT_ALLOC_FAIL vttt eenanaeenens 335

9.4.4.2 USB_MTP_OPERATION_CB ..utitiitiiiteniiieiienenenieeenennesneanannnnens 337

1S T T I e S o] = [B Y= ol P 338
9.5.1 General informationcoiiiiiiiii 338

© 2010-2024 SEGGER Microcontroller GmbH

16

9.5.2 Interface function liSt ... e 338
9.5.3 USB_MTP_STORAGE_API in detailcoiviiiiiiiii e 339
9.5.3.1 USB_MTP_STORAGE_INIT ..ottt e ee e 339
9.5.3.2 USB_MTP_STORAGE_GET_INFO ..cciiiiiiii i e 340
9.5.3.3 USB_MTP_STORAGE_FIND_FIRST_FILEcccviiiiiiiiiiiiiie e 341
9.5.3.4 USB_MTP_STORAGE_FIND_NEXT_FILE ...cceiiiiiiiiiiiiiiiiieeeaens 342
9.5.3.5 USB_MTP_STORAGE_OPEN_FILEciuiiiiiiiiiiiiii e 343
9.5.3.6 USB_MTP_STORAGE_CREATE_FILEcciiiiiii i 344
9.5.3.7 USB_MTP_STORAGE_READ_FROM_FILEcciviiiiiiiiiiiiiiieieeens 345
9.5.3.8 USB_MTP_STORAGE_WRITE_TO_FILEcciiviiiiiiiiiiieieieeeaens 346
9.5.3.9 USB_MTP_STORAGE_CLOSE_FILEccviiiiiiiiiiieiee e 347
9.5.3.10 USB_MTP_STORAGE_REMOVE_FILEcccoiiiiiiiiiiee, 348
9.5.3.11 USB_MTP_STORAGE_CREATE_DIR ...civiiiiiiiiiiiiiieieieee e 349
9.5.3.12 USB_MTP_STORAGE_REMOVE_DIRccciiiiiiiiiiiiiieiieieeaeenen 350
9.5.3.13 USB_MTP_STORAGE_FORMAT ..ottt e ees 351
9.5.3.14 USB_MTP_STORAGE_RENAME_FILEcc.oiviiiiiiiiiiiiieieeieeenee 352
9.5.3.15 USB_MTP_STORAGE_DEINIT ...ciiiiiiii e e e 353
9.5.3.16 USB_MTP_STORAGE_GET_FILE_ATTRIBUTEScceivviiiiiininannens 354
9.5.3.17 USB_MTP_STORAGE_MODIFY_FILE_ATTRIBUTEScccevuennens 355
9.5.3.18 USB_MTP_STORAGE_GET_FILE_CREATION_TIMEc.cccvvuennens 356
9.5.3.19 USB_MTP_STORAGE_GET_FILELAST_WRITE_TIME 357
9.5.3.20 USB_MTP_STORAGE_GET_FILE_ID ...cciiiiiiiiiiiiiiiieiieeeeieee e 358
9.5.3.21 USB_MTP_STORAGE_GET_FILE_SIZEccciiiiiiiiiiiiiieiieeeeen, 359
9.5.3.22 USB_MTP_STORAGE_GET_FILE_INFO ...cciiiiiiiiiiiiiiieieeeaens 360

10 Communication Device Class (CDC)ccooiiiiiiiiiiiiiiie e 361
O O O 1 7= T 1 PP 362
10.1.1 Configuration .ouvieiieii i e 362
10.1.2 CDC-ACM issues on WIiNdOWS 10 ...iceiiriiiriiniiiiininiiieiineserneannsanesnens 362
10.2 The example appliCation ...c.ooiiiiiiiiii i e e e e aneeeaas 363
10.2.1 Testing communication to the USB devicecoooviiviiiiiiiiiiii s 363
O TR T =Y ol 1= o o P 366
10.3.1 Interface function listoceiiiiiii e 366
10.3.1.1 USBD_CDC_AdA() +ireiritiiiniitiieieitaae e staaneaessassaereaneneaneanens 368
10.3.1.2 USBD_CDC_CancelRead() ..cicevvrririiniiiiieiiniiieinnesnerneannesneaness 369
10.3.1.3 USBD_CDC_CancCelWrte() «.ioeveevrriiieiineiieiieeiiiieranssernesnneanens 370
10.3.1.4 USBD_CDC_REAA() ttvurrurrrrrritrneineiniiernensaneanersaneanesennennrnennss 371
10.3.1.5 USBD_CDC_ReadOverlapped() «.ccoveeririiiiiniiiiiiiinieiiennneaeaneaness 372
10.3.1.6 USBD_CDC_RECEIVE() tiruurruririneiitienntitrieaneneraeaesssaernerannanens 373
10.3.1.7 USBD_CDC_RecCIiVEPOI() +ioririiriiiiiiiiii i e e e e 374
10.3.1.8 USBD_CDC_ReadASYNC() tirvrerrieernirieinnirieraeesnerneannssnernnaaneaness 375
10.3.1.9 USBD_CDC_SetOnBreak() ..icevveririiiiiiiniiini i snennnesnenns 376
10.3.1.10 USBD_CDC_SetOnLineCoding() «.iveereerierreriernnireriernnerneaneanns 377
10.3.1.11 USBD_CDC_SetOnControlLineState()ccoovvivviiiiiiiiiciinens 378
10.3.1.12 USBD_CDC_SetOnRXEVENE() tvveririiriieiiiiiiiieneienieenennaneanens 379
10.3.1.13 USBD_CDC_SetOnTXEVENT() +iovvriiriiiiiiiiiiniieiieneieniennenennennens 381
10.3.1.14 USBD_CDC_UpdateSerialState()covveviiiiiiiiiiiiiiiiieiens 383
10.3.1.15 USBD_CDC_WIIE() tvvrerrrirrnerrintaieiieneenereaieneraersananeeennennns 384
10.3.1.16 USBD_CDC_WIrtEASYNC() tuvrrirrnerrintreriierierieasanerneasaneaneanans 385
10.3.1.17 USBD_CDC_WaitFOrRX() vveeiriiiiieiiiiiiieiie it rieneenenennaennes 386
10.3.1.18 USBD_CDC_POHFOrRX() tueiueiritieiiiieiieriinneieiieneenennenseneaneanans 387
10.3.1.19 USBD_CDC_WaitFOrTX() teeviieiieiiiieeieiienieneineienennesennaneenenes 388
10.3.1.20 USBD_CDC_POHFOITX() +rrvueiueruineaernennenerneasenesnesnennsaeeennanens 389
10.3.1.21 USBD_CDC_WaitFOrTXREAAY() .eevvrrrrrnerriieieiiiiniieiinnniennenens 390
10.3.1.22 USBD_CDC_WriteSerialState() ...cvveviririieiiiiiiiiieiieninieiiennanens 391
10.3.1.23 USBD_CDC_GetNumBytesRemToRead()covvvviiviiiiinnnnnnnens 392
10.3.1.24 USBD_CDC_GetNumBytesRemToWrite()cocovvviiiieiiniinennnns 393
10.3.1.25 USBD_CDC_GetNumBytesInBuffer()ccoovviiiieiiiiinnninnnennns 394
10.3.2 Data StrUCKUIES .ouiiiiiii i e e ne e aes 395

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

17

10.3.2.1 USB_CDC _INIT _DATA ..ttt e e e eees 395

10.3.2.2 USB_CDC_LINE_CODINGciuiitiieiieiiieeie et ee e e eeeeenens 396

10.3.2.3 USB_CDC_SERIAL_STATE ..euiiiiii i et ee 397

10.3.2.4 USB_CDC_CONTROL_LINE_STATE ...ieiiiiie i eeens 398

11 Human Interface Device Class (HID)ccoiiiiiiiiieiiiiieeeeeiee e 399
3 O O 1 7= T 1 PP 400
11.1.1 FUurther reading ...occiiiiiiiiii i e 400
1 A | =T oo =1 400
11.1.2.1 Tru@ HIDS ueriiiiieiiie it et et e e e e e e e e e neneanes 400

11.1.2.2 Vendor specCifiCc HIDScciviiiiiiiiiiii i naenaeens 400

11.2 Background informationo.icciiiiiii i 402
I 7 R o 1 1 B =1~ o) o] =P 402

3 720 s R o 1 T =1l] o) (o P 402

11.2.1.2 Report desCriptor ..vvi i e e 402

11.2.1.3 Physical desCriptoroiiiiiiiiiiin e e raeas 403

11.3 CoNfigUIration .oueieiiii i e 404
11.3.1 Initial configurationcooeiiiiiiiii e 404
11.3.2 Final configurationcciiiriiiii i 404

11.4 Example appliCation ..o e 405
11.4.1 USB_HID_MOUSE.C ttuutiuiitintititeteieeteaseatseaseneaaeeneataaeenersaaneneaennanees 405
11.4.2 USB_HID_ECROL.C 1ottt ettt et e e e e e e e e 405
11.4.2.1 Running the example ... 406

11.4.2.2 Compiling the PC example applicationcocoviiiiiiiiiiiinnnnns 406

11,5 Targel AP i e 408
11.5.1 Target interface function listc.cooiiiiiiii s 409
11.5.2 HID Target API fUNCHIONS ...civiiiiiiii e e 410
11.5.2.1 USBD_HID_AdAEX() teretiueiniitieientiaeeieiaaeeaeseneanesneasenenneanens 410

11.5.2.2 USBD_HID_AdA() tvireieiiininniieienteieiieateaesaesnenssaesnesssneenernanens 411

11.5.2.3 USBD_HID_GetNumBytesInBuffer()ccooeviiiiiiiiiiiiiienneenn, 412

11.5.2.4 USBD_HID_GetNumBytesRemToRead()covvvviviinirieiiniineinnnns. 413

11.5.2.5 USBD_HID_GetNumBytesRemToWrite()ccovvvieviiiieiinnnnnnnn. 414

11.5.2.6 USBD_HID_REAA() +tuvrurrurreiitieinineraeitenteaeiensennseanennsneanennanes 415

11.5.2.7 USBD_HID_ReadOverlapped()iccvvviiiiiiiiiiiiiineiiennnarennens 416

11.5.2.8 USBD_HID_RECEIVE() turirrueiniiiiieiieiiaitiititenteierensenerensennnnennss 417

11.5.2.9 USBD_HID_ReCeIiVEPOII() .oviririiriiiiiiiiiiii i eae e e 418

11.5.2.10 USBD_HID_WaitFOrRX() .evriiereiiitiieiieiinneieiieasanenneanennnneanens 419

11.5.2.11 USBD_HID_WaitFOrTX() eioeiriieieiiieiieiiiieeieiieneaneaneasannaneanans 420

11.5.2.12 USBD_HID_WHEE() +eeerrerriitieriiitiie it eieneaneeneseanesnesnaneanens 421

11.5.2.13 USBD_HID_SetOnGetReportRequest()covvevieviiiiieiiniinnrnenns. 422

11.5.2.14 USBD_HID_SetOnSetReportRequest()coovevveiiiiieiiniineinnnn. 423

11.5.2.15 USBD_HID_ReadRepOrt() ..oviieiiriiieiieiiiniiienienneneniennenennennens 424

11.5.3 Data StrUCTUIES .o e e e e 425
11.5.3.1 USB_HID_INIT_DATA_EX ittt e seaeeaeneeas 425

11.5.3.2 USB_HID_INIT _DATA .ottt et e e e aaanaaaens 427

11.5.4 Type definifions .ooueiriiiii i e e 428
11.5.4.1 USB_HID_ON_GETREPORT_REQUEST_FUNCccccvviviiiiiinninnns 428

11.5.4.2 USB_HID_ON_SETREPORT_REQUEST_FUNCcccovviiiiiiiinnens 429

I T T o [T Y = PP 430
11.6.1 Host API fuNCEioN LISt .ovvvieiii i e 431
11.6.2 HID HOSt API fUNCLIONS .oviiiiiiiii it e e e e nea e 432
11.6.2.1 USBHID_CIOSE() teurvutrutareerntinensraeinensaaeaesneanenessnnsnessananeenes 432

11.6.2.2 USBHID_OPEN() titiutrtiitiiinentiaeeertaaererteasaaersasenesnsanennsneanens 433

11.6.2.3 USBHID_INIT() tovvrveieinintiieieineieeieaeieseenenesaesessaneenernannanens 434

11.6.2.4 USBHID_EXIT() evrvrrieirinniniinneieiieenenesneeensaaeeesaneanernannaens 435

11.6.2.5 USBHID_REAA() +euvruerurreatieitiieieiteneeierenseesnsasenesnesnennsnnanens 436

11.6.2.6 USBHID_WHEE() triuerniiritieientiaeeeeteaerieseneaeseaeaneenernaneanens 437

11.6.2.7 USBHID_GetNumAvailableDeVvices()coviviriiiiiiiiiiiiiiinnens 438

11.6.2.8 USBHID_GetProductName() ...ccvvrvieiiiiiiiiiiiiiie i eee s 439

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

18

11.6.2.9 USBHID_GetInputReportSize() ..ocvviiviriiiiiiiii i nieenneeaes 440

11.6.2.10 USBHID_GetOutputReportSize() ...ccvviviieiiriiiiiiiiiiienneneas 441

11.6.2.11 USBHID_GetProductId() ..ciooviieiieiiniiieiineiieiiennnenennesnnennennnans 442

11.6.2.12 USBHID_GetVendorId() ..cuiiviieiieiiiiiiiieiiseieinesnnesnennnsnnens 443

11.6.2.13 USBHID_RefreshLiSt() ..viveviriiiiiiieiiiieii i i iiesnnennenens 444

11.6.2.14 USBHID_SetVendorPage() ...ivcvvrviiiiiiiiiiiiiiineiieiiesnnennennnanns 445

12 PrINEEI CIASS ..ooeviiiiiiiiiii ittt e e e e e e e e e e ettt e e e e e e e e aeeeeaeeeeeanannnes 446
A R O 1Y =T oV PPN 447
12.1.1 Configuration .o.oieiiii i e 447

12.2 The example appliCation ...c.ooiiiiiiiiiii e e eeeaas 448
1 T =Y ol 1= o o 450
12.3.1 Interface function list ... 450
12.3.2 API fUNCHIONS 1ttt e e e 451
12.3.2.1 USB_PRINTER _INIt() tioeiitiiiiiiiiiiiri i nae e 451

12.3.2.2 USB_PRINTER _TaSK() «iottiteiiiiitiiiiiiiiie i i s sneenneenens 452

12.3.2.3 USB_PRINTER_TASKEX() +evvtiittiuiiitiieiiiiieii i inse e iieanseeieannans 453

12.3.2.4 USB_PRINTER_ConfigIRQProcessing()c.cevvvvererriieniennnnnnnnnnens 454

12.3.2.5 USB_PRINTER_REA() .cttiutiiiiiiiiiiiii i i i vt naene e 455

12.3.2.6 USB_PRINTER_ReadTimed() ..ccoviiiiiiiiiiiiiiii i i 456

12.3.2.7 USB_PRINTER_RECEIVE() ttiiriiiiiiiiiiiiiii i i e 457

12.3.2.8 USB_PRINTER_ReceiveTimed() «iccoviiiiiiiiiiiiiiiii i 458

12.3.2.9 USB_PRINTER_WHEE() tivriiiiiiiiiiiiiii i e 459

12.3.2.10 USB_PRINTER_WriteTimed() «.ovveviriiiiiiiiiii i e 460

12.3.2.11 USB_PRINTER_SetOnVendorRequest()ccovvriiiiiiniiiiinnnnnnnens 461

12.3.2.12 USB_PRINTER_SEtCIAsS() evvvrrutiieiiniiiiiiiiiieiiienieiieiiniaenieanens 462

12.3.2.13 USB_PRINTER _API ...ttt s e e 463

12,4 PrINEEr AP o e 464
12.4.1 General information ..o 464
12.4.2 USB_PRINTER_API in detailccvviiiiiiiiiiiii e 465
12.4.2.1 USB_PRINTER_GET_DEVICE_ID_STRINGccovviiiiiiiiiiiiinenens 465

12.4.2.2 USB_PRINTER_ON_DATA_RECEIVEDccciviiiiiiiiiiiiiiiciceas 466

12.4.2.3 USB_PRINTER_GET_HAS_NO_ERRORcciiiiiiiiiiiiiiiiiiiee 467

12.4.2.4 USB_PRINTER_GET_IS_SELECTED ...ccccviiiiiiiiiiiiii i 468

12.4.2.5 USB_PRINTER_GET_IS_PAPER_EMPTY ..iiiiiiiiiiiiiiiiiiiiiiiiens 469

12.4.2.6 USB_PRINTER_ON_RESET ...ctiiiiiiiiiiiiiiiiii i ini it siee s ne s 470

IR B |01V = T L U 1] = I (] USSP 471
R T R O 1Y 7= oV = PPN 472
13.2 Using only RNDIS OF CDC-ECMciuiiiiiiiiiii e et e e e e e e e e naens 473
13.2.1 Working with emUSB-DeVice-IPccoviiiiiiiii e 473

13.3 ConfigUration ..o e 475
13.3.1 Initial Configurationo.oieiiiiii e 475
13.3.2 Final configurationcooeiiiiiii e 475
13.3.3 Class specific configurationccooiiiiiiiii e 475

13.4 Running the sample applicationccciiiiiiiiii e 476
13.5 emUSB-Device-IP + emNet as a "USB Webserver"ccoviiiiiiiiiiiinenneas 477
13.6 Target AP i 478
13.6.1 API fUNCHIONS tiiiiiiiii i e r e s e s ar e rae e e e e aneans 479
13.6.1.1 USBD_IP_Add() eiiieiieiiniiieiiiie i ae s snnennesnesnnssneenesnnsnnenns 479

13.6.1.2 USBD_IP_TaSK() tevrriieiirtieiineineiierinsieinssnnsresnnssnesnnannssneanns 480

R T G B T | = = o o o 1 = 481
13.6.2.1 USB _IP _INIT _DATA ittt e rae e eneaneanes 481

14 Remote NDIS (RNDIS) ...coooiiiiiiiiiiiie e e e e e e e as 482
I R O 1Y =T oV PPN 483
14.1.1 Working with RNDIS ...t e 483
14.1.2 Additional informationccoiiiiiiiii e 483

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

19

emUSB-Device User Guide & Reference Manual

14.2 ConfigUration ..o e 484
14.2.1 Initial Configurationo.oieiiiii e 484
14.2.2 Final configurationcooeiiiiii e 484
14.2.3 Class specific configurationcoooiiiiiiii e 484

14.3 Running the sample applicationccoiiiiiiiiii e 485
14.3.1 IP_Config_RNDIS.c in detailccooiiiiiiiiii i e 485

14.4 RNDIS + emNet as a "USB Webserver" ... i niee e nnnaees 487

14.5 Target APl ..o 488
I T R Y = I 1 o [t o o o T 489

14.5.1.1 USBD_RNDIS_Add() .eiiiiiiiiiiii it i i e i rnaeaaaeas 489
14.5.1.2 USBD_RNDIS_Task() «eviiiiiiiiiiiiiiiii it s e e 490
14.5.1.3 USBD_RNDIS_SetDeviceINfo() ..iviieiiiiiiiiiiiiiii i ciaeeaaens 491
14.5.2 Data StrUCLUIES oottt e r e r e e e e s e e e e annnaaeeeens 492
14.5.2.1 USB_RNDIS INIT DAT A iiitiiiiiteiiiitteriinteeriinseerrinsneerannneenns 492
14.5.2.2 USB_RNDIS_DEVICE_INFO ..iiiiiiiiiiiiiiiiiiiiesiiinreriinarersnnnneeins 493
I TG T B 1 0 Y= ol [o) =Y 7= o= 494
14.5.3.1 USB_IP_NI_DRIVER API ...uiiiiiiiiiiiiiiiiiriisseriinesrrinnsserinnneeens 494
14.5.3.2 USB_IP_NI_DRIVER _DATA .iitiiiiiittiiiteeiiieesriiareriiarsrinnnnees 495

14.6 RINDIS TP DI O uttiiititiititeiiie ettt eaasaatteeeersreanassaseeeeeerreraanrnnnsnerrerrees 496
14.6.1 General informMation .veiiiiii i i i e i 496
14.6.2 Interface fuNCLioN [iSt ..uvvviiiiiiiiiii i i e r e r e e nar e ranes 496
14.6.3 USB_IP_NI_DRIVER_API in detail ...ccooviiiiiiiiii i i rniane e ennnes 497

14.6.3.1 USB_IP_ NI INIT tiiiiittiiieterrinneesrinnrerannsresinnsessranssserannnserinns 497
14.6.3.2 USB_IP_NI_GET_PACKET_BUFFERccotiiiiiiii i i ininneees 498
14.6.3.3 USB_IP_NI_WRITE_PACKET .iiiiitttiiiitreriinnreriinresrinsnesrinnneeins 499
14.6.3.4 USB_IP_NI_SET _PACKET_FILTER ..iiiitiiiiiiiiririineerriinneerinnneenns 500
14.6.3.5 USB_IP_NI_GET_LINK_STATUS .itiiiiiitiiiiiittrerinnieeiiinieerinnnneens 501
14.6.3.6 USB_IP_NI_GET_LINK_SPEEDiiiitiiiiiiiieiiiiieeiiinreinnanesnnnes 502
14.6.3.7 USB_IP_NI_GET_HWADDR ...ciiiiiiiiiiiiii i i nnnseesnnnns 503
14.6.3.8 USB_IP_ NI _GET _STATS .iiiiiiitiiiiiiiteiiiareriinrerrinnsrsriinnrerinnne 504
14.6.3.9 USB_IP_NI_GET_MTU iiiiiiiiiiiiiiiiiieesriinseesinnsessrnnsresrnnaneennnns 505
14.6.3.10 USB_IP NI _RESET .iiitttiiiitteriinrrsiinseerinnsrsriinsessinnsnssrinnnees 506
14.6.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNCccovviiiiiiiiiiineerninnens 507
14.6.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNCcccvvviiiiieiiinnenns 508
S O 5 1 Oy = 4 1Y/ 509

18 T R V7Y oV 1= 1 510
15.1.1 Working wWith CDC-ECM ...ttt 510
15.1.2 Additional informationoiiiiiiiiiiiiii i i e 511

15,2 CoNfigUIAtioN .uiiiiii i e 512
15.2.1 Initial configurationcccooiiiiiiii 512
15.2.2 Final configurationooiiiiiiiiii 512

15.3 Running the sample applicationc.oiiiiiiiiiii e 513
15.3.1 IP_Config_ECM.c in detailc.covviiiiiiiiiii e 513

15,4 Target APl i e 515
S T T R Y = I U o [t o o i K= 516

15.4.1.1 USBD_ECM_AdA() «iiriiitiiiiiiiii i ie s et se e e eae e 516
15.4.1.2 USBD_ECM_TasK() tivetirtiiiiieiiiitii i i iisnte s snesnaenneaneanas 517
15.4.2 Data StrUCEUIES .iiiiiiiiiiiiiiiiii i i et e e e s s s eaaaaaeerens 518
15.4.2.1 USB _ECM INIT DAT A ittt ittt iiistesiiiaeeesansseeranssees 518
ST S T B T o A7 <Y ol [o | =] = oL 519
15.4.3.1 USB_IP_NI DRIVER API ...uiiiiiiiiiiiiiii it siineeesannneenas 519
15.4.3.2 USB _IP_NI DRIVER DATA ittt it iiisnessanseeas 520

15.5 CDC-ECM IP DIiVOI tiiiittiiiiiitieiiiitiettsitettsastessastestaisetssssssteseasssessasssreransnnes 521
15.5.1 General information ..o i e 521
15.5.2 Interface funNCtion 1St ...ciiiiiiiiiiiiiii i i i e e 521
15.5.3 USB_IP_NI_DRIVER_API in detail ...ccooiiiiiiiiiiii i 522

15.5.3.1 USB IP NI INIT tiiiiiiiiiiittiiiintesiiiseeeransseesiisseessanssessansneessnns 522
15.5.3.2 USB_IP_NI_GET _PACKET _BUFFERccotiiiiiiiiiiiiii e 523

© 2010-2024 SEGGER Microcontroller GmbH

20

15.5.3.3 USB_IP_NI_WRITE_PACKET ...ciiiiiiii i e e e e 524

15.5.3.4 USB_IP_NI_SET_PACKET_FILTERccciiiiiiiiieiiiiiie e eeeeeeenens 525

15.5.3.5 USB_IP_NI_GET_LINK_STATUS ...ttt 526

15.5.3.6 USB_IP_NI_GET_LINK_SPEEDccciiiiiiiiiiiiiiie e 527

15.5.3.7 USB_IP_NI_GET_HWADDR ..ot 528

15.5.3.8 USB_IP_NI_GET_STATS .ttt e eeeees 529

15.5.3.9 USB_IP_NI_GET_MTU ..t e e e 530

15.5.3.10 USB_IP_NI_RESET ...uiiiiiiiiiii et e e 531

15.5.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNCcciiiiiiiiiiiiieenenns 532

15.5.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNCcciciivieinnnn. 533

16 CDC-NCM i e e et e e e e et e e et e e e e 534
G N O 1 7= T 1 PP 535
16.1.1 Working with CDC-NCMiiiiiiiiiiii e e eens 535
16.1.2 Additional informationc.ocoiiiiiii e 535

16.2 CoNfigUIation ..vieiiii i e 536
16.2.1 Initial configurationcooeiiiiiiiii e 536
16.2.2 Final configurationcciiieiiiiiii e 536

16.3 Running the sample application ..o 537
16.3.1 IP_Config_NCM.c in detailc.cciiiiiiiiiiiiiiii e 537

16.4 Targel APl ..o aeaas 539
16.4.1 API fUNCEIONS 1iuiitiieiiiiie it et e e e et e e e e e enees 540
16.4.1.1 USBD_NCM_AAA() +rierrrrriieieitaatiieianteierieaseaerneasenesneansnnsneanens 540

16.4.2 Data StrUCTUIES .ouviiiiiii i e e ne e aes 541
16.4.2.1 USB_NCM_INIT _DATA ..ottt et ar e eaeaens 541

16.4.3 Driver INterface oo s 542
16.4.3.1 USB_IP_NI_DRIVER_API ..ottt eenenaeeenaaneanens 542

16.4.3.2 USB_IP_NI_DRIVER_DATA ...ttt e naeeaaes 543

16.5 CDC-NCM IP DIiVOI tiutitiitit ittt eeataae et e taar et aae e ataae e areanannanenes 544
16.5.1 General informationcoooiiiiiii 544
16.5.2 Interface function listcocoiiiiiii 544
16.5.3 USB_IP_NI_DRIVER_API in detailccocvvviiiiiiiii e 545
16.5.3.1 USB_IP_NI_INIT ittt eaeee e reeaeenernaneanees 545

16.5.3.2 USB_IP_NI_GET_PACKET_BUFFERccciiiiiiiiiiiiiiiiiice e 546

16.5.3.3 USB_IP_NI_WRITE_PACKET .itiiiiiitiiiiiiiiiieieneeieeeneenenennes 547

16.5.3.4 USB_IP_NI_SET_PACKET_FILTERictiiiiiiiiiiiiiiiineniennenenaeenens 548

16.5.3.5 USB_IP_NI_GET_LINK_STATUS ..tiitiiiiiiiiiieiiiiiieeierieneeneeenaans 549

16.5.3.6 USB_IP_NI_GET_LINK_SPEEDcccoiiiiiiiiiiiiiiiiieiiee e aeeen 550

16.5.3.7 USB_IP_NI_GET_HWADDR ..ottt eaenae s 551

16.5.3.8 USB_IP_NI_GET_STATS ittt ee e sieeeneaeees 552

16.5.3.9 USB_IP_NI_GET_MTU ittt et e e e e e 553

16.5.3.10 USB_IP_ NI _RESET .iitiitiiiiiiiiitie ittt eanesaeseneenenneneas 554

16.5.3.11 USB_IP_NI_SET_WRITE_PACKET_FUNCciiiiiiieiiinniiennennns 555

16.5.3.12 USB_IP_NI_SET_REPORT_LINKSTATE_FUNCcovvviviieinnnnn 556

3 ¥ T [TP 557
3t N O 1 7= T 558
17.2 Creation of an audio device applicationc.coviiiiiiiiiiiiii e 559
17.2.1 Configuration requirementso 560
17.2.2 Design of audio interfacesooieiiiiiiii i 560
17.2.3 Handling of audio control requestscooiiiiiiiiii 561
17.2.4 Receiving audio datacoooiriiiiiiiii e 561
17.2.4.1 Using explicit feedbackcoooiiiiiiii s 561

17.2.5 Sending audio dataccoieiiiiiiii e 561
17.2.5.1 Using explicit feedbackcoooiiiiiiii s 562

17.2.6 Physical CONEIOIS ..uviiriiiiiii i e e e e e e e 562

17.3 Syntax definition of the USB audio design fileccoviiiiiiiii e 563
17.3.1 Overall syntax of the design file ... 564
17.3.1.1 Compiler MACrOS ...viiviiiiieiineiiesieseiaseaernesans e ransaerneannsanenns 564

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

21

emUSB-Device User Guide & Reference Manual

17.3.2 Control units descriplioncciiiiiiiiii i e 565
17.3.2.1 Input Terminal ...ovveiiiiii e e 565

17 3.2.2 Output Terminal ...cviiiiiii i e 566

7.3.2.3 FEatUIre UNIL .oiiiiiiiii i et e e s e e e ree e e e eenns 566

17 202 S (1= | T 567

17.3.2.5 SeleCtor UNIL tiveiiiiiiii i i s i i e v r s s re e s rr e r e rrnnaeerrans 567

320G T T O o Tl =0 11 | ol = 568

17.3.2.7 CloCK SEIECEON ittt e e e 568

17.3.2.8 Clock MUILIPlIEr .oveii i e e e aeas 568

17.3.3 Streaming interface descriptionccooiiiiiiii i 570
17.3.3.1 AUDIO_STREAM SECHION tivvviiiiiiiiiiiiiieriiiiesiniseerinnrersnnnnesrnns 570

17.3.3.2 ENDPOINT SECHION tttiiiiiiiieiiiiiieeiiiaresriinresiinnnesrsnnsrerannnrerannes 571

17.3.4 Stream units desCriptionicvviiiiiiiii i s e aea s 572
17.3.4.1 FOrmat I SECHION .. e e e r e e nnnaanes 572

17.3.4.2 Format IT SeCHiON ..ovvviiiiiiiiiiiii i e e rr e reeeeees 572

17.3.4.3 FOrmat III SECHION ..uuuiiiiiiiii ittt e v e i e e e e e rennnnnnnes 572

17.4 Target APl ..o 574
2 S R Y = I 10 o [t o o o T 576
17.4.1.1 USBD_AC _Add() «eiiiriiiiiiiii it e e it et i et raae e neeaas 576

17.4.1.2 USBD_AC_GetCurrentAltSetting() ...oovvevririiriiniiiiieiiiinnnnnens 577

17.4.1.3 USBD_AC_GetStreamInfo() «ccviiiriiiiiiiiiiiiiiiii i 578

17.4.1.4 USBD_AC_OpenRXStream() .ccvvieiiriiiiieiiiineiieinnenneinesnnennennnss 579

17.4.1.5 USBD_AC_CI0SeRXSEream() cocviiiiiiiiiiii i i i v i eieeaas 580

17.4.1.6 USBD_AC_OpenTXStream () .ccvveeierrieririinenneiiernnernerneannsnneanens 581

17.4.1.7 USBD_AC_SENA() ttiiiiiiiiii it i i et e e i e 582

17.4.1.8 USBD_AC_CIOSETXSEream () «uvveiiieiiiiiiiii i i i eineennaeanneans 583

17.4.1.9 USBD_AC_SetFeedbackDataRate()coovviiiiiiiiiiiiiiiiiii i, 584

17.4.1.10 USBD_AC_GetFeedbackDataRate()ccoevviiiiiiiiiiiiiiiienne, 585

17.4.1.11 USBD_AC_SendInterruptMessage()ccvvevvrviieiinnineiiennneinennns 586

1 A -) = T] o o o o 1 = 587
17.4.2.1 USBD_AC _INIT _DAT A ittt iiiitteriiarsrrisserraiasssranasserannneerns 587

17.4.2.2 USBD_AC_STREAM_INTF_INFO ..uiiiiiiiiiiiiier i riianeernnnneens 588

17.4.2.3 USBD_AC_RX _CTX tiiiittttiiutttiiinnrerinnsreriinsseriinssssrinsnsermnneens 589

17.4.2.4 USBD _AC _RX _DAT A ittt ittt i it riiate i ranaseerannseeens 590

17.4.2.5 USBD_AC_TX CTX tttiiitttriinnrerrnnnnesrinnsrerinnsrsrinnsessrinresmnnes 591

17.4.2.6 USBD_AC_CONTROL_INFO ..icitiiiiiiiiiiiiieeiiiiee i snnnnserannnns 592

17.4.2.7 USBD _AC _EVENT iiiiiiiiiiiiie ittt riiare s snanessaasrssannsnerannnnes 593

17.4.3 Function definitionsoiiiiiiiii i e 594
17.4.3.1 USBD_AC_SET_ALT_INTERFACEccttiiiiiitiiiiiteriiineesnnnnnernnnes 594

17.4.3.2 USBD_AC_CONTROL_GET_FUNC ..iiiiiiiiiiiiiii i vniane s nnnneeees 595

17.4.3.3 USBD_AC_CONTROL_SET_FUNC ..iiiiiiiiiiiiiie i niineesnnnaneenns 596

17.4.3.4 USBD_AC_RX_CALLBACK ..tiiiiiiitiiiitee i iiinnessnnsessrnnaneenns 597

17.4.3.5 USBD_AC_TX _CALLBACK ..ttiiiiiiii it it riineesnnanesrnnnneees 598

18 Legacy AUMIO 1.0 ..o e e e e e e e e e e e e aaaaaaes 599
RS2 R V7Y oV 1= 1 600
RS 20 1 o o o Yo 11T o) o T 601
18.3 CoNfigUIAtioN .uiiuiiiii i i e 602
18.3.1 Initial configurationcccoiiiiiiiiiii 602
18.3.2 Final configurationcciiiiiiiiiii 602
18.3.3 Using the microphone interfaceccviiiiiiiiiiiii i s 602
18.3.4 Using the speaker interfacecocoviiiiiiiiii i e neeas 603

RS T =Y ol 1= o o 604
RS 2 T TR A\ = I 0 o [t o o i K= 605
18.4.1.1 USBD_AUDIO_Add() teeiitiiriiiiiii it it ne e i naeeeaas 605

18.4.1.2 USBD_AUDIO_Read_Task() «iceeviiiiiiiiiiiiiiiiiiie i enaennennens 606

18.4.1.3 USBD_AUDIO_Write_Task() .civeiieiiiiiiiiiiiii i it i naenaens 607

18.4.1.4 USBD_AUDIO_Start_Play() .ccoveeiiiiiiiiiiiiii i i aea e 608

18.4.1.5 USBD_AUDIO_Stop_Play() «ceevieiieiiiiiiiiii i i eneae 609

© 2010-2024 SEGGER Microcontroller GmbH

22

18.4.1.6 USBD_AUDIO_Start_Listen() ...oooeiiiiiiiiiiiiii i 610

18.4.1.7 USBD_AUDIO_Stop_LisSten() ..cveeeiieiieii i 611

18.4.1.8 USBD_AUDIO_Set_TimeoutsS() .cocviiriiiiiiii i i cieeeans 612

18.4.2 Data StrUCTUIES .ot s r e aane e eneas 613
18.4.2.1 USBD_AUDIO_INIT_DATA .ot aae e 613

18.4.2.2 USBD_AUDIO_IF_CONF ...ttt e e 614

18.4.2.3 USBD_AUDIO_FORMAT ...ttt e eneee s 616

18.4.2.4 USBD_AUDIO_UNITS ..ttt et e e e e 617

18.4.3 Function definitions ...iiiiiiiiiii e 618
18.4.3.1 USBD_AUDIO_TX_FUNC ..ttt e e 618

18.4.3.2 USBD_AUDIO_RX_FUNC ..ot ae e 619

18.4.3.3 USBD_AUDIO_CONTROL_FUNCiiiiiiiiii e 621

19 USB Video device Class (UVC) ..ooueuuiiiiiiiiiiii e eeeeeee et s s e e e e e e e e e e e eeeeannnnnnann 624
LS T R O 1Y =T oV PPN 625
19.2 CoNfIQUIAtioN vt e 626
19.2.1 Initial configurationcooeiiiiiiiii e 626
19.2.1.1 Uncompressed video formatccooviriiiiiiiiiiiiiiiii s 626

19.2.2 Final configurationcciiiriiiii i e 626

S TR T =Y ol 1= o o 627
19.3.1 API fUNCHIONS 1ttt e e 628
19.3.1.1 USBD_UVC_AdA() ttrrvrererninnainitnnenereasennsneaensraeaeassaeaeananens 628

19.3.1.2 USBD_UVC_WIIE() ttrerrrerriitiirtintiierintsaeseneraeeesssaeanernaneanens 629

19.3.1.3 USBD_UVC_WIItEEX() tuvrriitieiiiiiiiiieiineeieeeneeaesensenesnennenennes 631

19.3.1.4 USBD_UVC_SetOnResolutionChange()ccoovviviiiiiiiiiiiiiinnennnns 632

19.3.2 Data StrUCTUIES .ouiiii i e e e e aes 633
19.3.2.1 USBD_UVC _INIT_DATA .ottt eeneaae e raaneanens 633

19.3.2.2 USBD_UVC_BUFFER ...ctiiiiiii i e e e 634

19.3.2.3 USBD_UVC_DATA_BUFFER ..ottt eenee e eenaene s 635

19.3.2.4 USBD_UVC_RESOLUTION ...uiitiitiiiitiitiie it eieiee e eeneeneeenaans 636

19.3.3 FUNCLION ProtOtYPES .ottt e e e e 637
19.3.3.1 USB_UVC_ON_RESOLUTION_CHANGEcecvviiiiiiiiieiiinnieenansn 637

20 Device Firmware Upgrade (DFU)cccccuiiiiiiiiiiieiiceeeeeeee e 638
B O © 1 = VT L 639
20.1.1 Using DFU 0N WINAOWSuiiiiiiiii ittt e e e e s e aeee e 639

20.2 CoNfIGUIAtION ..o.eiii e eaa 640
20.2.1 Dual configuration modeoieiiiiiiii e 640
20.2.2 Single configuration ... s 640

20.3 Target AP e e 641
7 0 NG 0 A Y o A o (o o] o = P 642
20.3.1.1 USBD_DFU_AdA() teiueiniieaieieaeeaeeae et e e e e e eeeeenes 642

20.3.1.2 USBD_DFU_Add_RUNTIME() .teiiiiiiiiiii i s cnie e eaae e 643

20.3.1.3 USBD_DFU_AddAlternatelnterface() ...cccoooviiiiiiiiiiiiiiiiiiieenens 644

20.3.1.4 USBD_DFU_SetMSDEeSCINTO() «iveriiriiiiieiiii it i riaeeneeeaens 645

20.3.1.5 USBD_DFU_SetPollTimeout() ..ccovviiiiiiiiiiiiic i i eea 646

20.3.1.6 USBD_DFU_ACK() «terueineieiie i e e e e e 647

20.3.1.7 USBD_DFU_SELEITOr() ueieietiiieiiieiiiiiite i iiteiaeeieeeaneesnneans 648

20.3.1.8 USBD_DFU_ManifestComplt() ..ccvviviiiiiiiiiiiii i nienaeeas 649

20.3.1.9 USBD_DFU_GetStatusReqCnt() ..vvevviriiriiriiieiininneiiernnsnnernennnens 650

20.3.1.10 USBD_DFU_GetAlternateSetting()cevvviiiiiiiiiiiiinee e 651

20.3.2 Data SErUCLUINES vttt e e e s e e e e s e e ann e eaneennes 652
20.3.2.1 USB_DFU_INIT _DATA ettt e e e e reenens 652

20.3.3 FUNCLION ProtOtyPES .uiiiiiiie it e e e s ae e e e rneraneens 653
20.3.3.1 USBD_DFU_DETACH_REQUEST ...iiiiiiiieiie i e e e 653

20.3.3.2 USBD_DFU_DOWNLOAD ...uuiiiiiiiie et eeeaeaeeaens 654

20.3.3.3 USBD_DFU_UPLOAD ...ttt et et e e e e e e e e 655

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

23

21 Musical Instrument Digital Interface (MIDI)ccooooiiiiiiiiiiii e 656
2 O © 1 = VT 1 657
725 N2 N 0 o o' Yo 1 ot f [0 o P 658
21.3 CoNfiGUIAtION i e 660

21.3.1 Initial configuration ... 660
21.3.2 Final configurationooiiiiiiiiiii i i e e e 660
21.3.3 Testing MIDI on different operating systemsccccoiiiiiiiiiiiiiiiniin e, 660
21,4 Targel AP .ot 661
2 R R Y o A o o o o = 662
21.4.1.1 USBD_MIDI_TNIE() sevvrrririineiiernnerneraemanerernnsanesnesnnsrnernnsnnsrnenns 662
21.4.1.2 USBD_MIDI_AdA() stvvrerrranmmneianmansrieranssnernernsssesnesnnsnnernnsnnens 663
21.4.1.3 USBD_MIDI_ReceivePackets() ..cccvviiiiiiiiiiiiiiii i i i 664
21.4.1.4 USBD_MIDI_GetNumPacketsInBuffer()cccooviiviviiiiiiinnnnenns 665
21.4.1.5 USBD_MIDI_ConvertPackets() ...oovvreiierieriiiiiiinineinnnnnenennnanns 666
21.4.1.6 USBD_MIDI_WritePackets() ..vvevireiirrineiieiiniieiiernneneinnnnnernennes 667
21.4.1.7 USBD_MIDI_WriteStream() ..ocvverieerineiiniineneriernnerneinesansrneannss 668

B R B 1=) o= B] ot B == 669
21.4.2.1 USBD_MIDI_INIT_DATA ittt iitiieiitraesane e raneanernesnnsaneannans 669
21.4.2.2 USBD_MIDI_JACK .tiitiiiiitiineiiniaesreransanernesanssesnnsanernesnnsnneans 670
21.4.2.3 USBD_MIDI_PACKET .tiitiiiiitinneiernnernernesnneresnnssnssnnsnnsaneennans 671

22 Smart Card Device ClasS (CCID) ...ouuuuuuuiiiiiiiiiee e eeeeee et s e e e e e e e e e e e aeeeeaannnnnns 672
B2 R © 1 = YT 1 673
22.2 Targel AP i s 674

22.2.1 API fUNCHIONS 1ttt e e 675
22.2.1.1 USBD_CCID_INIT() tetverereritirneiieianeiieiinsaeiierasesesieanneanesneanns 675
22.2.1.2 USBD_CCID_AdA() tirtvitiireiitiiteiiitane i i siesaseseeneenneaneanes 676
22.2.1.3 USBD_CCID_RecCeiVveCmd() .ivevvirerrireiineeiinerneeranesnnneranesrnneanns 677
22.2.1.4 USBD_CCID_SendStatus() ..cevveviriiriiiiiiniiiiiiineiieiiesinenenneanns 678
22.2.1.5 USBD_CCID_SendDataBlock() ..ccvvvrviiiiiiiiiii i i ciae e 679
22.2.1.6 USBD_CCID_SendESCAPE() .tvrerrurrnrrrurrneminriieinissnerieinnssesnnsnnss 680
22.2.1.7 USBD_CCID_SendParameters() ...uiveeiiieeiieiiineiieeinneranneranennns 681
22.2.1.8 USBD_CCID_SendDataRateAndClockFrequency()cccvvvvvvinennns 682
22.2.1.9 USBD_CCID_NotifySlotState() ..c.coovviiiiiiiiiiiiiciiici s 683
22.2.1.10 USBD_CCID_NOUIfyHWEIrOr() .ovvueiriieiieiiie i eieneeneeeneans 684

22.2.2 Data StrUCLUINES .viiiiii i i e e e et a s 685
22.2.2.1 USB_CCID _INIT DAT A ittt i i e eeaas 685
22.2.2.2 USB_CCID_PROPERTIES ...cctiitiiitiitiiiiiiiiiieneseennenneenea e 686
22.2.2.3 USB_CCID_CMD ..tiitiiiiiiiiiiii ettt st iee e 688
22.2.2.4 USB_CCID_PROTOCOL_DATA_TO .tiiriiitiiiiieiiiie i ennenneanens 690
22.2.2.5 USB_CCID_PROTOCOL_DATA_T1 ittt i e eea s 691

22.2.3 Funclion prototypescciiiiiiiiiiii e 692
22.2.3.1 USBD_CCID_ABORT_CB .iiitiiitiiiiiiiiitiiiiieiie i ennesiesnnennennens 692

23 eMUSB-WeD add-0noooiii e 693
G T I © 1 = VT 694
JAC T U=To 18 | /=1 o g 1=) = 695
23.3 CoNfiGUIAtION it e 696

23.3.1 Initial configuration ..o 696
23.3.1.1 emUSB-Web diagramccoiiiiiiiiiiii i i e 696
23.3.2 emUSB-Web operation in detailcoooiiiiiiiiiiiiii 696
23.3.2.1 Device reCcognition ...cceiiiiiiii i it e 697
23.3.2.2 emUSB-Web protocolccoeiiiiiiiiiiii i 697

24 Combining USB components (Multi-INnterface)cccccceeeeeiiiiieiiiiiciieie e 698
B R © 1 = YT 1 699

24.1.1 Single interface device ClasSesccviiiiiiiiiiiii i 700

24.1.2 Multiple interface device ClassSescoovieiiiiiiiii e eees 700

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

24

emUSB-Device User Guide & Reference Manual

25

26

27

24.1.3 LAD ClaSS ittt i e e 700

24.2 CoNfIGUIAtION ..ouei e aa 702
24.3 HOW £0 COMDING Lot e 703
24.4 emUSB-Device component specific modificationccovviiiiiiiiiinie 707
% i R ©F T G oo 1 2 o To] 1= o | c 707
24.4.1.1 DEVICE SIAE ittt i e e 707

24.4.1.2 HOSE SIdE iiiiiiiii i e e 707

24.5 ISSUES ON WINAOWS 7 riiiiiriiiiieeitiiesae e raeesne e sass e saeeanesneaassaneaneanneaneannans 709
24.5.1 Detailed desCriplion ...ciiiieiiii i i s e 709
Target OS INTEIACEoovieeeeecee e 710
25.1 General information ..o 711
25.1.1 Operating system support supplied with this releaseccoeevennne. 711

25.2 Interface fuNCLiON liSt ...oiiiiiiiiii i e e 712
25.2.1 USB_OS_DeINIE() teiittiiiitiiiitii i i et ea 713
25.2.2 USB_OS_DEIAY() tietrrtiitiitiiitiieii i it ie i 714
25.2.3 USB_OS_DECRI() ttttutiittiutiitiittiitiateiitiateaeiteate it aee et aate e eaeeaneanes 715
25.2.4 USB_OS_GetTiCKCNT() tiviiriiiiiiiiiiiii i i e e s 716
AT I U1 = T O 1S 1 Vel B) () T 717
25.2.6 USB_OS _INIt() trvitiitiiiiitii i i i e 718
25.2.7 USB_0OS _Signal() eiireiiiiiiiiiii it e e 719
25.2.8 USB_OS _Wait() vivriiiiiiiiiii i i e e 720
25.2.9 USB_OS_WaitTimed() .cciviiiiiiiiii i i it naerae e 721
25.2.10 USB_OS_MUEEXANOC() tirtrntiitiittiitiie i i e aaeeeanes 722
25.2.11 USB_OS_MULEXFIEE() teviiriiiiiiii i i i e e 723
25.2.12 USB_0OS_MUtEXLOCK() triiitiiiiiiiiiii i i e i 724
25.2.13 USB_OS_MUuteXUnIOCK() .oieeiiriiiiiii it e e e e e 725
TArgEt USB DIIVEL ...ttt ettt e e e e e e e e e e e e e e e e e e e 726
26.1 General iNformation ...cciiiiiiii i s 727
26.1.1 Available USB driVErsS ..civeiiiiiiiiiiiiiisiesass e snesnse e snsssnesnesnneaneannss 727

26.2 Adding a driver to emMUSB-DeVICE ...cciiriiiiiiiii i i areaeaaeeaes 728
26.2.1 USBD_X_CoNfIG() tervrrirereiiniineiinranereiaesaneinesassseennssnernesansrernnsnnernes 728
26.2.2 USBD_X_DisableINterrupl() ..ioeveeeiiiiiiiini i nnnenne e 730
26.2.3 USBD_X_Enablelnterrupt() «iooeiviiiiiiiiii i e nne e e e 731

26.3 Device driver SPECIFICS .iivriiiiieiiiii i i i e r e e e 732
26.3.1 LPC54/55xxx full-speed drivVer ...ccciiiiiiiiiiii i i e 733
26.3.2 LPC54/55xxx high-speed drivercciiiiiiiiiiiiiii i e e 733

B S TG TG T = [@8 e | 1= o PP 734
26.3.4 Synopsys DWC2 driver (slave mode)ccvviiiiiiiiiiiiii i nenneaees 735
26.3.5 Synopsys DWC2 driver (DMA mMOde) ..cvviviiiiiiiiiiiiiiiie e neaneanes 736

B S INC N ST o [N [Y= 737
26.3.7 ReNESAS RX VeI .viiriiiiiitii i rae s ae e e s e an e rneaneanneanens 738
26.3.8 ATILIRMOI200 AriVer tvviriireieiiteineiaesaneseraneanernesansrnerneeanereennerneaneenes 739
26.3.9 Giga Device GD32F4xx driver (full-speed controller)cccoovvivviniinnnns 740
26.3.10 Giga Device GD32F4xx driver (high-speed controller)ccouvue. 740
26.3.11 Atmel ATSAMV7X AriVEE .uiiriiiiiii i es i a s e rea e e aneees 741
26.3.12 PSOCH AliVeI .iiitiiriiiiiitiieiateae i sase s saesas s e san e s e seaansanerneaaneaneannans 742
26.3.12.1 RESIMCHIONS ittt i i i e e 742

26.3.12.2 PSo0C6 driver specific fUNCLIONSvvviiiiiiiiiii e 742
26.3.12.2.1 USB_DRIVER_Cypress_PSoC6_SysTick()covvrvrnernnnns 742

26.3.12.2.2 USB_DRIVER_Cypress_PSoC6_Resume()ccvuvunnne. 742

26.3.12.2.3 USB_DRIVER_Cypress_PSoC6_ConfigDMA() 742

26.3.13 ST full-sSpeed driVar ..iiviiiiieii i e e e e aananes 744

I o L | S OO 745
PV % R (o] 1) =T u o K= 5] o] 7o o P 746
27.1.1 Where can I find the license number?ccoiiiiiiiiiiiiiiiii 746

© 2010-2024 SEGGER Microcontroller GmbH

25

emUSB-Device User Guide & Reference Manual

28

29

30

Profiling With SYSTEMVIEWooeiiiiiiiiie e 747
28.1 Profiling OVeIVIEW ..t e 748
28.2 Additional files for profilingcioiiiiiiiiiii i 749

28.2.1 Additional files on target sideccoiiiiiiiiiiii 749
28.2.2 Additional files 0N PC SIide ...cicviiiiiiiiii s i s reree e enes 749
28.3 ENnable profiling ...oiioiiiii i e 750
28.4 Recording and analyzing profiling information ... 751

91T o 10 T T 11 o 752
29.1 MeSSage OULPUL .ot e 753
A= T N o W U o Vo o o = PPN 754

29.2.1 USBD_AddLOGFIlEer() .iveiiriiriiiii i e e e 755
29.2.2 USBD_AddWarnFilter() ..ievveiiiiiiiiiiii i s s as e e s e e 756
29.2.3 USBD_SetLogFilter() ..ooiiiiiiiiiiiiiiri s 757
29.2.4 USBD_SetWarnFilter() .o.ooeiiiiiiiiiii i e e e s 758
29.2.5 USB _PANIC .ttt it e e 759
29.2.6 USB_X_LOG() ttruttittiniiitianeiitiiteitiiteane it ease sttt aate e saneateeneaaeaeannaes 760
29.2.7 USB_ X _WalIN() +eiiitiiireiiitiiinteiantiaseiasesansssaneesasesasesanesannssaneesnnesannens 761
29.2.8 USB_OS_PaniC() tteereiitiineiitiatiintiitianeiitraseaneiieeaneserneeasaieanneaeeneannans 762
29.3 MESSAGE LY PES tuiiuiiiiiiiiti ettt 763

Performance & reSOUICE USAQJEcoooiiiiiiiiiiiiiiiiiieee eeeeas 765
30.1 MemOry OO PN oot e e s 766
G0 N == T o o] o o 0 1= [P 769

N PN 770

© 2010-2024 SEGGER Microcontroller GmbH

Chapter 1

Introduction

This chapter will give a short introduction to emUSB-Device, including the supported USB
classes and components. Host and target requirements are covered as well.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

27 CHAPTER 1 Overview

1.1 Overview

This guide describes how to install, configure and use emUSB-Device. It also explains the
internal structure of emUSB-Device.

emUSB-Device has been designed to work on any embedded system with a USB client
controller. It can be used with USB 1.1, USB 2.0 or USB 3.0 devices.

The highest possible transfer rate on USB 2.0 full-speed (12 Mbit/s) devices is approximately
1.2MB/s. In USB 2.0 high-speed mode (480 MBit/s) transfer rates of approx. 42 MByte/s
could be achieved. USB 3.0 SuperSpeed (5 Gbit/s) is also supported.

It depends on the capabilities of the USB controller hardware which USB version and actual
speed can be used on an embedded system.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

28 CHAPTER 1 emUSB-Device features

1.2 emUSB-Device features

Key features of emUSB-Device are:

High performance

Can be used with or without an RTOS

Easy to use

Easy to port

No custom USB host driver necessary

Start / test application supplied

Highly efficient, portable, and commented ANSI C source code

Hardware abstraction layer allows rapid addition of support for new devices

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

29 CHAPTER 1 emUSB-Device components

1.3 emUSB-Device components

emUSB-Device consists of three layers: A driver for hardware access, the emUSB-Device
core and at least a USB class driver or the bulk communication component.

The different available hardware drivers, the USB class drivers, and the bulk communication
component are additional packages, which can be combined and ordered as they fit to the
requirements of your project. Normally, emUSB-Device consists of a driver that fits to the
used hardware, the emUSB-Device core and at least one of the USB class drivers.

Component Description
USB protocol layer
Bulk / Vendor emUSB-Device vendor component.
MSD emUSB-Device Mass Storage Device class component.
IP-over-USB emUSB-Device IP-over-USB component.
VirtualMSD emUSB-Device VirtualMSD Component
CDC-ACM emUSB-Device Communication Device Class component.
HID emUSB-Device Human Interface Device Class component.
MTP emUSB-Device Media Transfer Protocol component.
Printer emUSB-Device Printer Class component.
RNDIS emUSB-Device RNDIS component.
CDC-ECM emUSB-Device CDC Ethernet Control Model component.
CDC-NCM emUSB-Device CDC Network Control Model component.
uvC emUSB-Device USB video class.
Audio emUSB-Device USB audio class.
DFU emUSB-Device Device Firmware Upgrade class.
MIDI emUSB-Device Musical Instrument Digital Interface class.
CCID emUSB-Device Smart Card Interface Device class.
Core layer
emUSB-Device-Core ‘ The emUSB-Device core is the intrinsic USB stack.
Hardware layer
Driver ‘ USB controller driver.

1.3.1 emUSB-Device-Bulk

emUSB-Device-Bulk allows you to quickly and smoothly develop software for an embedded
device that communicates with a PC via USB. The communication is like a single, high-
speed, reliable channel (very similar to a TCP connection). This bidirectional channel, with
built-in flow control, allows the PC to send data to the embedded target, the embedded
target to receive these bytes and reply with any number of bytes. The PC is the USB host,
the target is the USB client.

1.3.2 emUSB-Device-MSD

1.3.2.1 Purpose of emUSB-Device-MSD

Access the target device like an ordinary disk drive

emUSB-Device-MSD enables the use of an embedded target device as a USB mass storage
device. The target device can be simply plugged-in and used like an ordinary disk drive,
without the need to develop a driver for the host operating system. This is possible because
the mass storage class is one of the standard device classes, defined by the USB Imple-

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

30

CHAPTER 1 emUSB-Device components

menters Forum (USB IF). Virtually every major operating system on the market supports
these device classes out of the box.

No custom host drivers necessary

Every major OS already provides host drivers for USB mass storage devices, there is no
need to implement your own. The target device will be recognized as a mass storage device
and can be accessed directly.

Plug and Play

Assuming the target system is a digital camera using emUSB-Device-MSD, videos or photos
taken by this camera can be conveniently accessed with the file system explorer of the
used operating system when the camera is connected to the computer.

1.3.2.2 Typical applications

Typical applications are:

Digital camera
USB stick

MP3 Player
DVD player

Any target with USB interface: easy access to configuration and data files

1.3.2.3 emUSB-Device-MSD features

Key features of emUSB-Device-MSD are:

e Can be used with RAM, parallel flash, serial flash or mechanical drives
e Support for full-speed (12 Mbit/s) and high-speed (480 Mbit/s) transfer rates
e (OS-abstraction: Can be used with any RTOS, but no OS is required for MSD-only devices

1.3.2.4 How does it work?

Use file system support from host OS

A device which uses emUSB-Device-MSD will be recognized as a mass storage device and
can be used like an ordinary disk drive. If the device is unformatted when plugged-in, the
host operating system will ask you to format the device. Any file system provided by the
host can be used. Typically FAT is used, but other file systems such as NTFS are possible,
too. If one of those file systems is used, the host is able to read from and write to the
device using the storage functions of the emUSB-Device MSD component, which define
unstructured read and write operations. Thus, there is no need to develop extra file system
code if the application only accesses data on the target from the host side. This is typically
the case for simple storage applications, such as USB memory sticks or ATA to USB bridges.

Provide file system code on the target if necessary

There are basically two types of MSD devices, one is where the devices does not need
to access the storage (e.g. USB stick, external HDD). The other type is where the device
needs to write data onto the storage medium before it is accessed from a PC (e.g. data
logger) or read data from it after it has been written onto the storage medium by a PC
(e.g. a mp3 player or a device which reads configuration files from the storage). If you are
using emUSB-Device-MSD you are most likely writing software for the former device type.
emUSB-Device-MSD does not offer file-level access to the storage medium, you need a file
system to access the storage. complex and time-consuming task and increases the time-to
market. Thus we recommend the use of a commercial file system like emFile, SEGGER's file
system for embedded applications. emfFile is a high performance library that is optimized for
minimum memory consumption in RAM and ROM, high-speed and versatility. It is written
in ANSI C and runs on any CPU and on any media. Refer to https://www.segger.com/emfile
for more information about emFile.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/emfile

31

CHAPTER 1 emUSB-Device components

1.3.3 emUSB-Device IP-over-USB

emUSB-Device IP-over-USB allows to run any IP-based protocol over USB. This component
combines the advantages of RNDIS and CDC-ECM and allows plug-and-play on any major
host operating system. Using the IP-over-USB technology in combination with a built in
web server, the device can easily be accessed from any host (Windows, Linux, Mac) by
simply typing the device name into the web browser.

1.3.3.1 Typical applications

Typical applications are:

Headphones

Printer

Data logger
Ethernet2USB adapter

1.3.4 emUSB-Device-VirtualMSD

The emUSB-Device-VirtualMSD component allows to easily stream files to and from USB
devices. Once the USB device is connected to the host, files can be read or written to the
application without the need for dedicated storage memory.

1.3.4.1 Typical applications

Typical applications are:

e Updating firmware (e.g. Handheld Terminal)
e Updating configuration files

1.3.5 emUSB-Device-CDC

emUSB-Device-CDC converts the target device into a serial communication device. A tar-
get device running emUSB-Device-CDC is recognized by the host as a serial interface
(USB2COM, virtual COM port), without the need to install a special host driver, because the
communication device class is one of the standard device classes and every major operat-
ing system already provides host drivers for those device classes. All PC software using a
COM port will work without modifications with this virtual COM port.

1.3.5.1 Typical applications

Typical applications are:

Modem
Telephone system
Fax machine

1.3.6 emUSB-Device-HID

The Human Interface Device class (HID) is an abstract USB class protocol defined by the
USB Implementers Forum. This protocol was defined for handling devices that humans use
to control the operation of computer systems. An installation of a custom host USB driver
is not necessary because the USB human interface device class is standardized and every
major OS already provides host drivers for it.

1.3.6.1 Typical applications

Typical applications are:

e Keyboard

e Mouse and similar pointing devices

e Gamepad

e Front-panel controls - for example, switches and buttons

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

CHAPTER 1 emUSB-Device components

Bar-code reader

Thermometer

Voltmeter

Low-speed JTAG emulator
Uninterruptible power supply (UPS)

1.3.7 emUSB-Device-MTP

The Media Transfer Protocol (MTP) is a USB class protocol which can be used to transfer
files to and from storage devices. MTP is an alternative to MSD as it operates on a file level
rather than on a storage sector level. The advantage of MTP is the ability to access the
storage medium from the host PC and from the device at the same time. Because MTP
works at the file level this also eliminates the risk of damaging the file system when the
communication to the host has been canceled unexpectedly (e.g. the cable was removed).
MTP is supported by most operating systems without the need to install third-party drivers.

1.3.7.1 Typical applications

Typical applications are:

Digital camera
USB stick

MP3 Player
DVD player
Telephone

Any target with USB interface: easy access to configuration and data files.

1.3.8 emUSB-Device-Printer

emUSB-Device-Printer converts the target device into a printing device. A target device
running emUSB-Device-Printer is recognized by the host as a printer. Unless the device
identifies itself as a printer already recognized by the host PC, you must install a driver to
be able to communicate with the USB device.

1.3.8.1 Typical applications

Typical applications are:

e Laser/Inkjet printer
e CNC machine

1.3.9 emUSB-Device-RNDIS

emUSB-Device-RNDIS allows to create a virtual Ethernet adapter through which the host
PC can communicate with the device using the Internet protocol suite (TCP, UDP, FTP, HTTP,
Telnet). This allows the creation of USB based devices which can host a webserver or
act as a telnet terminal or a FTP server. emUSB-Device-RNDIS offer a unique customer
experience and allows to save development and hardware cost by e.g. using a website as
a user interface instead of creating an application for every major OS and by eliminating
the Ethernet hardware components from your device.

1.3.9.1 Typical applications

Typical applications are:

e USB-Webserver
e USB-Terminal (e.g. Telnet)
e USB-FTP-Server

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

33 CHAPTER 1 emUSB-Device components

1.3.10 emUSB-Device-CDC-ECM

emUSB-Device-CDC-ECM allows to create a virtual Ethernet adapter through which the
host PC can communicate with the device using the Internet protocol suite (TCP, UDP, FTP,
HTTP, Telnet). This allows the creation of USB based devices which can host a webserver or
act as a telnet terminal or a FTP server. emUSB-Device-CDC-ECM offer a unique customer
experience and allows to save development and hardware cost by e.g. using a website as
a user interface instead of creating an application for every major OS and by eliminating
the Ethernet hardware components from your device.

1.3.10.1 Typical applications

Typical applications are:

e USB-Webserver
e USB-Terminal (e.g. Telnet)
USB-FTP-Server

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

34 CHAPTER 1 Requirements

1.4 Requirements

1.4.1 Target system

Hardware

The target system must have a USB controller. The memory requirements can be found in
the chapter Performance & resource usage on page 765. In order to have the control when
the device is enumerated by the host, a switchable attach is necessary. This is a switchable
pull-up connected to the D+ Line of USB.

Software

emUSB-Device is optimized to be used with embOS but works with any other supported
RTOS or without an RTOS in a superloop. For information regarding the OS integration refer
to the chapter Target OS Interface on page 710.

1.4.2 Development environment (compiler)

The CPU used is of no importance; only an ANSI-compliant C compiler complying with at
least one of the following international standard is required:

« ISO/IEC 9899:1999 (C99)
e ISO/IEC 14882:1998 (C++)

A C++ compiler is not required, but can be used. The application program can therefore
also be programmed in C++ if desired.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

35

CHAPTER 1 File structure

1.5 File structure

The following table shows the contents of the emUSB-Device root directory:

Directory Contents
Contains the application programs. Depending on which stack is
Application used, several files are available for each stack. Detailed informa-
tion can be found in the corresponding chapter.
BSP Contains example hardware-specific configurations for different
eval boards.
Config Contains configuration files (USB_Conf. h, USB_Confi gl O c).
Doc Contains the emUSB-Device documentation.
I nc Contains include files.
Samol e Contains operating systems dependent files which allows to run
P emUSB-Device with different RTOS's.
SEGGER Contains generic routines from SEGGER.
UsB Contains the emUSB-Device source code.
Contains host specific applications (for Windows, Linux, MacOS)
W ndows which can be used in conjunction with the device application

samples.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

36 CHAPTER 1 Multithreading

1.6 Multithreading

The emUSB target API is not generally thread safe. But it is allowed to handle different
endpoints in different tasks in parallel. Examples are:

e A task that performs all reads of data from the host while another task sends data to
the host.

e Operating on different interfaces (e.g. a BULK and a CDC interface) in independent
tasks.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 2

Background information

This is a short introduction to USB. The fundamentals of USB are explained and links to
additional resources are given.

Information provided in this chapter is not required to use the software.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

38 CHAPTER 2 USB

21 USB

2.1.1 Short Overview

The Universal Serial Bus (USB) is a bus architecture for connecting multiple peripherals to a
host computer. It is an industry standard — maintained by the USB Implementers Forum —
and because of its many advantages it enjoys a huge industry-wide acceptance. Over the
years, a number of USB-capable peripherals appeared on the market, for example printers,
keyboards, mice, digital cameras etc. Among the top benefits of USB are:

e Excellent plug-and-play capabilities allow devices to be added to the host system
without reboots (“hot-plug”). Plugged-in devices are identified by the host and the
appropriate drivers are loaded instantly.

e USB allows easy extensions of host systems without requiring host-internal extension
cards.

e Device bandwidths may range from a few kB/s to hundreds of MB/s.

A wide range of packet sizes and data transfer rates are supported.
USB provides internal error handling. Together with the already mentioned hot-plug
capability this greatly improves robustness.

e The provisions for powering connected devices dispense the need for extra power
supplies for many low power devices.

e Several transfer modes are supported which ensures the wide applicability of USB.

These benefits did not only lead to broad market acceptance, but it also added several
advantages, such as low costs of USB cables and connectors or a wide range of USB stack
implementations. Last but not least, the major operating systems such as Microsoft Win-
dows, Mac OS X, or Linux provide excellent USB support.

2.1.2 Important USB Standard Versions

USB 1.1 (September 1998)

This standard version supports isochronous and asynchronous data transfers. It has dual
speed data transfer of 1.5 Mbit/s for low-speed and 12 Mbit/s for full-speed devices. The
maximum cable length between host and device is five meters. Up to 500 mA of electric
current may be distributed to low power devices.

USB 2.0 (April 2000)

As all previous USB standards, USB 2.0 is fully forward and backward compatible. Existing
cables and connectors may be reused. A new high-speed transfer speed of 480 Mbit/s (40
times faster than USB 1.1 at full-speed) was added.

USB 3.0 (November 2008)

As all previous USB standards, USB 3.0 is fully forward and backward compatible. Exist-
ing cables and connectors may be reused but the new speed can only be used with new
USB 3.0 cables and devices. The new speed class is named USB Super-Speed, which offers
a maximum rate of 5 Gbit/s.

USB 3.1 (July 2013)

As all previous USB standards, USB 3.1 is fully forward and backward compatible. The new
specification replaces the 3.0 standard and introduces new transfer speeds of up to 10
Gbit/s.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

39

2.1.3 USB System Architecture

CHAPTER 2

USB

A USB system is composed of three parts - a host side, a device side and a physical bus.
The physical bus is represented by the USB cable and connects the host and the device.
The USB system architecture is asymmetric. Every single host can be connected to multiple
devices in a tree-like fashion using special hub devices. You can connect up to 127 devices
to a single host, but the count must include the hub devices as well.

A USB host consists of a USB host controller hardware and a layered software stack. This

host stack contains:

e A host controller driver (HCD) which provides the functionality of the host controller

hardware.

e The USB Driver (USBD) Layer which implements the high level functions used by USB
device drivers in terms of the functionality provided by the HCD.

emUSB-Device User Guide & Reference Manual

The USB Device drivers which establish connections to USB devices. The driver classes
are also located here and provide generic access to certain types of devices such as
printers or mass storage devices.

Application

y)
Keyboard Printer
Mouse Driver

Operating
System

Claz=s
Drivers

|, e
L

USE Driver Core Hub Driver

Hardware-independent

USB Host Controller Driver

Hardware- specific

USB Host Controller

Connect USB
peripherals

K/“

© 2010-2024 SEGGER Microcontroller GmbH

40

CHAPTER 2 USB

USB Device

Two types of devices exist: hubs and functions. Hubs provide for additional USB attachment
points. Functions provide capabilities to the host and are able to transmit or receive data
or control information over the USB bus. Every peripheral USB device represents at least
one function but may implement more than one function. A USB printer for instance may
provide file system like access in addition to printing.

In this guide we treat the term USB device as synonymous with functions and will not
consider hubs.

Each USB device contains configuration information which describes its capabilities and
resource requirements. A USB device must be configured by the host before its functions can
be used. When a new device is connected for the first time, the host enumerates it, requests
the configuration from the device, and performs the actual configuration. For example, if
an embedded device uses emUSB-Device-MSD, the embedded device will appear as a USB
mass storage device, and the host OS provides the driver out of the box. In general, there
is no need to develop a custom driver to communicate with target devices that use one
of the USB class protocols.

Descriptors

A device reports its attributes via descriptors. Descriptors are data structures with a stan-
dard defined format. A USB device has one device descriptor which contains information
applicable to the device and all of its configurations. It also contains the humber of config-
urations the device supports. For each configuration, a configuration descriptor contains
configuration-specific information. The configuration descriptor also contains the number
of interfaces provided by the configuration. An interface groups the endpoints into logi-
cal units. Each interface descriptor contains information about the number of endpoints.
Each endpoint has its own endpoint descriptor which states the endpoint’s address, transfer
types etc.

Device

descriptor

/..n configuration descriptors

Configuration

descriptor
/ 1...m interface descriptors
Interface
descriptor
/ 1...0 endpoint descriptors
Endpoint
descriptor

As can be seen, the descriptors form a tree. The root is the device descriptor with n con-
figuration descriptors as children, each of which has m interface descriptors which in turn
have o endpoint descriptors each.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

41 CHAPTER 2 USB

2.1.4 Transfer Types

The USB standard defines four transfer types: control, isochronous, interrupt, and bulk.
Control transfers are used in the setup phase. The application can select one of the other
three transfer types. For most embedded applications, bulk is the best choice because it
allows the highest possible data rates.

Control transfers

Typically used for configuring a device when attached to the host. It may also be used for
other device-specific purposes, including control of other pipes on the device.

Interrupt transfers

Typically used by devices that need guaranteed quick responses (fixed latency).

Bulk transfers

Typically used by devices that generate or consume data in relatively large and bursty
quantities. Bulk transfer has wide dynamic latitude in transmission constraints. It can use all
remaining available bandwidth, but with no guarantees on bandwidth or latency. Because
the USB bus is normally not very busy, there is typically 90% or more of the bandwidth
available for USB transfers.

Isochronous transfers

Typically used for applications which need guaranteed speed. Isochronous transfer offers a
guaranteed bandwidth but with possible data loss. A typical use is for audio data which re-
quires a constant data rate. Unlike bulk, control or interrupt transfers isochronous transfers
do not receive an “"ACK"” from the other side, therefore the sender does not know whether
the data was received by the other side correctly. For applications where constant data
rate is more important than data integrity (audio, video) the potential data loss does not
pose an issue.

2.1.5 Setup phase/Enumeration

The host first needs to get information from the target, before the target can start commu-
nicating with the host. This information is gathered in the initial setup phase. The informa-
tion is contained in the descriptors, which are in the configurable section of the USB-MSD
stack. The most important part of target device identification are the Product and Vendor
IDs. During the setup phase, the host also assigns an address to the client. This part of
the setup is called enumeration.

2.1.6 Product/Vendor IDs

The Product and Vendor IDs are necessary to identify the USB device. The Product ID
describes a specific device type and does not need to be unique between different devices of
the same type. USB host systems like Windows use the Product ID/Vendor ID combination
to identify which drivers are needed.

For example: all our J-Link devices have the Vendor ID 0x1366 and Product ID 0x0105.

A Vendor and Product ID is necessary only when development of the product is finished;
during the development phase, the supplied Vendor and Product IDs can be used as sam-
ples. Using the sample Vendor ID (0x8765) or the SEGGER Vendor ID in a finished product
is not allowed.

Possible options to obtain a Vendor ID or Product ID are described in the chapter Vendor
and Product ID on page

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

42 CHAPTER 2 Predefined device classes

2.2 Predefined device classes

The USB Implementers Forum has defined device classes for different purposes. In general,
every device class defines a protocol for a particular type of application such as a mass
storage device (MSD), human interface device (HID), etc. Device classes provide a stan-
dardized way of communication between host and device and typically work with a class
driver which comes with the host operating system.

Using a predefined device class where applicable minimizes the amount of work to make
a device usable on different host systems.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

43 CHAPTER 2 USB hardware analyzers

2.3 USB hardware analyzers

A variety of USB hardware analyzers are on the market with different capabilities. If you
are developing an application using emUSB-Device it should not be necessary to have a
USB analyzer, but we still recommend you do.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

44 CHAPTER 2 References

2.4 References

For additional information see the following documents:

e Universal Serial Bus Specification, Revision 2.0

e Universal Serial Bus Mass Storage Class Specification Overview, Rev 1.2

e UFI command specification: USB Mass Storage Class, UFI Command Specification, Rev
1.0

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 3

Getting started

The first step in getting emUSB-Device up and running is typically to compile it for the
target system and to run it in the target system. This chapter explains how to do this.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

46 CHAPTER 3 How to setup your target system

3.1 How to setup your target system

We assume that you are familiar with the tools you have selected for your project (compiler,
project manager, linker, etc.). You should therefore be able to add files, add directories to
the include search path, and so on. In this document the Embedded Studio IDE is used for
all examples and screenshots, but every other ANSI C toolchain can also be used. It is also
possible to use makefiles; in this case, when we say “add to the project”, this translates
into “add to the makefile”.

Procedure to follow

Integration of emUSB-Device is a relatively simple process, which consists of the following
steps:

Take a running project for your target hardware.

Add emUSB-Device files to the project.

Add hardware dependent configuration to the project.
Prepare and run the application.

3.1.1 Take arunning project

The project to start with should include the setup for basic hardware (e.g. CPU, PLL, DDR
SDRAM) and initialization of the RTOS. emUSB-Device is designed to be used with embOS,
SEGGER’s real-time operating system. We recommend to start with an embQOS sample
project and include emUSB-Device into this project.

3.1.2 Add emUSB-Device files

Add all necessary source files from the USB folder to your project. You may simply add all
files and let the linker drop everything not needed for your configuration. But there are
some source files containing dependencies to emFile or emNet. If you don’t have these
middleware components, remove the respective files from your project.

Add RTOS layer

Additionally add the RTOS interface layer to your project. Choose a file from the folder
Sanpl e/ USB/ CS that matches your RTOS. For embOS use USB_OS _enbQSv5. c. There is also
a file USB_CS_None. ¢ containing a layer to be used for superloop applications without an
RTOS.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same folder as the C file to
compile, an include path needs to be set. In order to build the project with all added files,
you will need to add the following directories to your include path:

e Config
e |nc
e SEGGER
e USB

3.1.3 Configuring debugging output

While developing and testing emUSB-Device, we recommend to use the DEBUG configu-
ration of emUSB-Device. This is enabled by setting the preprocessor symbol DEBUG to 1
(or USB_DEBUG LEVEL to 2). The DEBUG configuration contains many additional run-time
checks and generate debug output messages which are very useful to identify problems
that may occur during development. In case of a fatal problem (e.g. an invalid configu-
ration) the program will end up in the function USB_OS Pani c() with a appropriate error
message that describes the cause of the problem. Once the application is running correctly,
DEBUG can be set to 0.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

47

CHAPTER 3 How to setup your target system

Add the file USB_Confi gl O. c found in the folder Confi g to your project and configure it to
match the message output method used by your debugging tools. If possible use RTT.

To later compile a release configuration, which has a significantly smaller code footprint,
simply set the preprocessor symbol DEBUG (or USB_DEBUG _LEVEL) to 0.

3.1.4 Add hardware dependent configuration

To perform target hardware dependent runtime configuration, the emUSB-Device stack calls
a function named USBD_X Confi g. Typical tasks that may be done inside this function are:

Select an appropriate driver for the USB controller.
Configure I/0 pins of the MCU for USB.

Configure PLL and clock divider necessary for USB operation.
Install an interrupt service routine for USB.

Details can be found in Target USB Driver on page 726.

Sample configurations for popular evaluation boards are supplied with the driver shipment.
They can be found in files called USB_Confi g_<Tar get Nane>. c in the folders BSP/ <Boar d-
Nanme>/ Set up.

Add the appropriate configuration file to your project. If there is no configuration file for
your target hardware, take a file for a similar hardware and modify it if necessary.

If the file needs modifications, we recommend to copy it into the directory Confi g for easy
updates to later versions of emUSB-Device.

Add BSP file

Some targets require CPU specific functions for initialization, mainly for installing an inter-
rupt service routine. They are contained in the file BSP_USB. c. Sample BSP_USB. ¢ files for
popular evaluation boards are supplied with the driver shipment. They can be found in the
folders BSP/ <Boar dNanme>/ Set up.

Add the appropriate BSP_USB. c file to your project. If there is no BSP file for your target
hardware, take a file for a similar hardware and modify it if necessary.

If the file needs modifications, we recommend to copy it into the directory Confi g for easy
updates to later versions of emUSB-Device.

Note that a BSP_USB. ¢ file is not always required, because for some target hardware all
runtime configuration is done in USB_X_Confi g.

3.1.5 Prepare and run the application

Choose a sample application from the folder Appl i cati on and add it to your project. For
example, add USB_HI D_Muse. ¢ as your application to your project. Compile and run the
application on the target hardware. After connecting the USB cable to the target device,
the mouse pointer should hop from left to right.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

48

% Start_K66 - SEGGER E Studio V2.16b - tion Mode

CHAPTER 3

How to setup your target system

File Edit View Search Navigate Templates Project Build Debug Target VCS Tools Window Help
Project Explorer @ x || os_startieDBlink.c (EIGDNIGNY BsP.c BSP.c
ESLE T R— e L= M ISR SR
Project Items Code Data s
Solution ‘Start_Ks6' : | SEGGER MICROCONTROLLER Gghif & Co. K6 :
2 [Project “Start K66 ssser| 1mam Solutions for real time microcontroller applications
a4 5 Application Zfies 12, N
& [Excuded 12fes * (c) 2893-2011 SEGGER Microcontroller Gmah & Co KG *
b] Main.c 136 3,161 * *
b f2] USB_HID_Mousa.c 212 219 * Internet: wwn.sgggsr.com Support: support@iseager. com =
* *
4 ‘4 Config 1fe
» &) USE_Config_Freescale_KinetisEHCL Fre 396 * *
» [DeviceSupport 2 fies USE device stack for embedded applications *
» ([Lib | 2fies = -
[setup 15fies
B
4 Quss (4 __File : USB_HID Plouse.c
B UsBh “? purpose : Demonstrotes usage of the HID component of the USS stack as mouse.
b &) USB_HID.c 2172 1s8 Hakes the mouse jump Left & right.
BjussHDA e END-OF -HEADER === === = == e e e e e e
fi2) USB_HID_Private.h *
b #] USB_HW_EHCLC 12
© & USB_HW._Freescale_KinetisEHCLe 5,676 5,305 sinclude <string.h>
& #&] USBIAD.c 368 75 #include <stdio.h>
& USB_Log.c 1,208 54 #include "USB.h"
b fg) USB_Main.c 8,656 1,233 rinclude "USB_HID.h™
b &) USB_OS_embOS.c 348 64 pinclude “BSP.W
] USE_Private.h 3e ,
b #] USE Setup.c 5,828 533 B
] rReadmetxt * Static gopst data
> L3 Output Files K
*
7
// Information that is used during enumeration.
37/ -
Find And Replace 4[] 3
| woidipD Output x
P — Show: |Tra_nsmpt_ | Y Tasks - -
EI Checking project status -
| Search within results ‘ Project out of date
E“D Building ‘Start_K66" from solution "Start_K66" in configuration ‘Debug” 23 targets in1.1s
Completed 25 targets/s
@ Build complete 2 projects in1.1s
Completed 2 projects/s
No results
FLASH RAM Summary
h | D 46360 FLASH
14,905 RAM
4528 14.5 KB

Build complete

emUSB-Device User Guide & Reference Manual

@ Built OK

© 2010-2024 SEGGER Microcontroller GmbH

49 CHAPTER 3 Updating emUSB-Device

3.2 Updating emUSB-Device

If an existing project should be updated to a later emUSB-Device version, only files have
to be replaced. You should have received the emUSB-Device update as a zip file. Unzip this
file to the location of your choice and replace all emUSB-Device files in your project with
the newer files from the emUSB-Device update shipment.

In general, all files from the following directories have to be updated:

USB

I nc

SEGGER

Doc

Sanpl e/ USB/ OS

Some files may contain modification required for project specific customization. These files
should reside in the folder Confi g and must not be overwritten. This includes:

USB_Conf . h

USB_ConfiglO ¢

BSP_USB. ¢

USB_Confi g_<Tar get Nane>. ¢

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

50

CHAPTER 3 emUSB-Device Configuration

3.3 emUSB-Device Configuration

3.3.

An application using emUSB-Device must contain a USB_DEVI CE_I NFO structure containing
the device identification information.

1 USB_DEVICE_INFO

Description

Device information that must be provided by the application via the function USBD_Set De-
vi cel nfo() before the USB stack is started using USBD Start (). Is used during enumer-
ation of the device by the host.

Type definition

typedef struct {
Ul6 Vendor | d;
Ul6 Product | d;
const char * sVendor Nane;
const char * sProduct Nane;
const char * sSerial Nunber;
} USB_DEVI CE_I NFQ,

Structure members

Member Description

Vendor | d Vendor ID. Uniquely identifies the vendor on a USB device.

Product I d Product ID. Uniquely identifies all USB devices of a vendor.

sVendor Nanme Vendor name. ASCII string of up to 126 characters.

<Pr oduct Name Description of the USB device. ASCII string of up to 126
characters.

sSeri al Nurber _Serlal nqmber of the USB device (ASCII string). May be NULL
if no serial number should be provided.

Additional information

The Product ID in combination with the Vendor ID creates a worldwide unique identifier for
the product model. The Vendor ID is assigned by the USB Implementers Forum (https://
www.usb.org). For tests, the default number above (or pretty much any other number) can
be used. However, you may not bring a product to market without having been assigned
your own Vendor ID. For emUSB-Device-CDC: If you change this value, do not forget to
make the same change to the . i nf file as described in section The .inf file on page
Otherwise, the Windows host will be unable to locate the driver.

The manufacturer name, product name and serial number are used during the enumeration
phase. They together should give a detailed information about which device is connected
to the host.

Note

The max string length cannot be more than 126 ANSI characters.

Note for MSD: In order to confirm to the USB bootability specification, the minimum string
length of the serial number must be 12 characters where each character is a hexadecimal
digit (‘0" though 9’ or ‘A’ through 'F’).

Example

static const USB _DEVI CE_| NFO _Devicelnfo = {
0x8765, /1 Vendor| d

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org
https://www.usb.org

51 CHAPTER 3
0x1234, /1 Productld
"Vendor", /| Vendor Nane
"Bul k device", [/ ProductNane
"13245678" /1 Serial Nunber

}
USBD_Set Devi cel nf o(& Devi cel nfo);

USBD Start();

emUSB-Device Configuration

This structure and functions are included in every example application and can be used
without modifications in the development phase of your application, but you may not bring
a product on the market without modifying the Vendor ID and Product ID.

Ids Description
Default Vendor ID for all applications
Ox8765 Itfmzr:ﬁantae;e;rcé%rLllc?S!for all examples. Do not use
Used Product IDs
0x1240 Example Product ID for all bulk samples.
Ox1234 Exa_mple Product I_D for deprecated bulk samples
(using SEGGER Windows driver)
0x1200 Example Product ID for the MSD CD-ROM sample.
0x1000 Example Product ID for all MSD samples.
0x1088 Example Product ID for all UVC samples.
0x1111 Example Product ID for all CDC samples.
0x1112 Example Product ID for HID mouse sample.
Ox1114 E:sqn;lzlle Product ID for the vendor specific HID
0x1115 Example Product ID for HID keyboard sample.
0x1310 Example Product ID for the Audio Speaker sample.
Ox1311 IIilxea.mple Product ID for the Audio Microphone sam-
0x1312 Example Product ID for the Audio Headset sample.
0x1350 Example Product ID for the MIDI sample.
0x2114 Example Product ID for the Printer class sample.
0x3000 Example Product ID for RNDIS sample.
0x3003 Example Product ID for ECM sample.
0x3004 Example Product ID for IP-over-USB sample.
0x3005 Example Product ID for NCM sample.

3.3.2 Additional required configuration for emUSB-MSD

Refer to MSD Configuration on page 242 for more information about the required additional

configuration functions for emUSB-MSD.

3.3.3 Descriptors

All configuration descriptors are automatically generated by emUSB-Device and do not

require configuration.

Some optional descriptors may be enabled by calling the following functions:

e USBD Enabl el AIX)
e USBD_UseV210()

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

52 CHAPTER 3 emUSB-Device Configuration

e USBD Enabl eSuper Speed()
e USBD_Set WebUSBI nf o()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

53 CHAPTER 3 Compile-time configuration

3.4 Compile-time configuration

emUSB-Device can be used without changing any of the compile-time switches. All com-
pile-time configuration switches are preconfigured with valid values which match the re-
quirements of most applications. An exception are the audio and video classes, which re-
quire change some of the options in order to work properly, see Configuration requirements.

All compile-time switches and their default values can be found in the file USB_Conf De-
faul ts. h.

To change the default configuration of emUSB-Host compile-time switches can be added
to USB_Conf. h. Don’t change the USB_Conf Def aul t s. h file for easy updates of emUSB-
Device.

3.4.1 Compile-time switches for debugging

3.4.1.1 USB_DEBUG_LEVEL

Description

emUSB-Device can be configured to display debug messages and warnings to locate an
error or potential problems. This can be useful for debugging. In a release (production)
build of a target system, they are typically not required and should be switches off.

To output the messages, emUSB-Host uses the logging routines contained in USB_Con-
fi gl O ¢ which can be customized.

USB_DEBUG LEVEL can be set to the following values:

e 0 - Used for release builds. Includes no debug options.

e 1 - Used in debug builds to include support for “panic” checks.

e 2 - Used in debug builds to include warning, log messages and “panic” checks. This
significantly increases the code size.

Definition

#define USB DEBUG LEVEL 0

3.4.1.2 USB_LOG_BUFFER_SIZE

Description

Maximum size of a debug / warning message (in characters) that can be output. A buffer
of this size is created on the stack when a message is output.

Definition

#def i ne USB_LOG BUFFER_SI ZE 100

3.4.2 Use of standard C-library functions

emUSB-Device calls some functions from the standard C-library. If the standard C-library
should not be used, the following macros can be changed to call user defined functions
instead:

#def i ne USBH_MEMCPY mencpy
#define USBH MEMSET nenset
#def i ne USBH_MEMCMP mentnp
#defi ne USBH_MEMMOVE menmove
#define USBH STRLEN strlen
#def i ne USBH_STRCAT strcat
#def i ne USBH_STRRCHR strrchr
#defi ne USBH_STRNCPY strncpy
#define USBH_STRCMP strcnp

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

54 CHAPTER 3 Compile-time configuration

3.4.3 General USB configuration

3.4.3.1 USB_SUPPORT_TRANSFER_ISO

Description

Must be set to 1 if the USB stack shall support isochronous transfers (e.g. for audio and
video applications). If set to 0, all code that handles isochronous transfers is disabled, which
may significantly reduce the code size of the USB stack.

Definition

#def i ne USB_SUPPORT_TRANSFER_| SO 0

3.4.3.2 USB_SUPPORT _TEST MODE

Description

USB test mode enable. This can be set to 1 to enable support for USB high-speed test
mode. It is disabled by default to reduce memory footprint of the USB stack.

Definition

#define USB_SUPPORT _TEST MODE 0

3.4.3.3 USB_NUM_EPS

Description

Maximum number of endpoints that can be used in the main stack. A table is stored in
static memory with USB_NUM EPS entries, each allocates 56 bytes.

Definition

#def i ne USB_NUM_EPS 8u

3.4.3.4 USB_MAX_NUM_IF

Description

Maximum number of USB interfaces the device can support. Each USB class has one or
more interfaces. For a USB composite device USB_MAX NUM | F must be = the sum of the
number of interfaces for all classes configured. Information about all interfaces are stored
into a table, which allocates about USB MAX NUM | F * 9 words in static memory (word =
sizeof(void *)).

Definition

#define USB.MAX_ NUMIF 4u

3.4.35 USB_MAX_NUM_ALT_IF

Description

Maximum number of USB alternate settings the device can support. Some USB inter-
faces may have alternate settings to select different operating modes / configurations.
USB_MAX _NUM ALT I F must be = the sum of the number of all alternate settings of all in-
terfaces of all classes configured. Information about all alternates settings are stored into
a table, which allocates about USB_ MAX NUM ALT | F * 10 words in static memory (word
= sizeof(void *)).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

55 CHAPTER 3 Compile-time configuration

Definition
#define USB_MAX NUM ALT | F 2u

Number of interfaces / alternate settings for each USB class

USB class Number of interfacses Number of alternate settings
Bulk / Vendor 1 :cysially 0, but may be configured
CDC-ACM 2 0
CDC-ECM 2 1
CDC-NCM 2 1
CCID 1 0
HID 1 0
Mass storage 1 0
MTP 1 0
Printer 1 0
DFU 0 1
MIDI 2 0
RNDIS 2 1
uvC 2 1
Audio 1 + Number of audio streams At least one per al.,ldi'O stream,

(IN/OUT) see Design of audio interfaces

3.4.3.6 USB_DESC_BUFFER_SIZE

Description

Maximum size of a USB configuration descriptor. The configuration descriptor consists of a
header and the concatenation of configurations for all configured USB classes. The config-
uration descriptors are small for most classes, but for the audio or video class it may get
large and require to increase the size of this buffer.

Definition

#def i ne USB_DESC_BUFFER_SI ZE 256

3.4.3.7 USBD_SUPPORT_PROFILE

Description
Enables USB API instrumentation for SystemView.
Definition

#def i ne USBD_SUPPORT_PROFI LE 0

3.4.3.8 USBD_OS_USE_USBD_X_INTERRUPT

Description

If set emUSB-Device will use the functions USBD X Enabl el nt errupt () and USBD X Di s-
abl el nterrupt () instead of disabling/enabling the interrupts globally. Those functions on-
ly disable/enable the USB interrupt. The functions are MCU specific and must be defined
in the corresponding USB_Confi g_*.c file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

56 CHAPTER 3 Compile-time configuration

Definition
#define USBD_OS_USE_USBD X_ | NTERRUPT 0

3.4.3.9 USBD_OS_USE_ISR _FLAG

Description

Enable flag to indicate execution of USB interrupt. May be needed by some RTOS layer in
combination with USBD_0OS_USE_USBD_ X | NTERRUPT=1 (experimental).

Definition
#define USBD_OS_USE_| SR FLAG 0

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

57 CHAPTER 3 Host OS specifics

3.5 Host OS specifics
3.5.1 Windows registry

The Windows registry is a database which stores settings for the operating system. The
relevant aspect of the Windows registry in regard to USB development is the fact that Win-
dows stores information about connected USB devices into the registry. Normally Windows
stores the Vendor and Product ID pair together with the USB configuration of that particular
device in the registry. During USB development this can have negative effects because, if
you, the developer, change the USB configuration of a device Windows will still have the old
USB configuration saved in the registry. While the USB device is functioning perfectly fine
the old registry entry can result in the device not being properly recognized by Windows.

This issue is especially prevalent when developing a USB Audio device.

3.5.1.1 Cleaning the Windows registry

Easiest is to use a tool such as Uwe Sieber’s “"Device Cleanup Tool”: https://www.uwe-
sieber.de/misc_tools_e.html This tool allows any not connected devices to be removed
from the registry.

Alternatively the registry can be cleaned by hand using the Windows registry editor.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.uwe-sieber.de/misc_tools_e.html
https://www.uwe-sieber.de/misc_tools_e.html

Chapter 4
USB Core

This chapter describes the basic functions of the USB Core.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

59 CHAPTER 4 Overview

4.1 Overview

This chapter describes the functions of the core layer of emUSB-Device. These functions
are required for all USB class drivers and the unclassified bulk communication component.

General information

To communicate with the host, the example applications include a USB-specific header
USB. h. This file contains API functions to communicate with the USB host through the USB
Core driver.

Every application using USB Core must perform the following steps:

1. Initialize the USB stack. To initialize the USB stack USBD() has to be called. USBD | ni t ()
performs the low-level initialization of the USB stack and calls USBD X Confi g() to add
a driver to the USB stack.

2. Add communication endpoints. You have to add the required endpoints with the
compatible transfer type for the desired interface before you can use any of the USB
class drivers or the unclassified bulk communication component. For the emUSB-Device
bulk component, refer to USB_BULK | NIl T_DATA on page 142 for information about
the initialization structure that is required when you want to add a bulk interface. For
the emUSB-Device MSD component, refer to USB_MSD | NIl T_DATA on page 261 and
USB_MSD | NST_DATA on page 263 for information about the initialization structures
that are required when you want to add an MSD interface. For the emUSB-Device
CDC component, refer to USB_CDC | NI T_DATA on page 395 for information about the
initialization structure that is required when you want to add a CDC interface. For
the emUSB-Device HID component, refer to USB_H D | Nl T_DATA on page 427 for
information about the initialization structure that is required when you want to add a
HID interface.

3. Provide device information using USBD_Set Devi cel nfo() .

4. Start the USB stack. Call USBD St art () to start the USB stack.

Example applications for every supported USB class and the unclassified bulk component
are supplied. We recommend using one of these examples as a starting point for your own
application. All examples are supplied in the \ Appl i cati on\ directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

60 CHAPTER 4 Target API

4.2 Target API

This section describes the functions that can be used by the target application.

Function Description

USB basic functions

USBD | nit () Initializes the USB device with its settings.
USBD Start () Starts the emUSB-Device Core.

USBD_Get Ver si on() Returns the version of the stack.

USBD Get St at e() Returns the state of the USB device.
USBD_ | sConf i gur ed() Sehaedc;fs if the USB device is initialized and
USBD_Cet Speed() Returns the current connection speed.

Returns the state of the USB device, set by
the host (except USB_DEVSTAT_SELF_POW
ERED, which is configured by the device,
see USBD_Set MaxPower ()).

USBD Get Devi ceStat e()

USBD_St op() Stops the USB communication.
USBD Del ni t () De-initialize the complete USB stack.
USB configuration functions
USBD_AddDri ver () Adds a USB device driver to the USB stack.
USBD_Set | SREnabl eFunc() Register function to enable USB interrupts.

Sets a function to perform hardware-spe-

USBD_Set At t achFunc() cific actions to attach USB.

Returns an endpoint “handle” that can be

USBD_AddER() used for the desired USB interface.

Returns an endpoint “handle” that can be

USBD_AddEPEX() used for the desired USB interface.

Sets a all information used during device

USBD_Set Devi cel nfo() enumeration

Sets a callback function that is called when
USBD_Set O assRequest Hook() a setup class request is sent from the host
to the specified interface index.

Sets a callback function that is called when
USBD_Set Vendor Request Hook() a setup vendor request is sent from the
host to the specified interface index.

Sets whether the device is self-powered or

USBD_Set | sSel f Power ed() not

Sets the maximum power consumption re-

USBD_Set MaxPower () ported to the host during enumeration.

Sets a callback function for an endpoint
USBD_Set OnEvent () that will be called on every RX or TX event
for that endpoint.

Removes a callback function which was
USBD _RenmpveOnEvent () added via USBD_Set OnEvent from the call-
back list.

Sets a callback when data are received in

USBD_Set nRxEPO() the data stage of the setup request.

Sets a callback whenever data are re-

USBD_Set nRXHookER() ceived from a given endpoint handle.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

61

CHAPTER 4

Target API

Function

Description

USBD_Set OnSet up()

Sets a callback function that is called when
any setup request is sent from the host.

USBD_Set OnSet upHook()

Obsolete, use USBD Set OnSet up() .

USBD_Set OnSOF()

Installs a function that will be called, when
a SOF was received from the host.

USBD_ RenpbveOnSOF()

Removes a callback function which was
added via USBD_Set OnSOF() from the call-
back list.

USBD_W i t eEPOFr o SR()

Write data to EPO (control endpoint).

USBD _Enabl el AIX)

Enables combination of multi-interface de-
vice classes with single-interface classes or
other multi-interface classes.

USBD_Set CacheConfi g()

Configures cache related functionality that
might be required by the stack for cache
handling in drivers.

USBD_Regi st er SCHook()

Sets a callback function that will be called
on every state change of the USB device.

USBD_Assi gnMenor y()

Assigns an area of RAM to be used for the
endpoint buffers and transfer descriptors
by the USB driver.

USBD_UseV210()

Enable use of USB V2.10 specification revi-
sion.

USBD_Set BESLVal ues()

Set recommended BESL (Best Effort Ser-
vice Latency) values to be used in the BOS
descriptor when using LPM (Link Power
Management).

USBD_Set OnLPMChange()

Sets a call back to report LPM transition on
the USB lines (LO <-> L1).

USBD_Set LPVResponse()

Defines the behavior of the device on LPM
requests from the host.

USBD_Enabl eSuper Speed()

Enable SuperSpeed in the USB stack.

USBD_Set WebUSBI nf o()

For WebUSB capable USB devices this
function may be called before USBD_S-
tart() to enable WebUSB specific descrip-
tors.

USBD_Set CheckAddr ess()

Installs a function that checks if an ad-
dress can be used for DMA transfers.

USBD_Set Get St ri ngHook()

Sets a call to determine the string of a
specified string index.

USB I/O

functions

USBD_Read()

Reads data from the host.

USBD ReadOver | apped()

Reads data from the host asynchronously.

USBD Recei ve()

Reads data from host.

USBD_Recei vePol | ()

Reads data from host.

USBD ReadAsync()

Reads data from the host asynchronously.

USBD Wite()

Writes data to the host.

USBD Wit eAsync()

Sends data to the host asynchronously.

USBD Cancel | ()

Cancel any read or write operation.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

62

CHAPTER 4 Target API

Function

Description

USBD Wi t For EndOF Tr ansf er Ex()

Wait until the current transfer on a particu-
lar EP has completed.

USBD Wi t For TXReady/()

Waits (blocking) until the TX queue can ac-
cept another data packet.

USBD_ Get NunByt esl nBuf f er ()

Returns the number of bytes that are
available in the internal BULK-OUT end-
point buffer.

USBD_Get NunByt esReniToRead()

This function is to be used in combination
with USBD_ReadOver | apped() .

USBD_Get NunByt esRenToW it e()

This function is to be used in combination
with a non-blocking call to USBD Wite().

USBD_St al | EP()

Stalls an endpoint.

USB RemoteWakeUp functions

USBD_Set Al | owRenpt eVakeUp()

Allows the device to publish that remote
wake is available.

USBD_DoRenot eWakeup()

Performs a remote wakeup in order to
wake up the host from the standby/sus-
pend state.

Data structures

USB_ASYNC_| O_CONTEXT

Contains information for asynchronous
transfers.

USB_SETUP_PACKET

Structure containing a USB setup packet.

SEGGER_CACHE_CONFI G

Used to pass cache configuration and call-
back function pointers to the stack.

USB_CHECK_ADDRESS_FUNC

Checks if an address can be used for DMA
transfers.

USB_WEBUSB_| NFO

Information that may be provided by the
application for WebUSB capable USB de-
vices.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

63 CHAPTER 4 Target API

4.2.1 USB basic functions

4.2.1.1 USBD_ GetState()

Description
Returns the state of the USB device.

Prototype

unsi gned USBD_GCet St at e(voi d);

Return value
A bitwise combination of the USB state flags:

USB_STAT_ATTACHED Device is attached. (Note 1)
USB_STAT_READY Device is ready. (Note 2)
USB_STAT _ADDRESSED Device is addressed. (Note 3)
USB_STAT _CONFI GURED Device is configured. (Note 4)
USB_STAT_SUSPENDED Device is suspended. (Note 5)

Additional information

A USB device has several possible states. Some of these states are visible to the USB
and the host, while others are internal to the USB device. Refer to Universal Serial Bus
Specification, Revision 2.0, Chapter 9 for detailed information.

Notes

(1) Attached in a USB-specification sense of the word does not mean that the device is
physically connected to the host via a USB cable, it only means that the pull-up resistor
on the device side is connected. The status can be “attached” regardless of whether the
device is connected to a host or not. This state can normally be ignored.

(2) Ready denotes the USB controller state, the controller is “ready” after a bus reset. This
state can normally be ignored.

(3) A device is in an addressed state after it receives a valid (non-zero) USB address from
the USB host. This state can normally be ignored.

(4) When a device is “configured” the enumeration of the device has been successfully
completed and the host can communicate with the device.

(5) Suspend is set when the device is physically disconnected from the host or when the
USB host suspends the connected device.

Mapping of the state value returned by USBD_GCet St at e() to the USB states described in
“Universal Serial Bus Specification Revision 2.0” chapter 9.1:

Return value of USBD_Get St at e() USB state
0x10 = 10000g Attached
0x11 = 10001p Powered + Suspended
0x18 = 11000g Default
0x19 = 11001p Default + Suspended
0x1C = 11100g Address
0x1D = 11101p Address + Suspended
Ox1E = 11110g Configured
Ox1F = 11111y Configured + Suspended
Other value should not occur

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

64 CHAPTER 4 Target API

4.2.1.2 USBD GetSpeed()

Description

Returns the current connection speed.

Prototype
i nt USBD_Get Speed(voi d);
Return value

USB_SPEED NONE Unknown speed.
USB_SPEED FS Full-speed.
USB_SPEED HS High-speed.
USB_SPEED SS SuperSpeed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

65 CHAPTER 4 Target API

4.2.1.3 USBD_GetDeviceState()

Description

Returns the state of the USB device, set by the host (except USB_DEVSTAT SELF POWERED,
which is configured by the device, see USBD_Set MaxPower ()).

Prototype

unsi gned USBD_Get Devi ceSt at e(voi d) ;

Return value

A bitwise combination of the USB device state flags:

USB_DEVSTAT_SELF POAERED Device is self-powered.

USB_DEVSTAT _REMOTE_WAKEUP_ALLOWED Remote Wakeup is allowed.

USB DEVSTAT_Ul_ENABLE Link power state U1l is enabled (Su-
perSpeed only).

USB DEVSTAT_U2_ ENABLE Link power state U2 is enabled (Su-
perSpeed only).

USB_DEVSTAT_LPM ENABLE Link power management is enabled (Su-

perSpeed only).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

66 CHAPTER 4 Target API

4.2.1.4 USBD_Init()

Description
Initializes the USB device with its settings.

Prototype

void USBD | nit(void);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

67 CHAPTER 4 Target API

4.2.1.5 USBD IsConfigured()

Description
Checks if the USB device is initialized and ready.

Prototype

char USBD_I| sConfi gured(void);

Return value

0 USB device is not configured.
1 USB device is configured.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

68 CHAPTER 4 Target API

4.2.1.6 USBD_ Start()

Description
Starts the emUSB-Device Core.

Prototype
voi d USBD_Start(void);

Additional information

This function should be called after configuring USB Core. It initiates a hardware attach and
updates the endpoint configuration. When the USB cable is connected to the device, the

host will start enumeration of the device.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

69 CHAPTER 4 Target API

4.2.1.7 USBD_Stop()

Description

Stops the USB communication. This also makes sure that the device is detached from the
HOST.

Prototype

voi d USBD_St op(voi d);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

70 CHAPTER 4 Target API

4.2.1.8 USBD_Delnit()

Description
De-initialize the complete USB stack.

Prototype
voi d USBD_Del nit(void);

Additional information
This function also calls USBD_St op() internally.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

71 CHAPTER 4 Target API

4.2.1.9 USBD_GetVersion()

Description

Returns the version of the stack.

Prototype

U32 USBD_GCet Ver si on(voi d);

Return value
Format: Mmmrr; e.g: 32401 is 3.24.1

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

72 CHAPTER 4 Target API

4.2.2 USB configuration functions

4.2.2.1 USBD_AddDriver()

Description

Adds a USB device driver to the USB stack. This function should be called from within
USBD_X Confi g() which is implemented in USB_Config *.c.

Prototype
voi d USBD_AddDri ver (const USB_HW DRI VER * pDriver);
Parameters
Parameter Description
pDri ver Pointer to the driver API structure.

Additional information

To add the driver, use USBD _AddDri ver () with the identifier of the compatible driver. Refer
to the section “Available target USB drivers” in the USB. h header file for a list of supported
devices and their valid identifiers.

Example

/***
* USBD_X_Confi g
*/
voi d USBD_X_Config(void) {
BSP_USB I nit();
USB_DRI VER_LPC17xx_Confi gAddr (0x2008C000); // USB controller of LPC1788
/'l is |ocated @0x2008C000
USBD_AddDr i ver (&USB_Dri ver _NXPLPC17xx) ;
USBD_Set | SREnabl eFunc(_Enabl el SR, NULL, NULL);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

73 CHAPTER 4 Target API

4.2.2.2 USBD _ SetlISREnableFunc()

Description

Register function to enable USB interrupts.

Prototype
voi d USBD_Set | SREnabl eFunc(USB_ENABLE_|I SR_FUNC * pf Enabl el SR);
Parameters
Parameter Description
f Enabl el SR Pointer to the function to install the interrupt handler and
P enable the USB interrupt.

Additional information

This function must be called within USBD X Confi g() function. See Adding a driver to
emUSB-Device on page 728. The functions pointer prototype is defined as follows:

typedef void USB_ENABLE | SR FUNC (USB_I SR HANDLER * pf | SRHandl er);

Example
See USBD _AddDri ver ().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

74 CHAPTER 4 Target API

4.2.2.3 USBD_SetAttachFunc()

Description

Sets a function to perform hardware-specific actions to attach USB.

Prototype
voi d USBD_Set Att achFunc(USB_ATTACH FUNC * pf Attach);
Parameters
Parameter Description
pf Att ach Pointer to the attach function.

Additional information

This function must be called within USBD X Confi g() function. See Adding a driver to
emUSB-Device on page 728. The functions pointer prototypes are defined as follows:

typedef void USB _ATTACH FUNC (void);

Example
See USBD X Config() on page 728.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

75 CHAPTER 4 Target API

4.2.2.4 USBD_AddEP()

Description

Returns an endpoint “handle” that can be used for the desired USB interface.

Prototype

unsi gned USBD_AddEP(U8 InDir,
us Transfer Type,
uUl6 I nterval,
us * pBuffer,
unsi gned Buf f er Si ze) ;

Parameters

Parameter Description

Specifies the direction of the desired endpoint.
| nDi r e USBDRIN
e USB DR OUT

Specifies the transfer type of the endpoint. The following val-
ues are allowed:

Transf er Type e USB TRANSFER TYPE_BULK

e USB TRANSFER TYPE_I NT

ISO endpoints must be created using USBD_AddEPEX() .

Specifies the interval measured in units of 125us (micro

Interval frames). This value should be zero for a bulk endpoint.

Buf f er Pointer to a buffer that is used for OUT-transactions. For IN-
P endpoints this parameter must be NULL.
Buffer Si ze Size of the buffer (OUT endpoints only). Must be a multiple

of the maximum packet size.

Return value

>0 A valid endpoint handle is returned.
=0 Error.
Additional information

The I nt er val parameter specifies the frequency in which the endpoint should be polled for
information by the host. It must be specified in units of 125 us.

Depending on the actual speed of the device during enumeration, the USB stack converts
the interval to the correct value required for the endpoint descriptor according to the USB
specification (into milliseconds for low/full-speed, into 125 us for high-speed).

For endpoints of type USB_TRANSFER TYPE BULK the value is ignored and should be set to 0.
This function must be called after USBD I ni t () and before USBD Start ().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

76 CHAPTER 4 Target API

4.2.25 USBD_AddEPEX()

Description

Returns an endpoint “handle” that can be used for the desired USB interface.

Prototype
unsi gned USBD_AddEPEx(const USB_ADD _EP_| NFO * pl nf o,
us * pBuffer,
unsi gned Buf f er Si ze) ;
Parameters
Parameter Description
pl nfo Pointer to a structure of type USB_ADD EP_I NFO.
Pointer to an endpoint buffer that is used for OUT-trans-
pBuf f er actions. For IN-endpoints or ISO endpoints this parameter

should be NULL.

Size of the endpoint buffer (OUT endpoints only). Must be =
Buf fer Si ze the maximum packet size of the endpoint. For IN-endpoints
or ISO endpoints this parameter should be 0.

Return value

>0 A valid endpoint handle is returned.
=0 Error.

Additional information
This function must be called after USBD | nit () and before USBD Start ().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

77 CHAPTER 4 Target API

4.2.2.6 USBD_SetDevicelnfo()

Description

Sets a all information used during device enumeration.

Prototype
voi d USBD_Set Devi cel nfo(const USB_DEVI CE_| NFO * pDevi cel nf o) ;
Parameters
Parameter Description
Pointer to a structure containing the device information.
pDevi cel nf o Must point to static data that is not changed while the stack
is running.

Additional information
See USB _DEVI CE_| NFO on page 50 for a description of the structure.

Example
See USB_DEVI CE_I| NFOon page 50.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

78 CHAPTER 4 Target API

4.2.2.7 USBD_ SetClassRequestHook()

Description

Sets a callback function that is called when a setup class request is sent from the host to
the specified interface index.

Prototype
voi d USBD_Set Cl assRequest Hook(unsi gned I nterfaceNum
USB_ON_CLASS REQUEST * pf Ond assRequest);
Parameters
Parameter Description
I nterfaceNum Interface index that for setting the class request callback.
pf OnCl assRequest Pointer to the callback.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD Wit eEPOFrom SR() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

79 CHAPTER 4 Target API

4.2.2.8 USBD_ SetVendorRequestHook()

Description

Sets a callback function that is called when a setup vendor request is sent from the host
to the specified interface index.

Prototype
voi d USBD_Set Vendor Request Hook(unsi gned I nterfaceNum
USB_ON_CLASS REQUEST * pf OnVendor Request);
Parameters
Parameter Description
I nterfaceNum Interface index that for setting the class request callback.
pf OnVendor Request Pointer to the callback.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD Wit eEPOFrom SR() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

80 CHAPTER 4 Target API

4.2.2.9 USBD_ SetlsSelfPowered|()

Description

Sets whether the device is self-powered or not. Obsolete function, please use USBD Set -
MaxPower () .

Prototype

voi d USBD_Set | sSel f Power ed(U8 | sSel f Power ed) ;

Parameters

Parameter Description

e 0 - Device is not self-powered.

| sSel f Pover ed e 1 - Device is self-powered.

Additional information

This function has to be called before USBD St art (), as it will specify if the device is self-
powered or not. The default value is 0 (not self-powered).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

81 CHAPTER 4 Target API

4.2.2.10 USBD_SetMaxPower()

Description

Sets the maximum power consumption reported to the host during enumeration. This func-
tion also sets whether the device is self-powered (MaxPower = 0) or not.

Prototype

voi d USBD_Set MaxPower (unsi gned MaxPower) ;

Parameters

Parameter Description

Maximum power consumption of the device given in mA.
Max Power MaxPower shall be in range between OmA - 500mA, for Su-
perSpeed devices up to 900mA.

Additional information

This function shall be called before USBD St art (), as it will specify how much power the
device will consume from the host. If this function is not called, a default value of 100 mA
will be used.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

82 CHAPTER 4 Target API

4.2.2.11 USBD_SetOnEvent()

Description

Sets a callback function for an endpoint that will be called on every RX or TX event for
that endpoint.

Prototype
voi d USBD_Set OnEvent (unsi gned EPI ndex,
USB_EVENT_CALLBACK * pEvent Cb,
USB_EVENT_CALLBACK_FUNC * pf Event Cb,
voi d * pContext);
Parameters
Parameter Description
EPI ndex Endpoint index returned by USBD AddEP() .
Pointer to a USB_EVENT _CALLBACK structure (will be initial-
pEvent Cb . . .
ized by this function).
f Event Cb Pointer to the callback routine that will be called on every
P event on the USB endpoint.
A pointer which is used as parameter for the callback func-
pCont ext tion

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_Set OnEvent (). The USB stack keeps track of all event callback functions using a
linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and must
reside in static memory.

The callback function is called only, if a read or write operation was started for the endpoint
using one of the USBD_Read...() or USBD Wi te...() functions.

Additional information

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK FUNC(unsi gned Events, void *pContext);

Parameter Description

A bit mask indicating which events occurred on the
endpoint.

The pointer which was provided to the USBD_Set On-
Event () function.

Event s

pCont ext

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description
USB_EVENT DATA READ ﬁgir:te data was received from the host on the end-
Some data was sent to the host, so that (part of)
USB_EVENT_DATA SEND the user write buffer may be reused by the applica-
tion.
USB_EVENT_DATA ACKED Some data was acknowledged by the host.
USB_EVENT_READ_COVPLETE The last read operation was completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

83 CHAPTER 4 Target API

Event Description
USB_EVENT_READ_ ABORT A read transfer was aborted.
USB_EVENT_WRI TE_ABORT A write transfer was aborted.
USB_EVENT_WRI TE_COVPLETE All write operations were completed.

Example

/1 The cal | back function.
static void _OnEvent (unsi gned Events, void *pContext) {
if ((Events & USB_EVENT DATA SEND) != 0 &&
/'l Check for last wite transfer to be conpl et ed.
USBD_Get NunByt esReniToW i t e(EPI ndex) == 0) {
<.. prepare next data for witing..>
/'l Send next packet of data.
r = USBD Wite(EPIndex, &ac[0O], 200, 0, -1);
if (r <0) {
<.. error handling..>
}
}
}
/1 Main progranmm
/'l Register callback function.
static USB_EVENT_CALLBACK _usb_cal | back;
USBD_Set OnEvent (EPI ndex, & usb_cal | back, _OnEvent, NULL);
/'l Send the first packet of data using an asynchronous wite operation.
r = USBD Wite(EPIndex, &ac[0O], 200, 0, -1);
if (r <0) {
<.. error handling..>

<.. do anything else here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

84

CHAPTER 4

4.2.2.12 USBD_RemoveOnEvent()

Description

Target API

Removes a callback function which was added via USBD_Set OnEvent from the callback list.

Prototype

voi d USBD_RenoveOnEvent (

unsi gned

EPI ndex,

const USB_EVENT_CALLBACK * pEvent Cb);
Parameters
Parameter Description
EPI ndex Endpoint index returned by USBD AddEP() .
Event Cb Pointer to a USB_EVENT _CALLBACK structure which was used
P with USBD_Set OnEvent .

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

85 CHAPTER 4 Target API

4.2.2.13 USBD_SetOnRxEPO()

Description

Sets a callback when data are received in the data stage of the setup request.

Prototype
voi d USBD_Set OnRxEPO(USB_ON_RX_FUNC * pf OnRx) ;
Parameters
Parameter Description
f NRx Pointer to a function that should be called when receiving
P data other than setup packets on EPO.

Additional information

Please note that this function can be called multiple times from different classes in order
to check the data.

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD W i t eEPOFr oml SR() .

USB_ON RX FUNC is defined as follows:

typedef void USB ON RX FUNC(const U8 * pData, unsigned NunBytes);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

86

CHAPTER 4

4.2.2.14 USBD_SetOnRXHo0oKEP()

Description

Target API

Sets a callback whenever data are received from a given endpoint handle. The callback
function is called within the interrupt context and must not block.

Prototype

voi d USBD_Set OnRXHook EP(unsi gned
USB_ON_RX_FUNC * pf OnRx);

EPI ndex,

Parameters

Parameter Description
EPI ndex Any valid endpoint handle > 0.
pf OnRXx Pointer to the callback.

USB_ON RX_FUNC is defined as follows:

typedef void USB_ON RX FUNC(const U8 * pData, unsigned NunBytes);

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

87 CHAPTER 4 Target API

4.2.2.15 USBD_SetOnSetup()

Description

Sets a callback function that is called when any setup request is sent from the host.

Prototype

voi d USBD_Set OnSet up(USB_SETUP_HOOK * pHook,
USB_ON _SETUP * pf OnSetup);

Parameters
Parameter Description
Pointer to a USB_SETUP_HOK structure (will be initialized by
pHook - .
this function).
pf OnSet up Pointer to the callback function.

Additional information

The USB_SETUP_HOK structure is private to the USB stack. It will be initialized by USBD_Se-
t OnSet up() . The USB stack keeps track of all setup callback functions using a linked list.
The USB_SETUP_HOOK structure will be included into this linked list and must reside in static
memory.

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD Wit eEPOFrom SR() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

88 CHAPTER 4 Target API

4.2.2.16 USBD_SetOnSetupHook()

Description

Obsolete, use USBD_Set OnSet up() . Sets a callback function that is called when any setup
request is sent from the host.

Prototype
voi d USBD_Set OnSet upHook(unsi gned I nterfaceNum
USB_ON_SETUP * pf OnSet up);
Parameters
Parameter Description
I nterfaceNum Interface index that for setting the setup request callback.
pf OnSet up Pointer to the callback function.

Additional information

Note that the callback will be called within an ISR, therefore it should never block. If it
is necessary to send data from the callback function through endpoint 0, use the function
USBD Wit eEPOFrom SR() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

89 CHAPTER 4 Target API

4.2.2.17 USBD_SetOnSOF()

Description

Installs a function that will be called, when a SOF was received from the host. The callback
function is called within the interrupt context and must not block.

Prototype
i nt USBD_Set OnSOF(voi d (*pfSOFCal | back) (void * pContext),
uUl6 I nterval,
voi d * pCont ext,
USB_SOF CALLBACK_HOOK * pHooKk) :
Parameters
Parameter Description
pf SOFCal | back Pointer to the callback function.
| nt erval Function will be called every time a number of ‘I nt erval ’
SOFs were received.
A pointer which is used as parameter for the callback func-
pCont ext tion
Pointer to a USB_SOF_CALLBACK_HOOK structure (will be ini-
pHook - . ;
tialized by this function).

Return value

=0 Callback function successfully installed.
*0 SOF callback not supported by the driver.

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_Set OnEvent (). The USB stack keeps track of all event callback functions using a
linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and must
reside in static memory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

90 CHAPTER 4 Target API

4.2.2.18 USBD_RemoveOnSOFK()

Description
Removes a callback function which was added via USBD_Set OnSOF() from the callback list.

Prototype
voi d USBD_RenpbveOnSOF(const USB_SOF_ CALLBACK _HOOK * pHook) ;
Parameters
Parameter Description
Hook Pointer to a USB_SOF CALLBACK HOOK structure which was
P was installed using USBD_Set OnSOF() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

91 CHAPTER 4 Target API

4.2.2.19 USBD_WriteEPOFromISR()

Description

Write data to EPO (control endpoint). This function may be called in an interrupt context.

Prototype
voi d USBD Wit eEPOFrom SR(const void * pDat a,
unsi gned NurByt es,
char SendOPacket | f Requi r ed) ;
Parameters
Parameter Description
pDat a Data that should be written.
NunByt es Number of bytes to write.

Specifies that a zero-length packet should be sent when
the last data packet to the host is a multiple of MaxPack-
etSize. Normally MaxPacketSize for control mode transfer is
64 byte.

SendOPacket | f Requi r ed

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

92 CHAPTER 4 Target API

4.2.2.20 USBD_EnablelAD()

Description

Enables combination of multi-interface device classes with single-interface classes or other
multi-interface classes.

Prototype

voi d USBD_Enabl el AD(voi d);

Additional information

Simple device classes such as HID and MSD or BULK use only one interface descriptor to
describe the class. The interface descriptor also contains the device class code. Multi-inter-
face device classes, such as CDC, Audio, MIDI use more than one interface descriptor to
describe the class. The device class code will then be written into the device descriptor. It
may be possible to add an interface which does not belong to a multi-interface class, but it
may not be correctly recognized by the host, this is not standardized and depends on the
host. In order to allow this, a new descriptor type was introduced:

IAD (Interface Association Descriptor), this descriptor will encapsulate the multi-interface
class into this IA descriptor, so that it will be seen as one single interface and will then
allow to add other device classes.

If you intend to use a multi-interface component with any other component, please call
USBD_Enabl el AD() before adding the multi-interface component through USBD_*_Add() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

93 CHAPTER 4 Target API

4.2.2.21 USBD_ SetCacheConfig()

Description
Configures cache related functionality that might be required by the stack for cache handling
in drivers.
Prototype
voi d USBD_Set CacheConfi g(const SEGGER_CACHE_CONFI G * pConfi g,
unsi gned Conf Si ze) ;

Parameters

Parameter Description
pConfi g Pointer to an element of SEGGER_CACHE CONFI G.

. Size of the passed structure in case library and header size
Conf Si ze :
of the structure differs.

Additional information

This function has to called in USBD X Confi g(). This function replaces the legacy cache
functions BSP_CACHE O eanRange and BSP_CACHE | nval i dat eRange. If you still want to
use these routines please set USBD USE LEGACY_ CACHE ROUTI NES to 1 in your USB_Conf . h
file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

94 CHAPTER 4 Target API

4.2.2.22 USBD_RegisterSCHook()

Description

Sets a callback function that will be called on every state change of the USB device.

Prototype
i nt USBD_Regi st er SCHook (USB_HOOK * pHook,
USB_STATE_CALLBACK_FUNC * pf St at eCb,
voi d * pContext);
Parameters
Parameter Description
Hook Pointer to a USB_HOXK structure (will be initialized by this
P function).
Pointer to the callback routine that will be called on every
pf StateCb state change.
A pointer which is used as parameter for the callback func-
pCont ext tion
Return value
0 OK.
1 Error, specified hook already exists.

Additional information

The USB_HOXK structure is private to the USB stack. It will be initialized by USBD_Regi s-
t er SCHook() . The USB stack keeps track of all state change callback functions using a
linked list. The USB_HOOK structure will be included into this linked list and must reside in
static memory.

Note that the callback function will be called within an ISR, therefore it should never block.

Example

/1 The call back function.
static void _OnStateChange(void *pContext, U3 NewState) {
if ((NewState & (USB_STAT_CONFI GURED | USB_STAT SUSPENDED)) == USB_STAT_CONFI GURED) {
/1 Device is enunerated
} else {
/1 Device not enunerated
}

}
[Main progranm
static USB HOOK Hook;

USBD I nit();
USBD_Regi st er SCHook(&Hook, _OnSt at eChange, NULL);

USBD Start();

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

95 CHAPTER 4 Target API

4.2.2.23 USBD_AssignMemory()

Description

Assigns an area of RAM to be used for the endpoint buffers and transfer descriptors by the
USB driver. This function should be called from within the USBD X Confi g() function after
installing the driver with USBD_AddDri ver (). Not all drivers support this function.

If the driver uses DMA, the USB controller must have DMA access to this area. For some
drivers, the memory should be aligned to a given boundary. If not aligned, the driver will
increase the start address and reduce the size of the area to achieve proper alignment.
This results in wasting of RAM and may cause the driver to run out of memory.

Prototype

voi d USBD_Assi gnMenory(void * pMem
u32 MenSi ze) ;

Parameters

Parameter Description
pMem Pointer to the start of the RAM area to be used by the driver.
MenSi ze Size of the RAM area in bytes.

Additional information

If the memory is not sufficient for the class and endpoint configuration, the USB dri-
ver will run into the USB_GOS_Pani c¢() function during initialization, if compiled for DEBUG
mode (USB_DEBUG _LEVEL > 0). After successful initialization, the driver will usually issue a
USB LOGE) message to report, how many bytes of the assigned memory are not used. The
size of the memory area may then be adjusted.

Information how to calculate the size of the endpoint buffer memory and about any align-
ment requirements can be found in Device driver specifics on page 732.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

96 CHAPTER 4 Target API

4.2.2.24 USBD_UseV210()

Description

Enable use of USB V2.10 specification revision. Must be called in USBD X Config(). It
enables providing a BOS descriptor to the host and also enables link power management
(LPM), if supported by the driver and the USB controller.

Prototype
voi d USBD_UseV210(voi d);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

97 CHAPTER 4 Target API

4.2.2.25 USBD_SetBESLValues()

Description

Set recommended BESL (Best Effort Service Latency) values to be used in the BOS descrip-
tor when using LPM (Link Power Management). See “Errata for USB 2.0 ECN: Link Power
Management (LPM) - 7/2007” from usb.org for an explanation of these values. Calling this
function has no effect, if LPM is not enabled (see USBD UseV210()) or not supported by
the driver or USB controller.

Prototype

voi d USBD_Set BESLVal ues(i nt Basel i neBESL,
i nt DeepBESL);

Parameters

Parameter Description

Recommended Baseline BESL value. Must be in range -1

to 15. A value of -1 means, no BESL value is stored in the
Basel i neBESL BOS descriptor (the default). Values of 0,1,...,14,15 specify
a BESL of 125us,150us,...,9000us,10000us respectively (see
LPM document from usb.org).

Recommended Deep BESL value. Must be in range -1 to 15
(see above).

DeepBESL

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

98 CHAPTER 4 Target API

4.2.2.26 USBD_SetOnLPMChange()

Description
Sets a call back to report LPM transition on the USB lines (LO <-> L1).

Prototype
voi d USBD_Set OnLPMChange(USB_ON_LPM CHANGE * pf OnLPMChange) ;
Parameters
Parameter Description
pf OnLPMChange Pointer to callback.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

99

CHAPTER 4 Target API

4.2.2.27 USBD_SetLPMResponse()

Description

Defines the behavior of the device on LPM requests from the host. Calling this function has
no effect, if LPM is not enabled (see USBD UseV210()) or not supported by the driver or

USB controller.

Prototype
voi d USBD_Set LPMResponse(U8 Response);
Parameters
Parameter Description
ResDONSe e 0 - LPM requests are rejected (NYET).
P e 1 - LPM requests are acknowledged.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

100 CHAPTER 4 Target API

4.2.2.28 USBD_EnableSuperSpeed()

Description

Enable SuperSpeed in the USB stack. Must be called in USBD_X Confi g() . If the USB driver
or USB controller does not support SuperSpeed, calling this function has no effect.

Prototype
voi d USBD_Enabl eSuper Speed(voi d) ;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

101 CHAPTER 4

4.2.2.29 USBD_SetWebUSBInfo()

Description

Target API

For WebUSB capable USB devices this function may be called before USBD Start() to
enable WebUSB specific descriptors. This function can be used only, if the USB controller
supports USB 2.1 compatibility, especially link power management (LPM).

Prototype
voi d USBD_Set WebUSBI nf o(const USB_WEBUSB_| NFO * pWebUSBI nf o) ;
Parameters
Parameter Description
Pointer to a structure containing the device information.
pWebUSBI nf o Must point to static data that is not changed while the stack
is running.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

102 CHAPTER 4 Target API

4.2.2.30 USBD_SetCheckAddress|()

Description

Installs a function that checks if an address can be used for DMA transfers. Installed function
must return 0, if DMA access is allowed for the given address, any value # 0 otherwise.

Prototype
voi d USBD_Set CheckAddr ess(USB_CHECK ADDRESS FUNC * pf CheckVal i dDMAAddr ess) ;
Parameters
Parameter Description
s: S;:ckVal | dDVAAD- Pointer to the function.

Additional information

If the function reports a memory region not valid for DMA, the driver uses a temporary
transfer buffer to copy data to and from this area.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

103 CHAPTER 4 Target API

4.2.2.31 USBD_SetGetStringHook()

Description

Sets a call to determine the string of a specified string index.

Prototype
voi d USBD_Set Get St ri ngHook(USB_GET_STRI NG _DESC_HOOK * pHook,
USB_GET_STRI NG_FUNC * pfOnGet String);
Parameters
Parameter Description
pHook Pointer to static USB_GET_STRI NG_DESC HOK structure.
pf OnGet Stri ng Pointer to GetString callback.

Additional information

The USB_CET_STRI NG DESC HOOK structure is private to the USB stack. It will be initialized
by USBD Set Get St ri ngHook() . The USB stack keeps track of all ‘GetString’ callback func-
tions using a linked list. The USB_GET_STRI NG DESC HOOK structure will be included into
this linked list and must reside in static memory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

104

CHAPTER 4 Target API

4.2.3 USB I/O functions

4231 USBD_Read()

Description

Reads data from the host.

Prototype

int USBD_Read(unsi gned EPQut ,
voi d * pDat a,
unsi gned NurmByt esReq,
unsi gned Ti meout) ;

Parameters
Parameter Description

EPCut Handle to an OUT endpoint returned by USBD AddEP() .
pDat a Pointer to a buffer where the received data will be stored.
NunmByt esReq Number of bytes to read.

. Ti meout given in milliseconds. A zero value results in an infi-
Ti meout . .

nite timeout.

Return value
= NumBytes Requested data was successfully read within the given timeout.
= 0 && < NumBytes Ti neout has occurred (Number of bytes read before timeout).
<0 An error occurred.

Additional information

This function blocks the task until all data has been read or a timeout occurs. In case of a
reset or a disconnect USB_STATUS_ERRCR is returned.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via the USBD_AddEP() function. This data can be retrieved by a later call to USBD_Recei ve()
or USBD_Read() . See also USBD_Get NunByt esl nBuf fer ().

In case of a timeout, the read transfer is aborted (see Ti neout handling on page 131).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

105 CHAPTER 4 Target API

4.2.3.2 USBD_ ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

i nt USBD_ReadOver | apped(unsi gned EPCut ,
voi d * pDat a,
unsi gned NunmByt esReq) ;

Parameters

Parameter Description
EPCut Handle to an OUT endpoint returned by USBD AddEP() .
pDat a Pointer to a buffer where the received data will be stored.
NunmByt esReq Number of bytes to read.

Return value

0 Number of bytes that have been read from the internal buffer (success).
0 No data was found in the internal buffer, read transfer started (success).
0 An error occurred.

Al IV

Additional information

This function will not block the calling task. The read transfer will be initiated and the func-
tion returns immediately. In order to synchronize, USBD Wi t For EndCf Tr ansf er () needs
to be called.

Another synchronization method would be to periodically call USBD_Get NunByt esRenilfoRe-
ad() in order to see how many bytes still need to be received (this method is preferred
when a non-blocking solution is necessary).

The read operation can be canceled using USBD_Cancel | O() .
The buffer pointed to by pDat a must be valid until the read operation is terminated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

106

CHAPTER 4 Target API

4.2.3.3 USBD _ Receive()

Description

Reads data from host. The function blocks until any data have been received. In contrast
to USBD_Read() this function does not wait for all of NumBytes to be received, but returns
after the first packet has been received or after the timeout occurs. In case of a timeout,
the read transfer is aborted (see Ti neout handling on page 131).

Prototype
i nt USBD_Recei ve(unsi gned EPCut ,
voi d * pDat a,
unsi gned NunByt esReq,
i nt Ti meout) ;
Parameters
Parameter Description
EPCut Handle to an OUT endpoint returned by USBD AddEP() .
pDat a Pointer to a buffer where the received data will be stored.
NunByt esReq Number of bytes to read.
Ti meout given in milliseconds. A zero value results in an infi-
Ti meout nite timeout. If Ti neout is -1, the function never blocks and
only reads data from the internal endpoint buffer.

Return value

>0 Number of bytes that have been read within the given timeout.

=0 A timeout occurred (if Ti neout > 0), zero packet received (not every controller
supports this!), no data in buffer (if Ti neout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

<0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_Re-
cei ve() will return as much data as is currently available up to the size of the buffer spec-
ified within the specified timeout. This function also returns when the target is disconnected
from the host or when a USB reset occurred during the function call, it will then return the
number of bytes read so far. If the target was disconnected before this function was called,
it returns USB_STATUS_ERROR.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided via
USBD_AddEP() . This data can be retrieved by a later call to USBD_Recei ve() / USBD_Read() .
See also USBD_Get NunByt esl nBuf fer () .

A call of USBD_Recei ve(EPQut, NULL, O, -1) can be used to trigger an asynchronous read
that stores the data into the internal buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

107 CHAPTER 4 Target API

4.2.3.4 USBD_ReceivePoll()

Description

Reads data from host. The function blocks until any data have been received. In contrast
to USBD_Read() this function does not wait for all of NumBytes to be received, but returns
after the first packet has been received or after the timeout occurs. In contrast to USBD_Re-
cei ve() this function will continue the read transfer asynchronously in case of a timeout.

Prototype

i nt USBD_Recei vePol | (unsi gned EPCut ,
voi d * pDat a,
unsi gned NunByt esReq,
unsi gned Ti neout);

Parameters
Parameter Description
EPCut Handle to an OUT endpoint returned by USBD AddEP() .
pDat a Pointer to a buffer where the received data will be stored.
NunByt esReq Number of bytes to read.
. Ti meout given in milliseconds. A zero value results in an infi-
Ti meout . .
nite timeout.

Return value

>0 Number of bytes that have been read within the given timeout.

=0 A timeout occurred (if Ti neout > 0) or a zero packet received (not every con-
troller supports this!), or the target was disconnected during the function call
and no data was read so far.

<0 An error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USBD_Re-
cei vePol | () will return as much data as is currently available up to the size of the buffer
specified within the specified timeout. This function also returns when the target is discon-
nected from the host or when a USB reset occurred during the function call, it will then
return the number of bytes read so far. If the target was disconnected before this function
was called, it returns USB_STATUS_ERROR.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided via
USBD_AddEP() . This data can be retrieved by a later call to USBD_Recei ve() / USBD_Read() .
See also USBD_Get NunByt esl nBuf fer () .

If a timeout occurs, the read transfer is not affected. Data send from the host after the
timeout is stored into the internal buffer of the endpoint and can be read by later calls to
USBD_Recei vePol | ().

If Ti meout = 0, the function behaves like USBD_Recei ve() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

108 CHAPTER 4 Target API

4.2.3.5 USBD ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype
voi d USBD_ReadAsync(unsi gned EPI ndex,
USB_ASYNC | O CONTEXT * pCont ext,
i nt Short Read) ;
Parameters
Parameter Description
EPI ndex Handle to an OUT endpoint returned by USBD AddEP() .
Cont ext Pointer to an I/O context containing parameters and pointer
P to the callback function.
e 0: The transfer is completed successfully after all bytes
Shor t Read have been read.
e 1: The transfer is completed successfully after one packet
has been read.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

109 CHAPTER 4 Target API

4.2.3.6 USBD Write()

Description

Writes data to the host. Depending on the Timeout parameter, the function may block until
NunByt es have been written or a timeout occurs.

Prototype
int USBD Wi te(unsi gned EPI ndex,
const void * pDat a,

unsi gned NunByt es,

char SendOPacket | f Requi r ed,

i nt ns);
Parameters

Parameter Description

EPI ndex Handle to an IN endpoint returned by USBD AddEP() .
pDat a Pointer to data that should be sent to the host.
NunByt es Number of bytes to be written.

Specifies that a zero-length packet should be sent when the

SendOPacket 1 f Requi red last data packet to the host is a multiple of MaxPacketSize.

Timeout in milliseconds. 0 means infinite. If Timeout is
ns -1, the function returns immediately and the transfer is
processed asynchronously.

Return value

=0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NunByt es Number of bytes that have been written before a timeout oc-
curred.

= NunByt es Write transfer successful completed.

<0 An error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (Timeout
= -1). If a write transfer is still in progress when this function is called and the USB stack
can not accept another write transfer request, the functions returns USB_STATUS EP_BUSY.
A synchronous write transfer (Timeout = 0) will always block until the transfer (including
all pending transfers) are finished.

In order to synchronize, USBD Wi t For EndCf Tr ansf er () needs to be called. Another syn-
chronization method would be to periodically call USBD Get NunByt esRenToWite() in or-
der to see how many bytes still need to be written (this method is preferred when a non-
blocking solution is necessary).

In case of a timeout, the write transfer is aborted (see Timeout handling on page 131).
The write operation can be canceled using USBD Cancel | ().
If pDat a = NULL and NunByt es = 0, a zero-length packet is sent to the host.

The content of the buffer pointed to by pDat a must not be changed until the transfer has
been completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

110 CHAPTER 4 Target API

4.2.3.7 USBD_ WriteAsync()

Description

Sends data to the host asynchronously. The function does not wait for the data to be sent.
A callback function is called after the transfer has completed successfully, an error occurred
or the transfer was canceled.

Prototype
void USBD_WiteAsync(unsigned EPI ndex,
USB_ASYNC_| O_CONTEXT * pCont ext,
char SendOPacket | f Requi r ed) ;
Parameters
Parameter Description
EPI ndex Handle to an IN endpoint returned by USBD AddEP() .
pCont ext Pointer to an I/O context containing parameters and pointer

to the callback function.

Specifies that a zero-length packet shall be sent when the

SendOPacket I f Requi red last data packet is a multiple of MaxPacketSize.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

111 CHAPTER 4 Target API

4.2.3.8 USBD_ CancellO()

Description

Cancel any read or write operation.

Prototype
voi d USBD_Cancel | (unsi gned EPI ndex) ;
Parameters
Parameter Description
EPI ndex Handle to an endpoint returned by USBD AddEP() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

112 CHAPTER 4 Target API

4.2.3.9 USBD_WaitForEndOfTransferEx()

Description

Wait until the current transfer on a particular EP has completed. This function must be
called from a task.

Prototype

i nt USBD_Wai t For EndOf Tr ansf er Ex(unsi gned EPI ndex,
unsi gned Ti neout,

i nt Abor t OnTi neout) ;
Parameters
Parameter Description
EPI ndex Handle to the endpoint returned by USBD AddEP() .
Ti meout Ti meout in milliseconds, 0 means infinite wait.

If a timeout occurs, then the current transfer is terminated if
Abor t OnTi neout # 0. The current transfer is not affected in
case of a timeout if Abort OnTi neout = 0. See also Ti neout
handling on page 131.

Abor t OnTi meout

Return value

0 Transfer completed.
1 Ti meout occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

113 CHAPTER 4 Target API

4.2.3.10 USBD WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used
in combination with a non-blocking call to USBD Wit e(), it waits until a new asynchronous
write data transfer will be accepted by the USB stack.

Prototype
i nt USBD Wi t For TXReady(unsi gned EPI ndex,
i nt Ti meout) ;
Parameters
Parameter Description
EPI ndex Handle to an IN endpoint returned by USBD AddEP() .
. Ti meout in milliseconds. 0 means infinite. If Ti neout is neg-
Ti meout . . . ! .
ative, the function will return immediately.

Return value

=0 A new asynchronous write data transfer will be accepted.

=1 The write queue is full, a call to USBD Wite() would return USB_S-
TATUS_EP_BUSY.

<0 Error occurred.

Additional information

If Ti neout is 0, the function never returns 1. If Ti meout is -1, the function will not wait,
but immediately return the current state.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

114 CHAPTER 4 Target API

4.2.3.11 USBD_GetNumBytesinBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype
unsi gned USBD_Get NunByt esl nBuf f er (unsi gned EPI ndex) ;
Parameters
Parameter Description
EPI ndex Handle to an OUT endpoint returned by USBD AddEP() .

Return value

Number of bytes which have been stored in the internal buffer.

Additional information

The number of bytes returned by this function can be read using USBD _Read() or USBD Re-
cei ve() without blocking.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

115 CHAPTER 4 Target API

4.2.3.12 USBD_GetNumBytesRemToRead()

Description

This function is to be used in combination with USBD ReadOver| apped() . It returns the
number of bytes which still have to be read during the transaction.

Prototype
unsi gned USBD_Get NunByt esRenToRead(unsi gned EPI ndex) ;
Parameters
Parameter Description
EPI ndex Handle to an OUT endpoint returned by USBD AddEP() .

Return value

Number of bytes which still have to be read.

Additional information

Note that this function does not return the number of bytes that have been read, but the
number of bytes which still have to be read. This function does not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

116 CHAPTER 4 Target API

4.2.3.13 USBD_GetNumBytesRemToWrite()

Description

This function is to be used in combination with a non-blocking call to USBD Wite(). It
returns the number of bytes which still have to be written during the transaction.

Prototype
unsi gned USBD_Get NunByt esRemToW i t e(unsi gned EPI ndex);
Parameters
Parameter Description
EPI ndex Handle to an IN endpoint returned by USBD AddEP() .

Return value

Number of bytes which still have to be written.

Additional information

Note that this function does not return the number of bytes that have been written, but the
number of bytes which still have to be written. This function does not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

117 CHAPTER 4 Target API

4.2.3.14 USBD_StallEP()

Description

Stalls an endpoint.

Prototype
voi d USBD_Stal | EP(unsi gned EPI ndex) ;
Parameters
Parameter Description
EPI ndex Handle to the endpoint handle returned by USBD AddEP() .

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

118

CHAPTER 4 Target API

4.2.4 USB Remote wakeup functions

emUSB-Device User Guide & Reference Manual

Remote wakeup is a feature that allows a device to wake a host system from a USB suspend
state.

In order to do this a special resume signal is sent over the USB data lines.

Additionally the USB host controller and operating system has to be able to handle this
signaling.

Windows OS

Currently Windows OS only supports the wakeup feature on devices based on HID mouse/
keyboard, CDC Modem and RNDIS Ethernet class. Remote wakeup for MSD, generic bulk
and CDC serial is not supported by Windows. So therefore a HID mouse class even as
dummy interface within your USB configuration is currently mandatory.

Windows must also be told that the device shall wake the PC from the suspend state. This
is done by setting the option “Allow this device to bring the computer out of standby”.

HID-compliant mouse Properties E!

File Action Wiew General | Driver | Detalls Power Management |

M[=1E3

= @& .
. HID-compliant mousze
[+]- =g Disk drives
- -é Display adz
g Dllr_ID"ICD'R([T &llawthe computer bo burr off this device to save pawer.
i Elisys prot Iv &llow thiz device to bring the computer out of starndb

I'_'I @ Hurman Irke

l @ IDE ATAJA"
[+-& IEEE 1394 |
ﬂ Jungo

i i Kevboards
|§| J Mln:e and ot
.) HID-con
i =) Microsc
:‘;1, Mn:lnitn:lrs
ES Metwork, ac
- Ports (Com
%8 Processors
-4 5051 and R
-8, Sound, vide
-q.p Skorage vo
- 1 Swakem des 0K

Cancel

macQOS

macOS supports remote wakeup for all device classes.

© 2010-2024 SEGGER Microcontroller GmbH

119 CHAPTER 4 Target API

4.2.4.1 USBD_SetAllowRemoteWakeUp()

Description

Allows the device to publish that remote wake is available.

Prototype
voi d USBD_Set Al | onRenpt eVakeUp(U8 Al | owRenpt eWakeup) ;
Parameters

Parameter Description

e 1 - Allows and publishes that remote wakeup is available.

Al T owRemrot eViakeup e 0 - Publish that remote wakeup is not available.

Additional information

This function must be called before the function USBD St art () is called. This ensures that
the Host is informed that USB remote wake up is available.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

120 CHAPTER 4 Target API

4.2.4.2 USBD_DoRemoteWakeup()

Description

Performs a remote wakeup in order to wake up the host from the standby/suspend state.
This will only work, when the USB device driver supports this. The function must be called
only, if either:

A) The USB device is in suspend state: (USBD Get State() & USB_STAT SUSPENDED) # 0
and remote wakeup is allowed by the host: (USBD Get Devi ceSt at e() & USB_DEVSTAT_RE-
MOTE_WAKEUP_ALLOWED) # 0.

OR

B) The USB bus is in L1 state and remote wakeup is allowed by the host, see USBD Se-
t OnLPMChange() .

Prototype

voi d USBD_DoRenot eWakeup(voi d);

Additional information

This function cannot be called from an ISR context.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

121 CHAPTER 4 Target API

4.2.5 Data structures

4.25.1 USB_ADD EP_INFO
Description
Structure used by USBD AddEPEx() when adding an endpoint.

Type definition

typedef struct {
unsi gned MaxPacket Si ze;

uUl6 I nterval;

us Fl ags;

us InDir;

us Tr ansf er Type;
us I SO Type,;

} USB_ADD_EP_I NFQ,

Structure members

Member Description

MaxPacket Si ze Maximum packet size for the endpoint.

Specifies the interval measured in units of 125us (mi-

I nterval croframes). This value should be zero for a bulk endpoint.

Specifies whether optional parameters are used.

e 0x00 - Ignore optional parameters.

Fl ags e USB_ADD EP_FLAG USE_ | SO SYNC TYPES - Use | SO Type.
If not set the endpoint will have the sync type
USB_| SO SYNC_TYPE_NONE.

Specifies the direction of the desired endpoint.
| nDi r e USBDRIN
e USB DIR OUT

Specifies the transfer type of the endpoint. The following val-
ues are allowed:

Tr ansf er Type e USB TRANSFER TYPE BULK

e USB_TRANSFER TYPE_I SO

e USB _TRANSFER TYPE_I NT

Allows to set the synchronization type for isochronous end-
points. The following types are supported:

e USB_I SO SYNC TYPE_NONE (default)

e USB_| SO SYNC TYPE_ASYNCHRONOUS

e USB | SO SYNC TYPE_ADAPTI VE

e USB_| SO SYNC TYPE_SYNCHRONOUS

| SO Type

Additional information

The I nterval parameter specifies the frequency in which the endpoint should be polled
for information by the host. It must be specified in units of 125 us. Depending on the
actual speed of the device during enumeration, the USB stack converts the interval to
the correct value required for the endpoint descriptor according to the USB specification
(into milliseconds for low/full-speed, into 125 us for high-speed). For endpoints of type
USB_TRANSFER_TYPE_BULK the value is ignored and should be set to 0.

The actual maximum packet size for bulk endpoints may be smaller than given in the
‘MaxPacket Si ze' field to meet the requirements of the actual USB speed.

For SuperSpeed bulk endpoints, MaxPacket Si ze can be N * 1024, where N = 1...16. Values
of N > 1 enables the usage of burst transfers.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

122 CHAPTER 4 Target API

4.2.5.2 USB_SETUP_PACKET

Description

Structure containing a USB setup packet received from the host.

Type definition

typedef struct {

bmRequest Type;
U8 bRequest;
U8 wwval uelLow,
Us wwval ueHi gh;
U8 w ndexLow,
us
us
us

&

w ndexHi gh;

wLengt hLow;,

wLengt hHi gh;
} USB_SETUP_PACKET;

Structure members

Member Description
brmRequest Type Setup request type.
bRequest Setup request number.
wVal ueLow Low byte of the value field.
wVal ueH gh High byte of the value field.
wl ndexLow Low byte of the index field.
wl ndexHi gh High byte of the index field.
wLengt hLow Low byte of the length field.
wLengt hH gh High byte of the length field.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

123 CHAPTER 4 Target API

4.25.3 SEGGER_CACHE_CONFIG

Description

Used to pass cache configuration and callback function pointers to the stack.

Prototype

typedef struct {
unsi gned i nt CachelLi neSi ze;
voi d (*pf DVB) (voi d);
voi d (*pfdC ean) (void *p, unsigned | ong NunBytes);
void (*pflnvalidate)(void *p, unsigned [ong NunBytes);
} SEGGER_CACHE_CONFI G

Member Description

Cache line size of the CPU in bytes. Most Systems use a 32 bytes
cache line size.

pf DVB Unused.

Pointer to a callback function that executes a clean operation on
cached memory. The parameter 'p’ is always cache aligned. 'Num-
Bytes’ must be rounded up by the function to the next multiple of the
cache line size, if necessary.

CachelLi neSi ze

pf Cl ean

Pointer to a callback function that executes an invalidate operation
on cached memory. The parameter 'p’ is always cache aligned. 'Num-
Bytes’ must be rounded up by the function to the next multiple of the
cache line size, if necessary.

pfl nval i date

Additional information

For further information about how this structure is used please refer to USBD_Set CacheCon-
fi g on page 93.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

124

CHAPTER 4

4254 USB_CHECK_ADDRESS FUNC

Description

Target API

Checks if an address can be used for DMA transfers. The function must return 0, if DMA

access is allowed for the given address, 1 otherwise.

Type definition

typedef int USB_CHECK ADDRESS FUNC(const void * pMen);

Parameters
Parameter Description
pMem Pointer to the memory.
Return value
=0 Memory can be used for DMA access.
+#0 DMA access not allowed for the given address.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

125 CHAPTER 4 Target API

4255 USB_ASYNC IO CONTEXT

Description

Contains information for asynchronous transfers.

Type definition

typedef struct {

unsi gned NunByt esToTr ansfer;
voi d * pDat a;
USB_ASYNC_CALLBACK_FUNC * pf OnConpl et e;

voi d * pCont ext ;

i nt St at us;

unsi gned NunByt esTr ansf erred;

} USB_ASYNC | O CONTEXT;

Structure members

Member Description

NunByt esToTr ansf er Number of bytes to transfer. Must be set by the application.

Pointer to the buffer for read operations, pointer to the data

pData for write operations. Must be set by the application.

f ONConl et e Pointer to the function called on completion of the transfer.
P P Must be set by the application.

Cont ext Pointer to a user context. Can be arbitrarily used by the ap-
P plication.
St at us Result status of the asynchronous transfer. Set by the USB

stack before calling pf OnConpl et e.

Number of bytes transferred. Set by the USB stack before

NunByt esTransferred calling pf OnConpl et e.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

126 CHAPTER 4 Target API

4.2.5.6 USB_WEBUSB_INFO

Description

Information that may be provided by the application for WebUSB capable USB devices.
Can be set via the function USBD_Set WebUSBI nf o() before the USB stack is started using
USBD Start (). Is used during enumeration of the device by the host.

Type definition

typedef struct {

us Vendor Code;
us Descl ndex;
us URLPrefi x;

const char * sURL;
} USB_WEBUSB_I NFQ,

Structure members

Member Description
Vendor Code Vendor code used for the setup request.
Descl ndex :genf;:gts;ézc.jex of the descriptor containing the URL of the
URLPr ef i x Prefix of the URL: 0 = “http://”, 1 = “https://”, 255 = none.
sURL URL of the landing page. UTF-8 string.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

127 CHAPTER 4 Target API

4.2.6 Function Types
4.2.6.1 USB_ON_CLASS REQUEST

Description

Type of callback set in USBD_Set Cl assRequest Hook() or USBD_Set Vendor Request Hook() .
This function is called when a setup class request is sent from the host to the specified
interface index.

Type definition
typedef int USB_ON CLASS REQUEST(const USB_SETUP_PACKET * pSetupPacket);

Parameters
Parameter Description
pSet upPacket Pointer to the setup packet received from the host.

Return value

If the function has processed the setup packet, it must acknowledge the packet by either
sending a response packet using USBD Wit eEPOFrom SR() or an empty packet with USB-
D Wit eEPOFrom SR(NULL, 0, 0) and must return 0.

If the function can’t process the packet, it must return 1. In this case the USB stacks tries
to process the packet and will send a STALL if that fails.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

128 CHAPTER 4 Target API

4.2.6.2 USB_ON_SETUP

Description

Type of callback set in USBD _Set OnSet up() . This function is called when a setup request
was sent from the host.

Type definition
typedef int USB_ON _SETUP(const USB_SETUP_PACKET * pSetupPacket);

Parameters
Parameter Description
pSet upPacket Pointer to the setup packet received from the host.

Return value

If the function has processed the setup packet, it must acknowledge the packet by either
sending a response packet using USBD Wit eEPOFrom SR() or an empty packet with USB-
D Wit eEPOFrom SR(NULL, 0, 0) and must return 0.

If the function can’t process the packet, it must return 1. In this case the USB stacks tries
to process the packet and will send a STALL if that fails.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

129 CHAPTER 4 Target API

4.2.6.3 USB_GET_STRING_FUNC

Description

Type of callback set in USBD Set Get St ri ngHook() . This function is called when a string
descriptor is requested from the host.

Type definition

typedef const char * USB_GET_STRI NG _FUNC(i nt | ndex);

Parameters

Parameter Description
| ndex I ndex of the requested string.

Return value

If the function is able to provide a string for the given index, it should return a pointer to
an ASCII string. Otherwise it should return a NULL pointer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

130 CHAPTER 4 Target API

4.2.6.4 USB_ON_LPM_CHANGE

Description

Type of callback set in USBD_Set OnLPMChange() . This function is called when a LPM transi-
tion on the USB lines (LO <-> L1) is detected.

Type definition

typedef void USB_ON_LPM CHANGE(i nt State,
unsi gned BESL);
Parameters
Parameter Description
e -1 - Transition to LO.
State e 0 - Transition to L1. Remote wakeup not allowed.

e 1 - Transition to L1. Remote wakeup allowed.

BESL value (Best Effort Service Latency) in range 0...15
reported by the host when requesting a transition to L1
BESL state. Values of 0,1,...,14,15 specify a BESL of 125us,150us,

...,9000us,10000us respectively, see “Errata for USB 2.0
ECN: Link Power Management (LPM) - 7/2007"” from usb.org
for an explanation of these values.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

131 CHAPTER 4 Timeout handling

4.3 Timeout handling

Many API functions have a timeout parameter that causes the functions to return, if the
desired transaction can not be finished within the given time. Hardware USB controllers
usually do not have a mechanism for timeouts. Therefore the USB stack has to handle
timeouts as follows:

e Start a transaction.
e Wait for the transaction to complete or the timeout to expire.
e If the timeout has expired: Abort the current transaction.

Aborting a transaction is always a critical operation. The USB software is informed by the
hardware only if a transaction has been completed. The software usually does not know, if
a data transfer on the USB lines is still in progress. So if the USB stack decides to abort a
transaction, this transaction may already be in progress at that time. In this case the abort
of the transfer may cause the data currently transferred to be discarded without any notice
to the software. Although the data packet was successfully transferred on the USB bus and
acknowledged by the host, the data is lost from the target application’s viewpoint.

Because this is usually not the behavior intended by the application, timeouts should be
used to handle fatal errors only. Timeouts should not be used to repeatedly poll for data.

Bad example
NOT RECOMMENDED

for (;;) {
/1 Try to read sonme data with 5 nms tineout
NunmByt esRead = USBD_Recei ve(EP, Buffer, 100, 5);
if (NunBytesRead < 0) ({
<handl e error>
br eak;

}
if (NunBytesRead > 0) ({

<process the data>
conti nue;

}

/1 NunBytesRead is O here, that nmeans a tinmeout has occurred
<execut e ot her tasks>
/'l Repeat the loop and retry to read data

}

In this example, data packets may be lost if they arrive exactly when the 5 ms timeout
expires.

There are several options to avoid this problem:

e Using non-blocking API functions, like USBD_Recei ve() whereas the Timeout value =
-1 eg. USBD _Recei ve(EP, Buffer, 100, -1).

e Using asynchronous API functions, line USBD_ReadOver | apped(), USBD_ReadAsync() .

e Using blocking API functions with a timeout, that don’t abort the transaction. They
usually have a “Poll” in their name. The above example works well when using the
function USBD_Recei vePol | () instead of USBD Recei ve().

The same applies when writing data to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

132 CHAPTER 4 Low power mode

4.4 Low power mode

emUSB-Device does not directly support low power modes of the device running USB,
because it is very specific to the actual hardware and requirements of the application and
there may be several different low power states. Low power mode may include:

Shutting down peripherals (including the USB controller and/or the PHY)
Shutting down PLLs

Lowering the system clock

CPU sleep modes

The device is usually put into low power state only, if there is no USB connection to the
host. Since the host supplies the device via (5 Volt) VBUS, there is no need for power
saving. Without a USB host connection, the device may run from a battery which requires
low power consumption.

The application is responsible to determine when low power state should be entered or
exited. In most cases it depends on VBUS: Enter low power mode while no VBUS is present.
There is no general way to detect VBUS with the USB controller, especially if the USB
controller is shut down. Therefore VBUS detection must be managed by the application.

To enter low power mode, the application should:

e Call USBD St op()
e Enter low power mode

To leave low power mode, the application should:

e Resume from low power mode
e Call USBD Start()

Alternately the USB stack may be re-initialized completely.

To enter low power mode:

e Call USBD Del nit()
e Enter low power mode

To leave low power mode:

e Resume from low power mode

e Call USBD I nit ()

e Call all necessary USB configuration function (like USBD Set Devicel nfo(),
USBD <class>_Add(), ...)

e CallusBD Start()

The second approach is necessary for example, if the configuration which was done in the
USBD_X_Config() function should be executed after resuming from low power mode, or
if the memory used by the USB stack was shut down in low power mode and has lost its
contents.

4.4.1 USB suspend

If the application wants to respond to a USB suspend from the host while the device stays
connected to the host, it may simply monitor the status bit USB_STAT SUSPENDED returned
by the function USBD Get St at e() . The USB stack must remain active to get correct states
from USBD Get St ate() .

The USB controller is usually not able to distinguish between suspend state and USB dis-
connect. Therefore the VBUS state has to be considered: If the stack turns into suspend
state while VBUS is still present, the host has issued a suspend and a later resume (or
remote wake-up) may be possible. If the stack signals a suspend event and VBUS is off,
then the host was disconnected and no resume (or remote wake-up) is possible.

The device may be put into low power mode during suspend. If the USB controller is affected
by the low power mode (for example if the USB controller register settings are not retained),
then the application has to save and restore the USB controllers state before entering /
after leaving low power state.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

133 CHAPTER 4 Low power mode

4.4.2 Link Power Management (LPM)

To enable LPM, the application has to call USBD _UseV210() within the configuration func-
tion USBD_X_Confi g() . This sets the USB version of the device to 2.10. The host will then
request the LPM capabilities from the device (contained in the BOS descriptor) during enu-
meration. The USB stack will offer LPM support only, if the driver and the USB controller
supports it.

For SuperSpeed devices LPM is enabled by default.

Please notice that common USB hosts (Windows/Linux/MacOS) use LPM for full- and high-
speed devices only in special situations. If the host contains a controller hardware other
than a XHCI type controller, then LPM is not used. Also if the device is not directly connected
to that USB controller, but instead via a hub, then LPM is not used.

See also:

e USBD Set BESLVal ues()
e USBD Set OnLPMChange()
e USBD Set LPVMResponse()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 5

Bulk communication

This chapter describes how to get emUSB-Device-Bulk up and running.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

135 CHAPTER 5 Generic bulk stack

5.1 Generic bulk stack

The generic bulk stack is located in the directory USB. All C files in the directory should be
included in the project (compiled and linked as part of your project). The files in this direc-
tory are maintained by SEGGER and should not require any modification. All files requiring
modifications have been placed in other directories.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

136 CHAPTER 5 Requirements for the Host (PC)

5.2 Requirements for the Host (PC)

In order to communicate with a target (client) running emUSB-Device, the operating system
running on the host must recognize the device connected to it.

5.2.1 Windows

Microsoft’'s Windows operating systems (Starting with XP Service Pack 2) contains a generic
driver called WinUSB.sys that is used to handle all communication to a emUSB-Device
running a BULK interface. If a emUSB bulk device is connected to a Windows 8, 8.1 and
10 PC for the first time, Windows will install the WinUSB driver automatically. For Windows
versions less than Windows 8, Microsoft provides a driver for Windows Vista and Windows
7 but this needs to be installed manually. A driver installation tool including the mentioned
driver is available in the W ndows\ USB\ Bul k\ W nUSBI nst al | . Windows XP user can use
the driver package located under W ndows\ USB\ Bul k\ W nUSB_USBBul k_XP. In order to get
emUSB BULK running with the WinUSB driver the following must be considered:

e The function USBD BULK Set MSDescl nf o() must be called in the target application.
e The Product IDs 1234 and 1121 must not be used.

5.2.2 Linux

Linux can handle emUSB BULK devices out of the box.

By default a USB device can only be accessed by a process that is running with “root”
rights. In order to use the USB bulk device from normal user programs an udev rule has to
be configured for the device (refer to the linux udev documentation). The emUSB-Device
release contains a sample configuration file 99- enlJSBD. r ul es, which may be modified and
copied to /etc/udev/rules.d on the host machine.

52.3 macOS

macOS can handle emUSB BULK devices out of the box.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

137 CHAPTER 5 Example application

5.3 Example application

Example applications for both the target (client) and the PC (host) are supplied. These
can be used for testing the correct installation and proper function of the device running
emUSB-Device.

The host sample applications can be used for Windows, Linux and MacOSX. Precompiled
executables for Windows can be found in the subfolder W ndows/ USB/ Bul k/ Sanpl eAppl i -
cati on/ Exe.

The application USB_BULK Test . ¢ is a modified echo server; the application receives data,
modifies the first byte and sends it back to the host. It also contains the functionality to
measure USB transfer speed.

USB
connection

Target, running Host (PC),
USB_BULK_Test.c running Test.exe

To use this application, make sure to use the corresponding example files both on the host-
side as on the target side. The example applications on the PC host are named in the same
way, just without the prefix USB_BULK .

The example applications for the target-side are supplied in source code in the Appl i cati on
directory.

For information how to compile the host examples (especially for Linux and MacOSX) refer
to Compiling the PC example application on page 138.

The start application will of course later on be replaced by the real application program.
For the purpose of getting emUSB-Device up and running as well as doing an initial test,
the start application should not be modified.

5.3.1 Running the example applications

To test the emUSB-Device-Bulk component, build and download the application of choice
for the target-side.

To run one of the example applications, simply start the executable, for example by double
clicking it.

If a connection can be established, it exchanges data with the target, testing the USB
connection.

Example output of Test . exe:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

138 CHAPTER 5 Example application

Iggrxvt'

$ Exer/Test |

Found 1 device
Found the following device O:
Yendor Mame : Vendor
Froduct Mame: Bulk test
Serial no. r 13245678
To which dewvice do you want to connect?
Please type in device rnumber (e.g. '0' for the first device, gsa for abort):0
Echo test
Operation successful!

Read speed test

FPerformance: 6145 ms for 256 MB
= 42659 kB / second

Write speed test

FPerformance: 6144 ms for 236 MB
= 4Zp66 kB / second

Echo test
Operation successful!

Communication with USE BULK device was successful!
FPress enter to exit.ll

5.3.2 Compiling the PC example application

5.3.2.1 Windows

For compiling the example application you need Visual C++ 2010 (or later).

o0 USBBULK Start - Microsoft Visual Studio (Administrator) o || =) E
Eile Edit View Project Build Debug Team Dats Tools Test Window Help
f il = e | % a9 - O - E G| P [Debug - [winz2 || (| Read || A L s Bl S
P00 s e I 200EaB3@ABRA;
Solution Explarer MRl Testc X
2= (Global Scape)]
; Solution 'USBBULK_Start' (1 project) B e e e T e e e T T e T
s Test . * SEGGER MICROCONTROLLER GmbH & Co. KG *
. E?Eﬂ”nﬂnemn“nnﬁ * Solutions for real time microcontroller applications *
] Test.c FEE RO OOR R KRR R 0RO K R RO R ON R OR R OOR OO R RO R R
ERE USBBULK.Ib
% %
* (C) 2883 - 2007 SEGGER Microcontroller GmbH & Co. KG *
% %
= WwWlW . Segger. com Support: support@segger.com =
% %

EEEEERRERRKEER R AR R R AR RN KRR R R R R KRR R R R KRR R R R R KRR R RN R R R AR RERRER

% %
* USB device stack for embedded applications *

B e L e T e

Purpose : USB BULK Test Application

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "USBBULK.h"

JERERRRSRR R R ER R R R R R R R R R R R AR EREE
*

defines, configurable

*

B T T L L LE T TPy
=/

#define PRODUCT_NAME "Bulk test"

121% =« | m |

= solutio... [0

Lnl Call Chl

The source code of the sample application is located in the subfolder W ndows/ USB/ BULK/
Sanpl eAppl i cation/ Src. Open the file USBBULK St art . sl n and compile the source.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

139 CHAPTER 5 Example application

5.3.2.2 Linux

The subfolder W ndows/ USB/ Bul k/ Sanpl eAppl i cati on contains a Makefile for Linux.
Change to this folder and execute “"make”.

5.3.2.3 macOS

The subfolder W ndows/ USB/ Bul k/ Sanpl eAppl i cati on contains a Makefile for macOS.
Change to this folder and execute “make -f Makefi | e_MacCOSX".

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

140 CHAPTER 5 Target API

5.4 Target API

This chapter describes the functions that can be used with the target system.

General information

To communicate with the host, the sample application project includes USB-specific header
and source files (USB. h, USB_Mai n. ¢, USB_Set up. ¢, USB_Bul k. ¢, USB_Bul k. h). These files
contain API functions to communicate with the USB host through the emUSB-Device driver.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API functions
have a simple interface and handle all operations that need to be done to communicate
with the hosts kernel.

Therefore, all operations that need to write to or read from the emUSB-Device are handled
internally by the provided API functions.

5.4.1 Target interface function list

Routine ‘ Explanation
USB-Bulk functions

Adds interface for USB-Bulk communica-
tion to emUSB-Device.

USBD_BULK_Add()

Adds interface for USB-Bulk communica-

USBD_BULK_Add_Ex() tion to emUSB-Device.

Adds an alternative interface for USB-Bulk
interface.

USBD BULK_ Set MSDescl nf o() Enables use of Microsoft OS Descriptors.

Cancels any non-blocking/blocking read
operation that is pending.

USBD BULK AddAl ternatel nterface()

USBD BULK Cancel Read()

Cancels any non-blocking/blocking write

USBD_BULK_Cancel Wi te() operation that is pending.

Returns the number of bytes that are
USBD_BULK_Get NunByt esl nBuf f er () available in the internal BULK-OUT end-
point buffer.

Get the number of remaining bytes to read

USBD BULK CGet NunByt esRenifoRead() by an active read operation.

After starting a non-blocking write oper-
ation this function can be used to period-
ically check how many bytes still have to
be written.

USBD BULK Get NunByt esRenToW it e()

USBD_BULK_Read() Reads data from the host with a given

timeout.
USBD BULK ReadAsync() Reads data from the host asynchronously.
USBD BULK_ReadQver | apped() Reads data from the host asynchronously.
USBD BULK Recei ve() Reads data from the host.
USBD BULK_Recei vePol | () Reads data from the host.
USBD_BULK_Set Cont i nuousReadMbde() Eggggﬁit‘fontmuous read mode for the RX

Sets a callback function that is called when

USBD_BULK_Set nSet upRequest () any setup request is sent from the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

141

CHAPTER 5 Target API

Routine

Explanation

USBD_BULK_Set OnRXEvent ()

Sets a callback function for the OUT end-
point that will be called on every RX event
for that endpoint.

USBD_BULK_Set OnTXEvent ()

Sets a callback function for the IN end-
point that will be called on every TX event
for that endpoint.

USBD BULK TxI sPendi ng()

Checks whether the TX (IN endpoint) is
currently pending.

USBD_BULK_\Wai t For RX()

Waits (blocking) until the triggered USB-
D BULK ReadOver| apped() has received
the desired data.

USBD_BULK_Pol | For RX()

Waits (blocking) until the triggered USB-
D BULK_ReadOver | apped() has received
the desired data.

USBD_BULK_\ai t For TX()

Waits (blocking) until a pending asynchro-
nous USBD BULK Wite() (Timeout para-
meter = -1) has sent the desired data.

USBD_BULK_Pol | For TX()

Waits (blocking) until a pending asynchro-
nous USBD BULK Wite() (Timeout para-
meter = -1) has sent the desired data.

USBD_BULK_Wai t For TXReady/()

Waits (blocking) until the TX queue can ac-
cept another data packet.

USBD _BULK Wi t e()

Sends data to the USB host.

USBD_BULK_W i t eAsync()

Sends data to the host asynchronously.

USBD_BULK_W i t eEx()

Send data to the USB host with NULL pack-
et control.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

142 CHAPTER 5 Target API

5.4.2 USB-Bulk functions

5.4.2.1 USBD BULK_Add()

Description

Adds interface for USB-Bulk communication to emUSB-Device.

Prototype
USB_BULK_HANDLE USBD BULK_Add(const USB BULK | NI T_DATA * plnitData);
Parameters
Parameter Description
pl ni t Dat a Pointer to USB_BULK | NI T_DATA structure.

Return value
Handle to a valid BULK instance. The handle of the first BULK instance is always 0.

Example

Example excerpt from BULK_Echol. c:

static void _AddBULK(void) {
static U8 _abQutBuffer[USB_HS BULK MAX_PACKET_SI ZE] ;
USB_BULK_I NI T_DATA Init;
Init.EPIn = USBD_AddEP(USB_DI R I N,
USB_TRANSFER_TYPE_BULK,
USB_HS_BULK_MAX_PACKET_SI ZE,
NULL,
0);
Init. EPCQut = USBD AddEP(USB_DI R_QOUT,
USB_TRANSFER_TYPE_BULK,
USB_HS BULK_MAX_ PACKET_SI ZE,
_abQut Buffer,
USB_HS_BULK_MAX_PACKET_SI ZE) ;
USBD_BULK_Add(& nit);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

143 CHAPTER 5 Target API

5.4.2.2 USBD BULK_Add_EX()

Description

Adds interface for USB-Bulk communication to emUSB-Device.

Prototype
USB_BULK_HANDLE USBD BULK_Add_Ex(const USB_BULK_I NI T_DATA EX * plnitData);
Parameters
Parameter Description
pl ni t Dat a Pointer to USB_BULK | NI T_DATA EX structure.

Return value
Handle to a valid BULK instance. The handle of the first BULK instance is always 0.

Example

static void _AddBULK(void) {
static U8 _abQutBuffer[USB_HS BULK MAX_PACKET_SI ZE] ;
USB_BULK_| NI T_DATA EX Init;

Init.Flags = 0;

Init.EPIn = USBD_AddEP(USB_DI R I N,
USB_TRANSFER_TYPE_BULK,
USB_HS BULK_MAX_PACKET_SI ZE,
NULL,
0);

Init.EPCQut = USBD_AddEP(USB_DI R_OUT,

USB_TRANSFER_TYPE_BULK,

USB_HS BULK_MAX_ PACKET_SI ZE,

_abQut Buffer,

USB_HS_BULK_MAX_PACKET_SI ZE) ;
Init.plnterfaceName = "BULK Interface";
USBD_BULK_Add_Ex(& nit);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

144 CHAPTER 5 Target API

5.4.2.3 USBD_BULK_AddAlternatelnterface()

Description

Adds an alternative interface for USB-Bulk interface.

Prototype
voi d USBD_BULK_AddAl t er nat el nt er face(USB_BULK_HANDLE hl nst,
const USB_BULK | NI T_DATA_EX * plnitData,
USB_ON_USER SET_| NTERFACE * pfnUser);
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
pl ni t Dat a Pointer to USB_BULK | NI T_DATA EX structure.
f onUser Callback function that is called, when the host changes the
P interface.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

145 CHAPTER 5 Target API

5.4.2.4 USBD_BULK_SetMSDesclInfo()

Description

Enables use of Microsoft OS Descriptors. A USB bulk device providing these descriptors is
detected by Windows to be handled by the generic WinUSB driver. For such devices no
other driver needs to be installed.

Prototype
voi d USBD_BULK_Set MsDescl nf o(USB_BULK_HANDLE hl nst) ;
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Additional information

This function must be called after the call to the function USBD BULK Add() and before
USBD Start().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

146 CHAPTER 5 Target API

5.4.25 USBD _BULK CancelRead()

Description

Cancels any non-blocking/blocking read operation that is pending.

Prototype
voi d USBD_BULK_Cancel Read(USB_BULK_HANDLE hl nst);
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Additional information

This function shall be called when a pending asynchronous read operation should be can-
celed. The function can be called from any task. In case of canceling a blocking operation,
this function must be called from another task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

147 CHAPTER 5 Target API

5.4.2.6 USBD BULK_ CancelWrite()

Description

Cancels any non-blocking/blocking write operation that is pending.

Prototype
voi d USBD_BULK_Cancel Wit e(USB_BULK_HANDLE hl nst);
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Additional information

This function shall be called when a pending asynchronous write operation should be can-
celed. The function can be called from any task. In case of canceling a blocking operation,
this function must be called from another task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

148 CHAPTER 5 Target API

5.4.2.7 USBD_BULK_GetNumBytesInBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype
unsi gned USBD_BULK_Get NunByt esl nBuf f er (USB_BULK_HANDLE hl nst);
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Return value
Number of bytes that are available in the internal BULK-OUT endpoint buffer.

Additional information

If the host is sending more data than your target application has requested, the remaining
data will be stored in an internal buffer. This function shows how many bytes are available
in this buffer.

The number of bytes returned by this function can be read using USBD BULK Read() without
blocking.
Example

Your host application sends 50 bytes. Your target application only requests to receive 1 byte.
In this case the target application will get 1 byte and the remaining 49 bytes are stored in an
internal buffer. When your target application now calls USBD BULK_Get NunByt esl nBuf f er ()
it will return the number of bytes that are available in the internal buffer (49).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

149 CHAPTER 5 Target API

5.4.2.8 USBD BULK_ GetNumBytesRemToRead()

Description

Get the number of remaining bytes to read by an active read operation. This function is to be
used in combination with USBD BULK ReadOver | apped() . After starting the read operation
this function can be used to periodically check how many bytes still have to be read.

Prototype
unsi gned USBD_BULK_Get NunByt esRenifoRead(USB_BULK_HANDLE hl nst);
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Return value
>0 Number of bytes which have not yet been read.

<0 Error occurred.

Additional information
Alternatively the blocking function USBD BULK Wit For RX() can be used.

Example

NunmByt esRecei ved = USBD _BULK ReadOver | apped(hl nst, &ac[O0], 50);
i f (NunBytesReceived < 0) {
<.. error handling..>
}
i f (NunBytesReceived > 0) {
/1l Already had sonme data in the internal buffer.
/1 The first 'NunBytesReceived bytes nmay be processed here.
<,...>
} else {
/1 Wit until we get all 50 bytes
whi |l e (USBD_BULK Get NunByt esRenifToRead(hlnst) > 0) {
USB_GOS_Del ay(50);
}
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

150

CHAPTER 5

Target API

5.4.29 USBD BULK_ GetNumBytesRemToWrite()

Description

After starting a non-blocking write operation this function can be used to periodically check
how many bytes still have to be written.

Prototype
unsi gned USBD_BULK_CGet NunByt esRenifoW it e(USB_BULK_HANDLE hl nst);
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Return value

Number of bytes which have not yet been written.

Additional information

Alternatively the blocking function USBD BULK Wit For TX() can be used.

Example

r = USBD BULK Wite(hlnst,

if (r <0) {
<.. error handling..>

}

/1 NunByt esToWite shows how many bytes still

&ac[0],

TRANSFER_SI ZE, -1);

have to be witten.

whil e (USBD_BULK_ Get NunByt esRenifToWite(hlnst) > 0) {

USB_OS_Del ay(50);
}

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

151 CHAPTER 5 Target API

5.4.2.10 USBD_BULK_Read()

Description

Reads data from the host with a given timeout.

Prototype
i nt USBD_BULK_Read(USB_BULK_HANDLE hl nst,
voi d * pDat a,
unsi gned NurByt es,
unsi gned Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d() .
pDat a Pointer to a buffer where the received data will be stored.
NunByt es Number of bytes to read.
Ti meout Ti meout in milliseconds, 0 means infinite.
Return value
= NunByt es Requested data was successfully read within the given timeout.
> 0 && < NunByt es Ti neout has occurred. Number of bytes that have been read
within the given timeout.
<0 Error occurred.

Additional information

This function blocks a task until all data have been read or a timeout expires. This function
also returns when the device is disconnected from host or when a USB reset occurs.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP() . This data can be retrieved by a later call to USBD_BULK_Recei ve() /
USBD BULK_Read() . See also USBD_BULK_Get NunByt esl nBuf f er () .

In case of a timeout, the read transfer is aborted (see Ti neout handling on page 131).

If a read transfer was still pending while the function is called, it returns USB_S-
TATUS_EP_BUSY.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

152 CHAPTER 5 Target API

5.4.2.11 USBD BULK_ ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype
voi d USBD_BULK_ReadAsync(USB_BULK_HANDLE hl nst,
USB_ASYNC_| O_CONTEXT * pCont ext,
i nt Short Read) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Cont ext Pointer to a structure of type USB_ASYNC | O CONTEXT con-
P taining parameters and a pointer to the callback function.
e 0: The transfer is completed successfully after all bytes
Shor t Read have been read.
e 1: The transfer is completed successfully after one packet
has been read.
Example
static void _AsyncCb(USB_ASYNC | O CONTEXT * pl CCont ext) {
us *p;
p = (U8 *)pl OCont ext - >pCont ext ;
*p = l,
}
<, ..>

USB_ASYNC | O_CONTEXT | OCont ext ;

us AsyncConpl et e;

| OCont ext . NunByt esToTr ansfer = 5000;

| OCont ext . pDat a = pBuff;

| OCont ext . pf OnConpl et e = _AsyncCb;

| OCont ext . pCont ext
AsyncConpl ete = 0;
USBD_BULK_ReadAsync(hlnst, & OContext, 0);
whi |l e (AsyncConplete == 0) {
<.. Do other work. ..>
}
/1 Transaction is conplete.
if (1CContext.Status < 0 || |OContext.NunBytesTransferred != 5000) {
<.. error handling ..>
} else {
<.. Process the data ..>

}

<...>

(void *)&AsyncConpl et e;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

153 CHAPTER 5 Target API

5.4.2.12 USBD_BULK_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype
int USBD_BULK_ReadOver| apped(USB_BULK_HANDLE hl nst,
voi d * pDat a,
unsi gned NumByt es) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
pDat a Pointer to a buffer where the received data will be stored.
NunByt es Number of bytes to read.
Return value
>0 Number of bytes that have been read from the internal buffer (success).
=0 No data was found in the internal buffer, read transfer started (success).

<0 Error occurred.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USBD_BULK Wi t For RX() needs to
be called. Alternatively the function USBD BULK Get NunByt esRenifoRead() can be called
periodically to check whether all bytes have been read or not. The read operation can be
canceled using USBD_BULK Cancel Read() . The buffer pointed to by pDat a must be valid
until the read operation is terminated.

If a read transfer was still pending while the function is called, it returns USB_S-
TATUS_EP_BUSY.

Example
See USBD BULK Get NunByt esRenTToRead on page 149.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

154 CHAPTER 5 Target API

5.4.2.13 USBD_BULK_Receive()

Description

Reads data from the host. The function blocks until any data has been received or a timeout
occurs (if Ti meout = 0). In contrast to USBD BULK Read() this function does not wait for
all of NunByt es to be received, but returns after the first packet has been received. In case
of a timeout, the read transfer is aborted (see Ti neout handling on page 131).

Prototype
int USBD BULK Recei ve(USB_BULK_HANDLE hlinst,
voi d * pDat a,
unsi gned NunByt es,
i nt Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d() .
pDat a Pointer to a buffer where the received data will be stored.
NunByt es Maximum number of bytes to read.
Ti meout in milliseconds. 0 means infinite. If Ti meout is -1,
Ti meout the function never blocks and only reads data from the inter-
nal endpoint buffer.

Return value

>0 Number of bytes that have been read.

=0 A timeout occurred (if Ti neout > 0), zero packet received (not every controller
supports this!), no data in buffer (if Ti neout < 0) or the target was disconnect-
ed during the function call and no data was read so far.

<0 Error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USB-
D_BULK_Recei ve() will return as much data as is currently available -- up to the size of the
buffer specified. This function also returns when the target is disconnected from the host or
when a USB reset occurred during the function call, it will then return USB_STATUS_ERROCR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP() . This data can be retrieved by a later call to USBD_BULK_Recei ve() /
USBD BULK_Read() . See also USBD_BULK_Get NunByt esl nBuf f er () .

A call of USBD _BULK_Recei ve(lnst, NULL, 0, -1) can be used to trigger an asynchronous
read that stores the data into the internal buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

155 CHAPTER 5 Target API

5.4.2.14 USBD_BULK_ReceivePoll()

Description

Reads data from the host. The function blocks until any data has been received or a timeout
occurs (if Ti meout = 0). In contrast to USBD BULK Read() this function does not wait for all
of NunByt es to be received, but returns after the first packet has been received. In contrast
to USBD BULK Recei ve() this function will continue the read transfer asynchronously in
case of a timeout.

Prototype
int USBD_BULK_Recei vePol | (USB_BULK_HANDLE hl nst,
voi d * pDat a,
unsi gned NunByt es,
unsi gned Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d() .
pDat a Pointer to a buffer where the received data will be stored.
NunByt es Maximum number of bytes to read.
Ti meout Ti meout in milliseconds. 0 means infinite.
Return value
>0 Number of bytes that have been read.
=0 A timeout occurred (if Ti neout > 0), zero packet received (not every controller
supports this!) or the target was disconnected during the function call and no
data was read so far.
<0 Error occurred.

Additional information

If no error occurs, this function returns the number of bytes received. Calling USB-
D_BULK_Recei vePol | () will return as much data as is currently available -- up to the size
of the buffer specified. This function also returns when the target is disconnected from
the host or when a USB reset occurred during the function call, it will then return USB_S-
TATUS_ERROR

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP() . This data can be retrieved by a later call to USBD_BULK_Recei ve() /
USBD BULK_Read() . See also USBD_BULK_Get NunByt esl nBuf f er () .

If a timeout occurs, the read transfer is not affected. Data send from the host after the
timeout is stored into the internal buffer of the endpoint and can be read by later calls to
USBD_BULK Recei vePol | ().

If Ti meout = 0, the function behaves like USBD BULK_Recei ve().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

156 CHAPTER 5 Target API

5.4.2.15 USBD BULK_SetContinuousReadMode()

Description

Enables continuous read mode for the RX endpoint. In this mode every finished read transfer
will automatically trigger another read transfer, as long as there is enough space in the
internal buffer to receive another packet.

Prototype
voi d USBD BULK_Set Cont i nuousReadMbde(USB_BULK_HANDLE hl nst) ;
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Additional information

To check how many bytes have been read into the buffer, the function USBD BULK Get Num
Byt esl nBuffer () may be called. In order to read the data the function USBD BULK Re-
cei ve() needs to be called (non-blocking).

The USB stack will use the buffer that was provided by the application with USBD_AddEP() .
The transfer speed may be improved, if this buffer has a size of at least 2 * MaxPacketSize.
Normally MaxPacketSize for full-speed devices is 64 bytes and for high-speed devices 512
bytes.

Example

USBD_BULK_Set Cont i nuousReadMdde(hl nst) ;
<...>
for(;;) {
Il
/1l Fetch data that was already read (non-bl ocking).
Il
NunByt esRecei ved = USBD BULK_Recei ve(hl nst, &ac[O0], sizeof(ac), -1);
i f (NunBytesReceived > 0) {
Il
/1l W\ got sone data
Il
<.. Process data..>
} else {
<.. Nothing received yet, do application processing..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

157 CHAPTER 5 Target API

5.4.2.16 USBD BULK_ SetOnSetupRequest()

Description

Sets a callback function that is called when any setup request is sent from the host.

Prototype

voi d USBD_BULK_Set OnSet upRequest (USB_BULK_HANDLE hl nst,
USB_ON_SETUP * pf OnSet upRequest) ;

Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
pf OnSet upRequest Pointer to the callback function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

158 CHAPTER 5 Target API

5.4.2.17 USBD_BULK_SetOnRXEvent()

Description

Sets a callback function for the OUT endpoint that will be called on every RX event for
that endpoint.

Prototype
voi d USBD_BULK_Set OnRXEvent (USB_BULK_HANDLE hl nst,
USB_EVENT_CALLBACK * pEvent Cb,
USB_EVENT_CALLBACK_FUNC * pf Event Cb,
voi d * pContext);
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d() .
Pointer to a USB_EVENT_CALLBACK structure. The structure is
pEvent Cb S - ;
initialized by this function.
f Event Cb Pointer to the callback routine that will be called on every
P event on the USB endpoint.
A pointer which is used as parameter for the callback func-
pCont ext tion

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_BULK_Set OnRXEvent (). The USB stack keeps track of all event callback functions
using a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list
and must reside in static memory.

The callback function is called only, if a read operation was started using one of the USB-
D BULK Read...() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK FUNC(unsi gned Events, void *pContext);

Parameter Description
Event s A bit mask indicating which events occurred on the
endpoint.
pCont ext The pointer which was provided to the USBD Set On-

Event () function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description

USB_EVENT DATA READ Some data was received from the host on the end-

point.
USB_EVENT_READ COVPLETE The last read operation was completed.
USB_EVENT_READ ABORT A read transfer was aborted.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

159 CHAPTER 5 Target API

Example

/'l The cal | back function.
static void _OnEvent (unsi gned Events, void *pContext) {
unsi gned NumByt es;

if (Events & USB_EVENT_DATA READ) ({
NumByt es = USBD BULK_Get NunByt esl nBuf f er (hl nst) ;
if (NunBytes) ({
r = USBD BULK Recei ve(hlnst, Buff, NumBytes, -1);
if (r >0) {
<.. process data in Buff..>
}
}
}
}
/1 Main program
/'l Register callback function.
static USB EVENT CALLBACK _usb cal |l back;
USBD BULK Set OnRXEvent (hl nst, & usb_cal | back, _OnEvent, NULL);
USBD BULK_Set Cont i nuousReadMbde(hl nst) ;
/1 Trigger first read
USBD BULK Receive(lnst, NULL, 0, -1);
<.. do anything else here while the data is processed in the callback ..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

160 CHAPTER 5 Target API

5.4.2.18 USBD_BULK_SetOnTXEvent()

Description
Sets a callback function for the IN endpoint that will be called on every TX event for that
endpoint.
Prototype
voi d USBD_BULK_Set OnTXEvent (USB_BULK_HANDLE hl nst,
USB_EVENT_CALLBACK * pEvent Cb,
USB_EVENT_CALLBACK_FUNC * pf Event Cb,
voi d * pContext);
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Pointer to a USB_EVENT_CALLBACK structure. The structure is
pEvent Cb S - ;
initialized by this function.
f Event Cb Pointer to the callback routine that will be called on every
P event on the USB endpoint.
A pointer which is used as parameter for the callback func-
pCont ext tion

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_BULK_Set OnTXEvent (). The USB stack keeps track of all event callback functions
using a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list
and must reside in static memory.

The callback function is called only, if a write operation was started using one of the USB-
D BULK Wi te...() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK FUNC(unsi gned Events, void *pContext);

Parameter Description
Event s A bit mask indicating which events occurred on the
endpoint.
pCont ext The pointer which was provided to the USBD Set On-

Event () function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

Event Description
Some data was sent to the host, so that (part of)
USB_EVENT_DATA SEND the user write buffer may be reused by the applica-
tion.
USB_EVENT_DATA_ACKED Some data was acknowledged by the host.
USB_EVENT _W\RI TE_ABORT A write transfer was aborted.
USB_EVENT_WRI TE_COVPLETE All write operations were completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

161 CHAPTER 5 Target API

Example

/'l The cal | back function.
static void _OnEvent (unsi gned Events, void *pContext) {
if ((Events & USB_EVENT_DATA SEND) != 0 &&
/1 Check for last wite transfer to be conpl et ed.
USBD BULK_Get NunmByt esReniToWite(_hlnst) == 0) {
<.. prepare next data for witing..>
/'l Send next packet of data.
r = USBD BULK Wite(_hlnst, &c[O0], 200, -1);
if (r <0) {
<.. error handling..>
}
}
}
/1 Main program
/'l Register callback function.
static USB_EVENT_CALLBACK _usb_cal | back;
USBD BULK Set OnTXEvent (hl nst, & usb_cal | back, _OnEvent, NULL);
/'l Send the first packet of data using an asynchronous wite operation.
r = USBD BULK Wite(_hlnst, &c[O0], 200, -1);
if (r <0) {
<.. error handling..>
}

<.. do anything el se here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

162

CHAPTER 5

54219 USBD_BULK_TxIsPending()

Description

Target API

Checks whether the TX (IN endpoint) is currently pending. Can be called in any context.

Prototype
i nt USBD_BULK_TxI sPendi ng(USB_BULK_HANDLE hl nst);
Parameters
Parameter Description
hl nst I;(a)ndle to a valid BULK instance, returned by USBD BULK Ad-

Return value

1 We have queued data to be sent.

0 Queue is empty.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

163 CHAPTER 5 Target API

5.4.2.20 USBD_BULK_WaitForRX()

Description
Waits (blocking) until the triggered USBD BULK ReadOver | apped() has received the desired
data.
Prototype
int USBD_BULK Wi t For RX(USB_BULK_HANDLE hl nst,
unsi gned Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Ti meout Ti meout in milliseconds. 0 means infinite.
Return value
=0 Transfer completed.
=1 Ti meout occurred.
<0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the read transfer is aborted (see Ti meout handling on page 131).

Example

i f (USBD_BULK ReadOverl| apped(hlnst, &ac[0], 50) < 0) {
<.. error handling..>
return;
}
Il
/1 USBD _BULK ReadOverl apped() will return imediately.
/1 Do sonething el se while data may be transferred.
Il
<...>
Il
/1 Now wait until we get all 50 bytes.
/1 USBD BULK WaitForRX() will block, until total of
/1 50 bytes are read or tineout occurs.
Il
i f (USBD_BULK Wit ForRX(hlnst, timeout) !'= 0) {
<.. tinmeout error handling..>
return;
}
/'l Now we have 50 bytes of data.
/'l Process 50 bytes of data fromac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

164 CHAPTER 5 Target API

5.4.2.21 USBD_BULK_PollForRX()

Description
Waits (blocking) until the triggered USBD BULK ReadOver | apped() has received the desired
data.
Prototype
int USBD_BULK_Pol | For RX(USB_BULK_HANDLE hl nst,
unsi gned Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Ti meout Ti meout in milliseconds. 0 means infinite.
Return value
=0 Transfer completed.
=1 Ti meout occurred.
<0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the current transfer is not affected. The function may be called re-
peatedly until it does not report a timeout any more.

Example

i f (USBD_BULK ReadOverl| apped(hlnst, &ac[0], 50) < 0) {
<.. error handling..>
return;
}
Il
/1 USBD _BULK ReadOverl apped() will return imediately.
/1 Wiile waiting for the data, we will blink a LED with 200 ns interval.
/1 USBD BULK Pol |l ForRX() will return, if all data were read or 100 ns expi red.
Il
while ((r = USBD _BULK Pol | For RX(hl nst, 100)) > 0) {

Toggl eLED() ;

}

if (r <0) {
<.. error handling..>
return;

}
/1 Now we have 50 bytes of data.

/'l Process 50 bytes of data from ac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

165 CHAPTER 5 Target API

5.4.2.22 USBD_BULK_WaitForTX()

Description

Waits (blocking) until a pending asynchronous USBD BULK Wite() (Ti meout parameter =
-1) has sent the desired data.

Prototype
int USBD_BULK Wit For TX(USB_BULK_HANDLE hl nst,
unsi gned Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Ti meout Ti meout in milliseconds. 0 means infinite.
Return value
=0 Transfer completed.
=1 Ti meout occurred.
<0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the write transfer is aborted (see Ti meout handling on page 131).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

166 CHAPTER 5 Target API

5.4.2.23 USBD_BULK_PollForTX()

Description

Waits (blocking) until a pending asynchronous USBD BULK Wite() (Ti meout parameter =
-1) has sent the desired data.

Prototype
int USBD_BULK_Pol | For TX(USB_BULK_HANDLE hl nst,
unsi gned Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Ti meout Ti meout in milliseconds. 0 means infinite.
Return value
=0 Transfer completed.
=1 Ti meout occurred.
<0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the current transfer is not affected. The function may be called re-
peatedly until it does not report a timeout any more.

Example

if (USBD BULK Wite(hlnst, &c[0], 50, -1) < 0) {
<.. error handling..>

return;
}
/1
/1 USBD BULK Wite() will return inmediately.
/1 Wiile waiting for the data to be transferred, we will blink a LED with

200 s interval .

/1 USBD BULK Pol | ForTX() will return, if all data were send or 100 ns expired.
Il

while ((r = USBD_BULK_Pol | For TX(hlnst, 100)) > 0) {

Toggl eLED() ;

}

if (r <0) {
<.. error handling..>
return;

}

/1 Now all data have been send.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

167 CHAPTER 5 Target API

5.4.2.24 USBD_BULK_WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used
in combination with a non-blocking call to USBD BULK Wi te() , it waits until a new asyn-
chronous write data transfer will be accepted by the USB stack.

Prototype
i nt USBD_BULK_ Wi t For TXReady(USB_BULK_HANDLE hl nst,
i nt Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
. Ti meout in milliseconds. 0 means infinite. If Ti neout is neg-
Ti meout . . . ! .
ative, the function will return immediately.

Return value

=0 A new asynchronous write data transfer will be accepted.

=1 The write queue is full, a call to USBD BULK Wite() would return USB_S-
TATUS_EP_BUSY.

<0 Error occurred.

Additional information
If Ti meout is 0, the function never returns 1.

If Ti meout is -1, the function will not wait, but immediately return the current state.

Example

/1 Always keep the wite queue full for maxi num send speed.
for (;;) {

pDat a = Get Next Dat a(&NunByt es) ;

/1 Wait until stack can accept a new write.

USBD_BULK Wi t For TxReady(hl nst, 0);

/Il lssue wite transfer.

if (USBD BULK Wite(hlnst, pData, NunmBytes, -1) < 0) {

<.. error handling..>

}

}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

168 CHAPTER 5 Target API

5.4.2.25 USBD_BULK_Write()

Description

Sends data to the USB host. Depending on the Ti neout parameter, the function blocks
until NunByt es have been written or a timeout occurs.

Prototype
int USBD BULK Wi te(USB_BULK_HANDLE hl nst,
const void * pDat a,
unsi gned NunByt es,
i nt Ti meout) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d() .
pDat a Data that should be written.
NunByt es Number of bytes to write.
Ti meout in milliseconds. 0 means infinite. If Ti meout is
Ti meout -1, the function returns immediately and the transfer is
processed asynchronously.

Return value

=0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NunByt es Number of bytes that have been written before a timeout oc-
curred.

= NunByt es Write transfer successful completed.

<0 Error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (when
using Ti neout = -1). If a write transfer is still in progress when this function is called
and the USB stack can not accept another write transfer request, the functions returns
USB_STATUS_EP_BUSY. A synchronous write transfer (Ti neout = 0) will always block until
the transfer (including all pending transfers) are finished or a timeout occurs.

In case of a timeout, the write transfer is aborted (see Ti neout handling on page 131).

In order to synchronize, USBD_BULK Wi t For TX() needs to be called. Another synchroniza-
tion method would be to periodically call USBD_BULK_ Get NunByt esReniToWite() in order
to see how many bytes still need to be written (this method is preferred when a non-block-
ing solution is necessary). The write operation can be canceled using USBD_BULK_Cancel -
Wite().

If pDat a = NULL and NunByt es = 0, a zero-length packet is sent to the host.
The content of the buffer pointed to by pDat a must not be changed until the transfer has
been completed.

Example

NumBytesWitten = USBD BULK Wite(hlnst, &ac[0], DataSize, 500);
if (NunBytesWitten <= 0) {
<.. error handling..>

}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

169 CHAPTER 5 Target API

if (NunBytesWitten < DataSi ze) {

<.. tinmeout occurred, data partially witten within 500ns ..>
} else {

<.. wite conpleted successfully..>

}

See also USBD_BULK_Get NumByt esReniToW i t e on page 150.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

170 CHAPTER 5 Target API

5.4.2.26 USBD_BULK_WriteAsync()

Description

Sends data to the host asynchronously. The function does not block. A callback function
is called after the transfer has completed successfully, an error occurred or the transfer
was canceled.

Prototype
voi d USBD BULK_W it eAsync(USB_BULK_HANDLE hl nst,
USB_ASYNC_| O CONTEXT * pCont ext ,
char SendOPacket | f Requi r ed) ;
Parameters
Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().
Cont ext Pointer to a structure of type USB_ASYNC | O CONTEXT con-
P taining parameters and a pointer to the callback function.
. Specifies that a zero-length packet shall be sent when the
SendOPacket I f Requi red last data packet is a multiple of MaxPacketSize.

Example

static void _AsyncCb(USB_ASYNC | O CONTEXT * pl CCont ext) {
us *p;
p = (U8 *)pl OCont ext - >pCont ext ;

}

<...>

USB_ASYNC | O_CONTEXT | OCont ext ;

us AsyncConpl et e;

| OCont ext . NunByt esToTr ansfer = 5000;

| OCont ext . pDat a = pBuff;

| OCont ext . pf OnConpl et e = _AsyncCb;

| OCont ext . pCont ext
AsyncConpl ete = 0;
USBD_BULK Wi teAsync(hlnst, & OCContext, 1);
whi |l e (AsyncConplete == 0) {
<.. Do other work. ..>
}
/1 Transaction is conplete.
if (1CContext.Status < 0 || |OContext.NunBytesTransferred != 5000) {
<.. error handling ..>
} else {
<.. data witten successfully ..>

}

<...>

(void *)&AsyncConpl et e;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

171 CHAPTER 5 Target API

5.4.2.27 USBD_BULK_WriteEx()

Description

Send data to the USB host with NULL packet control. This function behaves exactly like
USBD BULK Wi te(). Additionally sending of a zero length packet after sending the data
can be suppressed by setting SendOPacket | f Requi red = 0.

Prototype
int USBD _BULK Wit eEx(USB_BULK_HANDLE hl nst,
const void * pDat a,

unsi gned NunByt es,

char SendOPacket | f Requi r ed,

i nt Ti meout) ;
Parameters

Parameter Description
hl nst Handle to a valid BULK instance, returned by USBD BULK_ Ad-
d().

pDat a Pointer to a buffer that contains the written data.
NunByt es Number of bytes to write.

Specifies that a zero-length packet shall be sent when the
last data packet is a multiple of MaxPacketSize. Normally
SendOPacket | f Requi r ed | MaxPacketSize for full-speed devices is 64 bytes. For high-
speed devices the normal packet size is between 64 and 512
bytes.

Ti meout in milliseconds. 0 means infinite. If Ti meout is
Ti meout -1, the function returns immediately and the transfer is
processed asynchronously.

Return value

=0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NunByt es Number of bytes that have been written before a timeout oc-
curred.

= NunByt es Write transfer successful completed.

<0 Error occurred.

Additional information

Normally USBD BULK Wite() is called to let the stack send the data to the host and send
an optional zero-length packet to tell the host that this was the last packet. This is the
case when the last packet sent is MaxPacketSize bytes in size. When using this function,
the zero-length packet handling can be controlled. This means the function can be called
when sending data in multiple steps.

Example

/1 for high-speed devices

USBD_BULK Wite(hlnst, _aBufferl, 512, 0);

USBD_BULK Wite(hlnst, _aBuffer2, 512, 0);

USBD_BULK Wite(hlnst, _aBuffer3, 512, 0);

/1 this will send 6 packets to the host with sizes: 512, 0, 512, 0, 512, O
USBD_BULK WiteEx(hlnst, _aBuffer1, 512, 0, 0);

USBD_BULK WiteEx(hlnst, _aBuffer2, 512, 0, 0);

USBD_BULK WiteEx(hlnst, _aBuffer3, 512, 1, 0);

/1 this will send 4 packets to the host with sizes: 512, 512, 512, O

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

172

5.4.3 Data structures

CHAPTER 5 Target API

5.4.3.1 USB_BULK_INIT_DATA

Description
Initialization structure that is needed when adding a BULK interface to emUSB-Device.

Type definition

typedef struct {
U8 EPIn;
Us EPQut;

} USB_BULK_ | NI T_DATA;

Structure members

Member Description
EPI n Endpoint for sending data to the host.
EPQut Endpoint for receiving data from the host.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

173 CHAPTER 5 Target API

5.4.3.2 USB_BULK_INIT_DATA_EX

Description

Initialization structure that is needed when adding a BULK interface to emUSB-Device.

Type definition

typedef struct {

Ul6 Fl ags;
us EPI n;
us EPQut ;

const char * plnterfaceNaneg;

us I nterfaced ass;

us I nt erfaceSubd ass;

us I nt erfaceProtocol ;
} USB_BULK_ I NI T_DATA EX;

Structure members

Member Description

Various flags. Valid bits:
e USB BULK FLAG USE_CUSTOM CLASS I DS - Allows to set

Fl ags
custom values for the

bInterfaceClass, bInterfaceSubClass and bInterfaceProtocol.
EPI n Endpoint for sending data to the host.
EPQut Endpoint for receiving data from the host.
pl nt er f aceNanme Name of the interface.

Only used when Fl ags has the USB_BULK FLAG USE CUS-
I nterfaced ass TOM CLASS | DS bit set. Allows to set the USB Class ID to a

different value (default is 0xFF).

Only used when Fl ags has the USB_ BULK FLAG USE CUS-
I nt erfaceSubd ass TOM CLASS | DS bit set. Allows to set the USB SubClass ID to
a different value (default is OxFF).

Only used when Fl ags has the USB_BULK _FLAG USE CUS-
I nt er f acePr ot ocol TOM CLASS | DS bit set. Allows to set the USB Protocol ID to
a different value (default is OxFF).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

174 CHAPTER 5 C Host API

5.5 C Host API

To communicate with the target USB-Bulk stack an API is provided that can be used on
Windows, Linux and macOS systems. This chapter describes the functions of the C API can
be used with the host system.

Note

There is also a C++ API that can be used to communicate to a target running the
BULK class, see C++ Host API

To have an easy start-up when writing an application on the host side, these API functions
have a simple interface and handle all required operations to communicate with the target
USB-Bulk stack.

To use the API in an application the header file USBBULK. h must be included. Depending
on the host operating system used the following components must be added to the host
application:

e Windows: USBBULK. | i b and USBBULK. dI | (These files are provided for 32- and 64-Bit
applications).

e Linux: USBBULK_Li nux. c.

e macOS: USBBULK MacOSX. c.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

175 CHAPTER 5

5.5.1 Bulk Host API list

C Host API

The functions below are available on the host (PC) side.

Function

Description

USB-Bulk Basic functions

USBBULK_| ni t ()

This function needs to be called first.

USBBULK_Exi t ()

This is a cleanup function, it shall be called
when exiting the application.

USBBULK _AddAl | owedDevi cel t em()

Adds the Vendor and Product ID to the list
of devices the USBBULK API should look
for.

USBBULK_ Get NunmAvai | abl eDevi ces()

Returns the number of connected USB-
Bulk devices.

USBBULK_Open()

Opens an existing device.

USBBULK Ol ose()

Closes an opened device.

USB-Bulk direct input/output functions

USBBULK_Read()

Reads data from target device running
emUSB-Device-Bulk.

USBBULK_ReadTi med()

Reads data from target device running
emUSB-Device-Bulk within a given time-
out.

USBBULK_W i t e()

Writes data to the device.

USBBULK_W i t eTi med()

Writes data to the device within a given
timeout.

USBBULK Cancel Read()

This cancels an initiated read.

USBBULK_FI ushRx()

Flush the any received data.

USB-Bulk Control functions

USBBULK_Set Mode()

Sets the read and write mode for a speci-
fied device running emUSB-Device-Bulk.

USBBULK_Get Mbde()

Returns the current mode of the device.

USBBULK_Set ReadTi neout ()

Sets the default read timeout for an
opened device.

USBBULK Set Wi teTi meout ()

Sets a default write timeout for an opened
device.

USBBULK Reset | NPi pe()

Resets the IN pipe that is opened to the
device.

USBBULK Reset QUTPI pe()

Resets the OUT pipe that is opened to the
device.

USBBULK Reset Devi ce()

Resets the device via a USB reset.

USB-Bulk general GET functions

USBBULK_Get Ver si on()

Returns the version number of the USB-
BULK API.

USBBULK_Get Devl nf o()

Retrieves information about an opened
USBBULK device.

USBBULK_Get Devl nf oByl dx()

Retrieves information about a USB device.

USBBULK_Get USBI d()

Returns the Product and Vendor ID of an
opened device.

USBBULK_Get Pr oduct Nane()

Retrieves the device/product name if avail-
able.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

176 CHAPTER 5 C Host API

Function Description

Retrieves the vendor name of an opened
USBBULK device.

Retrieves the USB serial number as a
USBBULK_Get SN() string which was sent by the device during
the enumeration.

Gets the received target USB configuration
descriptor of a specified device.

USBBULK_Get Vendor Nane()

USBBULK Get Confi gDescri ptor ()

Data structures

USBBULK_DEV_I NFO

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

177 CHAPTER 5

55.2 USB-Bulk basic functions

5.5.2.1 USBBULK_Init()

Description

C Host API

This function needs to be called first. This makes sure to have all structures and thread
have been initialized. It also sets a callback in order to be notified when a device is added

or removed.
Prototype
voi d USBBULK_I ni t (USBBULK_NOTI FI CATI ON_FUNC * pf Notificati on,
voi d * pContext);

Parameters

Parameter Description
pf Noti fication Pointer to the user callback.
pCont ext Context data that shall be called with the callback function.
Example

/***

~

static void _OnDevNotify(void * pContext,
unsi gned | ndex,

USBBULK_DEVI CE_EVENT_ADD
USBBULK_DEVI CE_EVENT_REMOVE

*

* _OnDevNoti fy

*

* Function description:

* I's called when a new device is found or an existing device is renoved.
*

* Paraneters:

* pContext - Pointer to a context given when USBBULK Init is called
* I ndex - Device Index that has been added or renoved.

* Event - Type of event, currently the follow ng are avail abl e:
*

*

*

*

USBBULK_DEVI CE_EVENT Event) {

switch(Event) {
case USBBULK_DEVI CE_EVENT_ADD:

printf("The foll owi ng Devl ndex has been added: %", |ndex);
NurmDevi ces = USBBULK_Get NumAvai | abl eDevi ces(&Devi ceMask) ;

br eak;
case USBBULK_DEVI CE_EVENT_REMOVE:
printf("The follow ng Devl ndex has been renoved: %", |ndex);
NumDevi ces = USBBULK_Get NumAvai | abl eDevi ces(&Devi ceMask) ;
br eak;
}
}
voi d Mai nTask(void) {
<...>
USBBULK_| nit (_OnDevNotify, NULL);
<...>
}

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

178 CHAPTER 5 C Host API

5.5.2.2 USBBULK_EXit()

Description

This is a cleanup function, it shall be called when exiting the application.

Prototype

voi d USBBULK_Exit (void);

Additional information

We recommend to call this function before exiting the application in order to remove all
handles and resources that have been allocated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

179 CHAPTER 5 C Host API

5.5.2.3 USBBULK_AddAllowedDeviceltem()

Description
Adds the Vendor and Product ID to the list of devices the USBBULK API should look for.

Prototype

voi d USBBULK_AddAl | owedDevi cel ten{U16 Vendorld,
Ul6 Productld);

Parameters
Parameter Description
Vendor I d The desired Vendor ID mask that shall be used with the
USBBULK API.
Product | d The desired Product ID mask that shall be used with the
USBBULK API.

Additional information

It is necessary to call this function first before calling USBBULK Get NumAvai | abl eDevi ces()
or opening any connection to a device.

The function can be called multiple times to handle more than one pair of Vendor and
Product IDs with the API.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

180 CHAPTER 5 C Host API

5.5.2.4 USBBULK_ GetNumAvailableDevices()

Description

Returns the number of connected USB-Bulk devices.

Prototype
unsi gned USBBULK_Get NumAvai | abl eDevi ces(U32 * pMask);
Parameters
Parameter Description
Vs k Pointer to a U32 variable to receive the connected device
P mask. This parameter can be NULL.

Return value

Number of available devices running emUSB-Device-Bulk.

Additional information

For each emUSB-Device device that is connected, a bit in pMask is set. For example if device
0 and device 2 are connected to the host, the value pMask points to will be 0x00000005.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

181

CHAPTER 5 C Host API

5.5.2.5 USBBULK_Open()

Description

Opens an existing device. The ID of the device can be retrieved by the function USB-
BULK Get NunmAvai | abl eDevi ces() via the pDevi ceMask parameter. Each bit set in the De-
viceMask represents an available device. Currently 32 devices can be managed at once.

Prototype
USB_BULK_HANDLE USBBULK_Open(unsi gned 1d);
Parameters
Parameter Description
Id Device ID to be opened (0..31).

Return value

=0 Handle to the opened device.

=0 Error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

182 CHAPTER 5 C Host API

5.5.2.6 USBBULK_ Close()

Description

Closes an opened device.

Prototype
voi d USBBULK_Cl ose(USB_BULK_HANDLE hDevi ce);
Parameters
Parameter Description
hDevi ce Handle to the device that shall be closed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

183 CHAPTER 5 C Host API

5.5.3 USB-Bulk direct input/output functions

5.5.3.1 USBBULK_Read()

Description

Reads data from target device running emUSB-Device-Bulk.

Prototype
int USBBULK_ Read(USB_BULK_HANDLE hDevi ce,
voi d * pBuffer,
i nt NumByt es) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
pBuf f er Pointer to a buffer that shall receive the data.
NunByt es Number of bytes to be read.
Return value
= NunByt es All bytes have been successfully read.
> 0, < NunByt es Number of bytes that have been read. If short read transfers are
not allowed (normal mode) this indicates a timeout.
=0 A timeout occurred, no data was read.
<0 Error occurred.

Additional information

If short read transfers are allowed (see USBBULK_ Set Mbde()) the function returns as soon
as data is available, even if just a single byte was read. Otherwise the function blocks until
NunByt es were read. In both cases the function returns if a timeout occurs. The default
timeout used can be set with USBBULK Set ReadTi neout () .

If NunByt es exceeds the maximum read size the driver can handle (the default value is
64 Kbytes), USBBULK Read() will read the desired NunByt es in chunks of the maximum
read size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

184 CHAPTER 5 C Host API

5.5.3.2 USBBULK_ReadTimed()

Description

Reads data from target device running emUSB-Device-Bulk within a given timeout.

Prototype
i nt USBBULK_ReadTi med(USB_BULK_HANDLE hDevi ce,
voi d * pBuffer,
i nt NunByt es,
unsi gned ns);
Parameters
Parameter Description
hDevi ce Handle to the opened device.
pBuf f er Pointer to a buffer that shall receive the data.
NunByt es Maximum number of bytes to be read.
ns Timeout in milliseconds.
Return value
>0 Number of bytes that have been read.
=0 A timeout occurred during read.
<0 Error, cannot read from the device.

Additional information

The function returns as soon as data is available, even if just a single byte was read. If no
data is available, the functions return after the given timeout was expired.

If NunByt es exceeds the maximum read size the driver can handle (the default value is 64
Kbytes), USBBULK _ReadTi ned() will read the desired NunByt es in chunks of the maximum
read size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

185 CHAPTER 5 C Host API

5.5.3.3 USBBULK_Write()

Description

Writes data to the device.

Prototype
int USBBULK Wite(USB_BULK_HANDLE hDevi ce,

const void * pBuffer,

i nt NunmByt es) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
pBuf f er Pointer to a buffer that contains the data.
NUNBYE es Number of bytes to be written. If NunByt es = 0, a zero
Y length packet is written to the device.

Return value

= NunByt es All bytes have been successfully written.
> 0, < NunByt es Number of bytes that have been written.
=0 A timeout occurred, no data was written.
<0 Error, cannot write to the device.

Additional information

The function blocks until NunByt es were written or a timeout occurs. The default timeout
used can be set with USBBULK_Set Wi t eTi neout () .

If NunByt es exceeds the maximum write size the driver can handle (the default value is
64 Kbytes), USBBULK Wi te() will write the desired NunByt es in chunks of the maximum
write size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

186 CHAPTER 5 C Host API

5.5.3.4 USBBULK_WriteTimed()

Description

Writes data to the device within a given timeout.

Prototype
int USBBULK WiteTi med(USB_BULK_HANDLE hDevi ce,
const void * pBuffer,
i nt NunByt es,
unsi gned ns) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
pBuf f er Pointer to a buffer that contains the data.
NUNBYE es Number of bytes to be written. If NunByt es = 0, a zero
Y length packet is written to the device.
ns Timeout in milliseconds.

Return value

= NunByt es All bytes have been successfully written.
> 0, < NunByt es Number of bytes that have been written.
=0 A timeout occurred, no data was written.
<0 Error, cannot write to the device.

Additional information
The function blocks until NunByt es were written or a timeout occurs.

If NunByt es exceeds the maximum write size the driver can handle (the default value is 64
Kbytes), USBBULK_W i t eTi med() will write the desired NunByt es in chunks of the maximum
write size.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

187 CHAPTER 5 C Host API

5.5.3.5 USBBULK_ CancelRead()

Description

This cancels an initiated read.

Prototype
voi d USBBULK_Cancel Read(USB_BULK_HANDLE hDevi ce);
Parameters
Parameter Description
hDevi ce Handle to the opened device.

Additional information
Not supported on Linux and MacOSX.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

188 CHAPTER 5 C Host API

5.5.3.6 USBBULK_FlushRx()

Description

Flush the any received data.

Prototype

i nt USBBULK_FI ushRx(USB_BULK_HANDLE hDevi ce)

Parameters
Parameter Description
hDevi ce Handle to the opened device.

Return value

=0 Error, bad handle.
+#0 Success, flushing the RX buffer was successful.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

189 CHAPTER 5 C Host API

55.4 USB-Bulk control functions

5.5.4.1 USBBULK_ SetMode()

Description

Sets the read and write mode for a specified device running emUSB-Device-Bulk.

Prototype
unsi gned USBBULK_Set Mbde(USB_BULK_HANDLE hDevi ce,
unsi gned Mode) ;
Parameters
Parameter Description

hDevi ce Handle to the opened device.

Read and write mode for the USB-Bulk driver. This is a com-
Mbde bination of the following flags, combined by binary or:

e USBBULK MODE Bl T_ALLOW SHORT_READ

e USBBULK_MODE Bl T_ALLOW SHORT_WRI TE

Return value

=0 Operation failed (invalid handle).
0 The operation was successful.

Additional information

USBBULK_MODE_BI T_ALLOW SHORT_READ allows short read transfers. Short transfers are
transfers of less bytes than requested. If this bit is specified, the read function USB-
BULK _Read() returns as soon as data is available, even if it is just a single byte.

USBBULK_MODE_BI T_ALLOW SHORT_WRI TE allows short write transfers. USBBULK Wit e()
and USBBULK Wit eTi ned() return after writing the minimal amount of data (either Num-
Bytes or the maximal write transfer size).

Example

static void _Test Mode(USB_BULK_HANDLE hDevi ce) {
unsi gned Mbdde;
char * pText;
Mode = USBBULK_Get Mbde(hDevi ce) ;
if (Mbde & USBBULK_MODE_BI T_ALLOW SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORVAL_MODE";

}

printf("USB-Bulk driver is in % for device %\n", pText, (int)hDevice);
printf("Set node to USBBULK_MODE_BI T_ALLOW SHORT_READ\ n");

USBBULK_Set Mbde(hDevi ce, USBBULK_MODE_BI T_ALLOW SHORT_READ) ;

Mode = USBBULK_Get Mbde(hDevi ce) ;

if (Mbde & USBBULK_MODE_BI T_ALLOW SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORVAL_MODE";

}
printf("USB-Bulk driver is nowin % for device %\ n", pText, (int)hDevice);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

190 CHAPTER 5 C Host API

5.5.4.2 USBBULK_ GetMode()

Description

Returns the current mode of the device.

Prototype
unsi gned USBBULK_ Get Mbde(USB_BULK_HANDLE hDevi ce) ;
Parameters

Parameter Description
hDevi ce Handle to the opened device.

Return value

A combination of the following flags, combined by binary or:

e USBBULK MODE BI T _ALLOW SHORT READ - Short read mode is enabled.
e USBBULK MODE BI T _ALLOW SHORT WRI TE - Short write mode is enabled.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

191 CHAPTER 5 C Host API

5.5.4.3 USBBULK_ SetReadTimeout()

Description

Sets the default read timeout for an opened device.

Prototype
voi d USBBULK_Set ReadTi neout (USB_BULK_HANDLE hDevi ce,
i nt Ti meout) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
Ti meout Ti meout in milliseconds.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

192 CHAPTER 5 C Host API

5.5.4.4 USBBULK_ SetWriteTimeout()

Description

Sets a default write timeout for an opened device.

Prototype
voi d USBBULK_Set Wit eTi neout (USB_BULK_HANDLE hDevi ce,
i nt Ti meout) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
Ti meout Ti meout in milliseconds.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

193

CHAPTER 5 C Host API

5.5.4.5 USBBULK_ResetINPipe()

Description

Resets the IN pipe that is opened to the device. It also flushes any data the USB bulk driver

would cache.

Prototype
i nt USBBULK_ Reset | NPi pe(USB_BULK_HANDLE hDevi ce);
Parameters

Parameter Description
hDevi ce Handle to the opened device.

Return value

=0 The operation was successful.
=0 Operation failed. Either an invalid handle was used or the pipe cannot be
flushed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

194 CHAPTER 5 C Host API

5.5.4.6 USBBULK ResetOUTPipe()

Description
Resets the OUT pipe that is opened to the device.

Prototype
i nt USBBULK_Reset OUTPi pe(USB_BULK_HANDLE hDevi ce) ;
Parameters

Parameter Description
hDevi ce Handle to the opened device.

Return value

=0 The operation was successful.
=0 Operation failed. Either an invalid handle was used or the pipe cannot be
flushed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

195 CHAPTER 5 C Host API

5.5.4.7 USBBULK_ ResetDevice()

Description

Resets the device via a USB reset. This can be used when the device does not work properly
and may be reactivated via USB reset. This will force a re-enumeration of the device.

Prototype
i nt USBBULK_ Reset Devi ce(USB_BULK_HANDLE hDevi ce);
Parameters

Parameter Description
hDevi ce Handle to the opened device.

Return value

=0 The operation was successful.
=0 Operation failed. Either an invalid handle was used or the device cannot be re-
set.

Additional information

After the device has been reset it is necessary to re-open the device as the current handle
will become invalid.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

196 CHAPTER 5 C Host API

5.5.5 USB-Bulk general GET functions

5.5.5.1 USBBULK_GetVersion()

Description
Returns the version number of the USBBULK API.

Prototype

unsi gned USBBULK_ Get Ver si on(voi d);

Return value
Version number, format:
< Major Version><Minor Version><Subversion> (Mmmrr, decimal).

Example: 30203 is 3.02c

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

197 CHAPTER 5 C Host API

5.5.5.2 USBBULK_ GetDevinfo()

Description

Retrieves information about an opened USBBULK device.

Prototype

voi d USBBULK_ Get Devl nf o(USB_BULK_HANDLE ~ hDevi ce,
USBBULK_DEV_| NFO * pDevl nf o) ;

Parameters
Parameter Description
hDevi ce Handle to the opened device.
pDevl nf o Pointer to a device info structure of type USBBULK DEV_| NFO.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

198 CHAPTER 5 C Host API

5.5.5.3 USBBULK_GetDevinfoByldx()

Description

Retrieves information about a USB device.

Prototype
i nt USBBULK_Cet Devl nf oByl dx(unsi gned I dx,
USBBULK_DEV_I NFO * pDevl nf 0) ;
Parameters
Parameter Description
I dx Index of the device.
pDevl nf o Pointer to a device info structure of type USBBULK DEV_| NFO.

Return value

=0; Error, bad device index.
0 Success

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

199 CHAPTER 5 C Host API

5.5.5.4 USBBULK_GetUSBId()

Description

Returns the Product and Vendor ID of an opened device.

Prototype
voi d USBBULK_Get USBI d(USB_BULK_HANDLE hDevi ce,
Ul6 * pVendorld,
Ul6 * pProductld);
Parameters
Parameter Description
hDevi ce Handle to the opened device.
pVendor | d Pointer to a variable that receives the Vendor ID.
pProduct I d Pointer to a variable that receives the Product ID.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

200 CHAPTER 5 C Host API

5.5.5.5 USBBULK_ GetProductName()

Description

Retrieves the device/product name if available.

Prototype
i nt USBBULK_Get Product Nane(USB_BULK_HANDLE hDevi ce,
char * sProduct Nane,
unsi gned Buf f er Si ze) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
sProduct Nane Pointer to a buffer that should receive the string.
Buf fer Si ze Size of the buffer, given in bytes.
Return value
=0 Error, product name not available or buffer to small.
*0 Success, product name stored in buffer pointed by sProduct Nane as 0-terminat-

ed string.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

201 CHAPTER 5 C Host API

5.5.5.6 USBBULK_ GetVendorName()

Description

Retrieves the vendor name of an opened USBBULK device.

Prototype
i nt USBBULK_Cet Vendor Name(USB_BULK_HANDLE hDevi ce,
char * sVendor Nane,
unsi gned Buf f er Si ze) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
sVendor Nane Pointer to a buffer that should receive the string.
Buf fer Si ze Size of the buffer, given in bytes.
Return value
=0 Error, bad handle.
*0 Success, vendor name stored in buffer pointed by sVendor Nane as 0-terminated

string.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

202 CHAPTER 5 C Host API

5.5.5.7 USBBULK_GetSN()

Description
Retrieves the USB serial number as a string which was sent by the device during the enu-
meration.
Prototype
int USBBULK_Get SN(USB_BULK_HANDLE hDevi ce,
us * pBuffer,
unsi gned Buf f Si ze) ;
Parameters
Parameter Description
hDevi ce Handle to the opened device.
Pointer to a buffer which shall receive the serial number of
pBuf f er :
the device.
Buf f Si ze Size of the buffer in bytes.
Return value
=0 Operation failed. Either an invalid handle was used or the serial number is not
available.
*0 The operation was successful.

Additional information

If the function succeeds, the buffer pointed by pBuf f er contains the serial number of the
device as O-terminated string. If Buf f Si ze is too small, the serial number is truncated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

203 CHAPTER 5 C Host API

5.5.5.8 USBBULK_GetConfigDescriptor()

Description

Gets the received target USB configuration descriptor of a specified device.

Prototype
i nt USBBULK_Cet Confi gDescri ptor (USB_BULK_HANDLE hDevi ce,
voi d * pBuffer,
i nt Si ze);
Parameters
Parameter Description
hDevi ce Handle to the opened device.
pBuf f er Pointer to the buffer that shall store the descriptor.
Si ze Si ze of the buffer, given in bytes.
Return value
*0 Si ze of the returned USB configuration descriptor (Success).
=0 Operation failed. Either an invalid handle was used or the buffer that shall store

the config descriptor is too small.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

204 CHAPTER 5 C Host API

5.5.6 USB-Bulk data structures

5.5.6.1 USBBULK_ DEV_INFO
Type definition

typedef struct {
ul6 Vendor | d;
ul6 Pr oduct | d;
char acSN];
char acDevNane[];
us I nt er f aceNo;
us Speed;

} USBBULK_DEV_| NFO

Structure members

Member Description
Vendor 1 d Vendor ID of the device.
Product | d Product ID of the device.
2cSN 0-terminated string which holds the serial number of the de-
vice.
acDevNane 0-terminated string which holds the device name.
I nterfaceNo Interface number used by this device.
Device speed. One of the following:
USBBULK_SPEED _UNKNOMN
Speed USBBULK _SPEED LOW
P USBBULK_SPEED FULL
USBBULK_SPEED HI GH
USBBULK_SPEED SUPER

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 6
Vendor Specific Class (VSC)

This chapter describes how to get emUSB-Device-VSC up and running.

Vendor
-~

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

206 CHAPTER 6 Vendor Specific Class

6.1 Vendor Specific Class

The Vendor Specific Class (VSC) is located in the directory USB. All C files in the directory
should be included in the project (compiled and linked as part of your project). The files in
this directory are maintained by SEGGER and should not require any modification. All files
requiring modifications have been placed in other directories.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

207 CHAPTER 6 Requirements for the Host (PC)

6.2 Requirements for the Host (PC)

In order to communicate with a target (client) running emUSB-Device, the operating system
running on the host must recognize the device connected to it.

6.2.1 Windows

Microsoft’'s Windows operating systems (Starting with XP Service Pack 2) contains a generic
driver called WinUSB.sys that is used to handle all communication to a emUSB-Device
running a VSC interface. If a emUSB device is connected to a Windows 8, 8.1 and 10 PC for
the first time, Windows will install the WinUSB driver automatically. For Windows versions
less than Windows 8, Microsoft provides a driver for Windows Vista and Windows 7 but
this needs to be installed manually. A driver installation tool including the mentioned driver
is available in the W ndows\ USB\ VSC\ W nUSBI nst al | . Windows XP user can use the driver
package located under W ndows\ USB\ VSC\ W nUSB_USBVSC_XP. In order to get emUSB VSC
running with the WinUSB driver the following must be considered:

e The function USBD VSC Set MSDescl nf o() must be called in the target application.
e The Product IDs 1234 and 1121 must not be used.

6.2.2 Linux

Linux can handle emUSB VSC devices out of the box.

By default a USB device can only be accessed by a process that is running with “root”
rights. In order to use the USB VSC device from normal user programs an udev rule has to
be configured for the device (refer to the linux udev documentation). The emUSB-Device
release contains a sample configuration file 99- enlJSBD. r ul es, which may be modified and
copied to /etc/udev/rules.d on the host machine.

6.2.3 macOS

macOS can handle emUSB VSC devices out of the box.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

208

CHAPTER 6 Example application

6.3 Example application

6.3.

Example applications for both the target (client) and the PC (host) are supplied. These
can be used for testing the correct installation and proper function of the device running
emUSB-Device.

The host sample applications can be used for Windows, Linux and MacOSX. Precompiled
executables for Windows can be found in the subfolder W ndows/ USB/ Bul k/ Sanpl eAppl i -
cation/ Exe.

The application USB_VSC Start. c is a modified echo server; the application receives data,
modifies the first byte and sends it back to the host. It also contains the functionality to
measure USB transfer speed.

USB
connection

Target, running Host (PC),
USB_VSC_ Start.c running Test.exe

The example applications for the target-side are supplied in source code in the Appl i cati on
directory.

For information how to compile the host examples (especially for Linux and MacOSX) refer
to Compiling the PC example application on page 138.

The start application will of course later on be replaced by the real application program.
For the purpose of getting emUSB-Device up and running as well as doing an initial test,
the start application should not be modified.

1 Running the example applications

To test the emUSB-Device-VSC component, build and download the USB VSC Start.c for
the target-side.

To run one of the example applications, simply start the executable Test . exe, for example
by double clicking it.

If a connection can be established, it exchanges data with the target, testing the USB
connection.

Example output of Test . exe:

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

209 CHAPTER 6 Example application

ng rxvt

$ Exer/Test =

Found 1 device
Found the following device O:
Yendor Mame : Vendor
Froduct Mame: Bulk test
Serial no. r 13245678
To which dewvice do you want to connect?
Please type in device rnumber (e.g. '0' for the first device, gsa for abort):0
Echo test
Operation successful!

Read speed test

FPerformance: 6145 ms for 256 MB
= 42659 kB / second

Write speed test

FPerformance: 6144 ms for 236 MB
= 4Zp66 kB / second

Echo test
Operation successful!

Communication with USE BULK device was successful!
FPress enter to exit.ll

6.3.2 Compiling the PC example application

6.3.2.1 Windows

For compiling the example application you need Visual C++ 2015 (or later).

The source code of the sample application is located in the subfolder W ndows/ USB/
BULK/ USBVAPI _Sanpl eAppl i cati on/ Src. Open the file USBVAPI _Sanpl es. sl n and compile
the source.

6.3.2.2 Linux

The subfolder W ndows/ USB/ Bul k/ USBVAPI _Sanpl eAppl i cati on contains a Makefile for
Linux. Change to this folder and execute “make”.

6.3.2.3 macOS

The subfolder W ndows/ USB/ Bul k/ USBVAPI _Sanpl eAppl i cati on contains a Makefile for
macOS. Change to this folder and execute “make -f Makefi | e_MacQOS".

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

210 CHAPTER 6 Target API

6.4 Target API

This chapter describes the functions that can be used with the target system.

General information

To communicate with the host, the sample application project includes USB-specific header
and source files (USB. h, USB_Mai n. c, USB_Set up. c, USB_VSC. ¢, USB_VSC. h). These files
contain API functions to communicate with the USB host through the emUSB-Device driver.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API functions
have a simple interface and handle all operations that need to be done to communicate
with the hosts kernel.

Therefore, all operations that need to write to or read from the emUSB-Device are handled
internally by the provided API functions.

6.4.1 Target interface function list

Routine ‘ Explanation
USB VSC functions
USBD _VSC Add() Adds a VSC interface to emUSB-Device.
USBD VSC_AddAl t er nat el nt er f ace() Adds an alternative interface for USB-VSC
interface.

Cancels any non-blocking/blocking data

USBD_VSC_Cancel 1 () transfer operation that is pending.

Returns the number of bytes that are
USBD VSC Get NunByt esl nBuf fer () available in the internal BULK-OUT end-
point buffer.

Get the number of remaining bytes to read

USBD _VSC Get NunByt esRemToRead() by an active read operation.

After starting a non-blocking write oper-
ation this function can be used to period-
ically check how many bytes still have to
be written.

USBD VSC CGet NunByt esRemToW it e()

USBD_VSC Read() Reads data from the host with a given

timeout.
USBD VSC ReadAsync() Reads data from the host asynchronously.
USBD_VSC Set Cont i nuousReadMode() E:ggloei?]tcontlnuous read mode for the RX

Sets a callback function that is called when

USBD_VSC_Set OnSet upRequest () any setup request is sent from the host.

Sets a callback function for the IN end-
USBD _VSC Set OnEPEvent () point that will be called on every TX event
for that endpoint.

Checks whether the TX (IN endpoint) is
currently pending.

Waits (blocking) until the triggered USB-
USBD_VSC Wi t EP() D VSC ReadOver| apped() has received
the desired data.

Waits (blocking) until the triggered USB-
USBD_VSC Pol | EP() D VSC ReadOver| apped() has received
the desired data.

USBD _VSC _TxI sPendi ng()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

211 CHAPTER 6

Target API

Routine

Explanation

USBD_VSC_St al | EP()

Stall an EP.

USBD_VSC Wi t For TXReady()

Waits (blocking) until the TX queue can ac-
cept another data packet.

USBD_VSC Wi te()

Sends data to the USB host.

USBD VSC WiteAsync()

Sends data to the host asynchronously.

USBD _VSC Set OnVendor Request ()

Sets a callback function that is called when
a setup vendor request is sent from the
host to the specified interface index.

USBD VSC Set OnSet upRequest ()

Sets a callback function that is called when
any setup request is sent from the host.

USBD VSC Set OnCl assRequest ()

Sets a callback function that is called when
a setup class request is sent from the host
to the specified interface index.

USBD_VSC _AddAl ternatel nterface()

Adds an alternative interface for USB-VSC
interface.

Data structures and callbacks

USB_VSC_| NI T_DATA

Initialization structure that is needed when
adding a VSC interface to emUSB-Device.

USB_VSC_MSOSDESC | NFO

MS OS descriptor structure that contains
for MS related OSes information how to
deal with device with out having a driver
store.

USB_VSC_ON_ADD_FUNCTI ON_DESC

Call back that is used to add an addition-
al descriptor between the interface or one
of its alternate setting descriptor and the
endpoint descriptor(s).

USB_VSC_ON_SET_I| NTERFACE

Global callback function that is called
whenever an alternate setting is set for
an interface that was added with USB-
D _VSC Add().

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

212 CHAPTER 6 Target API

6.4.2 USB-VSC functions
6.4.2.1 USBD _VSC_Add()

Description
Adds a VSC interface to emUSB-Device.

Prototype
USB_VSC_HANDLE USBD_VSC_Add(const USB_VSC_ | NI T_DATA * plnitData);
Parameters
Parameter Description
pl ni t Dat a Pointer to USB_VSC | NI T_DATA structure.

Return value

Handle to a valid VSC instance.

Example
Example excerpt from USB_VSC Echol. c:

Example

static void _AddVSC(void) {

static U8 _abQutBuffer[USB_HS BULK MAX PACKET_SI ZE] ;

USB VSC INIT DATA Init;

Init.Flags = 0;

Init. EPIn USBD AddEP(USB_DI R I N,
USB_TRANSFER TYPE BULK,
USB HS BULK MAX PACKET_SI ZE,
NULL,
0);

Init. EPCQut = USBD AddEP(USB_DI R_QUT,
USB_TRANSFER TYPE BULK,
USB HS BULK MAX PACKET_SI ZE,
_abQut Buf f er,
USB_HS BULK _MAX_PACKET_SI ZE) ;

Init.plnterfaceName = "VSC I nterface";

USBD_VSC Add(&l nit);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

213 CHAPTER 6 Target API

6.4.2.2 USBD_VSC_AddAlternatelnterface()

Description
Adds an alternative interface for USB-VSC interface.

Prototype
voi d USBD_VSC _AddAl ternat el nterface(USB_VSC HANDLE hl nst,
const USB_VSC | NI T_DATA * plnitData);
Parameters
Parameter Description
hl nst Handle to a valid VSC instance, returned by USBD VSC Ad-
d() .
pl ni t Dat a Pointer to USB_VSC | NI T_DATA structure.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

214 CHAPTER 6 Target API

6.4.2.3 USBD_VSC_CancellO()

Description

Cancels any non-blocking/blocking data transfer operation that is pending.

Prototype
voi d USBD_VSC Cancel | (U8 EPI ndex) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .

Additional information

This function shall be called when a pending asynchronous transfer operation should be
canceled. The function can be called from any task. In case of canceling a blocking opera-
tion, this function must be called from another task.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

215 CHAPTER 6 Target API

6.4.2.4 USBD_VSC_GetNumBytesIinBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint buffer.
This function does not start a read transfer.

Prototype
unsi gned USBD_VSC_Get NunByt esl nBuf f er (U8 EPI ndex) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .

Return value
Number of bytes that are available in the internal BULK-OUT endpoint buffer.

Additional information

If the host is sending more data than your target application has requested, the remaining
data will be stored in an internal buffer. This function shows how many bytes are available
in this buffer.

The number of bytes returned by this function can be read using USBD VSC Read() without
blocking.
Example

Your host application sends 50 bytes. Your target application only requests to receive 1 byte.
In this case the target application will get 1 byte and the remaining 49 bytes are stored in an
internal buffer. When your target application now calls USBD_VSC Get NunByt esl nBuf f er ()
it will return the number of bytes that are available in the internal buffer (49).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

216 CHAPTER 6 Target API

6.4.25 USBD _VSC GetNumBytesRemToRead()

Description

Get the number of remaining bytes to read by an active read operation. This function is
to be used in combination with USBD VSC Read() where Timeout=-1. After starting the
read operation this function can be used to periodically check how many bytes still have

to be read.
Prototype
unsi gned USBD_VSC_Get NumByt esRenfToRead(U8 EPI ndex) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .

Return value

>0 Number of bytes which have not yet been read.
<0 Error occurred.

Additional information
Alternatively the blocking function USBD VSC Wi t For RX() can be used.

Example

NunmByt esRecei ved = USBD VSC Read(hlnst, &ac[0], 50, -1, 0);
i f (NunBytesReceived < 0) {
<.. error handling..>
}
i f (NunBytesReceived > 0) {
/1l Already had sonme data in the internal buffer.
/1 The first 'NunBytesReceived bytes nmay be processed here.
<,...>
} else {
/1 Wit until we get all 50 bytes
whi |l e (USBD_VSC _Get NunByt esRenTToRead(hl nst) > 0) {
USB_GOS_Del ay(50);
}
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

217 CHAPTER 6 Target API

6.4.2.6 USBD_VSC GetNumBytesRemToWrite()

Description

After starting a non-blocking write operation this function can be used to periodically check
how many bytes still have to be written.

Prototype
unsi gned USBD_VSC_Get NunByt esRenToW it e(U8 EPI ndex) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .

Return value

Number of bytes which have not yet been written.

Additional information
Alternatively the blocking function USBD VSC Wi t For TX() can be used.

Example

r = USBD VSC Wite(hlnst, &uc[0], TRANSFER SIZE, -1);
if (r <0) {
<.. error handling..>

}

/1 NunByt esToWite shows how many bytes still have to be witten.
whil e (USBD_VSC Get NunByt esReniToWite(hlnst) > 0) {

USB_OS_Del ay(50);
}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

218 CHAPTER 6 Target API

6.4.2.7 USBD_VSC_Read()

Description

Reads data from the host with a given timeout.

Prototype
int USBD_VSC Read(U8 EPI ndex,
voi d * pDat a,
unsi gned NurByt es,
i nt Ti meout ,
unsi gned Fl ags);
Parameters
Parameter Description
EPI ndex One of the EPI ndex was used in pl ni t Dat a when calling
USBD_VSC Add() .
pDat a Pointer to a buffer where the received data will be stored.
NunByt es Number of bytes to read.

Ti meout in milliseconds. 0 means infinite. If Ti meout is
Ti meout -1, the function returns immediately and the transfer is
processed asynchronously.

Various flags:

e USB VSC READ FLAG RECEI VE - This turns the read func-
tion in a the receive mode.

e USB VSC READ FLAG POLL - Can only be used with the
USB_VSC READ FLAG RECEI VE.

This function will not abort the transfer in case of a timeout.

Fl ags

Return value

= NunByt es Requested data was successfully read within the given timeout.

> 0 && < NunByt es Ti neout has occurred. Number of bytes that have been read
within the given timeout.

<0 Error occurred.

Additional information
¢ Normal mode:

This function blocks a task until all data have been read or a timeout expires. This function
also returns when the device is disconnected from host or when a USB reset occurs.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP() . This data can be retrieved by a later call to USBD_VSC Read() . See also
USBD_VSC_Get NunmByt esl nBuffer ().

When Ti neout = -1 the read transfer will be initiated and the function returns immediate-
ly. In order to synchronize, USBD VSC Wit For RX() needs to be called. Alternatively the
function USBD_VSC_Get NunByt esRenifoRead() can be called periodically to check whether
all bytes have been read or not. The read operation can be canceled using USBD_VSC_Can-
cel () . The buffer pointed to by pDat a must be valid until the read operation is terminated.

In case of a timeout, the read transfer is aborted (see Ti meout handling on page 131).

If a read transfer was still pending while the function is called, it returns USB_S-
TATUS_EP_BUSY.

e Receive mode:

If no error occurs, this function returns the number of bytes received. Calling USBD_VSC_Re-
cei ve() will return as much data as is currently available -- up to the size of the buffer

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

219 CHAPTER 6 Target API

specified. This function also returns when the target is disconnected from the host or when
a USB reset occurred during the function call, it will then return USB_STATUS_ERROR.

If a read transfer was pending while the function is called, it returns USB_STATUS_EP_BUSY.

If the USB stack receives a data packet from the host containing more bytes than requested,
the remaining bytes are stored into the internal buffer of the endpoint, that was provided
via USBD_AddEP() . This data can be retrieved by a later call to USBD_VSC Read() . See also
USBD_VSC Get NunByt esl nBuffer ().

A call of USBD_VSC Read(EPI ndex, NULL, 0, -1, USB_VSC) can be used to trigger an asyn-
chronous read that stores the data into the internal buffer.

e Receive in polled mode:

In contrast to receive mode this function will continue the read transfer asynchronously
in case of a timeout.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

220 CHAPTER 6 Target API

6.4.2.8 USBD_VSC_ReadAsync()

Description

Reads data from the host asynchronously. The function does not wait for the data to be
received. A callback function is called after the transfer has completed successfully, an error
occurred or the transfer was canceled.

Prototype
voi d USBD_VSC_ReadAsync(U3 EPI ndex,
USB_ASYNC | O CONTEXT * pCont ext,
i nt Short Read) ;
Parameters
Parameter Description
A valid OUT EP Index that was also passed to USBD VSC Ad-
EPI ndex d()
Cont ext Pointer to a structure of type USB_ASYNC | O CONTEXT con-
P taining parameters and a pointer to the callback function.
e 0: The transfer is completed successfully after all bytes
Shor t Read have been read.
e 1: The transfer is completed successfully after one packet
has been read.
Example
static void _AsyncCb(USB_ASYNC | O CONTEXT * pl CCont ext) {
us *p;
p = (U8 *)pl OCont ext - >pCont ext ;
*p = l,
}
<, ..>

USB_ASYNC | O_CONTEXT | OCont ext ;

us AsyncConpl et e;

| OCont ext . NunByt esToTr ansfer = 5000;

| OCont ext . pDat a = pBuff;

| OCont ext . pf OnConpl et e = _AsyncCb;

| OCont ext . pCont ext
AsyncConpl ete = 0;
USBD_VSC ReadAsync(hl nst, & OContext, O0);
whi |l e (AsyncConplete == 0) {
<.. Do other work. ..>
}
/1 Transaction is conplete.
if (1CContext.Status < 0 || |OContext.NunBytesTransferred != 5000) {
<.. error handling ..>
} else {
<.. Process the data ..>

}

<...>

(void *)&AsyncConpl et e;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

221 CHAPTER 6 Target API

6.4.2.9 USBD_VSC_ SetContinuousReadMode()

Description

Enables continuous read mode for the RX endpoint. In this mode every finished read transfer
will automatically trigger another read transfer, as long as there is enough space in the
internal buffer to receive another packet.

Prototype
voi d USBD_VSC_Set Cont i nuousReadMode(U8 EPI ndex) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .

Additional information

To check how many bytes have been read into the buffer, the function USBD VSC Get -
NunByt esl nBuf f er () may be called. In order to read the data the function USBD VSC Re-
cei ve() needs to be called (non-blocking).

The USB stack will use the buffer that was provided by the application with USBD_AddEP() .
The transfer speed may be improved, if this buffer has a size of at least 2 * MaxPacketSize.
Normally MaxPacketSize for full-speed devices is 64 bytes and for high-speed devices 512
bytes.

Example

USBD_VSC_Set Cont i nuousReadMode(hl nst) ;
<...>
for(;;) {
Il
/1l Fetch data that was already read (non-bl ocking).
Il
NunmByt esRecei ved = USBD VSC_Read(hl nst, &ac[0], sizeof(ac), -1, USB_VSC READ FLAG POLL);
i f (NunBytesReceived > 0) {
Il
/1l W\ got sone data
Il
<.. Process data..>
} else {
<.. Nothing received yet, do application processing..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

222 CHAPTER 6 Target API

6.4.2.10 USBD VSC_SetOnSetupRequest()

Description

Sets a callback function that is called when any setup request is sent from the host.

Prototype

voi d USBD_VSC_Set OnSet upRequest (USB_VSC HANDLE hl nst,
USB_ON_SETUP * pf OnSet upRequest);

Parameters
Parameter Description
hl nst Handle to a valid VSC instance, returned by USBD VSC Ad-
d().
pf OnSet upRequest Pointer to the callback function.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

223

CHAPTER 6 Target API

6.4.2.11 USBD_VSC_SetOnEPEvent()

Description

Sets a callback function for the IN endpoint that will be called on every TX event for that
endpoint.

Prototype
voi d USBD_VSC_Set OnEPEvent (U8 EPI ndex,
USB_EVENT_CALLBACK * pEvent Cb,
USB_EVENT_CALLBACK_FUNC * pf Event Cb,
voi d * pContext);
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .
Event Cb Pointer to a USB_EVENT_CALLBACK structure. The structure is
P initialized by this function.
f Event Cb Pointer to the callback routine that will be called on every
P event on the USB endpoint.
A pointer which is used as parameter for the callback func-
pCont ext tion

Additional information

The USB_EVENT_CALLBACK structure is private to the USB stack. It will be initialized by
USBD_VSC Set OnEPEvent () . The USB stack keeps track of all event callback functions using
a linked list. The USB_EVENT_CALLBACK structure will be included into this linked list and
must reside in static memory.

The callback function is called only, if a transfer operation was started using either USB-
D_VSC Read() or USBD VSC Wite() functions.

The callback function has the following prototype:

typedef void USB_EVENT_CALLBACK FUNC(unsi gned Events, void *pContext);

Parameter Description
Event s A bit mask indicating which events occurred on the
endpoint.
pCont ext The pointer which was provided to the USBD Set On-

Event () function.

Note that the callback function will be called within an ISR, therefore it should never block.
The first parameter to the callback function will contain a bit mask for all events that trig-
gered the call:

EP

Direction Event Description

Some data was received from the host on the end-

OUT | USB_EVENT DATA READ .
point.

USB_EVENT_READ_COM
PLETE

ouT USB_EVENT _READ ABORT | A read transfer was aborted.

Some data was sent to the host, so that (part of)
IN USB_EVENT_DATA SEND the user write buffer may be reused by the applica-
tion.

ouT The last read operation was completed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

224

CHAPTER 6 Target API

EP

Direction Event Description

IN USB_EVENT_DATA ACKED | Some data was acknowledged by the host.
IN USB_EVENT_WRI TE_ABOCRT | A write transfer was aborted.

IN SE%EVENT—V\RI TE_CC All write operations were completed.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

225 CHAPTER 6 Target API

Example for an OUT EP

/'l The cal | back function.
static void _OnEvent (unsi gned Events, void *pContext) {
unsi gned NumByt es;

if (Events & USB_EVENT_DATA READ) ({
NumByt es = USBD VSC Get NunByt esl nBuf f er (hl nst) ;
if (NunBytes) ({
r = USBD VSC Receive(hlnst, Buff, NumBytes, -1);
if (r >0) {
<.. process data in Buff..>
}
}
}
}
/1 Main program
/'l Register callback function.
static USB EVENT CALLBACK _usb cal |l back;
USBD _VSC Set OnEPEvent (EPCQut, & usb_cal | back, _OnEvent, NULL);
USBD _VSC_Set Cont i nuousReadMode(EPQut) ;
/1 Trigger first read
USBD_VSC Read(EPCut, NULL, 0, -1, USB_VSC READ FLAG POLL);
<.. do anything else here while the data is processed in the callback ..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

226 CHAPTER 6 Target API

Example for an IN EP

/'l The cal | back function.
static void _OnEvent (unsi gned Events, void *pContext) {
if ((Events & USB_EVENT_DATA SEND) != 0 &&
/1 Check for last wite transfer to be conpl et ed.
USBD VSC Cet NunByt esReniToWite(_hlnst) == 0) {
<.. prepare next data for witing..>
/'l Send next packet of data.
r = USBD VSC Wite(_hlnst, &ac[0], 200, -1);
if (r <0) {
<.. error handling..>
}
}
}
/1 Main program
/'l Register callback function.
static USB_EVENT_CALLBACK _usb_cal | back;
USBD _VSC Set OnEPEvent (hl nst, & usb_cal | back, _OnEvent, NULL);
/'l Send the first packet of data using an asynchronous wite operation.
r = USBD VSC Wite(_hlnst, &c[O0], 200, -1, 0);
if (r <0) {
<.. error handling..>
}

<.. do anything el se here while the whole data is send..>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

227 CHAPTER 6 Target API

6.4.2.12 USBD VSC_TxIsPending()

Description

Checks whether the TX (IN endpoint) is currently pending. Can be called in any context.

Prototype
i nt USBD_VSC _TxI sPendi ng(U8 EPI ndex);
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .

Return value

1 We have queued data to be sent.
0 Queue is empty.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

228 CHAPTER 6 Target API

6.4.2.13 USBD_VSC_WaitEP()

Description
Waits (blocking) until the triggered USBD _VSC ReadOver | apped() has received the desired
data.
Prototype
int USBD_VSC Wait EP(U3 EPI ndex,
unsi gned Ti nmeout) ;

Parameters

Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .
Ti meout Ti meout in milliseconds. 0 means infinite.

Return value

=0 Transfer completed.
=1 Ti meout occurred.
<0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the read transfer is aborted (see Ti meout handling on page 131).

Example

i f (USBD_VSC Read(hlnst, &c[O0], 50, -1, 0) < 0) {
<.. error handling..>
return;
}
Il
/1 USBD VSC Read() with Tineout==-1 will return i medi ately.
/1 Do sonething el se while data may be transferred.
Il
<...>
Il
/1 Now wait until we get all 50 bytes.
/1 USBD VSC WaitEP() will block, until total of
/1 50 bytes are read or tineout occurs.
Il
if (USBD_VSC WaitEP(hlnst, tineout) != 0) {
<.. tinmeout error handling..>
return;
}
/'l Now we have 50 bytes of data.
/'l Process 50 bytes of data fromac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

229 CHAPTER 6 Target API

6.4.2.14 USBD_VSC_PollEP()

Description
Waits (blocking) until the triggered USBD _VSC ReadOver | apped() has received the desired
data.
Prototype
int USBD_VSC Pol | EP(U8 EPI ndex,
unsi gned Ti nmeout) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .
Ti meout Ti meout in milliseconds. 0 means infinite.

Return value

=0 Transfer completed.
=1 Ti meout occurred.
<0 An error occurred (e.g. target disconnected)

Additional information

In case of a timeout, the current transfer is not affected. The function may be called re-
peatedly until it does not report a timeout any more.

Example for an IN EP

if (USBD VSC Wite(hlnst, &c[0], 50, -1, 0) < 0) {
<.. error handling..>
return;
}
Il
/1 USBD VSC Wite() will return immediately.
/1 Wiile waiting for the data to be transferred, we will blink a LED with
200 s interval.
/1 USBD VSC Pol | ForTX() will return, if all data were send or 100 ns expired.
Il
while ((r = USBD_VSC Pol | EP(hlnst, 100)) > 0) {
Toggl eLED() ;
}
if (r <0) {
<.. error handling..>
return;

}

/1 Now all data have been send.

Example for an OUT EP

i f (USBD_VSC Read(hlnst, &c[O], 50, -1, 0) < 0) {
<.. error handling..>
return;
}
I
/1 USBD_VSC Read() with Tinmeout==-1 will return i medi ately.
/1 While waiting for the data, we will blink a LED with 200 ns interval.
/1 USBD_VSC Pol | ForRX() will return, if all data were read or 100 ns expired.
I
while ((r = USBD_VSC Pol | EP(hlnst, 100)) > 0) {

Toggl eLED() ;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

230 CHAPTER 6 Target API

if (r <0 {
<.. error handling..>
return;

}
/1 Now we have 50 bytes of data.

/1 Process 50 bytes of data fromac[] here.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

231 CHAPTER 6 Target API

6.4.2.15 USBD VSC_ WaitForTXReady()

Description

Waits (blocking) until the TX queue can accept another data packet. This function is used in
combination with a non-blocking call to USBD VSC Wi te() , it waits until a new asynchro-
nous write data transfer will be accepted by the USB stack.

Prototype

i nt USBD _VSC Wit For TXReady(U8 EPI ndex,
int Tineout);

Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .
. Ti meout in milliseconds. 0 means infinite. If Ti neout is neg-
Ti meout . . . ! .
ative, the function will return immediately.

Return value

=0 A new asynchronous write data transfer will be accepted.

=1 The write queue is full, a call to USBD VSC Wite() would return USB_S-
TATUS_EP_BUSY.

<0 Error occurred.

Additional information
If Ti meout is 0, the function never returns 1.

If Ti meout is -1, the function will not wait, but immediately return the current state.

Example

/1 Always keep the wite queue full for maxi num send speed.
for (;;) {

pDat a = Get Next Dat a(&NunByt es) ;

/1 Wait until stack can accept a new write.

USBD_VSC Wi t For TxReady(hl nst, 0);

/Il lssue wite transfer.

if (USBD_VSC Wite(hlnst, pData, NunBytes, -1) < 0) {

<.. error handling..>

}

}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

232

CHAPTER 6 Target API

6.4.2.16 USBD_VSC_Write()

Description

Sends data to the USB host. Depending on the Ti neout parameter, the function blocks
until NunByt es have been written or a timeout occurs.

Prototype
int USBD VSC Wi te(us EPI ndex,
const void * pDat a,

unsi gned NunByt es,

i nt Ti neout ,

unsigned Fl ags);
Parameters

Parameter Description
EPI ndex One of the EPI ndex was used in pl ni t Dat a when calling
USBD_VSC_Add() .

pDat a Data that should be written.
NunByt es Number of bytes to write.

Ti meout in milliseconds. 0 means infinite. If Ti meout is
Ti meout -1, the function returns immediately and the transfer is
processed asynchronously.

Various flags: Current flags:

e USB VSC WRI TE_FLAG NO NULL_PACKET - Specifies that a
zero-length packet shall be sent when

Fl ags the last data packet is a multiple of MaxPacketSize. Normal-

ly MaxPacketSize for full-speed devices is 64 bytes. For high-

speed devices the normal packet size is between 64 and 512

bytes.

Return value

=0 Successful started an asynchronous write transfer or a timeout
has occurred and no data was written.

> 0 && < NunByt es Number of bytes that have been written before a timeout oc-
curred.

= NunByt es Write transfer successful completed.

<0 Error occurred.

Additional information

This function also returns when the target is disconnected from host or when a USB reset
occurred.

The USB stack is able to queue a small number of asynchronous write transfers (when
using Ti neout = -1). If a write transfer is still in progress when this function is called
and the USB stack can not accept another write transfer request, the functions returns
USB_STATUS EP_BUSY. A synchronous write transfer (Ti neout = 0) will always block until
the transfer (including all pending transfers) are finished or a timeout occurs.

In case of a timeout, the write transfer is aborted (see Ti neout handling on page 131).

In order to synchronize, USBD VSC Wi t For TX() needs to be called. Another synchroniza-
tion method would be to periodically call USBD VSC Get NunByt esRenifoW it e() in order to
see how many bytes still need to be written (this method is preferred when a non-block-
ing solution is necessary). The write operation can be canceled using USBD VSC Cancel -
Wite().

If pDat a = NULL and NunByt es = 0, a zero-length packet is sent to the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

233 CHAPTER 6 Target API

The content of the buffer pointed to by pDat a must not be changed until the transfer has
been completed.

Example

NumByt esWitten = USBD VSC Wite(hlnst, &ac[0], DataSize, 500);
if (NunBytesWitten <= 0) {
<.. error handling..>

}
if (NunBytesWitten < DataSize) {
<.. tinmeout occurred, data partially witten within 500ns ..>

} else {
<.. wite conpleted successfully..>

}

See also USBD_VSC_Get NunByt esRenifoW it e on page 217.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

234 CHAPTER 6 Target API

6.4.2.17 USBD_VSC_WriteAsync()

Description

Sends data to the host asynchronously. The function does not block. A callback function
is called after the transfer has completed successfully, an error occurred or the transfer
was canceled.

Prototype
void USBD_VSC WiteAsync(U3 EPI ndex,
USB_ASYNC_| O_CONTEXT * pCont ext,
char SendOPacket | f Requi r ed) ;
Parameters
Parameter Description
EPI ndex A valid EP Index that was also passed to USBD VSC Add() .
Pointer to a structure of type USB_ASYNC | O CONTEXT con-
pCont ext

taining parameters and a pointer to the callback function.

Specifies that a zero-length packet shall be sent when the

SendOPacket I f Requi red last data packet is a multiple of MaxPacketSize.

Example

static void _AsyncCb(USB_ASYNC | O CONTEXT * pl CCont ext) {
us *p;

p = (U8 *)pl OCont ext - >pCont ext ;
}
<...>

USB_ASYNC | O_CONTEXT | OCont ext ;

us AsyncConpl et e;

| OCont ext . NunByt esToTr ansfer = 5000;

| OCont ext . pDat a = pBuff;

| OCont ext . pf OnConpl et e = _AsyncCb;

| OCont ext . pCont ext (void *)&AsyncConpl et e;
AsyncConpl ete = 0;
USBD_VSC WiteAsync(hlnst, & OContext, 1);
whi |l e (AsyncConplete == 0) {
<.. Do other work. ..>
}
/1 Transaction is conplete.
if (1CContext.Status < 0 || |OContext.NunBytesTransferred != 5000) {
<.. error handling ..>
} else {
<.. data witten successfully ..>

}

<...>

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

235 CHAPTER 6 Target API

6.4.3 Data structures

6.4.3.1 USB_VSC_INIT_DATA
Description
Initialization structure that is needed when adding a VSC interface to emUSB-Device.

Type definition

typedef struct {

ul6 Fl ags;

us aEP[];

us NunEPs;

const char * pl nt erfaceNane;
us I nterfaced ass;

us I nt erfaceSubd ass;
us I nt erfaceProtocol ;

const USB_VSC MSOSDESC | NFO * pMsDescl nf o;
} USB_VSC | NI T_DATA;

Structure members

Member Description

Various flags. Currently only one flag is available: -

Fl aas USB_VSC USE_CUSTOM MSOSDESC: Allows to use a cutom

9 specified MS OS Descriptor. Otherwise this has to be be ini-

tialized to 0.

2EP Array of Endpoints Indices to be used. Each EPIndex needs
to be allocated by USBD_AddEP

NuntPs Number of EPIndex in array.

pl nt er f aceNanme Name of the interface.

I nterfaced ass Sets the USB Class ID .

I nt erfaceSubC ass Sets the USB SubClass ID.

I nt erfaceProtocol Sets the USB Protocol ID.
[Optional] This pointer will only be used when the Flag

pMSDescl nf o USB_VSC_USE_CUSTOM MSOSDESC is set.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

236 CHAPTER 6 Target API

6.4.3.2 USB_VSC_MSOSDESC_INFO

Description

MS OS descriptor structure that contains for MS related OSes information how to deal with
device with out having a driver store.

Type definition

typedef struct {

const char * sConpati bl el D
const char * sSubConpati bl el D
U322 NurPr operti es;

const USB_MS_OS EXT_PROP * pProperti es;
} USB_VSC_MSGCSDESC_| NFO

Structure members

Member Description

Strings that gives MS OS a hint to the driver that shall be
loaded

sConmpati bl el D

[Optional] Gives a sub id string, in most cases this can be
NULL.

NunPr operties NumBer of properties that are stored in pProperties

sSubConpati bl el D

Variable array of MS OS extended OS descriptors. Depend-
ing on the sConpat i bl el D, this can be some sub structure
pProperties which will be stored in the Windows registry. Eg. with Win-
USB this contains the GUID which is needed to identify your
device among other WinUSB devices.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

237 CHAPTER 6 Target API

6.4.3.3 USB_VSC_ON_ADD _FUNCTION_DESC

Description

Call back that is used to add an additional descriptor between the interface or one of its
alternate setting descriptor and the endpoint descriptor(s).

Type definition

typedef const U8 * (USB_VSC ON_ADD FUNCTI ON_DESC)
(USB_VSC HANDLE hl nst,

us | FAl ternateSetting);
Parameters
Parameter Description
hl nst Handle to a valid VSC instance, returned by USBD VSC Ad-
d().
| FAl ternateSetting Data that should be written.

Return value

= NULL No additional descriptor shall be added to this interface or its alternate setting..
NULL Pointer to a USB descriptor.

Additional information

USB Descriptor follow a specific format. The first byte is always the length. The second byte
describes the descriptor type. Anything after these 2 bytes is descriptor dependent.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

238 CHAPTER 6 Target API

6.4.3.4 USB_VSC_ON_SET INTERFACE

Description

Global callback function that is called whenever an alternate setting is set for an interface
that was added with USBD VSC Add() .

Type definition

typedef void (USB_VSC_ON_SET_I NTERFACE) (USB_VSC HANDLE hl nst,

us Al ternatel nterface);
Parameters
Parameter Description
hl nst Handle to a valid VSC instance, returned by USBD VSC Ad-
d().
Al ternatel nterface Alternate interface that was set by the host.

Additional information

Each interface has one alternate setting which is the default setting. This call back is called
after the host has set the alternate setting. By default all data transfers of the previous
interface/alternate setting are canceled.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

239 CHAPTER 6 C++ Host API

6.5 C++ Host API

This chapter describes the functions that can be used with the host system.

To communicate with a target running the USB VSC or BULK class an API is provided that
can be used on Windows, Linux and macOS systems.

To have an easy start-up when writing an application on the host side, these API functions
have a simple interface and handle all required operations to communicate with the target
VSC class.

To use the API in an application the header file USBVAPI . h must be included. Depending
on the host operating system used one of the following libraries must be added to the host
application:

e Windows: USBVAPI r Wn_x86_64. a.
e Linux: USBVAPI r Lin_x86_64.a.
e macOS: USBVAPI r Dar_ x86_64. a oder USBVAPI r_Dar_ar nb64. a.

The documentation for the host API is provided as HTML in the file USBVAPI _docunent a-
tion_htm.zip. To view the documentation unzip this file and open the i ndex. ht M from
the resulting (unzipped) directory in a web browser.

The following table shows where components of the C++ API can be found in the emUSB-
Device shipping:

File / Directory Contents
W ndows/ USB/ BULK/ | nc/ USBVAPI . h Header file for the API
Doc/ USBVAPI _docunentation_htm . zip Manual of the API.
Libraries for different host archi-

W ndows/ USB/ BULK/ USBVAPI
tectures

Sample applications to demon-

W ndows/ USB/ BULK/ USBVAPI _Sanpl eAppl i cati on strate the usage of the API.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

Chapter 7

Mass Storage Device Class
(MSD)

This chapter gives a general overview of the MSD class and describes how to get the MSD
component running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

241 CHAPTER 7 Overview

7.1 Overview

The Mass Storage Device (MSD) is a USB class protocol defined by the USB Implementers
Forum. The class itself is used to access one or more storage devices such as flash drives
or memory sticks.

As the USB mass storage device class is well standardized, every major operating system
such as Microsoft Windows (after Windows 2000), Apple OS X, Linux and many more sup-
port it. So therefore an installation of a custom host USB driver is normally not necessary.

emUSB-Device-MSD comes as a whole packet and contains the following:

Generic USB handling

MSD device class implementation, including support for direct disk and CD-ROM mode
(CD-ROM access is a separate component)

Several storage drivers for handling different devices

Example applications

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

242 CHAPTER 7 MSD Configuration

7.2 MSD Configuration

7.2.1 Initial configuration

To get emUSB-Device-MSD up and running as well as doing an initial test, the configuration
as it is delivered should not be modified.

7.2.2 Final configuration

The configuration must only be modified, when emUSB-Device is deployed in your final
product. Refer to emUSB-Device Configuration on page 50 for detailed information about
the generic information functions which must be adapted.

In order to comply with the Mass Storage Device Bootability specification, the serial number
provided by the function USBD_Set Devi cel nf o() must be a string with at least 12 charac-
ters, where each character is a hexadecimal digit (‘0" through 9’ or ‘A’ through F’).

7.2.3 MSD class specific configuration functions

Beside the generic emUSB-Device configuration functions (emUSB-Device Configuration on
page 50), the following should be adapted before the emUSB-Device MSD component is
used in a final product. Example implementations are supplied in the MSD example appli-
cation USB_MsD FS Start. c, located in the Appl i cati on directory of emUSB-Device.

Each logical unit (storage) which is added to the MSD component has it's own set of name
and id values which is supplied when the logical unit is first added through USBD_MSD_Ad-

dunit ()
Example
static const USB_MSD LUN I NFO _LunOl nfo = {
"Vendor ", /1 MSD Vendor Nane
"MSD Vol unme", // WMSD Product Nane
"1.00", /1 NMSD Product Ver

"134657890" // MBD Seri al No
he

I nst Dat a. pLunl nfo = & LunOI nf o;

USB_MSD_AddUni t (&l nst Dat a) ;

7.2.4 Running the example application

The directory Appl i cati on contains example applications that can be used with emUSB-
Device and the MSD component. To test the emUSB-Device-MSD component, build and
download the application of choice into the target. Remove the USB connection and recon-
nect the target to the host. The target will enumerate and can be accessed via a file browser.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

243 CHAPTER 7 MSD Configuration

7.2.4.1 MSD_Start_StorageRAM.c in detalil

The main part of the example application USB_MSD_St art _St or ageRAM c is implemented
in a single task called Mai nTask() .

[* MainTask() - excerpt fromUSB MSD Start_ StorageRAM c */
voi d Mai nTask(voi d);
voi d Mai nTask(void) {
USBD I nit();
_AddMBIX) ;
USBD Start();
while (1) {
while ((USBD CetState() & (USB_STAT_CONFI GURED | USB_STAT_SUSPENDED))
I = USB_STAT_CONFI GURED) {
BSP_Toggl eLED(0) ;
USB_OS_Del ay(50);
}
BSP_Set LED(0) ;
USBD_MSD Task() ;
}
}

The first step is to initialize the USB core stack using USBD | ni t () . The function _AddMsD()
configures all required endpoints and assigns the used storage medium to the MSD com-
ponent.

/* _AddMBD() - excerpt from MSD _Start_StorageRAM ¢ */
static void _AddMsD(void) ({
static U8 _abQutBuffer[USB_HS BULK MAX_PACKET_SI ZE] ;
USB_MSD_| NI T_DATA | ni t Dat a;
USB_MSD_| NST_DATA | nst Dat a;
InitData. EPIn = USBD_AddEP(1, USB_TRANSFER TYPE_BULK,
USB_HS BULK_MAX_PACKET_SI ZE, NULL, 0);
| ni t Dat a. EPQut = USBD_AddEP(0, USB_TRANSFER_TYPE_BULK,
USB_HS_ BULK_MAX_PACKET_SI ZE,
_abQutBuf fer, sizeof(_abQutBuffer));
USBD_MSD_Add(&l ni t Dat a) ;
I
/1 Add logical unit 0: RAMdrive
I
nmenset (& nstData, 0, sizeof(lnstData));
I nst Dat a. pAPI &USB_MSD_St or ageRAM
I nst Dat a. Dri ver Dat a. pSt art (voi d*) MSD_RAM ADDR;
| nst Dat a. Dri ver Dat a. NunfSect or s VSD_RAM _NUM_SECTORS;
I nst Dat a. Dri ver Dat a. Sect or Si ze MSD_RAM SECTOR_SI ZE;
I nst Dat a. pLunl nfo = & LunOl nf o;
USBD_MSD_AddUni t (& nst Dat a) ;
}

The example application uses a RAM disk as storage medium.

The example RAM disk has a size of 23 kB (46 sectors with a sector size of 512 bytes). You
can increase the size of the RAM disk by modifying the macros MSD_RAM NUM_SECTORS and
MSD_RAM SECTOR_SI ZE (in multiples of 512), but the size must be at least 23 kB otherwise
a Windows host cannot format the disk.

[* AdAMSD() - excerpt from MSD Start_ StorageRAM c */
#defi ne MSD_RAM NUM SECTORS 46
#defi ne MSD_RAM SECTOR SIZE 512

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

244

7.3 Target API

CHAPTER 7

Target API

Function

Description

API functions

USBD_MSD_Add()

Adds an MSD-class interface to the
USB stack.

USBD_MSD_AddUni t ()

Adds a mass storage device to
emUSB-Device-MSD.

USBD_MSD_AddCDRon()

Adds a CD-ROM device to emUSB-De-
vice-MSD.

USBD_MSD_Set Prevent Al | owRenoval

Hook()

Sets a callback function to prevent/al-
low removal of storage medium.

USBD_MSD_Set ReadW i t eHook()

Sets a callback function which gives

information about the read and write
block-wise operations to the storage
medium.

USBD_MSD_Task()

Task that handles the MSD-specific
protocol.

USBD_MSD_Pol | ()

Function which handles MSD com-
mands.

USBD_MsD_Pol | Ex()

Function which handles MSD com-
mands.

USBD_MSD_Set St art St opUni t Hook()

Sets a callback function which is called
when the command StartStopUnit is
called.

Extended API functions

USBD_MSD_Connect ()

Connects the storage medium to the
MSD component.

USBD MSD Di sconnect ()

Disconnects the storage medium from
the MSD.

USBD_MSD_Request Di sconnect ()

Sets the DisconnectRequest flag.

USBD _MSD_Request Ref resh()

Performs a disconnect (optional), a
detach and optionally a re-attach, to
inform host that volume contents has
changed.

USBD MSD Updat eW it eProtect ()

This function updates the write protect
status of the storage medium.

USBD_MSD_Wai t For Di sconnecti on()

Waits for disconnection while time out
is not reached.

Data structures

USB_MSD_| NI T_DATA

emUSB-Device-MSD initialization
structure that is required when adding
an MSD interface.

USB_MSD_| NFO

emUSB-Device-MSD storage interface.

USB_MSD_I NST_DATA

USB-MSD initialization structure that
is required when adding an MSD inter-
face.

PREVENT _ALLOW REMOVAL_HOOK

Callback function to prevent/allow re-
moval of storage medium.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

245

CHAPTER 7

Target API

Function

Description

READ W\RI TE_HOOK

Callback function which is called with
every read/write access to the storage
medium.

USB_MSD_| NST_DATA DRI VER

USB-MSD initialization structure that
is required when adding an MSD inter-
face.

USB_MSD_STORAGE_API

USB-MSD initialization structure that
is required when adding an MSD inter-
face.

START_STOP_UNI T_HOOK

Callback function which is called when
a START STOP UNIT SCSI command is
received.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

246 CHAPTER 7 Target API

7.3.1 API functions
7.3.1.1 USBD_MSD_Add()

Description
Adds an MSD-class interface to the USB stack.

Prototype
voi d USBD_MSD_Add(const USB_MSD | NI T_DATA * plnitData);
Parameters
Parameter Description
pl ni t Dat a Pointer to a USB_MSD | NI T_DATA structure.

Additional information

After the initialization of general emUSB-Device, this is the first function that needs to be
called when an MSD interface is used with emUSB-Device. The structure USB_MSD | NI T_DA-
TA must be initialized before USBD _MSD Add() is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

247 CHAPTER 7 Target API

7.3.1.2 USBD_MSD_AddUnit()

Description

Adds a mass storage device to emUSB-Device-MSD.

Prototype
voi d USBD_MSD_AddUni t (const USB_MSD | NST_DATA * pl nstData);
Parameters
Parameter Description
| nst Dat a Pointer to a USB_MSD | NST_DATA structure containing the in-
P formation of the added storage device.

Additional information

It is necessary to call this function immediately after USBD_MSD_Add() . It will then add an
R/W storage device to emUSB-Device-MSD. The structure USB_MsD | NST_DATA must be
initialized before calling USBD_MsD_AddUni t ().

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

248 CHAPTER 7 Target API

7.3.1.3 USBD_MSD_AddCDRom()

Description
Adds a CD-ROM device to emUSB-Device-MSD.

Prototype
voi d USBD_MSD_AddCDRom(const USB_MSD_| NST_DATA * pl nst Dat a) ;
Parameters
Parameter Description
| nst Dat a Pointer to a USB_MSD | NST_DATA structure containing the in-
P formation of the added storage device.

Additional information

Similar to USBD_MSD_AddUni t (), this function should be called after USBD MSD Add() . The
structure USB_MSD | NST_DATA must be initialized before USBD MSD AddCDRon() is called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

249 CHAPTER 7 Target API

7.3.1.4 USBD_MSD_SetPreventAllowRemovalHook()

Description

Sets a callback function to prevent/allow removal of storage medium.

Prototype

voi d USBD_MsD_Set Prevent Al | owRenpval Hook
(us Lun,
PREVENT_ALLOW REMOVAL_HOOK * pf OnPrevent Al | owRenoval) ;

Parameters
Parameter Description
Lun Logical Unit Number. Using only one storage medium,
this parameter is 0.
pf OnPr event Al | owRenoval Pointer to the callback function that shall be called.

Additional information
The callback is called within the MSD task context. The callback must not block.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

250 CHAPTER 7 Target API

7.3.1.5 USBD_MSD_SetReadWriteHook()

Description

Sets a callback function which gives information about the read and write block-wise oper-
ations to the storage medium.

Prototype
voi d USBD_MSD_Set ReadW it eHook(U8 Lun,
READ WRI TE_HOOK * pfOnReadWite);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.
pf OnReadWite Pointer to the callback function that shall be called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

251 CHAPTER 7 Target API

7.3.1.6 USBD_MSD_Task()

Description
Task that handles the MSD-specific protocol.

Prototype

voi d USBD_MSD Task(voi d);

Additional information

After the USB device has been successfully enumerated and configured, the USB-
D_MSD_Task() should be called. This function blocks until the device is detached or is sus-
pended. After a detach or suspend USBD_MSD Task() will return.

Check USBD_MsD Pol | () if you need a non-blocking version.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

252 CHAPTER 7 Target API

7.3.1.7 USBD_MSD_Poll()

Description

Function which handles MSD commands. Using this function is only necessary if you want
to avoid using the blocking USB_MsSD Task function. This can be necessary if you are not
using an RTOS.

Prototype

int USBD _MsSD_Pol | (voi d);

Return value

2 0.K. Command was processed, but a protocol error occurred.
1 0.K. Command was processed successfully.
0 O.K. Timeout occurred.

1 An error occurred. (e.g. no cable connected).

Additional information

This function must be called periodically, otherwise the host can time out the device since
it does not process commands. It normally blocks for USB_MsSD POLL_TI MEQOUT milliseconds
while waiting for a command from the host. Should a command arrive during the timeout
it will be processed, which could potentially increase the block duration. The duration could
also decrease because the function returns as soon as a command is finished.

In case of return value 2 the calling task should still call this function again, if possible
recovery will be initiated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

253 CHAPTER 7 Target API

7.3.1.8 USBD_MSD_PollEx()

Description

Function which handles MSD commands. Using this function is only necessary if you want
to avoid using the blocking USB_MsSD Task function. This can be necessary if you are not
using an RTOS.

Prototype
int USBD_MSD Pol | Ex(unsi gned Ti nmeout);
Parameters
Parameter Description
. Function will block for 'Ti meout " ms, if no requests are re-
Ti meout . .
ceived from the host. Ti nreout may be zero.

Return value

2 0.K. Command was processed, but a protocol error occurred.
1 0.K. Command was processed successfully.
0 O.K. Ti neout occurred.

1 An error occurred. (e.g. no cable connected).

Additional information

This function must be called periodically, otherwise the host can time out the device since
it does not process commands. It normally blocks for ‘Ti neout " milliseconds while waiting
for a command from the host. Should a command arrive during the timeout it will be
processed, which could potentially increase the block duration. The duration could also
decrease because the function returns as soon as a command is finished.

In case of return value 2 the calling task should still call this function again, if possible
recovery will be initiated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

254 CHAPTER 7 Target API

7.3.1.9 USBD_MSD_SetStartStopUnitHook()

Description

Sets a callback function which is called when the command StartStopUnit is called.

Prototype
voi d USBD_MSD Set St art St opUni t Hook(U8 Lun,
START_STOP_UNI T_HOOK * pfOnStart StopUnit);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-

age medium, this parameter is 0.

Pointer to the callback function that shall be called. For
pf OnSt art St opUni t detailed information about the function pointer, refer to
START_STOP_UNI T_HOCK.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

255 CHAPTER 7 Target API

7.3.2 Extended API functions

7.3.2.1 USBD_MSD Connect()

Description

Connects the storage medium to the MSD component.

Prototype
voi d USBD_MSD _Connect (U8 Lun);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Additional information

The storage medium is initially always connected to the MSD component. This function is
normally used after the storage medium was disconnected via USBD _MSD Di sconnect () to
carry out file system operations on the device application side. Because the device can not
actively perform a connect operation this function sets an internal flag and the next time
when the host requests the status of the storage medium the storage medium is connected
back to the MSD component.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

256 CHAPTER 7 Target API

7.3.2.2 USBD_MSD Disconnect()

Description

Disconnects the storage medium from the MSD.

Prototype
voi d USBD_MSD _Di sconnect (U8 Lun);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Additional information

This function will force the storage medium to be disconnected. The host will be informed
that the medium is not present. In order to reconnect the device to the host, the func-
tion USBD _MSD Connect () shall be used. See USBD MsD Request Di sconnect () and USB-
D MSD Wi t For Di sconnecti on() for a graceful disconnection method.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

257 CHAPTER 7 Target API

7.3.2.3 USBD_MSD RequestDisconnect()

Description

Sets the DisconnectRequest flag.

Prototype
voi d USBD_MSD_Request Di sconnect (U8 Lun);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Additional information

This function sets the disconnect flag for the storage medium. As soon as the next MSD
command is sent to the device, the host will be informed that the device is currently not
available. To reconnect the storage medium, USBD MSD Connect () shall be called.

Notes

If the host tries to access the storage medium while this flag is set to 1, the status of the
storage medium changes to disconnected.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

258 CHAPTER 7 Target API

7.3.2.4 USBD_MSD_RequestRefresh()

Description

Performs a disconnect (optional), a detach and optionally a re-attach, to inform host that
volume contents has changed.

Prototype
voi d USBD_MsSD_Request Refresh(U8 Lun,
U32 Fl ags);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-

age medium, this parameter is 0.

Request flags, a bit-ored combination of the following flags:

e USB MSD TRY_ DI SCONNECT - Try a medium disconnect be-

Fl ags fore doing a USB detach.

e USB MSD RE_ATTACH - Automatically re-attach after detach
has been done.

Additional information

If the flag USB_MSD_TRY_DI SCONNECT is given, the function sets the disconnect flag for the
storage medium. As soon as the next MSD command is sent to the device, the host will be
informed that the device is currently not available. If the host acknowledges the disconnect,
the medium is reconnected and the function USBD_MSD Task() will return.

If the flag USB_MSD_TRY_DI SCONNECT is not set or the host ignores the disconnection of the
medium, the USB device is detached from the host (using USBD_St op()).

If the flag USB_MSD_RE_ATTACH is set, the device is re-attached after some delay us-
ing USBD_Start (). Then the function USBD _MSD Task() will return. The function USB-
D_MsD_Request Ref resh() returns immediately while the procedure is executed in the USB-
D_MSD _Task() .

Returning of the function USBD MsD Task() allows the application to reinitialize the vol-
ume (or calling USBD Start (), if USB_MSD RE ATTACH was not set) before calling USB-
D_MSD_Task() again.

Detaching the USB device not only affects the specified volume (Lun) but all volumes of
the device and any other USB class interfaces.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

259 CHAPTER 7 Target API

7.3.25 USBD_MSD UpdateWriteProtect()

Description
This function updates the write protect status of the storage medium.

Prototype

voi d USBD_MSD _Updat eWiteProtect (U3 Lun,
Us IsWiteProtected);

Parameters

Parameter Description
Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.

Set the write protect flag:
| sWiteProtected 1 - Medium is write-protected.
0 - Medium is NOT write-protected.

Lun

Additional information

Please make sure that this function is called when the LUN is disconnected from the host,
otherwise the change in the WriteProtected flag is normally not recognized.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

260 CHAPTER 7 Target API

7.3.2.6 USBD_MSD_WaitForDisconnection()

Description

Waits for disconnection while time out is not reached.

Prototype
int USBD_MSD_Wai t For Di sconnection(U8 Lun,
U322 TineQut);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one stor-
age medium, this parameter is 0.
, Timeout give in ms. How long should this function wait, until
Ti meQut . o
it stops waiting.

Return value

0 Error - Time out reached. Device not disconnected.
1 Success - Device disconnected.

Additional information

After triggering the disconnection via USBD_MsSD_Request Di sconnect () the stack discon-
nects the storage medium as soon as the host requests the status of the storage medium.
Win2k does not periodically check the status of a USB MSD. Therefore, the timeout is re-
quired to leave the loop. The return value can be used to decide if the disconnection should
be forced. In this case, USBD _MSD Di sconnect () shall be called.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

261 CHAPTER 7 Target API

7.3.3 Data structures

7.3.3.1 USB_MSD_INIT_DATA

Description

emUSB-Device-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {

U8 EPIn;

Us EPCQut;

U8 InterfaceNum
} USB_MSD_| NI T_DATA;

Structure members

Member Description
EPI n Bulk IN endpoint for sending data to the host.
EPQut Bulk OUT endpoint for receiving data from the host.
I nterfaceNum Interface number. This member is used internally, set to 0.

Additional information

This structure holds the endpoints that should be used with the MSD interface. Refer to
USBD_AddEP() for more information about how to add an endpoint.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

262 CHAPTER 7 Target API

7.3.3.2 USB_MSD_INFO

Description

emUSB-Device-MSD storage interface.
Type definition
typedef struct {

U32 NunBectors;

Ul6 SectorSize;
} USB_MBD_I NFO,

Structure members

Member Description
Nuntect or s Number of available sectors.
Sect or Si ze Size of one sector in bytes.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

263

CHAPTER 7 Target API

7.3.3.3 USB_MSD_INST_DATA

Description

USB-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {

const USB_MSD STORAGE_API * pAPI;

USB_MSD_| NST_DATA DRI VER

us
us

USB_MSD_HANDLE_CMD

us

const USB_MSD _LUN | NFO
} USB_MSD_| NST_DATA,;

Structure members

Dri ver Dat a;

Devi ceType;

| sPresent;
* pf Handl eCnd;

| sWiteProtected;
* pLunl nf o;

Member Description
Pointer to a structure that holds the storage device driver
pAPI
API.
Driver data that are passed to the storage driver. Refer to
DriverData USB_MSD_| NST_DATA DRI VER for detailed information about
how to initialize this structure.
Determines the type of the device:
Devi ceType 0: Direct access block device
5: CD/DVD
Determines if the medium is storage is present. For non-re-
| sPresent .
movable devices always 1.
of Handl eCrrd Optional pointer to a callback function which handles SCSI
commands.
I SWiteProtect ed Specifies whether the storage medium shall be write-pro-
tected.
Lunl nf o Pointer to a USB_MSD_LUN_| NFO structure. Filling this struc-
P ture is mandatory for each LUN.

Additional information

All non-optional members of this structure need to be initialized correctly, except Devi ce-
Type and pf Handl eCnd because it is done by the functions USBD MSD AddUni t () or USB-

D_MSD_AddCDROM) .

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

264 CHAPTER 7 Target API

7.3.3.4 USB_MSD _LUN_INFO

Description

Structure that is used when adding a logical volume to emUSB-Device-MSD.

Type definition

typedef struct {
const char * pVendor Nane;
const char * pProduct Nane;
const char * pProduct Ver;
const char * pSeri al No;

} USB_MSD_LUN_I| NFQO

Structure members

Member Description

Vendor name of the mass storage device. The string should

pVendor Nane be no longer than 8 bytes.

Product name of the mass storage device. The product name

pPr oduct Narre string should be no longer than 16 bytes.

Product version number of the mass storage device. The

pPr oduct Ver product version string should be no longer than 4 bytes.

Product serial number of the mass storage device. The seri-
pSeri al No al number string must be exactly 12 bytes, in order to satis-
fy the USB bootability specification requirements.

Additional information

The setting of these values is mandatory, if these values remain NULL at initialisation
emUSB-Device will report a panic error in debug builds (USB_PANI C).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

265 CHAPTER 7 Target API

7.3.3.5 PREVENT_ALLOW_REMOVAL_HOOK

Description

Callback function to prevent/allow removal of storage medium. See USBD _MSD_Set Pr even-
t Al | owRenoval Hook() .

Type definition
typedef void (PREVENT_ALLOW REMOVAL_HOOK) (U8 Prevent Renoval) ;

Parameters
Parameter Description
Show whether the device shall be locked or not.
Pr event Renoval e 0 - The device shall be removable.
e 1 - The device shall be locked.

Additional information

Most OSes call the prevent/allow removal before any write operation. This callback will be
called for all LUNs that are available on the host.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

266

CHAPTER 7 Target API

7.3.3.6 READ_WRITE_HOOK

Description

Callback function which is called with every read/write access to the storage medium.

Type definition

typedef void (READ_WRI TE_HOOK) (U8 Lun,

U8 | sRead,

u oOnof,

U32 StartLBA,
U32 NunBl ocks);

Parameters
Parameter Description

Specifies the logical unit number which was accessed

Lun .
through read or write.
Specifies whether a read or a write access was used:

| sRead e 1:read
e 0: write

NG f States whether the read or write request has been initialized
(1) or whether it is complete (0).

St art LBA The first Logical Block Address accessed by the transfer.
The number of blocks accessed by the transfer, starting from

NurBl ocks the St art LBA.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

267 CHAPTER 7 Target API

7.3.3.7 USB_MSD_INST _DATA_DRIVER

Description
USB-MSD initialization structure that is required when adding an MSD interface.
Type definition

typedef struct {
voi d * pStart;

u32 Start Sect or;

u32 Nurnect or s;

ul6 Sector Si ze;

voi d * pSectorBuffer;
unsi gned NunByt es4Buffer;
us NunBuf f er s;

} USB_MBD_I NST_DATA DRI VER;

Structure members

Member Description
pSt art A pointer defining the start address
St art Sect or The start sector that is used for the driver.
NunBect or s The available number of sectors available for the driver.
Sect or Si ze The sector size that should be used by the driver.

Pointer to an application provided buffer to be used as tem-

pSect or Buf f er porary buffer for storing the sector data.

NunByt es4Buf f er Size of the application provided buffer.

Number of buffer that are available. This is only used when

NunBuf f ers using the MT storage layer.

Additional information

This structure is passed to the storage driver. Therefore, the member of this structure can
depend on the driver that is used. For the storage driver that are shipped with this software
the members of USB_MSD_| NST_DATA_DRI VER have the following meaning:

USB_MSD_St or ageRAM:

Member Description
pSt art A pointer defining the start address of the RAM disk.
Start Sect or This member is ignored.
NunBect or s The available nhumber of sectors available for the RAM disk.
Sect or Si ze The sector size that should be used by the driver.

USB_MSD_St or ageByNane:

Member Description

Pointer to a string holding the name of the volumes that

pStart shall be used, for example “nand:” *“mmc:1:"
St art Sect or Specifies the start sector.

NunSect or s Number of sector that shall be used.

Sect or Si ze This member is ignored.

Pointer to an application provided buffer to be used as tem-

pSector Buf f er porary buffer for storing the sector data

Size of the buffer provided by the application. Please make
sure that the buffer can at least 3 sectors otherwise, pSec-

NunmByt es4Buf f er

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

268 CHAPTER 7 Target API

Member Description

t or Buf f er and NunByt es4Buf f er are ignored and an inter-
nal sector buffer is used. This sector-buffer is then allocated
by using the FS-Storage-Layer functions.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

269

CHAPTER 7 Target API

7.3.3.8 USB_MSD_STORAGE_API

Description

USB-MSD initialization structure that is required when adding an MSD interface.

Type definition

typedef struct {
USB_MSD_STORAGE INIT
USB_MSD_STORAGE_GETI NFO

USB_MSD_STORAGE_GETREADBUFFER

USB_MSD_STORAGE_READ

USB_MSD_STORAGE_GETWRI TEBUFFER

USB_MSD_STORAGE_WRI TE

USB_MSD_STORAGE_MEDI UM SPRESENT

USB_MSD_STORAGE DEINI T
} USB_MSD_STORAGE_API ;

Structure members

pflnit;

pf Get | nf o;

pf Get ReadBuf f er;
pf Read;

pf Get WiteBuffer;
pfWite;

pf Medi um sPresent;
pfDel nit;

L I S T

Member Description
pflnit Initializes the storage medium.
of Get I nf 0 Retrieves storage medium information such as sector size

and number of sectors available.

pf Get ReadBuf f er

Prepares read function and returns a pointer to a buffer that
is used by the storage driver.

pf Read

Reads one or multiple sectors from the storage medium.

pf Get Wi t eBuf fer

Prepares write function and returns a pointer to a buffer that
is used by the storage driver.

pfWite Writes one or more sectors to the storage medium.
pf Medi um sPr esent Checks if medium is present.
pf Del ni t De-initializes the storage medium.

Additional information

USB_MSD_STORACGE_API is used to retrieve information from the storage device driver or
access data that needs to be read or written. Detailed information can be found in MSD
Storage Driver on page 271.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

270 CHAPTER 7 Target API

7.3.3.9 START_STOP_UNIT_HOOK

Description
Callback function which is called when a START STOP UNIT SCSI command is received.
Type definition

typedef void (START_STOP_UN T_HOOK) (U8 Lun,
U8 StartLoadEj ect);

Parameters

Parameter Description

Lun Specifies the logical unit number.

Specifies which operation is executed by the host:
0 : Stop disk

e 1 : Start disk and make ready for access

e 2 : Eject disk if permitted

e 3 : Load, start and make disk ready.

St art LoadEj ect

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

271 CHAPTER 7 MSD Storage Driver

7.4 MSD Storage Driver

7.4.1 General information

The storage interface is handled through an API-table, which contains all relevant functions
necessary for read/write operations and initialization. Its implementation handles the de-
tails of how data is actually read from or written to memory. Additionally, MSD knows two
different media types:

e Direct media access, for example RAM-Disk, NAND flash, MMC/SD cards etc.
e CD-ROM emulation.

7.4.1.1 Supported storage types

The supported storage types include:

e RAM, directly connected to the processor via the address bus.
e External flash memory, e.g. SD cards.
e Mechanical drives, for example CD-ROM. This is essentially an ATA/SCSI to USB bridge.

7.4.1.2 Storage drivers supplied with this release

This release comes with the following drivers:

e USB_MSD St orageRAM: A RAM driver which should work with almost any device.

e USB _MSD StorageByl ndex: A storage driver that uses the storage layer (logical block
layer) of emFile to access the device.

e USB _MSD StorageByNane: A storage driver that uses the storage layer (logical block
layer) of emFile to access the device.

Note

If you are not using emFile or the RAM driver you will have to provide your own sector
write/read routines for your storage medium.

7.4.2 Interface function list

As described above, access to a storage medium is realized through an API-function table
(USB_MSD_STORAGE_API). The storage functions are declared in USB_MsSD. h.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

272

CHAPTER 7 MSD Storage Driver

7.4.3 USB_MSD_STORAGE_API in detalil

7.4.3.1 USB_MSD _STORAGE_INIT

Description

Initializes the storage medium.

Type definition

typedef void (USB_MSD STORAGE_INIT) (us Lun,
const USB_MSD | NST_DATA DRI VER * pDri ver Dat a) ;
Parameters
Parameter Description
Lun Logical unit number. Specifies for which drive the function is
called.
Pointer to a USB_MSD | NST_DATA DRI VER structure that con-
Driver Dat a tains all information that is necessary for the driver initializa-
P tion. Refer to USB_MsSD | NST_DATA DRI VER structure for de-
tailed information.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

273

CHAPTER 7 MSD Storage Driver

7.4.3.2 USB_MSD_STORAGE_GETINFO

Description
Retrieves storage medium information such as sector size and number of sectors available.

Type definition

typedef void (USB_MSD _STORAGE_GETI NFO) (U8 Lun,
USB_MSD_I NFO * plnfo);
Parameters
Parameter Description
Lun Logical unit number. Specifies for which drive the function is
called.
Pointer to a USB_MSD | NFO structure. For detailed in-
pl nfo formation about the USB_MSD | NFO structure, refer to
USB_MSD_| NFO.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

274 CHAPTER 7 MSD Storage Driver

7.4.3.3 USB_MSD_STORAGE_GETREADBUFFER

Description

Prepares the read function and returns a pointer to a buffer that is used by the storage
driver.

Type definition

typedef U32 (USB_MSD_STORAGE_GETREADBUFFER) (U8 Lun,
us2 Sect or | ndex,
void ** ppDat a,
u32 Nuntect or s) ;
Parameters
Parameter Description
Lun Logical unit number. Specifies for which drive the function is
called.
Sect or | ndex Specifies the start sector for the read operation.
Pointer to a pointer to store the read buffer address of the
ppData driver.
NunSect or s Number of sectors to read.

Return value

Maximum number of consecutive sectors that can be read at once by the driver.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

275

CHAPTER 7 MSD Storage Driver

7.4.3.4 USB_MSD STORAGE_READ

Description

Reads one or multiple consecutive sectors from the storage medium.

Type definition

typedef 18 (USB_MSD_STORAGE READ) (US Lun,

Parameters

us2 Sect or | ndex,
void * pbDat a,
u32 NurSect or s) ;

Parameter

Description

Lun

Logical unit number. Specifies for which drive the function is
called.

Sect or | ndex

Specifies the start sector from where the read operation is
started.

pDat a

Pointer to buffer to store the read data.

Nunfect or s

Number of sectors to read.

Return value

=0 Success.
0 Failed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

276 CHAPTER 7 MSD Storage Driver

7.4.3.5 USB_MSD_STORAGE_GETWRITEBUFFER

Description

Prepares the write function and returns a pointer to a buffer that is used by the storage
driver.

Type definition

typedef U32 (USB_MSD_STORAGE_GETWRI TEBUFFER) (U Lun,
U322 Sect or | ndex,
voi d ** ppData,
u32 NurSect or s) ;
Parameters
Parameter Description
Lun Logical unit number. Specifies for which drive the function is
called.
Sect or | ndex Specifies the start sector for the write operation.
Pointer to a pointer to store the write buffer address of the
ppData driver.
NunSect or s Number of sectors to write.

Return value
Maximum number of consecutive sectors that can be written into the buffer.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

277

CHAPTER 7 MSD Storage Driver

7.4.3.6 USB_MSD STORAGE WRITE

Description

Writes one or more consecutive sectors to the storage medium.

Type definition

typedef 18 (USB_MSD_STORAGE WRI TE) (us Lun,

Parameters

U322 Sect or | ndex,
const void * pData,
u32 Nuntect or s) ;

Parameter

Description

Lun

Logical unit number. Specifies for which drive the function is
called.

Sect or | ndex

Specifies the start sector for the write operation.

pDat a

Pointer to data to be written to the storage medium.

Nunfect or s

Number of sectors to write.

Return value

=0 Success.
0 Failed.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

278 CHAPTER 7 MSD Storage Driver

7.4.3.7 USB_MSD_STORAGE_MEDIUMISPRESENT

Description
Checks if medium is present.
Type definition

typedef 18 (USB_MSD_STORAGE MEDI UM SPRESENT) (U8 Lun);

Parameters
Parameter Description
Lun Logical unit number. Specifies for which drive the function is
called.
Return value
1 Medium is present.
0 Medium is not present.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

279 CHAPTER 7

7.4.3.8 USB_MSD _STORAGE_DEINIT

Description

De-initializes the storage medium.

Type definition
typedef void (USB_MSD STORAGE _DEINIT) (U8 Lun);

Parameters

MSD Storage Driver

Parameter

Description

Lun

called.

Logical unit number. Specifies for which drive the function is

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

Chapter 8

Virtual Mass Storage
Component (VirtualMSD)

This chapter gives a general overview of the VirtualMSD component and describes how to
get the VirtualMSD running on the target.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

281 CHAPTER 8 Overview

8.1 Overview

The VirtualMSD component allows to easily stream files to and from USB devices. Once the
USB device is connected to the host, files can be read or written to the application without
the need for dedicated storage memory.

This makes the software very flexible: it can be used for various types of applications and
purposes, with no additional software or drivers necessary on the host side.

The VirtualMSD software analyzes what operation is performed by the host and passes
this to the application layer of the embedded target, which then performs the appropriate
action. A simple drag and drop is all it takes to initialize this process, which is supported
by a unique active file technology.

Virtual MSD can access all data which has been created prior to the device being attached
to the host, live data cannot be provided.

VirtualMSD allows to use the storage device in a virtual manner, which means data does
not need to be stored on a physical medium.

The storage device will be shown on the host as a FAT formated volume with a configurable
size and a configurable file list.

With the help of that virtual function, the target device can be used for different applications
by simply dragging and dropping files to and from the storage medium:

e Firmware update application.
e Configuration updater.
o File system firewall - protect the target’s filesystem from being manipulated by the host.

The component itself is based on MSD class and thus can be used on virtually any OS such
as any Windows, macOS or any Linux distribution (including Android) which supports MSD,
without installing any third party tools.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

282 CHAPTER 8 Configuration

8.2 Configuration

8.2.1 Initial configuration

To get emUSB-Device-VirtualMSD up and running as well as doing an initial test, the con-
figuration as is delivered should not be modified.

8.2.2 Final configuration

The configuration must only be modified if emUSB-Device is deployed in your final product.
Refer to emUSB-Device Configuration on page 50 for detailed information about the generic
information functions which must be adapted.

8.2.3 Class specific configuration functions

For basic configuration please refer to the MSD chapter MSD class specific configuration
functions on page 242. In addition to the MSD configuration functions described there the
following VirtualMSD functions are available.

Function ‘ Description
emUSB-Device-VirtualMSD configuration functions
USB_VMSD X Confi g() ‘ Configures the VirtualMSD component.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

283 CHAPTER 8 Configuration

8.2.3.1 USB_VMSD_X_Config()

Description

Main user configuration function of the VirtualMSD component. This function is provided
by the user.

Prototype

voi d USB_VMsSD_X_Confi g(void);

Example

voi d USB_VMSD X Config(void) {
Il
/1 String information used when inquiring the vol une.
Il
static const USB_MSD LUN INFO _Lunlnfo = {

"Vendor ", /1 NMSD Vendor Nane
"MSD Vol unme", // WMSD Product Nane
"1.00", /1 NMSD Product Ver

"134657890" /1 NMSD Seri al No

bé

/1

/1 dobal configuration

/1

USBD_VMSD_Assi gnMenor y(& aMEMBuf fer[0], sizeof (_aMEMBuffer));

/1

/1 Setup LUNO

/1

USBD_VMSD_Set Nunfect or s(0, 8000);

USBD_VMSD_Set Sect orsPerCl uster (0, 32); // Anywhere from1l...128, needs to be
2" X

USBD_VMSD_Set NunRoot Di r Sect ors(0, 2);

USBD_VMSD_Set User APl (0, & User FuncAPI);

USBD_VMSD_Set Vol unel nfo(0, "Virt0. MSD', & Lunlnfo); // Add volune | D

/1

/1 Push const contents to the vol une

/1

USBD _VMSD_AddConst Fil es(0, & aConstFiles[0], COUNTOF(_aConstFiles));

}

Additional information

During the call of USBD_VMSD_Add() this user function is called in order to configure the Vir-
tualMSD module according to the user’s preferences. In order to allow the user to configure
the volume it is necessary to provide either a memory block or memory allocation/free
callbacks to VirtualMSD component.

8.2.4 Running the example application

The directory Appl i cati on contains example applications that can be used with emUSB-
Device and the VirtualMSD component. To test the VirtualMSD component, build and down-
load the application of choice into the target. Remove the USB connection and reconnect
the target to the host. The target will enumerate and can be accessed via a file browser.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

284 CHAPTER 8

Configuration

8.2.5 Calculation of RAM memory usage for VirtualMSD

An application has to provide RAM memory in order to use VirtualMSD either via a call to
the function USB_Vi r t ual MSD_Assi gnMenor y() or by setting callback functions for memory
allocation. The amount of memory used can be calculated as follows:

For each volume:

Purpose Bytes used Minimum
Global volume information 128 128
e e e a2 or cacnie) |0
I/0 Buffer 512 512
Directory m * 512 512
FAT n*512 512
Total - 1664

The number of files that can be stored on the volume depends on the size of the directory
which is configured using USB_Vi rt ual MSD_Set NunRoot Di r Sect or s() :

Used memory max. number of

Number of root directory sectors (m) for directory files with short

(bytes) (8.3) file name
1 512 15
2 1024 31
3 1536 47
4 2048 63
5 2560 79
6 3072 95

Files with long file names may occupy multiple entries in the directory, depending on the

actual length.

The number of FAT sectors (n) depends on the virtual size of the volume (configured using
USB_Vi rtual MSD_Set NunSect or s()) and the number of sectors per cluster:

Number of sectors Sectors per cluster fgf?:i'rp?br;?er;/) Vgﬁjpr;zxs'i;gtéjw?é)
10880 32 512 5.4
21792 32 1024 10.8
32704 32 1536 16.3
43616 32 2048 21.7
54528 32 2560 27.2
65440 32 3072 32.7
76352 32 3584 38.1
87264 32 4096 43.6
98176 32 4608 49.0
109088 32 5120 54.5
120000 32 5632 59.9
130720 32 6144 65.3
43520 128 512 21.3
87168 128 1024 43.5

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

285

CHAPTER 8

Configuration

Number of sectors Sectors per cluster fl;rsii'rp?br;?erz) vgﬁjpr;(;xéi\;gt(ljn/?é)
130816 128 1536 65.3
174464 128 2048 87.1
218112 128 2560 108.9
261760 128 3072 130.8
305408 128 3584 152.6
349056 128 4096 174.4
392704 128 4608 196.2
436352 128 5120 218.1
480000 128 5632 239.9
522800 128 6144 261.3

There is no disadvantage of using the maximum possible number

(128).

of sectors per cluster

In most cases the minimal configuration (FAT = 512 and directory = 512) should be suffi-
cient. It supports a small number of files with a total size of all files up to 21 MB. If more files
or bigger files are needed, the required parameters can be looked up in the tables above.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

286

8.3 Target API

CHAPTER 8 Target API

Function

Description

API functions

USBD_VMSD_Add()

Create VirtualMSD volumes and add MSD
interface to the device.

User supplied functions

USB_VMBSD_X_Conf i g()

User supplied function that configures all
storages of the VMSD component.

Configuration functions

USBD_VMSD_Assi gnMenory()

Assigns memory to the VirtualMSD mod-
ule.

USBD_VMBD_Set User API ()

Sets the default user callbacks for the Vir-
tualMSD component.

USBD _VMSD_Set NunRoot Di r Sect or s()

Sets the number of sectors which should
be used for root directory entries.

USBD_VMSD_Set Vol unel nf o()

Sets the volume name for a specified LUN.

USBD_VMSD_AddConst Fi | es()

Adds constant files to VirtualMSD.

USBD_VMSD_Set NunfSect or s()

Sets the number of sectors available on
the volume.

USBD VMSD_Set Sect or sPer C ust er () Set number of sectors per cluster.

Data structures

USB_VMSD_CONST_FI LE

This structure contains information about
a constant file which cannot be changed at
run time and should be shown inside the
VirtualMSD volume (e.g.

USB_VMSD_USER_FUNC_API

This structure contains the function point-
ers for user provided functions.

USB_VMBD_FI LE_I NFO

Structure used in the read and write call-
backs.

USB_VMSD_DI R_ENTRY_SHORT

Structure used to describe an entry with a
short file name.

Function definitions

USB_VMSD_ON_READ_FUNC

Callback function prototype that is used
when calling the USBD VMSD_Set User API ()
function.

USB_VMSD_ON_WRI TE_FUNC

Callback function prototype that is used
when calling the USBD VMBD_Set User API ()
function.

USB_VMSD_MEM ALLOC

Function prototype that is used when
memory is being allocated by the Vir-
tualMSD module.

USB_VMSD_MEM FREE

Function prototype that is used when
memory is being freed by the VirtualMSD
module.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

287 CHAPTER 8 Target API

8.3.1 API functions

8.3.1.1 USBD_VMSD Add()

Description

Create VirtualMSD volumes and add MSD interface to the device.

Prototype

voi d USBD_VMsD_Add(voi d);

Additional information

After the initialization of emUSB-Device, this is the first function that needs to be called
when the VirtualMSD component is used with emUSB-Device. During the call of the said
function the user function USB_VMSD X Confi g() is called in order to configure the storage
itself.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

288 CHAPTER 8 Target API

8.3.1.2 USB_VMSD_X_Config()

Description

User supplied function that configures all storages of the VMSD component.

Prototype

voi d USB_VMsD_X_Confi g(void);

Additional information

This function is called automatically by USBD VMSD_Add() in order to allow to configure the
storage volumes that VirtualMSD should show after configuration.

Only the following functions must be called in this context:

Allowed functions with USB_X VMSD_Confi g:
USBD_VMSD Assi gnMenor y()
USBD_VMSD_Set User API ()
USBD VMSD_Set NunRoot Di r Sect or s()
USBD VMSD_Set Vol urrel nf o()
USBD VMSD AddConst Fi | es()
USBD_VMSD_Set Nunfsect or s()
USBD_VMSD_Set Sect or sPer Cl ust er ()

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

289 CHAPTER 8 Target API

8.3.1.3 USBD _VMSD_AssignMemory()

Description

Assigns memory to the VirtualMSD module.

Prototype

voi d USBD_VMsSD_Assi gnMenory(U32 * p,
u32 NunmByt es) ;

Parameters
Parameter Description
Pointer to the memory which should be dedicated to Vir-
P tualMSD.
NunByt es Size of the memory block in bytes.

Additional information
See Calculation of RAM memory usage for VirtualMSD on page 284.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

290 CHAPTER 8 Target API

8.3.1.4 USBD_VMSD_SetUserAPI()

Description

Sets the default user callbacks for the VirtualMSD component.

Prototype
voi d USBD _VMBD_Set User APl (const USB_VMSD_USER FUNC_API * pUser Func);
Parameters
Parameter Description
User Func Pointer to a USB_VMSD_USER FUNC API structure which holds
P the default function pointers for multiple functions.
Notes

(1) Must only be called from USB_VMSD X Confi g() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

201 CHAPTER 8 Target API

8.3.1.5 USBD _VMSD_SetNumRootDirSectors()

Description

Sets the number of sectors which should be used for root directory entries.

Prototype

voi d USBD_VMsSD_Set NunRoot Di r Sect or s(unsi gned Lun,
unsi gned NunRoot Di r Sect or s) ;

Parameters

Parameter Description

Lun Specifies the logical unit number.

Number of sectors to be reserved for the root directory en-

NurmRoot Di r Sect or s .
tries.

Additional information

The number of sectors reserved through this function is subtracted from the number of
sectors configured by USBD VMSD Set NunfSect or s() . These sectors hold the root directory
entries for the specified LUN. A single sector contains 512 bytes, a short file name entry
(also called 8.3 filenames) needs 32 bytes, therefore a single sector has enough space for
16 root directory entries. Please note that when using LFN (long file names) the number of
entries required for a single file is dynamic (depending on the length of the file name).

Notes
(1) Must only be called from USB_VMSD_X Confi g() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

292 CHAPTER 8 Target API

8.3.1.6 USBD_VMSD_SetVolumelnfo()

Description

Sets the volume name for a specified LUN.

Prototype
i nt USBD_VMSD_Set Vol unel nf o(unsi gned Lun,

const char * sVol umeNane,

const USB_MSD LUN_I NFO * pLunl nfo);
Parameters

Parameter Description
Lun Specifies the logical unit number.
sVol uneNane Pointer to a string containing the name of the LUN.
Pointer to USB_MSD_LUN | NFO structure contain all relevant
pLunl nfo MSD stri
strings.

Return value

>0 0.K.
<0 Error
Notes

(1) Must only be called from USB_VMSD_X Confi g() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

293 CHAPTER 8 Target API

8.3.1.7 USBD_VMSD_AddConstFiles()

Description

Adds constant files to VirtualMSD. Allows to add multiple files which should be shown on a
VirtualMSD volume as soon as it is connected. A common example would be a "Readme.txt”
or a link to the company website.

Prototype
i nt USBD_VMSD_AddConst Fi | es(unsi gned Lun,
const USB_VMSD_CONST_FILE * paConstFil e,
unsi gned NunFi | es);

Parameters

Parameter Description
Lun Specifies the logical unit number.
paConstFil e Pointer to an array of USB_VMSD CONST_FI LE structures.
Nunti |l es The number of items in the paConst Fi | e array.

Return value

>0 0O.K.
<0 Error

Additional information
For additional information please see USB_VMSD CONST_FI LE.

Notes
(1) Must only be called from USB_VMSD_X Confi g() during initialization phase

Example
#defi ne COUNTOF(a) (sizeof ((a))/sizeof ((a)[0]))
static const U8 _abFile_SeggerHTM[] = {0x3C, 0x68, O0x74, O0x6D, O0x6C, O0x3E, 0x3C,

0x68, 0x65, O0x61, O0x64, Ox3E, O0x3C, 0x6D, 0x65, O0x74, 0x61, 0x20, 0x68, 0x74, 0x74,
0x70, O0x2D, O0x65, 0x71, O0x75, 0x69, 0x76, O0x3D, 0x22, 0x72, 0x65, 0x66, 0x72, 0x65,
0x73, O0x68, 0x22, 0x20, 0x63, Ox6F, Ox6E, 0x74, 0x65, Ox6E, 0x74, 0x3D, 0x22, 0x30,
0x3B, 0x20, 0x75, 0x72, Ox6C, 0x3D, 0x68, 0x74, O0x74, 0x70, Ox3A, O0x2F, Ox2F, 0x77,
0x77, O0x77, Ox2E, 0x73, O0x65, 0x67, 0x67, 0x65, 0x72, Ox2E, 0x63, O0x6F, 0x6D, O0x2F,
0x69, Ox6E, O0x64, 0x65, 0x78, Ox2E, 0x68, 0x74, 0x6D, 0x6C, 0x22, 0x2F, O0x3E, 0x3C,
0x74, 0x69, 0x74, Ox6C, O0x65, Ox3E, O0x53, 0x45, 0x47, 0x47, 0x45, 0x52, 0x20, 0x53,
0x68, Ox6F, 0x72, 0x74, 0x63, 0x75, 0x74, O0x3C, Ox2F, O0x74, 0x69, 0x74, 0x6C, 0x65,
O0x3E, O0x3C, Ox2F, 0x68, 0x65, 0x61, 0x64, Ox3E, O0x3C, 0x62, O0x6F, 0x64, 0x79, Ox3E,
0x3C, Ox2F, 0x62, Ox6F, O0x64, 0x79, Ox3E, O0x3C, Ox2F, 0x68, 0x74, 0x6D, 0x6C, Ox3E};
static USB_VMSD CONST_FI LE _aConstFiles[] = {

/1 sName pDat a Fil eSi ze Fl ags
{ "Segger.htm", _abFi | e_Segger HTM., si zeof (_abFi | e_Segger HTM.) , 0, }

D

/***

* USB_VMSD_X_ Config

Function description

i This function is called by the USB MSD Modul e during USB VMSD I nit() and
initializes the Virtual MSD vol une.

S

voi d USB_VMSD_X_Confi g(void) {

<...>
USBD_VMSD_AddConst Fi | es(1, & aConstFiles[0], COUNTOF(_aConstFiles));
<...>

}

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

294 CHAPTER 8 Target API

8.3.1.8 USBD _VMSD_SetNumSectors()

Description

Sets the number of sectors available on the volume.

Prototype

voi d USBD_VMBD_Set NunSect or s(unsi gned Lun,
unsi gned NunSectors);

Parameters
Parameter Description
Lun Specifies the logical unit number.
Nuntect or s Specifies the number of sectors for a LUN.
Notes

(1) Must only be called from USB_VMSD_X_Confi g() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

295 CHAPTER 8 Target API

8.3.1.9 USBD_VMSD_SetSectorsPerCluster()

Description

Set number of sectors per cluster.

Prototype

voi d USBD_VMSD_Set Sect or sPer d ust er (unsi gned Lun,
unsi gned SectorsPerC uster);

Parameters
Parameter Description
Lun Specifies the logical unit number.
Sect or sPer Cl ust er Number of sectors per cluster for the LUN.

Additional information

Sect or sPer Cl ust er can be anywhere between 1 and 128, but needs to be a power of 2.
Larger clusters save memory because the management overhead is lower, but the maxi-
mum number of files is limited by the number of available clusters.

Notes
(1) Must only be called from USB_VMSD_X Confi g() during initialization phase

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

296 CHAPTER 8 Target API

8.3.2 Data structures

8.3.2.1 USB_VMSD CONST FILE

Description

This structure contains information about a constant file which cannot be changed at run
time and should be shown inside the VirtualMSD volume (e.g. Readme.txt). This structure
is a parameter for the USBD VMSD_AddConst Fi | es() function.

Type definition

typedef struct {
const char * sNane;
const U8 * pDat a;
unsi gned FileSize;
u32 Fl ags;

} USB_VMSD_CONST_FI LE;

Structure members

Member Description
sNane Pointer to a zero-terminated string containing the filename.
pDat a Pointer to the file data. Can be NULL.
FileSi ze F?E)zaet gf the file. Normally the size of the data pointed to by

Can be one of the following items:

e USB_VMSD FI LE_ WRI TABLE: The file is writable

Fl ags e USB VMSD_FI LE_AHEAD: File is located at the start of the
volume. Normally constant files are allocated at the end
of the volume.

Additional information

If a file does not occupy complete sectors the remaining bytes of the last sector are auto-
matically filled with Os on read. If pData is NULL the file is not displayed in the volume.
This is useful when the application has certain files which should only be displayed after
certain events (e.g. the application displays a Fail.txt when the device is reconnected after
an unsuccessful firmware update).

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

297 CHAPTER 8 Target API

8.3.2.2 USB_VMSD USER_FUNC_API

Description

This structure contains the function pointers for user provided functions. This structure is
a parameter for the USBD VMSD_Set User API () function.

Type definition

typedef struct {
USB_VMSD _ON _READ FUNC * pf OnReadSect or;
USB_VMSD ON WRI TE_FUNC * pf OnWit eSect or;
USB_VMSD_MEM ALLOC * pf MemAl | oc;
USB_VMSD_MEM FREE * pf MenFr ee;

} USB_VMSD_USER _FUNC_API ;

Structure members

Member Description

Pointer to a callback function of type
USB_VMSD_ON READ FUNC which is called when a sector is
read from the host. This function is mandatory and can not
be NULL.

Pointer to a callback function of type

USB_VMSD_ON_WRI TE_FUNC which is called when a sector is
written from the host. This function is mandatory and can
not be NULL.

Pointer to a user provided alloc function of type
USB_VMSD _MEM ALLQC. If this pointer is NULL the internal
alloc function is called. If no memory block is assigned
USB_PANI C() is called.

Pointer to a user provided free function of type
pf Menfr ee USB_VMSD_MEM FREE. If this pointer is NULL the internal free
function is called.

pf OnReadSect or

pf OnW i t eSect or

pf MemAl | oc

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

298 CHAPTER 8 Target API

8.3.2.3 USB_VMSD FILE_INFO

Description

Structure used in the read and write callbacks.

Type definition
typedef struct {

const USB_VMSD DI R_ENTRY_SHORT * pDirEntry;
} USB_VMSD_FI LE_I NFQ,

Structure members

Member Description
pDirEntry Pointer to a USB_VMSD DI R_ENTRY_SHORT structure.

Additional information

Check USB_VMSD ON_READ FUNC, USB VMSD ON WRI TE_FUNC and USB VMSD DI R_EN-
TRY_SHORT for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

299 CHAPTER 8 Target API

8.3.2.4 USB_VMSD DIR_ENTRY_SHORT

Description

Structure used to describe an entry with a short file name. This structure is a member of
USB_VMSD_DI R_ENTRY.

Type definition

typedef struct {
us acFil enane[];

us ackExt[];

us DirAttr;

us NTRes;

us Crt Ti neTent h;
Uie CrtTine;

Ul6é CrtDate;

Ul6 Lst AccDate;
Ul6 Fstd usH;
Ule Wt Tine;
Ul6 WtDate;
Ul6 Fstd usLQ
U32 FileSize;
} USB_VMSD DI R_ENTRY_SHORT;

Structure members

Member Description

File name, limited to 8 characters (short file name), padded

acFi | enane with spaces (0x20).

File extension, limited to 3 characters (short file name),

ackxt padded with spaces (0x20).
DirAttr File attributes. Available attributes are listed below.
NTRes Reserved for use by Windows NT.

Millisecond stamp at file creation time. This field actually

GrtTi meTent h contains a count of tenths of a second.

CrtTinme Creation time.
CrtDate Date file was created.
Last access date. Note that there is no last access time, only

LstAcchate a date. This is the date of last read or write.
Fst d usHI High word of this entry’s first cluster number.
WtTine Time of last write.

Wt Dat e Date of last write.

Fst C usLO Low word of this entry’s first cluster number.
FileSi ze File size in bytes.

Additional information

The following file attributes are available for short dir entries:

Attribute Explanation
USB_VNMSD ATTR _READ ONLY The file is read-only.
USB_VMSD_ATTR_HI DDEN The file is hidden.
USB_VMSD ATTR SYSTEM The file is designated as a system file.
USB VMVSD ATTR VOLUME | D This entry is the volume ID (volume name).
USB_VNMSD_ATTR DI RECTORY The file is a directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

300 CHAPTER 8 Target API

Attribute Explanation
USB_VMSD_ATTR_ARCHI VE The file has the archive attribute.
USB_VMSD ATTR LONG NAME The file has a long file name.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

301 CHAPTER 8 Target API

8.3.3 Function definitions

8.3.3.1 USB_VMSD ON_READ FUNC

Description

Callback function prototype that is used when calling the USBD VMSD_Set User API () func-
tion.

Type definition

typedef int (USB_VMSD ON_READ FUNC) (unsi gned Lun,
us * pDat a,
u32 Of,
u32 NunByt es,
const USB_VMSD FILE_INFO * pFile);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one virtual
volume, this parameter is 0.
pDat a Pointer to a buffer in which the data is stored.
O f Offset in the file which is read by the host.
NunByt es Amount of bytes requested by the host.
OFi | e Pointer to a USB_VMSD_FI LE | NFO structure describing the
file.

Return value

=0 Success.
0 An error occurred.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

302 CHAPTER 8 Target API

8.3.3.2 USB_VMSD ON_WRITE_FUNC

Description

Callback function prototype that is used when calling the USBD VMSD_Set User API () func-
tion.

Type definition

typedef int (USB_VMSD _ON_WRI TE_FUNC) (unsi gned Lun,
const U8 * pDat a,
u32 Of,
u32 NunByt es,
const USB_VMSD FILE_INFO * pFile);
Parameters
Parameter Description
Lun Zero-based index for the unit number. Using only one virtual
volume, this parameter is 0.
Pointer to the data to be written (received from the host). If
Dat a pDat a = NULL, then there are no data written by the host,
P but instead a new or changed directory entry was written,
which is provided via pFi | e.
O f Offset in the file which the host writes.
NunByt es Amount of bytes to write.
. Pointer to a USB_VMSD_FI LE | NFO structure describing the
pFil e .
file or NULL.
Return value
0 Success.
1 Enable continuous sector mode: From now on, only forward writes to continuous
sectors to the user callback. Ignore writes to all other sectors.
-1 Disable continuous sector mode.
-2 Report write error to USB host.

Additional information

Depending on the behavior of the host operating system it is possible that pFi | e is NULL.
In this case we recommend to perform data analysis to recognize the file.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

303 CHAPTER 8 Target API

8.3.3.3 USB_VMSD MEM_ALLOC

Description

Function prototype that is used when memory is being allocated by the VirtualMSD module.

Type definition
typedef void * (USB_VMSD_MEM ALLQOC) (U32 Size);

Parameters

Parameter Description

Si ze Si ze of the required memory in bytes.

Return value

Pointer to the allocated memory or NULL.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

304

CHAPTER 8

8.3.3.4 USB_VMSD MEM_FREE

Description

Target API

Function prototype that is used when memory is being freed by the VirtualMSD module.

Type definition

typedef void (USB_VMSD_MEM FREE) (void * p);

Parameters

Parameter

Description

Pointer to a memory block which was previously allocated by

USB_VMBD_MEM ALLCC.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

Chapter 9

Media Transfer Protocol Class
(MTP)

This chapter gives a general overview of the MTP class and describes how to get the MTP
component running on the target.

MTP

-y

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

306 CHAPTER 9 Overview

9.1 Overview

The Media Transfer Protocol (MTP) is a USB class protocol which can be used to transfer files
to and from storage devices. MTP is an official extension of the Picture Transfer Protocol
(PTP) designed to allow digital cameras to exchange image files with a computer. MTP
extends this by adding support for arbitrary data types.

MTP is an alternative to Mass Storage Device (MSD) and in contrast to MSD which reads
and writes sector data, it operates at the file level. This type of operation gives MTP some
advantages over MSD:

e The cable can be safely removed during a data transfer without damaging the file
system.

e The file system does not need to be FAT (can be the SEGGER emFile File System (EFS)
or any other proprietary file system)

e The application has full control over which files are visible to the user. Selected files or
directories can be hidden.
Virtual files can be presented.
Host and target can access storage simultaneously without conflicts.

MTP is supported by most operating systems out of the box and the installation of additional
drivers is not required.

emUSB-Device-MTP supports the following capabilities:

File read

File write
Format

File delete
Directory create
Directory delete

emUSB-Device-MTP comes as a complete package and contains the following:

Generic USB handling

MTP device class implementation

Storage driver which uses emFile

Sample application showing how to work with MTP

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

307 CHAPTER 9

9.1.1 Getting access to files

Overview

An MTP device will be displayed under the “Portable Devices” section in the “Computer”
window when connected to a PC running the Microsoft Windows 7 operating system:

[o[O s

@n\‘:/,lvk‘.i b Computer »

Properties Systern properties

Organize «

4 Hard Disk Drives (2)
J':.-;f“Ll:lcal Disk ()
—w Local Disk (E)

» 30 Favorites
» = Libraries

> /M Computer s
e DVD RW Drive (Dv)

: 'E"'y Hetwonk __ Removable Disk (F:)
4 Portable Devices (1)

[, Storage device

Storage device
Portable Media Player

4

4 Devices with Removable Storage (2)

ol

sEarcn Lo..

- | +3 |
5. 0 @

The file and directories stored on the device are accessed in the usual way using the Win-

dows Explorer:

(=[O]

@UVL-. <« Storage device » MTP volume »

Organize «

| Folder
|| Audio.mp3

[Favorites

. Libraries % Doc.pdf
58| Imagel .gif

M Computer 5 Imagel. gif
5| Image3.gif

&, Local Disk (C:)
a Local Disk (E:)

L. Storage device

|58 Imaged.gif
|| Readme.tbdt

e MTP volume

E‘ﬁ Metwork

& items

-—

ol
I::.E‘:I

Search M1...

v|¢f|

o~ [

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

308

CHAPTER 9

Overview

On the Ubuntu Linux operating system a connected MTP device is shown in the "Computer”

window:

r

@ - 0 Computer

Devices

M Floppy Disk
® MTPdevice &

Computer

[® Home

K& Desktop

[Documents
|3 Downloads
[l Music

] Pickures
(@ Videos

Z_ File system

2 Trash
Network
[i= Browse Nebtwork

B computer

|'_r]
21 GB Hard
Disk

-
u
MTP device

€ o Q search
\\._.-“"l -
CD/DVD Floppy
Drive Drive:
Floppy Disk
3
File System

The files and directories present on the MTP device can be easily accessed via GUI:

r

& - o MTP device

Devices

M Floppy Disk

w MTP device

Computer
@ Home
K Desktop
[i@ Documents
[&l Downloads
il Music
[Pictures
[fl videos
Z_ File system
2 Trash

Network
[i= Browse Network

B MTP device

-

Folder

Image1.qif

Image4.qgif

5

.o Q search
n g
Audio.mp3 Doc.pdf
Image2.qif Image3.qif
Readme.txt

On other operating systems the data stored on MTP devices can be accessed similarly.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

309 CHAPTER 9 Overview

macOS does not support MTP natively, therefore a third party tool is necessary. Please have
a closer look on our wiki pages to this topic.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://wiki.segger.com/MTP#Accessing_MTP_devices_under_macOS

310 CHAPTER 9 Overview

9.1.2 Additional information

For more technical details about MTP and PTP follow these links:
MTP specification

PTP specification

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

https://www.usb.org/sites/default/files/MTPv1_1.zip
https://www.usb.org/sites/default/files/usb_still_img10.zip

311 CHAPTER 9 Configuration

9.2 Configuration

9.2.1 Initial configuration

To get emUSB-Device-MTP up and running as well as doing an initial test, the configuration
as delivered with the sample application should not be modified.

9.2.2 Final configuration

The configuration must only be modified when emUSB-Device is integrated in your final
product. Refer to section emUSB-Device Configuration on page 50 for detailed information
about the generic information functions which have to be adapted.

9.2.3 emkFile and MTP configuration for UTF8 characters

If you need to support non-ASCII characters you need to set the define M-
P_SUPPORT UTF8 to 1 in your USB Conf.h file. Furthermore you need to set
the defines FS_SUPPORT_FI LE_NAME_ENCODI NG, FS_SUPPORT _EXT _ASCI| and FS_SUP-
PORT_MBCS to 1 in your FS Conf.h file. Additionally you must make sure that
LFN is active (FS_FAT_SupportLFN()) and that the following functions have been
called: FS_Set Char Set Type(&FS _CHARSET CP932), FS FAT Set LFNConvert er (&FS_UNI -
CODE_CONV_UTF8). See the emFile documentation for details.

If you are not using emFile you must make sure that your filesystem is using UTF8.

9.2.4 Class specific configuration

Beside the generic emUSB-Device configuration functions (emUSB-Device Configuration on
page 50), the following should be adapted before the emUSB-Device MTP component is used
in a final product. Example implementations are supplied in the MSD example application
USB MIP_Start. c, located in the Appl i cati on directory of emUSB-Device.

An MTP device is required to present an additional information set to the host. These values
are added during the initial call to USBD MIP_Add() .

Example
static const USB_MIP_INFO _MIPInfo = {
"Vendor ", /1 MIP Manuf acturer
" St orage device", // MIP Model
"1.0", [/ MIP Devi ceVer si on

"0123456789ABCDEF0123456789ABCDEF" // MIP Seri al Nunber .
/1 It must be exactly 32 characters | ong.

}
I ni t Data. pMIPI nfo = & MIPI nf o;

USB_MIP_Add(& ni t Dat a) ;

9.2.5 Compile time configuration

The following macros can be added to USB_Conf. h file in order to configure the behavior
of the MTP component.

The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

312

Numerical values "N"

CHAPTER 9

Configuration

Numerical values are used somewhere in the code in place of a numerical constant.

Type Macro

Default

Description

N MIP_MAX_NUM STORAGES

Maximum number of storage units the
storage layer can handle. 4 addition-
al bytes are allocated for each storage
unit.

B MIP_SAVE_FI LE_I NFO

Specifies if the object properties (file
size, write protection, creation date,
modification date and file id) should
be stored in RAM for quick access to
them. This can have noticeable im-
pact on displaying folders with large
amount of objects in them. With this
switch set to 0 objects require 12
bytes + the size of the file name in-
side the object list memory area. 33
additional bytes of RAM are required
for each object when the switch is set
to 1.

N MIP_MAX_FI LE_PATH

256

Maximum number of characters in the
path to a file or directory.

B MTP_SUPPORT_UTF8

Names of the files and directories
which are exchanged between the
MTP component and the file system
are encoded in UTF-8 format.

B MI'P_SUPPORT_EVENTS

Support Events such as object re-
moved/added, new storage added/re-
moved.

USB_MT-

P_NAVE_CASE_SENSI TI VE

When checking file names and direc-
tory names the string compare will be
case sensitive.

HAVI OR

USB_MTP_OLD_MOUNTI NG_BE-

With version V3.54.0 and older the
MTP Storage layer for emFile would
automatically call FS_Mbunt . This is no
longer the case. This define allows to
restore this old behavior, when set to
1 the storage layer will call FS_Mount
automatically.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

313 CHAPTER 9 Running the sample application

9.3 Running the sample application

The directory Appli cati on contains a sample application USB_MIP_St art .c which can be
used with emUSB-Device and the MTP component. To test the emUSB-Device-MTP com-
ponent, the application should be built and then downloaded to target. Remove the USB
connection and reconnect the target to the host. The target will enumerate and will be
accessible via a file browser.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

314

9.4 Target API

CHAPTER 9

Target API

Function

Description

API functions

USBD_MTP_Add()

Adds an MTP interface to the USB stack.

USBD_MTIP_AddsSt or age()

Adds a storage device to emUSB-De-
vice-MTP.

USBD _MIP_RenpveSt or age()

Removed a storage previously added via
USBD MIP_AddsSt or age() .

USBD_MIP_Task()

Main task function of MTP component
which processes the commands from host.

USBD_MTP_Pol | ()

Function which handles MTP commands.

USBD _MIP_SendEvent ()

Sends an event notification to the host.

USBD MIP_Set Obj ect Al | ocFai | Cb()

Allows to set a callback which is called
when the object list is full and new objects
can no longer be allocated.

USBD MIP_Set Oper ati onCh()

Allows to set a callback which is called
when operations are executed by the host

operating system via MTP.

Data structures

USB_MTP_FI LE_I NFO

Structure which stores information about a
file or directory.

USB_MTP_I NI T_DATA

Structure which stores the parameters of
the MTP interface.

USB_MTP_I NFO

Structure that is used when initialising the
MTP module.

USB_MTP_| NST_DATA

Structure which stores the parameters of
storage driver.

USB_MTP_| NST_DATA DRI VER

Structure which stores the parameters
passed to the storage driver.

USB_MTP_STORAGE_API

Structure that contains callbacks to the
storage driver.

USB_MTP_STORAGE_| NFO

Structure which stores information about a
storage.

USB_MTP_OPERATI ON_| NFO

Structure which provides information
about a new MTP operation.

Enums

USB_MTP_EVENT

Enum containing the MTP event codes.

USB_MI'P_OPERATI ON_CB_TYPE

Enum containing the callback operation
types.

Proto

types

USB_MTP_OBJECT_ALLOC FAI L

Callback which can be set via USBD_MT-
P_Set Obj ect Al l ocFai | Cb().

USB_MTP_OPERATI ON_CB

Callback which can be set via USBD_MT-

P_Set Operati onCh() .

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

315 CHAPTER 9 Target API

9.4.1 APIfunctions

9.4.1.1 USBD_MTP_Add()

Description
Adds an MTP interface to the USB stack.

Prototype
int USBD MIP_Add(const USB_MIP_I NIl T_DATA * plnitData);
Parameters
Parameter Description
pl ni t Dat a Pointer to a USB_MIP_I NI T_DATA structure.

Return value
0 - Successfully added.

Additional information

After the initialization of USB core, this is the first function that needs to be called when an
MTP interface is used with emUSB-Device. The structure USB_MIP_| NI T_DATA has to be ini-
tialized before USB_MIP_Add() is called. Refer to USB_MIP_I NI T_DATA for more information.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

316 CHAPTER 9 Target API

9.4.1.2 USBD_MTP_AddStorage()

Description
Adds a storage device to emUSB-Device-MTP.

Prototype
USB_MIP_STORAGE_HANDLE USBD_MTIP_AddSt or age(const USB_MIP_I NST_DATA * pl nst Dat a) ;
Parameters
Parameter Description
| nst Dat a Pointer to a USB_MIP_I NST_DATA structure which contains
P the parameters of the added storage.

Return value

=0 Invalid handle, storage could not be added
+#0 A valid storage handle, this handle can be used with the USBD MIP_SendEvent to
indicate an event to the host.

Additional information

It is necessary to call this function immediately after USBD MIP_Add() and before USB-
D MIP_Task()/USBD MIP_Pol | () is called. This function adds a storage device such as a
hard drive, MMC/SD card or NAND flash etc., to emUSB-Device-MTP, which will be used
as source/destination of data exchange with the host. The structure USB_MTP_I NST_DATA
must be initialized before USB_MIP_AddSt or age() is called. Refer to USB_MIP_I NST_DATA
for more information.

If a storage was removed in the middle of operation via USBD_MIP_RenpveSt or age() it can
be added again by calling this function with the same parameters. Additionally the host
must be informed of the change by calling USBD _MIP_SendEvent (Handl e, USB_MIP_EVEN-
T_STOREADDED, NULL)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

317 CHAPTER 9 Target API

9.4.1.3 USBD_MTP_RemoveStorage()

Description
Removed a storage previously added via USBD_MTIP_AddSt or age() .

Prototype
int USBD_MIP_RenoveSt or age(USB_MIP_STORAGE_HANDLE hSt or age) ;
Parameters

Parameter Description
hSt or age Valid storage handle.

Return value

=0 Storage removed
+#0 An error occurred.

Additional information

It is necessary to notify the host about the storage removal through an MTP event pri-
or to calling this function. The following call can be used: USBD MIP_SendEvent (Handl e,
USB_MTP_EVENT _STOREREMOVED, NULL)

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

318 CHAPTER 9 Target API

9.4.1.4 USBD_MTP_Task()

Description
Main task function of MTP component which processes the commands from host.

Prototype
voi d USBD_MIP_Task(voi d);

Additional information

The USBD_MTP_Task() should be called after the USB device has been successfully enumer-
ated and configured. The function returns when the USB device is detached or suspended.

Check USBD_MIP_Pol | () if you need a non-blocking version.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

319 CHAPTER 9 Target API

9.4.1.5 USBD_MTP_Poll()

Description

Function which handles MTP commands. Using this function is only necessary if you want
to avoid using the blocking USB_MIP_Task function. This can be necessary if you are not
using an RTOS.

Prototype

int USBD _MIP_Pol | (void);

Return value

2 0.K. Command was processed, but a protocol error occurred.
1 0.K. Command was processed successfully.
0 O.K. Timeout occurred.

1 An error occurred. (e.g. no cable connected).

Additional information

This function must be called periodically, otherwise the host can time out the device since
it does not process commands. It normally blocks for USB_MIP_PCOLL_TI MEQOUT milliseconds
while waiting for a command from the host. Should a command arrive during the timeout it
will be processed (and the function will block for the complete duration of the command),
which could potentially increase the block duration. The duration could also decrease be-
cause the function returns as soon as a command is finished.

In case of return value 2 the calling task should still call this function again, if possible
recovery will be initiated.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

320 CHAPTER 9 Target API

9.4.1.6 USBD_MTP_SendEvent()

Description

Sends an event notification to the host.

Prototype
int USBD MIP_SendEvent (USB_MIP_STORAGE HANDLE hSt or age,
USB_MIP_EVENT Event ,
voi d * pPara);
Parameters
Parameter Description

Handle to a storage that was returned by USBD MIP_AddS-

hSt or age
torage() .
Event that occurred. The following events are currently sup-
ported:
e USB_MIP_EVENT OBJECTADDED
e USB_MIP_EVENT OBJECTREMOVED

Event e USB_MIP_EVENT_ STOREADDED
e USB_MIP_EVENT_ STOREREMOVED
e USB_MIP_EVENT_OBJECTI NFOCHANGED
e USB MIP_EVENT_STOREFULL
e USB_MIP_EVENT_STORAGEl NFOCHANGED
Pointer to additional information. This parameter depends on
the event. In case of Event =
e USB MIP_EVENT OBJECTADDED
e USB MIP_EVENT OBJECTREMOVED

oPar a e USB_MIP_EVENT_ OBJECTI NFOCHANGED
pPar a is a pointer to a filled USB_MIP_FI LE_| NFO structure.
e USB_MIP_EVENT_ STOREADDED
e USB_MIP_EVENT STOREREMOVED
e USB MIP_EVENT_ STORAGEI NFOCHANGED
pPar a is not used and can be NULL.

Return value

=0 Event sent out successfully.
*0 Event could not be sent.

Additional information

Sending an event notification to the MTP host makes sure that the MTP host is aware of
changes in the file system of the storage. This function can also be used to notify that a stor-
age has been added or removed. The events USB_MIP_EVENT_STOREREMOVED and USB_MT-
P_EVENT_STOREADDED do not affect the internal object list.

Example

static void _GetFilelnfo(const char * sPath, USB MIP_FILE | NFO * pFil el nfo) ({
const char * s;
Ug AttrFS;
Ug AttrMIP;

nmenset (pFil el nfo, 0, sizeof (USB_MIP_FILE | NFO);
s = strrchr(sPath, "\\');
if (s) {
s++; // Go to the next character after '\’
} else {
s = sPat h;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

321 CHAPTER 9 Target API

}
11

/1 In case the file path starts with \ skip this.
Il
if (*sPath == "\\") {
sPat h++;
}

pFi | el nf o- >pFi | eNane (char *)s;

pFi | el nf o- >pFi | ePat h (char *)sPath;

FS Get Fi |l eTi neEx(pFi | el nf o- >pFi | ePat h, &pFil el nfo->CreationTi ne,
FS_FI LETI ME_CREATE) ;

FS Get Fi |l eTi neEx(pFi | el nfo->pFi | ePat h, &pFil el nfo->LastWiteTineg,
FS_FI LETI ME_MODI FY) ;

pFil el nfo->IsDirectory = 0;

AttrFS = FS GetFileAttributes(pFilelnfo ? pFilePath);

if (AttrFS & FS_ATTR DI RECTORY) {

pFil el nfo->IsDirectory = 1;
}

AttrMIP = 0O;

if (AttrFS & FS ATTR READ ONLY) {
AttrMIP | = MIP_FI LE_ATTR WP,

}

if (AttrFS & FS_ATTR SYSTEM {
AttrMIP | = MIP_FI LE_ATTR SYSTEM
}

if (AttrFS & FS_ATTR HI DDEN) {
AttrMIP | = MIP_FI LE_ATTR HI DDEN;
}

pFil el nfo->Attributes = AttrMIP;
}

static int _WiteLogFile(const char * sLogFilePath) ({
char ac[30];
FS_FILE * pFile;
int r = 0;
USB_MIP_FILE_INFO Fil el nfo = {0};

if (FS_IsVoluneMounted("")) {
I
/1l Check whether file already exists
I
pFile = FS_FQpen(sLogFilePath, "r");
if (pFile) {
r = USB_MIP_EVENT_OBJECTI NFOCHANGED;
FS _Fcl ose(pFile);
} else {
r = USB_MIP_EVENT_OBJECTADDED,;
}
pFile = FS_FQpen(sLogFil ePath, "a+");
if (pFile) {
sprintf(ac, "OS_ Tine = %8d\r\n", (int)0S GetTinme());
FS Wite(pFile, ac, 20);
FS _Fcl ose(pFile);
} else {
r = 0;
}
}
_GetFilelnfo(sLogFil ePath, &Filelnfo);
I
/1 Send events to the host.
I
USBD_MIP_SendEvent (_ahStorage[0], (USB_MIP_EVENT)r, &Filelnfo);
USBD_MIP_SendEvent (_ahSt orage[0], USB_MIP_EVENT _STORAGEI NFOCHANGED, NULL);
return r;

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

322 CHAPTER 9 Target API

9.4.1.7 USBD_MTP_SetObjectAllocFailCh()

Description

Allows to set a callback which is called when the object list is full and new objects can no
longer be allocated. See USB_MIP_OBJECT ALLCC FAI L for details.

Prototype
voi d USBD_MIP_Set Obj ect Al | ocFai | Co(USB_MIP_OBJECT_ALLOC FAIL * pf);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

323 CHAPTER 9 Target API

9.4.1.8 USBD_MTP_SetOperationCh()

Description

Allows to set a callback which is called when operations are executed by the host operating
system via MTP. See USB_MIP_OPERATI ON_CB for details.

Prototype
voi d USBD_MTP_Set Oper ati onCh(USB_MIP_OPERATI ON_CB * pf);

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

324

CHAPTER 9

9.4.2 Data structures

9.4.2.1 USB_MTP_FILE_INFO

Description

Target API

Structure which stores information about a file or directory.

Type definition

typedef struct {

const char * pFil ePat h;
const char * pFil eNane;

u64 FileSize;

u32 CreationTi ne;
u32 Last WiteTine;
us IsDirectory;
us Attributes;
us acld[];

} USB_MIP_FI LE_I NFO

Structure members

Member Description
pFi | ePat h Full path to file.
pFi | eNane Pointer to beginning of file/directory name in pFi | ePat h.
Fil eSi ze Size of the file in bytes.

CreationTi ne

The time and date when the file was created.

Last WiteTinme

The time and date when the file was last modified.

| sDirectory

Set to 1 if the path points to a directory.

Attributes

Bitmask of file attributes (MIP_FI LE_ATTR ...).

acld

Unique identifier which persists between MTP sessions.

Additional information

The date and time is formatted as follows:

Bit Value o
range range Description
0-4 0-29 2-second count
5-10 0-59 Minutes
11-15 |0-23 Hours
16-20 |1-31 Day of month
21-24 | 1-12 Month of year
25-31 | 0-127 | Number of years since 1980

The following attributes are supported:

Bitmask

Description

MIP_FI LE_ATTR WP

File/directory can not be modified.

MIP_FI LE_ATTR_SYSTEM

of the system.

File/directory is required for the correct functioning

MIP_FI LE_ATTR_H DDEN

File/directory should not be shown to the user.

acl d should be unique for each file and directory on the file system and it should be per-
sistent between MTP sessions.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

325 CHAPTER 9 Target API

9.4.2.2 USB_MTP_INIT_DATA

Description

Structure which stores the parameters of the MTP interface.

Type definition

typedef struct {

us EPI n;

us EPCut ;

us EPI nt ;

voi d * pQCbj ect Li st ;

u32 NurmByt esObj ect Li st ;
voi d * pDat aBuf f er;

u32 NurmByt esDat aBuf f er ;
const USB_MIP_I NFO * pMIPI nf o;

us I nterfaceNum

u32 NurmByt esAl | ocat ed;
u32 NumCbj ect s;

} USB_MIP_I NI T_DATA;

Structure members

Member Description
EPI n Endpoint for receiving data from host.
EPCQut Endpoint for sending data to host.
EPI nt Endpoint for sending events to host.

Pointer to a memory region where the list of MTP objects
is stored. Should be 4 byte aligned. Each object requires
pObj ect Li st a minimum of 12 bytes + the size of the file name inside
the this list. 33 more bytes are needed per object if MI-
P_SAVE_FI LE_I NFOis set to 1.

NunByt esObj ect Li st Number of bytes allocated for the object list.
pDat aBuf f er E(L)Jlf?étrar to a memory region to be used as communication
NunByt esDat aBuf f er Number of bytes allocated for the data buffer.
Pointer to a USB_MIP_I NFO structure. Filling this structure is
PMIPI nf o mandatory.
I nterfaceNum Internal use.
NunByt esAl | ocat ed Internal use.
Numbj ect s Internal use.

Additional information

This structure holds the endpoints that should be used with the MTP interface. Refer to
USBD_AddEP() for more information about how to add an endpoint.

The number of bytes in the pDat aBuf f er should be a multiple of USB maximum packet size.
The number of bytes in the object list depends on the number of files/directories on the
storage medium. An object is assigned to each file/directory when the USB host requests
the object information for the first time.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

326 CHAPTER 9 Target API

9.4.2.3 USB_MTP_INFO

Description

Structure that is used when initialising the MTP module.

Type definition

typedef struct {
const char * pManufacturer;
const char * pModel;
const char * pDevi ceVersi on;
const char * pSeri al Nunber;
} USB_MIP_I NFO

Structure members

Member Description
pManuf act ur er Name of the device manufacturer.
pModel Model name of the MTP device.
pDevi ceVer si on Version of the MTP device.

Serial number of the MTP device. The serial number should
contain exactly 32 hexadecimal characters. It must be
unigque among devices sharing the same model hame and
device version strings. The MTP device returns this string in
the Serial Number field of the Devicelnfo dataset. For more
information, refer to MTP specification.

pSeri al Number

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

327

CHAPTER 9 Target API

9.4.2.4 USB_MTP_INST DATA

Description

Structure which stores the parameters of storage driver.

Type definition

typedef struct {

const USB_MIP_STORAGE_API * pAPI;

const char
const char

* sDescription;
* sVol unel d;

USB_MIP_I NST_DATA DRIVER Driver Dat a;

} USB_MTP_| NST_DATA

Structure members

Member

Description

pPAPI

Pointer to a structure that holds the storage device driver
API.

sDescri ption

Human-readable string which identifies the storage. This
string is displayed in Nautilus/Windows Explorer/etc.

Unique volume identifier This field must be up to 256 char-

sVol unel d acters long but only the first 128 are significant and these
must be unique for all storages of an MTP device.
Driver data that are passed to the storage driver. Refer to
Dri ver Dat a USB_MTP_I NST_DATA DRI VER for detailed information about

how to initialize this structure.

Additional information

The MTP device returns the sDescri pti on string in the Storage Description parameter and
the sVol unel d in the Volume Identifier of the Storagelnfo dataset. For more information,

refer to MTP specification.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

328

9.4.25 USB_MTP_INST DATA_DRIVER

Descripti

on

CHAPTER 9

Target API

Structure which stores the parameters passed to the storage driver.

Type def

inition

typedef struct {

const char * pRootDir;

us

Structure members

| sRenovabl e;
} USB_MIP_| NST_DATA DRI VER,

Member

Description

pRoot Di r

Path to directory to be used as the root of the storage.

| sRenpvabl e

Internal use.

Additional information

pRoot Di r can specify the root of the file system or any other subdirectory.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

Description

CHAPTER 9 Target API

9.4.2.6 USB_MTP_STORAGE_API

Structure that contains callbacks to the storage driver.

Type definition

typedef struct {
USB_MIP_STORAGE INI T

USB_MIP_STORAGE_GET_| NFO
USB_MIP_STORAGE_FI ND_FI RST_FI LE
USB_MIP_STORAGE_FI ND_NEXT_FI LE
USB_MIP_STORAGE_OPEN FI LE
USB_MIP_STORAGE_CREATE_FI LE
USB_MIP_STORAGE_READ FROM FI LE
USB_MIP_STORAGE WRI TE_TO FI LE
USB_MIP_STORAGE_CLOSE_FI LE
USB_MIP_STORAGE_REMOVE_FI LE
USB_MIP_STORAGE_CREATE_ DI R
USB_MIP_STORAGE_REMOVE DI R

USB_MIP_STORAGE_FORMAT

USB_MTP_STORAGE_RENAME_FI LE

USB_MTP_STORAGE DEINI T

USB_MIP_STORAGE_GET_FI LE_ATTRI BUTES
USB_MIP_STORAGE_MODI FY_FI LE_ATTRI BUTES
USB_MIP_STORAGE_GET_FI LE_CREATI ON_TI MVE
USB_MIP_STORAGE_GET_FI LELAST WRI TE_TI ME
USB_MIP_STORAGE_GET FILE_ID
USB_MIP_STORAGE GET_FI LE_SI ZE
USB_MIP_STORAGE_GET_FI LE_| NFO

} USB_MIP_STORAGE_API ;

Structure members

pflnit;

pf Get | nf o;
pfFindFirstFile;

pf Fi ndNext Fi | e;

pf OpenFi | e;

pf Creat eFi | e;

pf ReadFronti | e;

pf WiteToFil e;

pf C oseFi | e;

pf RemoveFi | e;
pfCreateDir;

pf RemoveDir;

pf For mat ;

pf RenaneFi | e;

pf Del nit;

pf Get Fil eAttri butes;
pf Modi fyFi | eAttri butes;
pf Get Fi | eCreationTi ne;
pf Get Fi | eLast Wit eTi ne;
pf CGet Fil el d;

pf Get Fi |l eSi ze;

pf Get Fi | el nf o;

L I D S S I R N N N N N N I N . N S N

Member Description
pflnit Initializes the storage medium.
of Get I nf o Returns information about the storage medium such as stor-

age capacity and the available free space.

pfFindFirstFile

Returns information about the first file in a given directory.

pf Fi ndNext Fi | e

Moves to next file and returns information about it.

pf OpenFi |l e

Opens an existing file.

pfCreateFile

Creates a new file.

pf ReadFronti | e

Reads data from the current file.

pf WiteToFile

Writes data to current file.

pf Cl oseFil e

Closes the current file.

pf RenoveFi | e

Removes a file from storage medium.

pfCreateDir

Creates a new directory.

pf RemoveDi r

Removes a directory from storage medium.

pf For mat

Formats the storage.

pf RenaneFi | e

Changes the name of a file or directory.

pf Del ni t

De-initializes the storage medium.

pf Get Fi |l eAttri butes

Reads the attributes of a file or directory.

pf Modi fyFi | eAttri but -
es

Changes the attributes of a file or directory.

pf Get Fi | eCreationTi ne

Returns the creation time of a file or directory.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

330 CHAPTER 9 Target API
Member Description
pf Get Fi l eLast Wi te- Returns the time of the last modification made to a file or di-
Ti me rectory.
pfGetFileld Returns the unique ID of a file or directory.

pf Get Fi | eSi ze

Returns the size of a file in bytes.

pf GetFilelnfo

[Optional] Returns information about a file.

Additional information

USB_MTP_STORAGE_API is used to retrieve information from the storage device driver or
access data that needs to be read or written. Detailed information can be found in MTP
Storage Driver on page 338.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

331 CHAPTER 9 Target API

9.4.2.7 USB_MTP_STORAGE_INFO

Description

Structure which stores information about a storage.
Type definition

typedef struct {

u32 NunKByt esTot al ;
u32 NunKByt esFr eeSpace;

Ul6 FSType;
us | sWiteProtected;
us | sRenmovabl e;

char DirDelimter;
us Bi gFi | eSupport;
} USB_MIP_STORAGE | NFO,

Structure members

Member Description
NunKByt esTot al Storage capacity in kBytes
NunKByt esFr eeSpace Available free space on storage in kBytes
FSType Type of file system as specified by MTP
I sWiteProtected Set to 1 if the storage medium can not be modified
| sRenmovabl e Set to 1 if the storage medium can be removed from device
DirDelimter Character which separates the directory/file names in a path
Bi gFi | eSupport Store layer should set this to 1 if it supports files > 4GB.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

332 CHAPTER 9 Target API

9.4.2.8 USB_MTP_OPERATION_INFO

Description
Structure which provides information about a new MTP operation.
Type definition
typedef struct {
const char * pFil ePath;

us I sDirectory;
} USB_MIP_OPERATI ON_I| NFO,

Structure members

Member Description
pFi | ePat h Full path to file.
IsDirectory Set to 1 if the path points to a directory.

emUSB-Device User Guide & Reference Manual © 2010-2024 SEGGER Microcontroller GmbH

333 CHAPTER 9

943 Enums

9.4.3.1 USB_MTP_EVENT

Description

Enum containing the MTP event codes.

Type definition

typedef enum {
USB_MTP_EVENT_UNDEFI NED,
USB_MTP_EVENT_CANCEL TRANSACTI ON,
USB_MTP_EVENT_OBJECTADDED,
USB_MTP_EVENT_OBJECTREMOVED,
USB_MTP_EVENT_STOREADDED,
USB_MTP_EVENT _STOREREMOVED,
USB_MTP_EVENT_DEVI CEPROPCHANGED,
USB_MTP_EVENT_OBJECTI NFOCHANGED,
USB_MTP_EVENT_DEVI CEI NFOCHANGED,
USB_MIP_EVENT_REQUESTOBJECTTRANSFER,
USB_MTIP_EVENT_STOREFULL,
USB_MTP_EVENT_DEVI CERESET,
USB_MIP_EVENT_STORAGEI NFOCHANCGED,
USB_MIP_EVENT_CAPTURECOVPLETE,
USB_MI'P_EVENT_UNREPORTEDSTATUS,
USB_MTP_EVENT_OBJECTPROPCHANGED,
USB_MTP_EVENT_OBJECTPROPDESCCHANGED,
USB_MIP_EVENT_0OBJECTREFERENCESCHANGED

} USB_MIP_EVENT;

Enumeration constants

Target API

Constant

Description

USB_MTP_EVENT_UNDEFI NED

This event code is undefined, and is
not used

USB_MTP_EVENT_CANCEL TRANSACTI ON

This event is used to initiate the can-
cellation of a transaction over trans-
ports which do not have their own
mechanism for canceling transactions.
Currently not used.

USB_MIP_EVENT_OBJECTADDED

This event informs the host about a
new object that has been added to the
storage.

USB_MTP_EVENT_OBJECTREMOVED

Informs the host that an object has
been removed.

USB_MTP_EVENT_STOREADDED

This event indicates that a storage has
been added to the device. It allows to
dynamically show the available stor-
ages.

USB_MTP_EVENT _STOREREMOVED

This event indicates that a storage has
been removed to the device. It allows

to dynamically hide the available stor-
ages.

USB_MIP_EVENT_DEVI CEPROPCHANGED

A property changed on the device has
occurred. Currently not used.

USB_MTP_EVENT_OBJECTI NFOCHANGED

This event indicates that the infor-
mation for a particular object has
changed and that the host should ac-
quire the information once again.

emUSB-Device User Guide & Reference Manual

© 2010-2024 SEGGER Microcontroller GmbH

334

CHAPTER 9

Target API

Constant

Description

USB_MTP_EVENT_DEVI CEI NF