
emCompress
Compression system

User Guide & Reference Manual

Document: UM17001
Software Version: 2.12

Revision: 0
Date: July 21, 2015

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

http://www.segger.com/emCompress.html
http://www.segger.com
http://www.segger.com

2

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed
to be entirely free of error. The information in this manual is subject to change for
functional or performance improvements without notice. Please make sure your manual
is the latest edition. While the information herein is assumed to be accurate, SEGGER
Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibility for any errors or
omissions. SEGGER makes and you receive no warranties or conditions, express, implied,
statutory or in any communication with you. SEGGER specifically disclaims any implied
warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of SEGGER. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2015 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective
holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG
In den Weiden 11
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
E-mail: support@segger.com
Internet: www.segger.com

3

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: July 21, 2015

Software Revision Date By Description

2.12 0 150721 JL Updated references to SEGGER_CRC.

2.10 0 150706 PC First release.

1.00 0 141213 PC Internal version.

4

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

5

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming
Language by Kernighan and Richie (ISBN 0–13–1103628), which describes the standard in C
programming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other
documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

6

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

7

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Table of contents

1 Introduction to emCompress ..9

1.1 What is emCompress? ... 10
1.2 Features ...11
1.3 Recommended project structure ..12
1.4 Package content ..13

1.4.1 Include directories ..13

2 Using emCompress ..15

2.1 Running emCompress .. 16
2.1.1 Selected compressor .. 16
2.1.2 Compressor efficiency ...16
2.1.3 Decompressor memory ... 16
2.1.4 Integrity checks ... 16
2.1.5 Compressed output .. 17

2.2 Single-file walkthrough .. 18
2.2.1 Compress the file ...18
2.2.2 Call the decompressor .. 18
2.2.3 Process the decompressed output .. 19
2.2.4 Compile and test ... 19
2.2.5 Finished example ... 20

2.3 Decompression into memory .. 21
2.4 Defensive decompression ... 22

2.4.1 Using built-in integrity checks ..22
2.4.2 Extra-defensive decompression .. 23

2.5 Limiting decompressor memory .. 24
2.6 Adjusting compression performance .. 26

2.6.1 Speeding up compression ..26
2.6.2 Increasing the compression ratio ..26

2.7 Batch compression .. 28
2.7.1 Compressing web server content ..28
2.7.2 Applying limits to all files ..29
2.7.3 Tuning compression ..30

2.8 Group compression ... 32
2.8.1 What is group compression? ..32
2.8.2 Compromises with group compression .. 33
2.8.3 Group compression walkthrough .. 33

2.9 Dynamic workspace allocation .. 35
2.10 Command line options ... 36

2.10.1 Add codec (-A) .. 36
2.10.2 Group compression (-g) .. 36

8

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.10.3 List performance (-l) ...36
2.10.4 Decompressor memory limit (-m) ... 36
2.10.5 Dry run (-n) .. 36
2.10.6 Optimization level (-O) ..37
2.10.7 Summarize (-s) .. 37
2.10.8 Verbose (-v) .. 37
2.10.9 Exclude codec (-X) ... 37
2.10.10 Exit (--exit) ..37
2.10.11 Output directory (--outdir) ... 38

3 API reference ...39

3.1 Core functions .. 40
3.1.1 COMPRESS_DecompressThruFunc() .. 41
3.1.2 COMPRESS_DecompressToMem() ..42
3.1.3 COMPRESS_QueryEncodedData() ..43
3.1.4 COMPRESS_QueryEncodedDataCRC() ..44
3.1.5 COMPRESS_QueryEncodedDataSize() .. 45
3.1.6 COMPRESS_QueryDecodedDataCRC() ..46
3.1.7 COMPRESS_QueryDecodedDataSize() ..47
3.1.8 COMPRESS_QueryWorkspaceSize() ... 48

4 Resource use ...49

4.1 General comments .. 50
4.2 Memory footprint ...51

4.2.1 Target system configuration ...51
4.2.2 RAM use ... 51
4.2.3 ROM use ... 51
4.2.4 Integrity check overhead ...51

5 Frequently asked questions ...53

6 Reference .. 55

6.1 Unabridged sample output ..56
6.2 Compression algorithms ... 58

6.2.1 STORE codec ... 58
6.2.2 HUFF codec ... 58
6.2.3 LZW codec .. 58

7 Glossary ...61

9

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 1

Introduction to emCompress

This section presents an overview of emCompress, its structure, and its capabilities.

10 CHAPTER 1 What is emCompress?

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

1.1 What is emCompress?
emCompress is a compression system that is able to reduce the storage requirements of
data that must be embedded into an application. Typical uses of emCompress are:
• Firmware images that must be dynamically expanded on device reprogramming.
• Configuration bitstreams to program FPGA and CPLD devices.
• Permanent files for embedded web server static content.

Of course, emCompress is not limited to these applications, it can be used whenever it’s
beneficial to reduce the size of stored content.

11

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

1.2 Features
emCompress is written in standard ANSI C and can run on virtually any CPU. Here’s a list
summarising the main features of emCompress:
• Clean ISO/ANSI C source code.
• Small decompressor ROM footprint.
• Completely tunable decompressor RAM footprint.
• Wide range of codecs to choose from.
• Automatic selection of best codec for given memory footprint.
• Easy-to-understand and simple-to-use API.
• Group mode compression capability boosts small file compression ratios.
• Complete support for built-in data integrity checks.
• Simple configuration.
• Royalty free.

12 CHAPTER 1 Recommended project structure

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

1.3 Recommended project structure
We recommend keeping emCompress separate from your application files. It is good
practice to keep all the program files (including the header files) together in the COMPRESS
subdirectory of your project’s root directory. This practice has the advantage of being very
easy to update to newer versions of emCompress by simply replacing the COMPRESS and
SEGGER directories. Your application files can be stored anywhere.

WARNING: When updating to a newer emCompress version: as files may have
been added, moved or deleted, the project directories may need to be updated
accordingly.

13

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

1.4 Package content
emCompress is provided in source code and contains everything needed. The following
table shows the content of the emCompress Package:

Files Description

Config Configuration header files.
Doc emCompress documentation.
COMPRESS emCompress decompressor source code.
SEGGER SEGGER software component source code used in emCompress.
Tool Supporting applications in binary form.

1.4.1 Include directories
You should make sure that the include path contains the following directories (the order
of inclusion is of no importance):
• Config
• COMPRESS
• SEGGER

WARNING: Always make sure that you have only one version of each file!

It is frequently a major problem when updating to a new version of emCompress if you
have old files included and therefore mix different versions. If you keep emCompress in
the directories as suggested (and only in these), this type of problem cannot occur. When
updating to a newer version, you should be able to keep your configuration files and leave
them unchanged. For safety reasons, we recommend backing up (or at least renaming) the
COMPRESS directories before to updating.

14 CHAPTER 1 Package content

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

15

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 2

Using emCompress

emCompress divides into two parts:
• A compressor application that is responsible for choosing an appropriate compressor and

decompressor pair (a codec), and
• A set of decompressor sources that are integrated into your application along with the output

of the compressor application.

emCompress offers a range of options to control compression schemes and decompression
resources. This following sections explain how to use emCompress to deploy compressed content
in your application by:
• Compressing a single file.
• Compressing multiple files.
• Restricting the decoder to work in a predetermined fixed-size workspace.
• Restricting the compression algorithms to choose from.

16 CHAPTER 2 Running emCompress

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.1 Running emCompress
To compress a single file, run emCompress on that file. Here we compress a very small
example FPGA configuration bitstream to demonsrate the savings that emCompress can
make in firmware images:

C:> emCompress.exe FPGA.rbf

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Input File: FPGA.rbf
Optimization: Level 5 (Balanced)
Restriction: None (assume unlimited decompressor RAM)
Codec: DEFLATE(32k,3,258) chosen from 125 candidates
Decoding: 35248 bytes required for decompression
Compression: 20.6% (79.4% of original removed)
- Sizes 114557 -> 23643 bytes
Output File: Compressed_FPGA.c
Elapsed time: 3.788 s

C:> _

2.1.1 Selected compressor
emCompress runs through its internal list of compressors and chooses the one that gives
the best compression for the input file. In this example, it ran through 126 candidate
compressors and chose the DEFLATE codec, shown by the line:

Codec: DEFLATE(32k,3,258) chosen from 125 candidates

The numbers in parentheses after DEFLATE parameterize the way the DEFLATE codec
operates, and primarily tune the memory requirements of the decompressor.

2.1.2 Compressor efficiency
The compression achieved by emCompress is indicated by the lines:

Compression: 20.6% (79.4% of original removed)
- Sizes 114557 -> 23643 bytes

This shows that the original file compresses to 20.6% of its original size, reducing it from
114,557 bytes to 23,548 bytes and removing 91,009 bytes overall. There will, of course,
be an overhead for the decompression code, but typically the decompressor ROM footprint
is a few hundred bytes to just over 2 KB, depending on the codec chosen.

2.1.3 Decompressor memory
When decompressing the bitstream on embedded devices, it’s essential to know how much
memory is required. emCompress calculates the memory needed by the decoder exactly:

Decoding: 35248 bytes required for decompression

Clearly, some devices won’t have 35 KB of memory to devote to decompression, and
emCompress has the capability to resolve this—which we discuss later.

2.1.4 Integrity checks
To guarantee the bitstream is correctly decompressed, emCompress includes a CRC of the
compressed bitstream and a CRC of the original input which can be (optionally) checked
when decompressing. emCompress shows the CRC of the original image followed by the
CRC of the compressed image when invoked with the -v option:

17

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Encoding: 33659168 bytes used during compression
- Speed 507 ns/byte (58089 us total time) yields 1.88 MB/s
- Image CRC 821B9442 (polynomial is 04C11DB7, start with FFFFFFFF)
Decoding: 35232 bytes required for decompression (258 for window)
- Speed 14 ns/byte (1679 us total time) yields 65.07 MB/s
- Image CRC A501DFC8 (polynomial is 04C11DB7, start with FFFFFFFF)

2.1.5 Compressed output
Finally, the output of the compression step results in a source file that you include into
your application:

Output File: Compressed_FPGA.c

This file contains the compressed bitstream together with a data structure that controls
how the file is decompressed.

18 CHAPTER 2 Single-file walkthrough

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.2 Single-file walkthrough
Integrating a compressed file into your application is straightforward:
• Compress the file with emCompress specifying any restrictions on decompressor

memory and codecs to use;
• Write a function that processes the decoded file a chunk at a time; and
• Call the decompressor providing the file to decode and some working storage.

In this example we will compress a small text file, Jabberwocky.txt, and write an
application that prints the output. The example files used here are provided in the Example
folder.

2.2.1 Compress the file
First, compress the file with emCompress:

C:> emCompress.exe Jabberwocky.txt

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Input File: Jabberwocky.txt
Optimization: Level 5 (Balanced)
Restriction: None (assume unlimited decompressor RAM)
Codec: DEFLATE(2k,3,258) chosen from 125 candidates
Decoding: 4472 bytes required for decompression
Compression: 48.0% (52.0% of original removed)
- Sizes 1089 -> 523 bytes
Output File: Compressed_Jabberwocky.c
Elapsed time: 1.432 s

C:> _

Examining the output file Compressed_Jabberwocky.c reveals the encoded bitstream:
static const U8 _aEncodedData[523] = {
 0xCC, 0x53, 0x4B, 0x8E, 0xDB, 0x30, 0x0C, 0xDD, …

And the control structure for decompression:
const COMPRESS_ENCODED_FILE Compressed_Jabberwocky = {
 _Jabberwocky__aBitstream,
 523,
 0x5044A8E3,
 &COMPRESS_DEFLATE_Decode,
 0,
 1089,
 0xA33EE9AD,
 4472,
 { 2048, 3, 258 }
};

The control structure is all that you need for decompression, the details enclosed within
it are for the decompressor.

Note: The complete content of the generated file Compressed_Jabberwocky.c is presented
in Unabridged sample output on page 56.

2.2.2 Call the decompressor
From emCompress’s output, we read off that the workspace requirement is 4,456
bytes, so that is allocated as static data. The compressed file control structure,
Compressed_Jabberwocky is provided to the decompressor together with a function that
will receive the decompressed data for processing (_PrintData), and the workspace for
decompression. Optionally you can provide a user context and a CRC verification function,
but we omit that complication here and pass in zeroes to signal their absence:

19

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

void main(void) {
 static union {
 U8 Bytes[4472]; // Workspace reported by emCompress
 U32 Long; // Force long alignment of workspace.
 } Workspace;
 int Status;
 //
 Status = COMPRESS_Decompress(&Compressed_Jabberwocky,
 &Workspace, sizeof(Workspace),
 _PrintData, 0,
 0);
 if (Status >= 0) {
 printf("\nDecompressed %d bytes.\n", Status);
 } else {
 printf("\nDecompression error.\n");
 }
}

The value returned will be zero or positive to indicate successful decompression.

One interesting point to note is that the workspace must be aligned correctly for the target
processor. For ARM and other 32-bit processors this generally means that the workspace
must be aligned on a 32-bit boundary. You can ensure this by allocating a workspace using
an array of unsigned or by using compiler-dependent pragmas or extensions. However, in
this case we force alignment of the 4,472 bytes of workspace by combining it an unsigned
in a union which forces correct alignment of the workspace to a 32-bit boundary and needs
no compiler extensions.

2.2.3 Process the decompressed output
When the decoder has filled its local buffer with decompressed data, it passes that data
to the user’s handling function for further processing. The handling function receives the
user context passed through emCompress’s API, along with a pointer to the decompressed
data and its size.
static int _PrintData(void *pUserContext, void *pData, unsigned NumBytesData) {
 return printf("%.*s", NumBytesData, pData);
}

The value returned by the handling function must be zero or positive to continue
decompressing; negative values returned by the handler indicate a processing error in
the handling function and immediately terminate decoding of the bitstream. That value is
passed up and returned by the decompression function — COMPRESS_Decompress in this
instance.

Note: It is important to stress that the handling function will be called multiple times,
in general, with decompressed fragments of varying lengths as the decoder works it way
through the compressed bitstream.

2.2.4 Compile and test
To build the program, compile Decompress.c with the emCompress source code in COMPRESS
and SEGGER software components in SEGGER. After it’s compiled and linked without errors,
running the example prints the original input:

C:> Ex1.exe
Jabberwocky
 BY LEWIS CARROLL

'Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
All mimsy were the borogoves,
 And the mome raths outgrabe.

"Beware the Jabberwock, my son!

20 CHAPTER 2 Single-file walkthrough

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

 The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
 The frumious Bandersnatch!"
⁞

Decompressed 1089 bytes.

C:> _

2.2.5 Finished example
Here is the complete example:
// File: Ex1.c
// - Decompress encoded file in stream mode.
//

#include "COMPRESS.h"
#include "Compressed_Jabberwocky.c"
#include <stdio.h>

static int _PrintData(void *pUserContext, void *pData, unsigned NumBytesData) {
 return printf("%.*s", NumBytesData, pData);
}

void main(void) {
 static union {
 U8 Bytes[4472]; // Workspace reported by emCompress
 U32 Long; // Force long alignment of workspace.
 } Workspace;
 int Status;
 //
 Status = COMPRESS_DecompressThruFunc(&Compressed_Jabberwocky,
 &Workspace, sizeof(Workspace),
 _PrintData, 0,
 0, ~0UL,
 0);
 if (Status >= 0) {
 printf("\nDecompressed %d bytes.\n", Status);
 } else {
 printf("\nDecompression error.\n");
 }
}

21

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.3 Decompression into memory
If there is enough RAM available to hold all decompressed content, you can use an all-at-
once decompression function. Continuing with the previous example, emCompress indicates
that the original content is 1,089 bytes so, when decompressed, that is what we need:
// File: Ex2.c
// - Decompress encoded file in all-at-once mode.
//

#include "COMPRESS.h"
#include "Compressed_Jabberwocky.c"
#include <stdio.h>

void main(void) {
 static union {
 U8 Bytes[4472]; // Workspace reported by emCompress
 U32 Long; // Force long alignment of workspace.
 } Workspace;
 static U8 aOutput[1089]; // Output reported by emCompress
 int Status;
 //
 Status = COMPRESS_DecompressToMem(&Compressed_Jabberwocky,
 &Workspace, sizeof(Workspace),
 aOutput,
 0, ~0UL,
 0);
 if (Status >= 0) {
 printf("Decompressed %d bytes.\n\n", Status);
 printf("%.*s", Status, aOutput);
 } else {
 printf("Decompression error.");
 }
}

22 CHAPTER 2 Defensive decompression

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.4 Defensive decompression
Applications may wish to verify the integrity of the input and output bitstreams. This may be
particularly appropriate when programming FPGA devices with a configuration bitstream.

2.4.1 Using built-in integrity checks
To verify the CRC is straighforward: replace the call to the plain decompression function
with a call to the function with builtin verification.
// File: Ex3.c
// - Decompress encoded file in stream mode with CRC check.
//

#include "COMPRESS.h"
#include "SEGGER_CRC.h"
#include "Compressed_Jabberwocky.c"
#include <stdio.h>

static int _PrintData(void *pUserContext, void *pData, unsigned NumBytesData) {
 return printf("%.*s", NumBytesData, pData);
}

void main(void) {
 static union {
 U8 Bytes[4472]; // Workspace reported by emCompress
 U32 Long; // Force long alignment of workspace.
 } Workspace;
 int Status;
 //
 Status = COMPRESS_DecompressThruFunc(&Compressed_Jabberwocky,
 &Workspace, sizeof(Workspace),
 _PrintData, 0,
 0, ~0UL,
 SEGGER_CRC_Calc_04C11DB7);
 if (Status >= 0) {
 printf("\nDecompressed %d bytes.\n", Status);
 } else {
 printf("\nDecompression error.\n");
 }
}

The function SEGGER_CRC_Calc_04C11DB7 implements the CRC-32 check. The directory
SEGGER contains the code for this function.

The verification functions perform two CRC checks, on the compressed and uncompressed
bitstreams, to ensure data integrity:
• Before decompression, the compressed bitstream’s stored CRC is checked against a

newly computed CRC calculated over the compressed bitstream. If the CRCs do not
match, indicating a failure in the integrity of the comprssed bitstream, the bitstream is
not decompressed and emCompress signals a decompression failure.

• If the compressed bitstream is intact, the bitstream is decompressed, passing the
decompressed output to the application, and a running CRC is maintained. At the end of
compression, if the uncompressed bitstream’s stored CRC does not match the calculated
CRC, emCompress signals a decompression failure.

The two CRC checks are made as it is very difficult to detect errors in compressed
bitstreams during decompression: checking the compressed bitstream’s integrity before
decompressing ensures that the decompressors are presented with a clean bitstream.
Checking that the decompressed output matches what is expected gives an extra level of
assurance that the decompression algorithm executed correctly and has not suffered data
corruption during decompression.

23

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.4.2 Extra-defensive decompression
If you are decompressing in stream mode and working with a decompressed bitstream
that requires absolute integrity, you may wish to ensure that both compressed and
decompressed bitstreams are intact before processing the bitstream. It could be, for
instance, that you need to ensure that a bitstream sent to an FPGA for configuration is
correct and the CRC check at the end of decompression is simply too late.

In this case, you can perform a “dry run” decompression before configuring the FPGA. To
do this, run the decompression that you intend to run, but specify a null function pointer
such that no data is handed to your processing function:
// File: Ex4.c
// - Decompress encoded file in stream mode with preflight CRC check.
//

#include "COMPRESS.h"
#include "SEGGER_CRC.h"
#include "Compressed_Jabberwocky.c"
#include <stdio.h>

static int _PrintData(void *pUserContext, void *pData, unsigned NumBytesData) {
 return printf("%.*s", NumBytesData, pData);
}

void main(void) {
 static union {
 U8 Bytes[4472]; // Workspace reported by emCompress
 U32 Long; // Force long alignment of workspace.
 } Workspace;
 int Status;
 //
 // Run preflight checks checks.
 //
 Status = COMPRESS_DecompressThruFunc(&Compressed_Jabberwocky,
 &Workspace, sizeof(Workspace),
 0, 0,
 0, ~0UL,
 SEGGER_CRC_Calc_04C11DB7);
 if (Status >= 0) {
 //
 // Preflight OK...
 //
 printf("Preflight checks passed: decompress for real.\n\n");
 Status = COMPRESS_DecompressThruFunc(&Compressed_Jabberwocky,
 &Workspace, sizeof(Workspace),
 _PrintData, 0,
 0, ~0UL,
 0);
 }
 //
 if (Status >= 0) {
 printf("\nDecompressed %d bytes.\n", Status);
 } else {
 printf("\nDecompression error.\n");
 }
}

24 CHAPTER 2 Limiting decompressor memory

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.5 Limiting decompressor memory
As emCompress may well be used in highly memory-constrained devices, it is important to
be able to limit the amount of memory that the decoder uses when decompressing a file.
emCompress is able to do this using the -m command line switch when compressing a file.

Limiting the workspace that the decoder uses for decompressing will affect both the codecs
that are eligible and the compression ratio that they can achieve.

Considering the FPGA example before, we can ask to compress the bitstream and use no
more than 4 KB of workspace when decompressing:

C:> emCompress.exe -m4k FPGA.rbf

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Input File: FPGA.rbf
Optimization: Level 5 (Balanced)
Restriction: 4096 bytes maximum decompressor RAM
Codec: LZJU90(3583,3,256) chosen from 64 candidates
Decoding: 3880 bytes required for decompression
Compression: 24.1% (75.9% of original removed)
- Sizes 114557 -> 27599 bytes
Output File: Compressed_FPGA.c
Elapsed time: 1.463 s

C:> _

In this particular instance, emCompress has selected the LZJU90 codec from only 64
candidates and the compressed size is slightly larger so the compressed image is 23.8%
of the original rather than 20.6%. However, the decompression can run with a workspace
of 3880 bytes.

Squeezing the workspace requirement even more and asking for 512 bytes:

C:> emCompress.exe -m512 FPGA.rbf

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Input File: FPGA.rbf
Optimization: Level 5 (Balanced)
Restriction: 512 bytes maximum decompressor RAM
Codec: LZSS(256,3,34) chosen from 10 candidates
Decoding: 332 bytes required for decompression
Compression: 32.7% (67.3% of original removed)
- Sizes 114557 -> 37465 bytes
Output File: Compressed_FPGA.c
Elapsed time: 0.410 s

C:> _

emCompress has now chosen a new compressor again, LZSS. And as before the compressed
image gets slightly larger but the workspace required is now only 332 bytes.

If RAM is especially tight in very small devices, emCompress can still perform very well.
Constraining the workspace to only 100 bytes:

C:> emCompress.exe -m100 FPGA.rbf

(c) 2015 SEGGER Microcontroller GmbH & Co. KG
 www.segger.com
emCompress V2.10 compiled Jun 3 2015 18:22:25

Input File: FPGA.rbf
Optimization: Level 5 (Balanced)

25

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Restriction: 100 bytes maximum decompressor RAM
Codec: RLE-PAR(63,63) chosen from 2 candidates
Decoding: 72 bytes required for decompression
Compression: 42.8% (57.2% of original removed)
- Sizes 114557 -> 49032 bytes
Output File: Compressed_FPGA.c
Elapsed time: 0.063 s

C:> _

If there is no suitable compressor or the data is incompressible, emCompress will select
the STORE compressor and store the original bitstream uncompressed.

26 CHAPTER 2 Adjusting compression performance

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.6 Adjusting compression performance
It’s important not to waste time during development. If your compressed content is
changing rapidly, you might want to spend less time compressing and sacrifice the very
best compression ratios that emCompress can achieve.

2.6.1 Speeding up compression
To speed up compression, you can tell emCompress not to look so deeply for compression
opportunities using the -O command line option. This option sets the optimization level
that emCompress uses for its codecs, from 1 to 9: the higher the number, the more care
emCompress takes when compressing.

Considering the FPGA example before, we can ask to compress the bitstream using its
fastest compression:

C:> emCompress.exe -O1 FPGA.rbf

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Input File: FPGA.rbf
Optimization: Level 1 (Fastest Compression)
Restriction: None (assume unlimited decompressor RAM)
Codec: DEFLATE(32k,3,258) chosen from 125 candidates
Decoding: 35248 bytes required for decompression
Compression: 20.9% (79.1% of original removed)
- Sizes 114557 -> 23903 bytes
Output File: Compressed_FPGA.c
Elapsed time: 2.674 s

C:> _

Asking for the fastest compression reduces the time it takes to compress by a second, in
this example, and compression is only slightly worse, the compressed image taking 23903
bytes rather than 23643 bytes at -O5.

2.6.2 Increasing the compression ratio
It may be possible to compress to smaller sizes by taking more time when compressing.
emCompress offers compression levels 1 through 9, with 1 being the fastest and 9 being
the slowest but with the best compression ratio. The effectiveness of the compression level
directly depends upon the structure of the data to compress and the selected decoder
memory constraints.

Considering the FPGA example again, we can ask to compress the bitstream using its best
compression:

C:> emCompress.exe -O9 FPGA.rbf

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Input File: FPGA.rbf
Optimization: Level 9 (Best Compression)
Restriction: None (assume unlimited decompressor RAM)
Codec: DEFLATE(32k,3,258) chosen from 125 candidates
Decoding: 35248 bytes required for decompression
Compression: 20.6% (79.4% of original removed)
- Sizes 114557 -> 23548 bytes
Output File: Compressed_FPGA.c
Elapsed time: 11.922 s

C:> _

27

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Compression at this level takes significantly longer but delivers a slightly better compression
ratio, saving an additional 350 bytes.

28 CHAPTER 2 Batch compression

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.7 Batch compression
It’s quite common that read-only static content spans multiple files, for instance the content
of a web server in an embedded device. As a convenience, emCompress accepts a wildcard
file specification and will compress multiple files.

2.7.1 Compressing web server content
The following example compresses the entire content served by an embOS/IP embedded
web server; the command line switch -s presents the results concisely:

C:> emCompress.exe -s *.htm *.js

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

--
Filename Size -> Size Saved Codec
--
about.htm 1,952 988 964 DEFLATE(2k,3,34)
authen.htm 913 476 437 DEFLATE(1k,3,66)
embOSInfo.htm 959 525 434 DEFLATE(1k,3,34)
embOSIPInfo.htm 975 535 440 DEFLATE(1k,3,18)
formGET.htm 3,509 987 2,522 DEFLATE(4k,3,66)
formPOST.htm 3,515 989 2,526 DEFLATE(4k,3,66)
index.htm 628 353 275 DEFLATE(1k,3,34)
Presentation.htm 3,790 1,301 2,489 DEFLATE(4k,3,66)
sendmail.htm 3,568 1,243 2,325 DEFLATE(4k,3,130)
Shares.htm 4,784 1,758 3,026 DEFLATE(8k,3,66)
SSEembOS.htm 1,322 686 636 DEFLATE(2k,3,66)
SSEembOSIP.htm 1,326 693 633 DEFLATE(2k,3,66)
SSETime.htm 1,212 599 613 DEFLATE(2k,3,66)
upload.htm 802 442 360 DEFLATE(1k,3,18)
Upload_AJAX.htm 2,913 992 1,921 DEFLATE(4k,3,66)
virtfile.htm 962 470 492 DEFLATE(1k,3,66)
eventsource.min.js 4,328 2,063 2,265 DEFLATE(4k,3,34)
jquery.min.js 93,106 33,554 59,552 DEFLATE(32k,3,66)
...ph.common.core.min.js 56,552 13,526 43,026 DEFLATE(32k,3,130)
...common.effects.min.js 27,594 3,147 24,447 DEFLATE(32k,3,258)
RGraph.line.min.js 62,868 13,016 49,852 DEFLATE(32k,3,258)
--
Total 277,578 78,343 199,235 28.2% of original
--

Maximum decompressor memory required: 35232 bytes
Elapsed time: 10.955 s

C:> _

Because the files compressed are text, they compress very well using various DEFLATE
compressors. The totals line shows that the original 277 KB compresses to 78 KB saving
199 KB and the compressed image is 28.2% of the original.

29

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.7.2 Applying limits to all files
You can limit the decompressor memory for all files. Running emCompress again but limiting
decompressor memory workspace to 1 KB results in a completely different set of codecs
selected:

C:> emCompress.exe -s -m1k *.htm *.js

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

--
Filename Size -> Size Saved Codec
--
about.htm 1,952 1,339 613 LZJU90(511,3,16)
authen.htm 913 606 307 LZJU90(511,3,64)
embOSInfo.htm 959 682 277 LZSS(512,3,18)
embOSIPInfo.htm 975 688 287 LZSS(512,3,18)
formGET.htm 3,509 1,370 2,139 LZSS(512,3,34)
formPOST.htm 3,515 1,371 2,144 LZSS(512,3,34)
index.htm 628 425 203 LZSS(512,3,18)
Presentation.htm 3,790 1,739 2,051 LZSS(512,3,18)
sendmail.htm 3,568 1,620 1,948 LZSS(512,3,34)
Shares.htm 4,784 2,492 2,292 LZSS(512,3,18)
SSEembOS.htm 1,322 923 399 LZSS(512,3,18)
SSEembOSIP.htm 1,326 928 398 LZSS(512,3,18)
SSETime.htm 1,212 795 417 LZSS(512,3,18)
upload.htm 802 559 243 LZSS(512,3,18)
Upload_AJAX.htm 2,913 1,357 1,556 LZSS(512,3,34)
virtfile.htm 962 603 359 LZJU90(511,3,64)
eventsource.min.js 4,328 2,968 1,360 LZSS(512,3,18)
jquery.min.js 93,106 57,096 36,010 LZSS(512,3,18)
...ph.common.core.min.js 56,552 23,051 33,501 LZSS(512,3,34)
...common.effects.min.js 27,594 12,306 15,288 LZSS(512,3,34)
RGraph.line.min.js 62,868 25,587 37,281 LZSS(512,3,34)
--
Total 277,578 138,505 139,073 49.9% of original
--

Maximum decompressor memory required: 616 bytes
Elapsed time: 2.946 s

C:> _

30 CHAPTER 2 Batch compression

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.7.3 Tuning compression
In the previous example, three of the codecs selected for compression were LZJU90 but
the majority were LZSS. Because so few files use LZJU90 compression, and there is a code
space overhead to include the LZJU90 decompressor in addition to the LZSS decompressor,
it might be advantageous to use LZSS for about.htm, authen.htm, and virtfile.htm.

To compare the savings made between the two compressors, emCompress offers the ability
to customize the set of codecs that are considered when compressing.

The -X option excludes all codecs (other than STORE) from consideration, and -A will add
back a codec. To compare the difference between LZJU90 and LZSS on the three files, first
run the compression using only LZJU90:

C:> emCompress.exe -s -m1k -X -ALZJU90 about.htm authen.htm virtfile.htm

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

--
Filename Size -> Size Saved Codec
--
about.htm 1,952 1,339 613 LZJU90(511,3,16)
authen.htm 913 606 307 LZJU90(511,3,64)
virtfile.htm 962 603 359 LZJU90(511,3,64)
--
Total 3,827 2,548 1,279 66.6% of original
--

Maximum decompressor memory required: 616 bytes
Elapsed time: 0.079 s

C:> _

And then LZSS:

C:> emCompress.exe -s -m1k -X -ALZSS about.htm authen.htm virtfile.htm

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

--
Filename Size -> Size Saved Codec
--
about.htm 1,952 1,339 613 LZSS(512,3,18)
authen.htm 913 608 305 LZSS(512,3,18)
virtfile.htm 962 606 356 LZSS(512,3,34)
--
Total 3,827 2,553 1,274 66.7% of original
--

Maximum decompressor memory required: 588 bytes
Elapsed time: 0.146 s

C:> _

From this you can see that using LZJU90 saves 1,279 bytes overall and using LZSS saves
1,274 bytes, a difference of just five bytes. Including the LZJU90 decompressor for these
three files makes no sense as the code size of the LZJU90 decompressor is much more
than five bytes.

Therefore, when compressing the entire content, it would make sense to simply exclude
the LZJU90 codec from consideration using the emCompress -X option with a codec name:

C:> emCompress.exe -s -m1k -XLZJU90 *.htm *.js

31

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

--
Filename Size -> Size Saved Codec
--
about.htm 1,952 1,339 613 LZSS(512,3,18)
authen.htm 913 608 305 LZSS(512,3,18)
embOSInfo.htm 959 682 277 LZSS(512,3,18)
embOSIPInfo.htm 975 688 287 LZSS(512,3,18)
formGET.htm 3,509 1,370 2,139 LZSS(512,3,34)
formPOST.htm 3,515 1,371 2,144 LZSS(512,3,34)
index.htm 628 425 203 LZSS(512,3,18)
Presentation.htm 3,790 1,739 2,051 LZSS(512,3,18)
sendmail.htm 3,568 1,620 1,948 LZSS(512,3,34)
Shares.htm 4,784 2,492 2,292 LZSS(512,3,18)
SSEembOS.htm 1,322 923 399 LZSS(512,3,18)
SSEembOSIP.htm 1,326 928 398 LZSS(512,3,18)
SSETime.htm 1,212 795 417 LZSS(512,3,18)
upload.htm 802 559 243 LZSS(512,3,18)
Upload_AJAX.htm 2,913 1,357 1,556 LZSS(512,3,34)
virtfile.htm 962 606 356 LZSS(512,3,34)
eventsource.min.js 4,328 2,968 1,360 LZSS(512,3,18)
jquery.min.js 93,106 57,096 36,010 LZSS(512,3,18)
...ph.common.core.min.js 56,552 23,051 33,501 LZSS(512,3,34)
...common.effects.min.js 27,594 12,306 15,288 LZSS(512,3,34)
RGraph.line.min.js 62,868 25,587 37,281 LZSS(512,3,34)
--
Total 277,578 138,510 139,068 49.9% of original
--

Maximum decompressor memory required: 588 bytes
Elapsed time: 2.583 s

C:> _

32 CHAPTER 2 Group compression

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.8 Group compression
If your application has many small files, in the order of a few kilobytes each, it may well
be worth compressing those files in group mode.

2.8.1 What is group compression?
Group compression combines all input files by concatenating them into a single image which
is then compressed. The advantage of this type of compression scheme is that there is
more opportunity for the encoders to find redundancy in the combined image than when
considering each file individually (called unit mode in this guide).

Taking the previous web server example, all the HTML files are small and compress fairly
well on their own. Running emCompress on the HTML files individually:

C:> emCompress.exe *.htm -s

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

--
Filename Size -> Size Saved Codec
--
about.htm 1,952 988 964 DEFLATE(2k,3,34)
authen.htm 913 476 437 DEFLATE(1k,3,66)
embOSInfo.htm 959 525 434 DEFLATE(1k,3,34)
embOSIPInfo.htm 975 535 440 DEFLATE(1k,3,18)
formGET.htm 3,509 987 2,522 DEFLATE(4k,3,66)
formPOST.htm 3,515 989 2,526 DEFLATE(4k,3,66)
index.htm 628 353 275 DEFLATE(1k,3,34)
Presentation.htm 3,790 1,300 2,490 DEFLATE(8k,3,66)
sendmail.htm 3,568 1,243 2,325 DEFLATE(4k,3,130)
Shares.htm 4,784 1,758 3,026 DEFLATE(8k,3,66)
SSEembOS.htm 1,322 686 636 DEFLATE(2k,3,66)
SSEembOSIP.htm 1,326 693 633 DEFLATE(2k,3,66)
SSETime.htm 1,212 599 613 DEFLATE(2k,3,66)
upload.htm 802 442 360 DEFLATE(1k,3,18)
Upload_AJAX.htm 2,913 992 1,921 DEFLATE(4k,3,66)
virtfile.htm 962 470 492 DEFLATE(1k,3,66)
--
Total 33,130 13,036 20,094 39.3% of original
--

Maximum decompressor memory required: 10404 bytes
Elapsed time: 21.606 s

C:> _

In this case we have reduced 33 KB to 13 KB, which is good. However, in group mode we
do better still:

C:> emCompress.exe -cCompressed_Files.c *.htm

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Codec: DEFLATE(32k,3,258) chosen from 126 candidates
Encoding: 33659168 bytes used during compression
Decoding: 35232 bytes required for decompression (258 for window)
Compression: 20.0% (80.0% of original removed)
- Sizes 33130 -> 6636 bytes
Elapsed time: 1.801 s

C:> _

Now the 33 KB input is reduced to 6.5 KB.

33

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.8.2 Compromises with group compression
Client software can deal with files compressed in either group or unit mode transparently:
emCompress takes care of managing the details of decompressing both individual files and
the “slices” of a group-compressed bitstream that correspond to the original input. As such,
there is no need to alter the code that calls the emCompress API to decompresses a file if
you flip the compression of a file between unit mode and group mode: all features, such
as data integrity checks, work just the same in both modes.

There are, however, compromises that you should be aware of when using group mode.

Access time

In order to decompress the contents of a file compressed in group mode, emCompress
must decode the bitstream from the start, passing over compressed content of other files,
before starting to decompress the content of the requested file. Whilst there is no memory
overhead associated with this process, there is a time overhead: it takes longer to access
files at the end of the compressed bitstream than at the start.

You can compress your files in group mode such that the most frequently accessed files are
given on the emCompress command line first, placing them at the front of the compressed
bitstream, with less frequently used files towards the end of the command line.

Alternatively, you may well decide to compress different file sets in group mode and others
in unit mode. This will require multiple invocations of emCompress, but the general strategy
is workable.

For instance, you might want to compress all HTML files in group mode, all JavaScript files
in group mode, and all images in unit mode, and you could use a set of commands such
as this:
emCompress -gCompressed_HTML.c *.htm
emCompress -gCompressed_JS.c *.js
emCompress *.png *.bmp

In this case, there are two group bitstreams (both completely independent of each other)
along with as many individual bitstreams corresponding to each BMP and PNG file.

Dead data

All files that you compress in group mode are packaged into a single compressed bitstream.
If you only use one file out of that bitstream, the entire bitstream is linked into your
application, including the compressed content of files that you never reference. In this case,
the linker has no opportunity to remove the redundant data that you never put to use. The
advice would be, then, to group compress only the files that you know you use in your
application.

In contrast, all files that are compressed individually in unit mode have separate bitstreams
and decompressing a single file will not include the bitstreams of other compressed files
(assuming your linker is capable of removing dead data).

emCompress provides the capabilitities for you to make appropriate decisions on how to
compress your files and structure the compression that best suits your application’s use.

2.8.3 Group compression walkthrough
In this example we will compress a set of files using group mode. The use of emCompress
in group mode extends naturally from unit mode compression that you’ve seen previously.

Compress the files

We will compress three poems held in text files, each with the extension “.txt”. A difference
between unit mode and group mode is that you must tell emCompress where to write the
compressed output source file—in unit mode, the generated C source file name is based
on the uncompressed input file name. The -g command line option serves to invoke group
mode compression and set the group-compressed output file name:

C:> emCompress.exe -gCompressed_Poems.c *.txt

34 CHAPTER 2 Group compression

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

(c) 2015 SEGGER Microcontroller GmbH & Co. KG www.segger.com
emCompress V2.10 compiled Jun 23 2015 17:16:26

Codec: DEFLATE(1k,3,66) chosen from 126 candidates
Encoding: 33563936 bytes used during compression
Decoding: 3220 bytes required for decompression (66 for window)
Compression: 49.9% (50.1% of original removed)
- Sizes 3114 -> 1554 bytes
Elapsed time: 1.401 s

C:> _

Now that all files are compressed in group mode, extracting the three files is no different
to extracting individual bitstreams in unit mode. Here’s a modification of the first example
that prints the decompressed text of the three files to the console:
// File: Ex5.c
// - Decompress group-encoded file in stream mode.
//

#include "COMPRESS.h"
#include "Compressed_Poems.c"
#include <stdio.h>

static int _PrintData(void *pUserContext, void *pData, unsigned NumBytesData) {
 return printf("%.*s", NumBytesData, pData);
}

static void _WritePoem(const COMPRESS_ENCODED_FILE *pFile) {
 static union {
 U8 Bytes[3236]; // Workspace reported by emCompress
 U32 Long; // Force long alignment of workspace.
 } Workspace;
 int Status;
 //
 Status = COMPRESS_DecompressThruFunc(pFile, &Workspace, sizeof(Workspace),
 _PrintData, 0,
 0, ~0UL,
 0);
 if (Status >= 0) {
 printf("\nDecompressed %d bytes.\n\n", Status);
 } else {
 printf("\nDecompression error.\n\n");
 }
}

void main(void) {
 _WritePoem(&Compressed_Jabberwocky);
 _WritePoem(&Compressed_IWanderedLonleyAsACloud);
 _WritePoem(&Compressed_AWinterNight);
}

35

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.9 Dynamic workspace allocation
You can configure emCompress to limit the memory required to decompress a file. In
previous examples that memory is allocated statically, using a static array. You could place
that static array on the stack, but it can also make sense to place it on the heap.

In this example the decompression workspace is allocated dynamically using malloc and
the required size is retrieved using COMPRESS_QueryWorkspaceSize().
// File: Ex6.c
// - Decode and verify group-encoded files in stream mode using
// dynamic workspace allocation.
//

#include "COMPRESS.h"
#include "SEGGER_CRC.h"
#include "Compressed_Poems.c"
#include <stdio.h>
#include <stdlib.h>

static void _ValidatePoem(const COMPRESS_ENCODED_FILE *pFile) {
 void * pWorkspace;
 int Status;
 //
 pWorkspace = malloc(COMPRESS_QueryWorkspaceSize(pFile));
 if (pWorkspace == 0) {
 printf("Can't allocate memory for workspace.\n");
 } else {
 Status = COMPRESS_DecompressThruFunc(pFile,

 pWorkspace, COMPRESS_QueryWorkspaceSize(pFile),
 0, 0,
 0, ~0UL,
 SEGGER_CRC_Calc_04C11DB7);
 if (Status >= 0) {
 printf("Verified %d bytes.\n", Status);
 } else {
 printf("Decompression error!\n");
 }
 }
 free(pWorkspace);
}

void main(void) {
 _ValidatePoem(&Compressed_IWanderedLonleyAsACloud);
 _ValidatePoem(&Compressed_Jabberwocky);
 _ValidatePoem(&Compressed_AWinterNight);
}

36 CHAPTER 2 Command line options

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.10 Command line options
emCompress accepts the following command line options.

2.10.1 Add codec (-A)
Syntax

-Aname

Description

Add the given codec family to the list of codecs that are considered for compression. The
letter case of the codec name does not matter.

By default all codecs are considered included.

2.10.2 Group compression (-g)
Syntax

-gfilename

Description

Group files before compressing. The file filename is written to contain a single compressed
bitstream and emCompress compressed file descriptors corresponding to each input file.

2.10.3 List performance (-l)
Syntax

-l

Description

List each compressor’s performance for every input file.

2.10.4 Decompressor memory limit (-m)
Syntax

-msize

Description

Set the maximum memory to be used by a decompressor. size is an integer but can also be
suffixed by “k” to indicate that the units are in kilobytes (e.g. -m4k will set the maximum
memory to 4096 bytes).

By default the compressor assumes that the decompressor has unlimited memory.

2.10.5 Dry run (-n)
Syntax

-n

Description

Run emCompress as normal but do not write any compressed files.

37

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.10.6 Optimization level (-O)
Syntax

-Olevel

Description

Set the optimization level from 1 (fastest compression) to 9 (best compression).

By default the optimization level is set to 5, which is balance between performance and
compression ratio.

2.10.7 Summarize (-s)
Syntax

-s

Description

Print only a summary of each file that is compressed together with an summary of the
overall savings made over all files.

2.10.8 Verbose (-v)
Syntax

-v

Description

Display additional statisical information and the computed CRCs for each compressed file.

2.10.9 Exclude codec (-X)
Syntax

-X

Description

Exclude all codecs, other than STORE, from consideration when compressing. You can add
individual codecs using -A. By default no codecs are considered excluded.

Syntax

-Xname

Description

Exclude the named codec family from list of codecs considered for compression. The letter
case of the codec family does not matter.

2.10.10 Exit (--exit)
Syntax

--exit

Description

Force automatic termination of emCompress, even if an error occurred. By default
emCompress terminates on success or waits for a key press on error.

38 CHAPTER 2 Command line options

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

2.10.11 Output directory (--outdir)
Syntax

--outdiroutputpath

Description

Explicitly set the directory into which the compressed files are written. If not set, the
compressed file is written into the source directory.

39

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 3

API reference

This section describes the public API for emCompress. Any functions or data structures that are
not described here but are exposed through inclusion of the COMPRESS.h header file must be
considered private and subject to change.

40 CHAPTER 3 Core functions

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1 Core functions
Function Description

Decompression functions

COMPRESS_DecompressThruFunc()
Decompress part of a file in streamed
mode.

COMPRESS_DecompressToMem() Decompress part of a file into memory.
Query functions

COMPRESS_QueryEncodedData() Query direct access to encoded bitstream.

COMPRESS_QueryEncodedDataCRC()
Query the CRC of the encoded
(compressed) data image.

COMPRESS_QueryEncodedDataSize()
Query the size of the compressed
(encoded) data image.

COMPRESS_QueryDecodedDataCRC()
Query the CRC of the decompressed
(decoded) data image.

COMPRESS_QueryDecodedDataSize()
Query the size of the decompressed
(decoded) data image.

COMPRESS_QueryWorkspaceSize()
Query the size of the decompressor
workspace needed to decode a
compressed file.

41

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.1 COMPRESS_DecompressThruFunc()
Description

Decompress part of a file in streamed mode.

Prototype
int COMPRESS_DecompressThruFunc(const COMPRESS_ENCODED_FILE *pSelf,
 void *pWorkspace,
 unsigned NumBytesWorkspace,
 COMPRESS_OUTPUT_FUNC pfOutput,
 void *pContext,
 U32 Start,
 U32 Len,
 COMPRESS_CRC_FUNC pfCalcCRC);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

pWorkspace
Pointer to decompressor workspace. The workspace must be
correctly aligned for the target architecture.

NumBytesWorkspace Number of bytes in decompressor workspace.
pfOutput Pointer to function that is fed decompressed output.
pContext User context passed to output function.

Start
Byte offset, relative to start of decompressed file, from
which to start delivering data.

Len Total number of bytes to deliver starting from offset Start.

pfCalcCRC
Pointer to CRC calculation function for verification. If
pfCalcCRC is null, no verification is performed.

Return value
≥ 0 Number of bytes successfully delivered. This will be no more than Len bytes.
< 0 Error in encoded bitstream or decoding aborted by user.

Additional information

If the end of file is encountered whilst decoding the bitstream, all bytes up to the end of file
will be delivered to the application. The actual number of bytes delivered to the application
is returned and, if less than Len, signals reaching the end of file.

The workspace pointed to by pWorkspace must be correctly aligned. For ARM and other
32-bit processors this generally means that the workspace must be aligned on a 32-bit
boundary. You can ensure this by allocating a workspace using an array of unsigned or by
using compiler-dependent pragmas or extensions.

Example

Please see Single-file walkthrough on page 18.

42 CHAPTER 3 Core functions

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.2 COMPRESS_DecompressToMem()
Description

Decompress part of a file into memory.

Prototype
int COMPRESS_DecompressToMem(const COMPRESS_ENCODED_FILE *pSelf,
 void *pWorkspace,
 unsigned NumBytesWorkspace,
 void *pDest,
 U32 Start,
 U32 Len,
 COMPRESS_CRC_FUNC pfCalcCRC);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

pWorkspace
Pointer to decompressor workspace. The workspace must be
correctly aligned for the target architecture.

NumBytesWorkspace Number of bytes in decompressor workspace.

pDest
Pointer to destination object that will receive decompressed
output. The destination object must be at least Len bytes in
size.

Start
Byte offset, relative to start of decompressed file, from
which to start delivering data.

Len
Maximum number of bytes to deliver. The size of the object
pointed to by pDest must be at least Len bytes in size.

pfCalcCRC
Pointer to CRC function implementation for verification. If
pfCalcCRC is null, no verification is performed.

Return value
≥ 0 Number of bytes successfully stored into the object pointed to by pDest. This

will be no more than Len bytes.
< 0 Error in encoded bitstream.

Additional information

If the end of file is encountered whilst decoding the bitstream, fewer than Len bytes will be
delivered to the object pointed to by pDest. The actual number of bytes stored is returned
and, if less than Len, signals reaching the end of file.

The workspace pointed to by pWorkspace must be correctly aligned. For ARM and other
32-bit processors this generally means that the workspace must be aligned on a 32-bit
boundary. You can ensure this by allocating a workspace using an array of unsigned or by
using compiler-dependent pragmas or extensions.

Example

Please see Decompression into memory on page 21.

43

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.3 COMPRESS_QueryEncodedData()
Description

Query direct access to encoded bitstream.

Prototype
void COMPRESS_QueryEncodedData(const COMPRESS_ENCODED_FILE *pSelf,
 COMPRESS_ENCODED_DATA *pData);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

pData
Pointer to structure that receives the encoded data
descriptor.

44 CHAPTER 3 Core functions

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.4 COMPRESS_QueryEncodedDataCRC()
Description

Query the CRC of the encoded (compressed) data image.

Prototype
U32 COMPRESS_QueryEncodedDataCRC(const COMPRESS_ENCODED_FILE *pSelf);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

Return value

The CRC-32 of the compressed bitstream.

45

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.5 COMPRESS_QueryEncodedDataSize()
Description

Query the size of the compressed (encoded) data image.

Prototype
U32 COMPRESS_QueryEncodedDataSize(const COMPRESS_ENCODED_FILE *pSelf);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

Return value

The size of the compressed data, measured in bytes.

46 CHAPTER 3 Core functions

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.6 COMPRESS_QueryDecodedDataCRC()
Description

Query the CRC of the decompressed (decoded) data image.

Prototype
U32 COMPRESS_QueryDecodedDataCRC(const COMPRESS_ENCODED_FILE *pSelf);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

Return value

The CRC-32 of the decompressed data.

47

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.7 COMPRESS_QueryDecodedDataSize()
Description

Query the size of the decompressed (decoded) data image.

Prototype
U32 COMPRESS_QueryDecodedDataSize(const COMPRESS_ENCODED_FILE *pSelf);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

Return value

The size of the decompressed data, measured in bytes.

48 CHAPTER 3 Core functions

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

3.1.8 COMPRESS_QueryWorkspaceSize()
Description

Query the size of the decompressor workspace needed to decode a compressed file.

Prototype
U32 COMPRESS_QueryWorkspaceSize(const COMPRESS_ENCODED_FILE *pSelf);

Parameters

Parameter Description

pSelf Pointer to compressed file descriptor.

Return value

The size of the workspace required to decompress a compressed file, in bytes.

49

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 4

Resource use

This section describes the memory requirement in terms of RAM and ROM that emCompress
requires for decompression which can be used to obtain sufficient estimates for most target
systems.

50 CHAPTER 4 General comments

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

4.1 General comments
emCompress is fully reentrant when decompressing a bitstream: there is no requirement
to lock any shared data nor is there any static data requirement associated with its use.

There is no configuration required in order to use emCompress in your target system beyond
setting compiler options for code generation strategy and setting up paths to include files.

51

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

4.2 Memory footprint

4.2.1 Target system configuration
The following table shows the hardware and the toolchain details of a typical emCompress
target system:

Detail Description

CPU Cortex-M3
Tool chain IAR Embedded Workbench for ARM V6.40
Model Thumb-2 instructions
Compiler options Highest size optimization

4.2.2 RAM use
The amount of RAM that emCompress uses is under complete control as it is specified at
compression time. In addition to the workspace requirement specified for decompression,
there is a small stack requirement to decompress any bitstream. The following section lists
per-codec RAM requirements.

4.2.3 ROM use
The amount of ROM that emCompress uses for decompression varies with the codec
selected. Some of the codecs share common code:
• All decoders require the BITIO functions.
• LZJU90 requires the start-step-stop decoder.
• DEFLATE requires the canonical Huffman decoder.

The following table measures the total ROM required for a single decoder instance, isolated
from all other decoders, including all supporting functions and excluding integrity checks.
Hence, if your compressed bitstreams only use DEFLATE, the amount of ROM required is
easily read off from the table.

In addition to the ROM requirements, the following table summarizes the RAM needed for
static data and stack.

Codec ROM RAM (static) RAM (stack)

STORE 0.5 KB 0 bytes 256 bytes
RLE-PAR 0.8 KB 0 bytes 256 bytes
HUFF 1.3 KB 0 bytes 256 bytes
LZW 1.0 KB 0 bytes 256 bytes
LZSS 1.2 KB 0 bytes 256 bytes
LZJU90 1.3 KB 0 bytes 276 bytes
DEFLATE 2.1 KB 0 bytes 276 bytes

4.2.4 Integrity check overhead
Adding a table-driven CRC32 integrity check adds 1 KB of code to the total emCompress
ROM requirement.

52 CHAPTER 4 Memory footprint

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

53

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 5

Frequently asked questions

Q: What’s the purpose of the STORE compressor? It’s useless isn’t it?
A: No, it is not useless. The STORE compressor ensures that incompressible data does not

expand, as it generally does using other lossless compressors. It allows incompressible data
to be handled in the same manner as compressed data, freeing the client from treating
uncompressed data differently from compressed data.

Q: Can I compress something with gzip and use that in emCompress?
A: No. The primary function of emCompress is to correctly determine the amount of memory

required by the decoder, not to establish the best compression ratio. emCompress cannot
ensure that the decompressor will be able to decompress an arbitrary external bitstream
within the decoder’s stated memory requirements.

Q: Are bitstreams portable across different versions of emCompress?
A: No. We require that you recompress your files when upgrading emCompress so that you get

the best compression and the decoder is correctly matched to the encoder.

Q: emCompress is great! Where can I find the compressor sources?
A: emCompress is designed for fast and effective decompression at runtime and the companion

emCompress application is designed to run on a workstation or PC where memory is
plentiful. Because the emCompress application is all that is required for preparing data to be
decompressed, we do not ship the source code of the compressors built into the emCompress
application.

Q: I still need compression in my application, though…
A: Should you wish to take advantage of on-device compression in your application, please

contact us to discuss your requirements and how we might be able to help.

Q: Why do you store two CRCs? Surely one is enough?
A: The two CRCs serve different purposes, although both are integrity checks. The CRC of

the compressed bitstream ensures that the compressed bitstream is intact before being
decompressed. If the compressed bitstream is held in RAM, it may become corrupt by a store
through a wild pointer; and if it is held in embedded flash, read disturbances may well corrupt
the flash, but this is rare. Checking that the decompressed output CRC matches the stored
CRC offers an extra level of assurance that the decompression process executed correctly
and has not suffered data corruption during decompression.

Q: Why are there so many compressors?

54 CHAPTER 5

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

A: emCompress ships with compression algorithms that can be parameterized to tune
decompressor memory. As each decompressor has different memory requirements and
compression capabilities, emCompress covers a wide range of use from excellent compression
using moderate amounts of RAM to good compression using tiny amounts of RAM. No one
compression algorithm will be applicable across the wide range of inputs and workspace
requirements of target applications.

55

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 6

Reference

56 CHAPTER 6 Unabridged sample output

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

6.1 Unabridged sample output
The following is the unabridged C file that is generated by emCompress on the sample
Jabberwocky.txt file with default options.
//
// Generated by emCompress V1.00 compiled Jun 23 2015 17:16:26
//
// Input File: Jabberwocky.txt
// Optimization: Level 5 (Balanced)
// Restriction: None (assume unlimited decompressor RAM)
// Output File: Compressed_Jabberwocky.c
// Codec: DEFLATE(2k,3,258) chosen from 125 candidates
// Encoding: 33567008 bytes used during compression
// - Speed 7644 ns/byte (8325 us total time) yields 0.12 MB/s
// - Image CRC 5044A8E3 (polynomial is 04C11DB7, start with FFFFFFFF)
// Decoding: 4472 bytes required for decompression (258 for window)
// - Speed 92 ns/byte (101 us total time) yields 10.28 MB/s
// - Image CRC A33EE9AD (polynomial is 04C11DB7, start with FFFFFFFF)
// Compression: 48.0% at 3.842 bits/byte (52.0% of original removed)
// - Sizes 1089 -> 523 bytes (saving 566 bytes)
//

#include "COMPRESS_Int.h"

#if !defined(COMPRESS_VERSION) || COMPRESS_VERSION != 20100
 #error Incompatible version -- regenerate with emCompress
#endif

static const U8 _Jabberwocky__aBitstream[523] = {
 0xCC, 0x53, 0x4B, 0x8E, 0xDB, 0x30, 0x0C, 0xDD, 0x07, 0xC8, 0x1D, 0x98,
 0xD9, 0x74, 0x93, 0xF6, 0x00, 0xED, 0xA2, 0x48, 0xD2, 0x02, 0x6D, 0x11,
 0x20, 0xC0, 0x4C, 0x80, 0xA2, 0x4B, 0xCA, 0xA6, 0x2D, 0x25, 0x92, 0x39,
 0xD0, 0x67, 0x5C, 0x9F, 0xA4, 0xD7, 0x2D, 0xA9, 0xC4, 0x49, 0x8E, 0x30,
 0xC9, 0xC2, 0x86, 0x48, 0x3D, 0xBE, 0xF7, 0xF8, 0xFC, 0x0B, 0x8D, 0xA1,
 0x38, 0x72, 0x73, 0x9E, 0x96, 0x0B, 0x80, 0xED, 0x1F, 0xD8, 0x7F, 0xFF,
 0xFD, 0xF3, 0x05, 0x76, 0x9B, 0xE7, 0xE7, 0xC3, 0x7E, 0xBF, 0x5C, 0xE8,
 0xFF, 0xC3, 0x71, 0xC4, 0x04, 0x26, 0x3A, 0xEF, 0x5D, 0xBF, 0x06, 0x1C,
 0x5A, 0xC8, 0x96, 0x20, 0x79, 0x97, 0xED, 0x04, 0x99, 0xDF, 0x28, 0xE9,
 0x65, 0xFD, 0x7D, 0x73, 0x2D, 0xF4, 0x53, 0xA4, 0xDA, 0xD4, 0xBB, 0x60,
 0x3C, 0x81, 0x1B, 0x6A, 0xFB, 0x88, 0x86, 0x3E, 0x2F, 0x17, 0x1B, 0xEF,
 0x21, 0xB8, 0x90, 0x26, 0x18, 0x49, 0xFA, 0xB4, 0x62, 0x38, 0x72, 0xAF,
 0x28, 0xEB, 0x19, 0x66, 0x73, 0x1D, 0x11, 0x38, 0x10, 0x44, 0xCC, 0x36,
 0x01, 0x97, 0xDC, 0x47, 0x81, 0xF8, 0xA4, 0x8C, 0x9E, 0xB6, 0x34, 0xE2,
 0xF5, 0xF6, 0x5D, 0xC2, 0x1A, 0xC2, 0x04, 0x89, 0x87, 0xD5, 0x0C, 0x73,
 0x94, 0xF2, 0x09, 0xC7, 0x24, 0x7D, 0x98, 0xC1, 0xB8, 0x4C, 0xEB, 0x7A,
 0xA5, 0xF1, 0xB7, 0xC3, 0x06, 0x73, 0x63, 0xE5, 0xC2, 0x23, 0x60, 0x31,
 0xA7, 0x62, 0xA4, 0x3D, 0xB6, 0x17, 0xB1, 0xC9, 0x96, 0xE1, 0x11, 0xB2,
 0x8B, 0x25, 0x38, 0x2E, 0x09, 0xB6, 0x52, 0xA5, 0x98, 0x86, 0x8A, 0xF1,
 0xA4, 0xC4, 0x7E, 0x08, 0x04, 0xF3, 0x19, 0xAC, 0x4B, 0xF0, 0xC6, 0xF1,
 0x15, 0x3D, 0xA4, 0x91, 0x63, 0xAB, 0x26, 0x58, 0xE9, 0xFE, 0x32, 0xE3,
 0xEC, 0x79, 0xE8, 0x21, 0x3B, 0x91, 0x57, 0x75, 0xE2, 0xF0, 0x57, 0xA5,
 0x76, 0x4C, 0xA0, 0xCE, 0x72, 0xE9, 0x6D, 0xFE, 0xB7, 0x5C, 0xBC, 0x30,
 0x44, 0x4A, 0x99, 0x5A, 0x3D, 0x35, 0xE2, 0xB5, 0x3C, 0x8E, 0x25, 0xE4,
 0x12, 0x20, 0x47, 0xA2, 0x47, 0xBB, 0x92, 0xCC, 0x6D, 0x01, 0x47, 0xEB,
 0x66, 0xCB, 0x2B, 0x48, 0xB5, 0x4B, 0xEA, 0xA2, 0x24, 0xE9, 0x71, 0xE9,
 0x3A, 0x97, 0xEC, 0x5C, 0xAD, 0xC3, 0xF4, 0xE2, 0xCD, 0x79, 0xD5, 0xF7,
 0xE8, 0xE8, 0x28, 0x3B, 0x06, 0x9A, 0x48, 0x16, 0xD0, 0x41, 0xE7, 0x31,
 0x90, 0xB4, 0xEE, 0xE4, 0x01, 0x32, 0xA9, 0xEB, 0xBC, 0x53, 0x19, 0x36,
 0x2A, 0x5A, 0x65, 0x97, 0x8B, 0xEF, 0x49, 0x76, 0xFB, 0x88, 0xA9, 0xF4,
 0x4C, 0x89, 0x92, 0x05, 0x21, 0x28, 0x2C, 0xD4, 0xF5, 0x40, 0x62, 0xFA,
 0x72, 0x71, 0x18, 0x74, 0x25, 0x23, 0xAF, 0xE0, 0xFE, 0x76, 0x59, 0xFE,
 0x05, 0xF2, 0x92, 0xB5, 0xFA, 0xFE, 0xC8, 0xF0, 0x6A, 0xAD, 0xF1, 0xD8,
 0x0A, 0x11, 0x1A, 0x32, 0xA4, 0xC1, 0x35, 0x67, 0x8A, 0x1F, 0x65, 0x19,
 0xCD, 0x59, 0xA0, 0x65, 0x11, 0x9E, 0xBA, 0xAC, 0xC3, 0x5A, 0xC2, 0xEB,
 0x22, 0xAB, 0x18, 0x97, 0x93, 0xC8, 0xC6, 0x76, 0xC6, 0x93, 0xCE, 0x8A,
 0xD0, 0xA3, 0x2F, 0xE1, 0xD5, 0xAA, 0x20, 0x23, 0x18, 0x97, 0x9C, 0x29,
 0x17, 0x8B, 0x29, 0x57, 0xC3, 0x24, 0xF1, 0x78, 0x0D, 0xF3, 0xDD, 0xA2,

57

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

 0xAF, 0x33, 0xCE, 0x4E, 0x17, 0x98, 0x59, 0x33, 0x88, 0x31, 0xA4, 0x1A,
 0x46, 0x43, 0x18, 0xD4, 0x6E, 0xC3, 0x93, 0x70, 0x3A, 0x48, 0x72, 0xD0,
 0x9C, 0x34, 0x39, 0x2D, 0x4E, 0x2B, 0xD8, 0xA1, 0xF7, 0xCC, 0x76, 0x05,
 0x3B, 0xF4, 0x1E, 0x27, 0x4D, 0xD0, 0x8D, 0x52, 0x63, 0x39, 0x66, 0x35,
 0x4C, 0x83, 0x23, 0x61, 0x3A, 0xF1, 0x54, 0x19, 0xBD, 0xB7, 0x6F, 0xF1,
 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

const COMPRESS_ENCODED_FILE Compressed_Jabberwocky = {
 _Jabberwocky__aBitstream,
 523,
 0x5044A8E3,
 &COMPRESS_DEFLATE_Decode,
 0,
 1089,
 0xA33EE9AD,
 4472,
 { 2048, 3, 258 }
};

58 CHAPTER 6 Compression algorithms

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

6.2 Compression algorithms
This section provides a brief overview of the compression algorithms that emCompress uses
to compress data.

emCompress implements the following algorithms, listed in increasing order of compression
effectiveness:

Algorithm Description

STORE Data that is incompressible is stored uncompressed.

RLE-PAR Run-length encoding that compresses FPGA and CPLD bitstreams well
and has an ultra-fast, compact decoder.

HUFF Huffman-coded bitstream using 257 symbols.

LZW Lempel–Ziv–Welch compression with dictionary references stored
using adaptive width coding.

LZSS Lempel–Ziv–Storer–Szymanski compression with match distances and
lengths stored as fixed-length bit sequences.

LZJU90 Lempel–Ziv–Storer–Szymanski compression with match distances and
lengths stored using a start-step-stop unary coding.

DEFLATE

Standard DEFLATE compressor which is the basis of Zip compression
using LZSS with Huffman coding of the match distance and symbol/
length dictionaries. This is the most complex compressor and
decompressor but usually provides the best compression ratio when
decoder memory is more than 2 K.

6.2.1 STORE codec
The STORE codec stores the content of a file without compressing it and is the codec of last
resort when confronted with a file that simply does not compress with any other codec.

This can make sense when you are compressing a directory containing many files and one
of them cannot be effectively compressed without expansion (e.g. it is already compressed
by some tool). Rather than needing to find those files and write special code that would
handle uncompressed data differently from compressed data, the “store” compressor treats
uncompressed data just the same as compressed data.

6.2.2 HUFF codec
The Huffman codec examines the content to be compressed as a whole and tries to reduce
it. To do this it computes the frequency of each symbol (byte) in the input and constructs a
canonical Huffman coding that covers each byte plus the “end of stream” symbol. Including
the end of stream marker, the Huffman coding is computed using an alphabet of at most
257 symbols rather than just 256.

6.2.3 LZW codec
The LZW codec creates a dictionary of strings seen in the input such that when the string
is seen again, the compressor encodes a reference to it rather than the string itself.

LZW has a fairly high workspace requirement for constructing and maintaining the
dictionary. As the dictionary grows, encoding a reference becomes less efficient as more
bits are required to encode it. The emCompress LZW codec adaptively encodes references
with variable bit widths and, when the dictionary becomes full, the dictionary is emptied
and filled over again with new content.

Emptying the dictionary like this may seem rather wasteful, but it helps maintain a fresh set
of recently-seen data to work from, which is very helpful when the content to be encoded
suddenly changes—old content expires rather than being held in the dictionary forever.

59

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Both the encoder and the decoder need to keep identical models of the dictionary content,
so both encoder and decoder need to maintain the state of the dictionary. This has an
unfortunate impact on the decoder: it requires the same memory footprint as the encoder
to maintain the dictionary and, therefore, is not the best compressor for static content.

60 CHAPTER 6 Compression algorithms

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

61

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

Chapter 7

Glossary

Bitstream
A sequence of bits read on bit-by-bit basis.

Codec
Coder-decoder. A device or algorithm capable of coding or decoding a digital data stream. A
lossless compressor and decompressor combination constitutes a codec.

CRC
Cyclic Redundancy Check. An error detection code that can detect corruption of a bitstream.

Compressor
An algorithm that attempts to find redundancy in data and remove that redundancy thereby
compressing the data to use fewer bits.

Decompressor
An algorithm that reverses the effect of compression and recovers the original data from the
encoded bitstream.

DEFLATE
A popular compression format defined by RFC 1951. The compression format is widely
adopted in, for instance, Zip and gzip.

Group mode
An emCompress mode that compresses multiple files by combining them and compressing
the combined image into a single bitstream in order to improve overall compression ratio.
Compare Unit mode.

KB
Kilobyte. Defined as either 1,024 or 1,000 bytes by context. In the microcontroller world and
this manual it is understood to be 1,024 bytes and is routinely shortened further to ’K’ when
describing microcontroller RAM or flash sizes.

LZSS
Lempel–Ziv–Storer–Szymanski. A compression scheme that is based on LZ77.

LZW
Lempel–Ziv–Welch. A compression scheme that is based in LZ78.

RLE
Run-Length Encoding. A compression scheme where repeated bytes are replaced with a
special code, or marker, that indicates the repeated byte and the number of repeats.

Unit mode
An emCompress mode that compresses each file into its own individual bitstream independent
of any other file. Compare Group mode.

62 CHAPTER 7

emCompress User Guide & Reference Manual © 2015 SEGGER Microcontroller GmbH & Co. KG

	Introduction to emCompress
	What is emCompress?
	Features
	Recommended project structure
	Package content
	Include directories

	Using emCompress
	Running emCompress
	Selected compressor
	Compressor efficiency
	Decompressor memory
	Integrity checks
	Compressed output

	Single-file walkthrough
	Compress the file
	Call the decompressor
	Process the decompressed output
	Compile and test
	Finished example

	Decompression into memory
	Defensive decompression
	Using built-in integrity checks
	Extra-defensive decompression

	Limiting decompressor memory
	Adjusting compression performance
	Speeding up compression
	Increasing the compression ratio

	Batch compression
	Compressing web server content
	Applying limits to all files
	Tuning compression

	Group compression
	What is group compression?
	Compromises with group compression
	Group compression walkthrough

	Dynamic workspace allocation
	Command line options
	Add codec (-A)
	Group compression (-g)
	List performance (-l)
	Decompressor memory limit (-m)
	Dry run (-n)
	Optimization level (-O)
	Summarize (-s)
	Verbose (-v)
	Exclude codec (-X)
	Exit (--exit)
	Output directory (--outdir)

	API reference
	Core functions
	COMPRESS_DecompressThruFunc()
	COMPRESS_DecompressToMem()
	COMPRESS_QueryEncodedData()
	COMPRESS_QueryEncodedDataCRC()
	COMPRESS_QueryEncodedDataSize()
	COMPRESS_QueryDecodedDataCRC()
	COMPRESS_QueryDecodedDataSize()
	COMPRESS_QueryWorkspaceSize()

	Resource use
	General comments
	Memory footprint
	Target system configuration
	RAM use
	ROM use
	Integrity check overhead

	Frequently asked questions
	Reference
	Unabridged sample output
	Compression algorithms
	STORE codec
	HUFF codec
	LZW codec

	Glossary

