
embOS-Ultra

Real-Time Operating System
User Guide & Reference Manual

Document: UM01076
Software Version: 5.18.0

Revision: 0
Date: January 10, 2023

A product of SEGGER Microcontroller GmbH

www.segger.com

https://segger.com/embOS
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 1995-2023 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: January 10, 2023

Software Revision Date By Description

5.18.0 0 230110 MC

Update to latest software version.
Chapter “Introduction and Basic Concepts” and others improved.
New chapter “Kernel” added.
New API functions added:
 • OS_TASK_GetStatus()
 • OS_DEBUG_GetError()
Chapter “Introduction and Basic Concepts” and “Shipment” updated.
Minor spelling & wording corrections.

5.16.0 0 220414 MC

Update to latest software version.
New API function and OS_MAILBOX_IsInUse() added.
Chapter “Performance and Resource Usage” updated.
Minor spelling & wording corrections.

5.14.0 0 211014 MM/MC

Initial version (based on former embOS manual).
Chapter “System ticks with embOS and embOS-Ultra” in “Introduction
and Basic Concepts” were added.
Chapters “Time Measurement”, “Low Power Support”, “System Tick”,
“System Variables” and “Board Support Packages” were updated accord-
ing to changes with embOS-Ultra.
An embOS-Ultra migration guide was added to Chapter “Update”.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

4

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

6

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

7

Table of contents

1 Introduction and Basic Concepts ..11

1.1 What is embOS? .. 12
1.2 Differences between embOS and embOS-Ultra ...13

1.2.1 embOS with periodic system tick .. 13
1.2.2 embOS-Ultra with flexible system tick ..13

1.2.2.1 Hardware timer ..13
1.3 embOS ports ... 14
1.4 Singletasking systems (superloop) ... 16
1.5 Multitasking systems .. 18
1.6 Threads vs. Processes .. 20
1.7 Scheduling .. 21
1.8 Polling vs. Event based programming ... 26
1.9 Synchronization and communication primitives .. 27
1.10 How the OS gains control ..28
1.11 Valid context for embOS API ... 29
1.12 Blocking and Non blocking embOS API ..30
1.13 embOS API with timeout ...31
1.14 Static vs. Dynamic Memory Allocation ...35
1.15 Callback / Hook routines ... 37
1.16 embOS library modes ... 38

2 Kernel ..40

2.1 Introduction ...41
2.2 API functions ... 42

3 Tasks ...49

3.1 Introduction ...50
3.2 Cooperative vs. preemptive task switches ... 51
3.3 Extending the task context ..52
3.4 API functions ... 54

4 Software Timers ..98

4.1 Introduction ...99
4.2 API functions ... 101

5 Task Events .. 148

5.1 Introduction ...149
5.2 API functions ... 150

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

8

6 Event Objects ..159

6.1 Introduction ...160
6.2 API functions ... 163

7 Mutexes ...184

7.1 Introduction ...185
7.2 API functions ... 188

8 Semaphores ..200

8.1 Introduction ...201
8.2 API functions ... 203

9 Readers-Writer Lock ... 213

9.1 Introduction ...214
9.2 API functions ... 215

10 Mailboxes .. 226

10.1 Introduction ... 227
10.2 API functions ... 230

11 Queues ..260

11.1 Introduction ... 261
11.2 API functions ... 263

12 Watchdog .. 282

12.1 Introduction ... 283
12.2 API functions ... 285

13 Multi-core Support ...291

13.1 Introduction ... 292
13.2 API functions ... 294

14 Interrupts ... 301

14.1 What are interrupts? ...302
14.2 Interrupt latency .. 303
14.3 Rules for interrupt handlers ... 308
14.4 Interrupt control ...320

15 Critical Regions ...337

15.1 Introduction ... 338
15.2 API functions ... 339
15.3 Disabling context transitions .. 342

16 Time Measurement ... 344

16.1 Introduction ... 345

17 Low Power Support .. 358

17.1 Introduction ... 359
17.2 Starting power save modes in OS_Idle() ... 359
17.3 Peripheral power control ..360

18 Heap Type Memory Management .. 367

18.1 Introduction ... 368
18.2 API functions ... 369

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

9

19 Fixed Block Size Memory Pools ...373

19.1 Introduction ... 374
19.2 API functions ... 376

20 System Tick .. 389

20.1 Introduction ... 390
20.2 API functions ... 390

21 Debugging ...392

21.1 Runtime application errors ...393
21.2 Human readable object identifiers ...402
21.3 embOS API trace ..407

22 Profiling ... 410

22.1 Task execution ... 411
22.1.1 API functions .. 411

22.2 Task specific CPU load measurement ...414
22.2.1 API functions .. 416

22.3 CPU load measurement ... 422
22.3.1 API functions .. 423

23 embOSView .. 428

23.1 Introduction ... 429
23.2 Setup embOSView for communication ... 431
23.3 Setup target for communication ... 435
23.4 Sharing the SIO for terminal I/O ..442
23.5 embOSView API trace ... 445

24 MPU - Memory Protection .. 465

24.1 Introduction ... 466
24.2 Memory Access permissions ...469
24.3 ROM placement of embOS ... 470
24.4 Allowed embOS API in unprivileged tasks .. 471
24.5 Device driver ... 472
24.6 API functions ... 474

25 Stacks ..491

25.1 Introduction ... 492
25.2 API functions ... 494

26 Board Support Packages ..509

26.1 Introduction ... 510
26.2 How to create a new board support package ..510
26.3 Example .. 511
26.4 Mandatory routines ...513
26.5 Optional routines .. 521
26.6 Settings ...524
26.7 UART routines for embOSView ... 525

27 System Variables .. 526

27.1 Introduction ... 527
27.2 OS_Global ..528
27.3 OS information routines .. 529

27.3.1 API functions .. 529

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

10

28 Source Code ... 536

28.1 Introduction ... 537
28.2 Building embOS libraries ... 538
28.3 Compile time switches .. 539
28.4 Source code project ..541

28.4.1 Compiler options ... 541

29 Shipment ... 542

29.1 Introduction ... 543
29.2 Object code package ...544
29.3 Source code package .. 545

30 Update ...546

30.1 Introduction ... 547
30.2 How to update an existing project .. 548
30.3 embOS API migration guide ...549
30.4 embOS-Ultra migration guide ... 555

30.4.1 Modifications to RTOSInit.c ... 555
30.4.2 Critical regions .. 555
30.4.3 Delays and Timeouts ..555
30.4.4 Deprecated API functions ..556
30.4.5 Obsolete API functions ... 556

31 Support ..557

31.1 Contacting support ... 558
31.1.1 Where can I find the license number? .. 558

32 Performance and Resource Usage .. 559

32.1 Introduction ... 560
32.2 Resource Usage ..560
32.3 Performance ...561

33 Supported Development Tools ... 568

33.1 Reentrance .. 569
33.2 Compiler version .. 570
33.3 C/C++ standard ... 571

34 Glossary .. 572

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 1

Introduction and Basic
Concepts

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

12 CHAPTER 1 What is embOS?

1.1 What is embOS?
embOS is a priority-controlled multitasking system, designed to be used as an embedded
operating system for the development of real-time applications for a variety of microcon-
trollers.

embOS is a high-performance tool that has been optimized for minimal memory consump-
tion in both RAM and ROM, as well as high speed and versatility. Throughout the develop-
ment process of embOS, the limited resources of microcontrollers have always been kept
in mind. The internal structure of the real-time operating system (RTOS) has been opti-
mized in a variety of applications with different customers, to fit the needs of industry.
Fully source-compatible implementations of embOS are available for a variety of micro-
controllers, making it well worth the time and effort to learn how to structure real-time
programs with real-time operating systems.

embOS is highly modular. This means that only those functions that are required are linked
into an application, keeping the ROM size very small. A couple of files are supplied in source
code to make sure that you do not loose any flexibility by using embOS libraries and that
you can customize the system to fully fit your needs.

The tasks you create can easily and safely communicate with each other using a number
of communication mechanisms such as semaphores, mailboxes, and events.

Some features of embOS include:
• Preemptive scheduling:

Guarantees that of all tasks in READY state the one with the highest priority executes,
except for situations in which priority inheritance applies.

• Round-robin scheduling for tasks with identical priorities.
• Preemptions can be disabled for entire tasks or for sections of a program.
• Up to 4,294,967,296 priorities. Every task can have an individual priority, which means

that the response of tasks can be precisely defined according to the requirements of
the application.

• Unlimited number of tasks, software timers and all other synchronization and
communication primitives like event objects, semaphores, mutexes, mailboxes and
queues. (limited only by the amount of available memory).

• Size and number of messages can be freely defined when initializing mailboxes.
• Up to 32-bit events for every task.
• Power management.
• Calculation time in which embOS is idle can automatically be spent in power save mode.

Power-consumption is minimized.
• Full interrupt support:

Interrupts may call any function except those that require waiting for data, as well
as create, delete or change the priority of a task. Interrupts can wake up or suspend
tasks and directly communicate with tasks using all available communication methods
(mailboxes, semaphores, events).

• Disabling interrupts for very short periods allows minimal interrupt latency.
• Nested interrupts are permitted.
• embOS has its own, optional interrupt stack.
• Application samples for an easy start.
• Debug build performs runtime checks that catch common programming errors early on.
• Profiling and stack-check may be implemented by choosing specified libraries.
• Monitoring during runtime is available using embOSView via UART, Debug

Communications Channel (DCC) and memory read/write, or else via Ethernet.
• Very fast and efficient, yet small code.
• Minimal RAM usage.
• API can be called from assembly, C or C++ code.
• Board support packages (BSP) as source code available.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

13 CHAPTER 1 Differences between embOS and embOS-Ultra

1.2 Differences between embOS and embOS-Ultra
The main difference between embOS and embOS-Ultra is that the latter requires no peri-
odic system tick. Instead, with embOS-Ultra, system tick interrupts occur only when the
scheduler needs to perform some time-based action.

1.2.1 embOS with periodic system tick
embOS uses a hardware timer to generate periodic system tick interrupts which are utilized
as a time base. In most applications the system tick occurs each millisecond, but can also
be changed to occur with any other period. Since the period might differ, all timeouts and
periods are specified in system tick instead of, for example, milliseconds.

Even if there is only one task that is executed for several consecutive system ticks (which
means the scheduler will not be executed during this time), the system tick interrupt will
still occur periodically and thereby “waste” computation time. Furthermore, time-based
functionality like task delays or timeouts are always aligned to the system tick interrupt.
A task delay cannot expire between two system tick interrupts, but with the next system
tick interrupt only which then triggers the scheduler. Therefore tasks that shall delay for a
period that is shorter than a system tick, can only accomplish this by actively waiting until
the desired period has elapsed.

1.2.2 embOS-Ultra with flexible system tick
embOS-Ultra does not rely on a periodic system tick, but uses a flexible system tick that
is specifically configured by the operating system to occur whenever a time-based action
is required. This avoids unnecessary system tick interrupts and also allows delays and
timeouts to expire at arbitrary points in time (limited by the frequency of the used hardware
timer only). As there are no periodic tick interrupts, however, the system time can no longer
be held in system ticks, but is held in counter cycles instead. For the same reason, timed
embOS-Ultra API functions use milliseconds instead of system ticks unless explicitly stated
otherwise (in which case microseconds or counter cycles are used instead).

1.2.2.1 Hardware timer
While embOS requires the target hardware to provide a hardware timer, embOS-Ultra re-
quires the target hardware to provide a hardware timer and a continuously running counter
(although the latter may also be part of the former). With embOS-Ultra, the hardware timer
is used to generate the system tick interrupt while the continuously running counter pro-
vides a time base to calculate the current system time in counter cycles.

For example, applications could use a hardware timer that generates interrupts when its
continuously running counter matches a specific value. In that case, the counter would
serve for long-term stability while the compare register is used to generate interrupts when
required. Alternatively, it also is possible to use any hardware timer for generating inter-
rupts and an additional continuously running counter for long-term stability. In both cases
the continuously running counter should never be stopped by the application since it is
essential to long-term stability.

The frequencies of the used timer and counter may differ, specifically when using different
timers/counters. In this case, the embOS system time matches counter cycles. Unless
explicitly stated otherwise, the embOS-Ultra manual always refers to counter cycles when
it mentions “cycles”.

The maximal period of the hardware timer is of no relevance to embOS-Ultra: If the next
time-based action lies further in the future than the maximal period of the used hardware
timer, the operating system will simply set up the timer multiple times until the desired
point in time is reached.

For more information on how to implement the hardware timer routines, please refer to
Board Support Packages on page 509.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

14 CHAPTER 1 embOS ports

1.3 embOS ports
embOS is available for many core and compiler combinations. The embOS sources are
written in C but a small part is written in assembler and therefore core and compiler specific.
Hence, an embOS port is always technically limited to one core or core family and one
compiler. An embOS port includes several board support packages for different devices and
evaluation boards. Each board support package includes a project for a specific IDE. In
most embOS ports the same IDE is used for all board support packages.

1.3.1 Additional documentation
Some embOS aspects are core and compiler specific and explained in a separate embOS
manual which is shipped in the according embOS port shipment.

Example Cover of embOS Cortex-M ES Manual

1.3.2 Naming convention
All embOS ports use the same naming convention: embOS_<core>_<compiler>. For exam-
ple: embOS_CortexM_ES, embOS for Cortex-M and Embedded Studio

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

15 CHAPTER 1 embOS ports

1.3.3 Version number convention
SEGGER releases new embOS versions with new features and bug fixes. As soon as a new
embOS version is released embOS ports are updated to this version.

Generic embOS

Each release of the generic embOS sources has a unique version number:

V<Major>.<Minor>.<Patch>

For example:

V5.10.1

Major: 5
Minor: 10
Patch: 1

Major and minor values are used for new features. The patch value is used for bug fixes only.

embOS Ports

An updated embOS port has the same version number as the used generic embOS sources,
plus an additional revision for the port. This is because an embOS port may be updated
for changes in the CPU/compiler specific part, while still using the same generic embOS
sources. The complete version number for a specific embOS port is defined as:

V<Major>.<Minor>.<Patch>.<Revision>

For example:

V5.10.1.0

Major: 5
Minor: 10
Patch: 1
Revision: 0

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

16 CHAPTER 1 Singletasking systems (superloop)

1.4 Singletasking systems (superloop)
The classic way of designing embedded systems does not use the services of an RTOS,
which is also called “superloop design”. Typically, no real time kernel is used, so interrupt
service routines (ISRs) are used for the real-time parts of the application and for critical
operations (at interrupt level). This type of system is typically used in small, simple systems
or if real-time behavior is not critical.

Typically, since no real-time kernel and only one stack is used, both program (ROM) size and
RAM size are smaller for simple applications when compared to using an RTOS. Obviously,
there are no inter-task synchronization problems with a superloop application. However,
superloops can become difficult to maintain if the program becomes too large or uses
complex interactions. As sequential processes cannot interrupt themselves, reaction times
depend on the execution time of the entire sequence, resulting in a poor real-time behavior.

1.4.1 Advantages & disadvantages

Advantages
• Simple structure (for small applications)
• Low stack usage (only one stack required)

Disadvantages
• No “delay” capability
• Higher power consumption due to the lack of a power save mode in most architectures
• Difficult to maintain as program grows
• Timing of all software components depends on all other software components:

Small change in one place can have major side effects in other places
• Defeats modular programming
• Real time behavior only with interrupts

1.4.2 Using embOS in superloop applications
In a true superloop application, no tasks are used, hence the biggest advantage of using
an RTOS cannot be utilized unless the application is re-written for multitasking. However,
even with just one single task, using embOS offers the following advantages:
• Software timers are available
• Power saving: Idle mode can be used
• Future extensions can be put in a separate task

1.4.3 Migrating from superloop to multi-tasking
A common situation is that an application exists for some time and has been designed as
a single-task super-loop-application. At some point, the disadvantages of this approach
result in a decision to use an RTOS. The typical question now usually is: How do I do this?

The easiest way is to start with one of the sample applications that come with embOS and
to add the existing “super-loop code” into one task. At this point, you should also ensure
that the stack size of this task is sufficient. Later, additional functionality is added to the

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

17 CHAPTER 1 Singletasking systems (superloop)

software and can be put in one or more additional tasks; the functionality of the super-loop
can also be distributed over multiple tasks.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

18 CHAPTER 1 Multitasking systems

1.5 Multitasking systems
In a multitasking system, there are different ways to distribute CPU time among different
tasks. This process is called scheduling.

1.5.1 Task switches
There are two types of task switches, also called context switches: Cooperative and pre-
emptive task switches.

A cooperative task switch is performed by the task itself. As its name indicates, it requires
the cooperation of the task: it suspends itself by calling a blocking RTOS function, e.g.
OS_TASK_Delay_ms() or OS_TASKEVENT_GetBlocked().

A preemptive task switch, on the other hand, is a task switch that is caused externally.
For example, a task of higher priority becomes ready for execution and, as a result, the
scheduler suspends the current task in favor of that task.

1.5.2 Cooperative multitasking
Cooperative multitasking requires all tasks to cooperate by using blocking functions. A task
switch can only take place if the running task blocks itself by calling a blocking function such
as OS_TASK_Delay_ms() or OS_MAILBOX_GetBlocked(). This is illustrated in the diagram
below.

If tasks in a pure cooperative multi-tasking system do not cooperate, the system “hangs”.
This means that other tasks have no chance of being executed by the CPU while the first
task is being carried out. Even if an ISR makes a higher-priority task ready to run, the
interrupted task will be resumed and completes before the task switch is made.

A pure cooperative multi-tasking system has the disadvantage of longer reaction times
when high priority tasks become ready for execution. This makes their usage in embedded
real-time systems uncommon.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

19 CHAPTER 1 Multitasking systems

1.5.3 Preemptive multitasking
Real-time operating systems like embOS operate with preemptive multitasking. The high-
est-priority task in the READY state always executes as long as the task is not suspended by
a call of any blocking operating system function. A high-priority task waiting for an event is
signaled READY as soon as the event occurs. The event can be set by an interrupt handler,
which then activates the task immediately. Other tasks with lower priority are suspended
(preempted) for as long as the high-priority task is executing. Usually, real-time operating
systems utilize a timer interrupt that interrupts tasks and thereby allows to perform task
switches whenever timed task switches are necessary.

Preemptive multitasking may be switched off in sections of a program where task switch-
es are prohibited, known as critical regions. embOS itself will also temporarily disable pre-
emptive task switches during critical operations, which might be performed during the ex-
ecution of some embOS API functions.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

20 CHAPTER 1 Threads vs. Processes

1.6 Threads vs. Processes
In this context, a task is a program running on the CPU core of a microcontroller. Without
a multitasking kernel (an RTOS), only one task can be executed by the CPU. This is called a
single-task system. A real-time operating system, on the other hand, allows the execution
of multiple tasks on a single CPU. All tasks execute as if they completely “owned” the
entire CPU. The tasks are scheduled for execution, meaning that the RTOS can activate and
deactivate each task according to its priority, with the highest priority task being executed
in general.

Threads are tasks that share the same memory layout, hence any two threads can access
the same memory locations. If virtual memory is used, the same virtual to physical trans-
lation and access rights are used.
With embOS, all tasks are threads: they all have the same memory access rights and
translation (in systems with virtual memory).

Processes are tasks with their own memory layout. Two processes cannot normally access
the same memory locations. Different processes typically have different access rights and
(in case of MMUs) different translation tables. Processes are not supported with the current
version of embOS.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

21 CHAPTER 1 Scheduling

1.7 Scheduling
There are different algorithms used by schedulers to determine which task to execute. But
all schedulers have one thing in common: they distinguish between tasks that are ready
to be executed (in the READY state) and other tasks that are suspended for some reason
(delay, waiting for mailbox, waiting for semaphore, waiting for event, etc). The scheduler
selects one of the tasks in the READY state and activates it (executes the body of this
task). The task which is currently executing is referred to as the running task. The main
difference between schedulers is the way they distribute computation time between tasks
in the READY state.

1.7.1 Priority-controlled scheduling algorithm
In real-world applications, different tasks require different response times. For example, in
an application that controls a motor, a keyboard, and a display, the motor usually requires
faster reaction time than the keyboard and the display. E.g., even while the display is being
updated, the motor needs to be controlled. This renders preemptive multitasking essential.
Round-robin might work, but as it cannot guarantee any specific reaction time, a more
suitable algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. Depending on these
priorities, a task is chosen for execution according to one simple rule:

Note

The scheduler activates the task that has the highest priority of all tasks and is ready
for execution.

This means that every time a task with a priority higher than the running task becomes
ready, it becomes the running task, and the previous task gets preempted. However, the
scheduler can be switched off in sections of a program where task switches are prohibited,
known as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between tasks of
identical priority. One hint at this point: round-robin scheduling is a nice feature because
you do not need to decide whether one task is more important than another. Tasks with
identical priority cannot block each other for longer periods than their time slices. But
round-robin scheduling also costs time if two or more tasks of identical priority are ready
and no task of higher priority is, because execution constantly switches between the identi-
cal-priority tasks. It usually is more efficient to assign distinct priority to each task, thereby
avoiding unnecessary task switches.

1.7.2 Round-robin scheduling algorithm
With round-robin scheduling, the scheduler has a list of tasks and, when deactivating the
running task, it activates the next task that is in the READY state. Round-robin can be used
with either preemptive or cooperative multitasking. It works well if you do not need to
guarantee response time. Round-robin scheduling can be illustrated as follows:

The possession of the CPU changes periodically after a predefined execution time among
all tasks with the same priority. This time is specified in time slices and may be defined
individually for each task.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

22 CHAPTER 1 Scheduling

1.7.3 Priority inversion / priority inheritance
The rule the scheduler obeys is:

Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a resource
owned by a lower-priority task? According to the above rule, it would wait until the low-
priority task is resumed and releases the resource. Up to this point, everything works as
expected. Problems arise when a task with medium priority becomes ready during the
execution of the higher prioritized task.

When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finishes its work, because it has a higher priority than the
low-priority task. In this scenario, a task with medium priority runs in place of the task with
high priority. This is known as priority inversion.

The low priority task claims the semaphore with OS_MUTEX_LockBlocked(). An interrupt
activates the high priority task, which also calls OS_MUTEX_LockBlocked(). Meanwhile a
task with medium priority becomes ready and runs when the high priority task is suspend-
ed. The task with medium priority eventually calls OS_TASK_Delay_ms() and is therefore
suspended. The task with lower priority now continues and calls OS_MUTEX_Unlock() to
release the mutex. After the low priority task releases the semaphore, the high priority
task is activated and claims the semaphore.

To avoid this situation, embOS temporarily raises the low-priority task to high priority until
it releases the resource. This unblocks the task that originally had the highest priority and
can now be resumed. This is known as priority inheritance.

With priority inheritance, the low priority task inherits the priority of the waiting high priority
task as long as it holds the mutex. The lower priority task is activated instead of the medium
priority task when the high priority task tries to claim the semaphore.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

23 CHAPTER 1 Scheduling

1.7.4 Change of task status
A task may be in one of several states at any given time. When a task is created, it is
placed into the READY state.

A task in the READY state is activated as soon as there is no other task in the READY state
with higher priority. Only one task may be running at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task remains in
the READY state.

The running task may be delayed for or until a specified time; in this case it is placed into
the WAITING state and the next-highest-priority task in the READY state is activated.

The running task might need to wait for an event (or semaphore, mailbox or queue). If
the event has not yet occurred, the task is placed into the waiting state and the next-
highest-priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it either has been terminated
or was not created at all.

The following illustration shows all possible task states and transitions between them.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

24 CHAPTER 1 Scheduling

1.7.5 How task switching works
A real-time multitasking system lets multiple tasks run like multiple single-task programs,
quasi-simultaneously, on a single CPU. A task consists of three parts in the multitasking
world:
• The program code, which typically resides in ROM
• A stack, residing in a RAM area that can be accessed by the stack pointer
• A task control block, residing in RAM.

The task’s stack has the same function as in a single-task system: storage of return ad-
dresses of function calls, parameters and local variables, and temporary storage of inter-
mediate results and register values. Each task can have a different stack size. More infor-
mation can be found in chapter Stacks on page 491.

The task control block (TCB) is a data structure assigned to a task when it is created.
The TCB contains status information for the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management data.
Knowledge of the stack pointer allows access to the other registers, which are typically
stored (pushed onto) the stack when the task is created and each time it is suspended.
This information allows an interrupted task to continue execution exactly where it left off.
TCBs are only accessed by the RTOS.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

25 CHAPTER 1 Scheduling

1.7.6 Switching stacks
The following diagram demonstrates the process of switching from one stack to another.

The scheduler deactivates the task to be suspended (Task 0) by saving the processor reg-
isters on its stack. It then activates the higher-priority task (Task 1) by loading the stack
pointer (SP) and the processor registers from the values stored on Task 1’s stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:
1. Save (push) the processor registers on the task’s stack.
2. Save the stack pointer in the Task Control Block.

Activating a task

The scheduler activates the higher-priority task (Task 1) by performing the sequence in
reverse order:
1. Load (pop) the stack pointer (SP) from the Task Control Block.
2. Load the processor registers from the values stored on Task 1’s stack.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

26 CHAPTER 1 Polling vs. Event based programming

1.8 Polling vs. Event based programming
The easiest way to communicate between different pieces of code is by using global vari-
ables. In an application without RTOS you could set a flag in an UART interrupt routine and
poll in main() for the flag until it is set.

static int UartRxFlag;
static unsigned char Data;

void UartRxISR(void) {
 UartRxFlag = 1;
 Data = UART_RX_REGISTER;
}

int main(void) {
 while (1) {
 if (UartRxFlag != 0) {
 printf("Uart: %u", Data);
 UartRxFlag = 0;
 }
 }
 return 0;
}

This has the disadvantage that the CPU cannot execute any other part of the application
while it waits for new UART characters.

An RTOS offers the opportunity to implement an event based application. Such an event
can be an interrupt. UartRxTask() calls OS_MAILBOX_GetBlocked() and is suspended until
a new message is stored in the mailbox. UartRxISR() stores a new message (the received
character) in the mailbox with OS_MAILBOX_Put(). Therefore UartRxTask() is executed
only when a new UART character is received and does not waste any precious computation
time and energy. Additionally the CPU can execute other parts of the application in the
meantime.

void UartRxISR(void) {
 unsigned char Data;

 OS_INT_Enter();
 Data = UART_RX_REGISTER;
 OS_MAILBOX_Put(&Mailbox, &Data);
 OS_INT_Leave();
}

void UartRxTask(void) {
 unsigned char c;
 while (1) {
 OS_MAILBOX_GetBlocked(&Mailbox, &c);
 printf("Uart: %u", c);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

27 CHAPTER 1 Synchronization and communication primitives

1.9 Synchronization and communication primitives

1.9.1 Synchronization primitives
In a multitasking (multithreaded) program, multiple tasks work completely separately. Be-
cause they all work in the same application, it will be necessary for them to synchronize
with each other. Semaphores, mutexes and readers-write locks are used for task synchro-
nization and to manage resources of any kind.

For details and samples, refer to the chapters Mutexes on page 184, Semaphores on
page 200 and Readers-Writer Locks on page .

1.9.2 Event driven primitives
A task can wait for a particular event without consuming any CPU time. The idea is as
simple as it is convincing, there is no sense in polling if we can simply activate a task once
the event it is waiting for occurs. This saves processor cycles and energy and ensures that
the task can respond to the event without delay. Typical applications for events are those
where a task waits for some data, a pressed key, a received command or character, or the
pulse of an external real-time clock.

For further details, refer to the chapters Task Events on page 148 and Event Objects on
page 159.

1.9.3 Communication primitives
A mailbox is a data buffer managed by the RTOS. It is used for sending a message from
a task or an ISR to a task. It works without conflicts even if multiple tasks and interrupts
try to access the same mailbox simultaneously. embOS activates any task that is waiting
for a message in a mailbox the moment it receives new data and, if necessary, switches
to this task.
A queue works in a similar manner, but handles larger messages than mailboxes, and each
message may have an individual size.

For more information, refer to the chapters Mailboxes on page 226 and Queues on
page 260.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

28 CHAPTER 1 How the OS gains control

1.10 How the OS gains control
Upon CPU reset, the special-function registers are set to their default values. After reset,
program execution begins: The PC register is set to the start address defined by the start
vector or start address (depending on the CPU). This start address is usually in a startup
module shipped with the C compiler, and is sometimes part of the standard library.

The startup code performs the following:
• Loads the stack pointer(s) with the default values, which is for most CPUs the end of

the defined stack segment(s)
• Initializes all data segments to their respective values
• Calls the main() function.

The main() function is the part of your program which takes control immediately after
the C startup. Normally, embOS works with the standard C startup module without any
modification. If there are any changes required, they are documented in the CPU & Compiler
Specifics manual of the embOS documentation.

With embOS, the main() function is still part of your application program. Essentially,
main() creates one or more tasks and then starts multitasking by calling OS_Start(). From
this point, the scheduler controls which task is executed.

Startup_code()
 main()
 OS_Init();
 OS_InitHW();
 OS_TASK_CREATE();
 OS_Start();

The main() function will not be interrupted by any of the created tasks because those
tasks execute only following the call to OS_Start(). It is therefore usually recommended to
create all or most of your tasks here, as well as your control structures such as mailboxes
and semaphores. Good practice is to write software in the form of modules which are (up
to a point) reusable. These modules usually have an initialization routine, which creates
any required task(s) and control structures. A typical main() function looks similar to the
following example:

Example

int main(void) {
 OS_Init(); // Initialize embOS (must be first)
 OS_InitHW(); // Initialize hardware for embOS (in RTOSInit.c)
 // Call Init routines of all program modules which in turn will create
 // the tasks they need ... (Order of creation may be important)
 MODULE1_Init();
 MODULE2_Init();
 MODULE3_Init();
 MODULE4_Init();
 MODULE5_Init();
 OS_Start(); // Start multitasking
 return 0;
}

With the call to OS_Start(), the scheduler starts the highest-priority task created in
main(). Note that OS_Start() is called only once during the startup process and does not
return.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

29 CHAPTER 1 Valid context for embOS API

1.11 Valid context for embOS API
Some embOS functions may only be called from specific locations inside your application.
We distinguish between main() (before the call of OS_Start()), task, interrupt routines
and embOS software timer.

Note

Please consult the embOS API tables to determine whether an embOS function is
allowed from within a specific execution context. Please find the API tables at beginning
of each chapter.

Example

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TASK_Delay_ms()
Suspends the calling task for a specified
amount of milliseconds, or waits actively when
called from main().

● ● ●

This table entry says it is allowed to call OS_TASK_Delay_ms() from main() and a privi-
leged/unprivileged task but not from an embOS software timer or an interrupt handler.
Please note the differentiation between privileged and unprivileged tasks is relevant only
for embOS-MPU. With embOS all tasks are privileged.

Debug check

An embOS debug build will check for violations of these rules and call OS_Error() with an
according error code:

Error code Description

OS_ERR_ILLEGAL_IN_MAIN Not a legal API call from main().
OS_ERR_ILLEGAL_IN_TASK Not a legal API call after OS_Start().
OS_ERR_ILLEGAL_AFTER_OSSTART OS_Start() called twice.

OS_ERR_OS_INT_ENTER_CALLED
OS_INT_Enter() has been called, but CPU is not in
ISR state.

OS_ERR_ILLEGAL_IN_TIMER Not a legal API call from an embOS software timer.
OS_ERR_OS_INT_EN-
TER_NOT_CALLED

OS_INT_Enter() has not been called, but CPU is in
ISR state.

OS_ERR_ILLEGAL_OUT_ISR Not a legal API call outside an interrupt.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

30 CHAPTER 1 Blocking and Non blocking embOS API

1.12 Blocking and Non blocking embOS API
Most embOS API comes in three different version: Non blocking, blocking and blocking with
a timeout. The embOS API uses a specific naming convention for those API functions. API
functions which do not block a task have no suffix. API functions which could block a task
have the suffix “Blocked”. API functions which could block a task but have a timeout have
the suffix “Timed”.
Blocking API functions (with or without a timeout) must not be called from any context
other than a task context.

Non blocking API

Non blocking API functions always return at once, irrespective of the state of the OS object.
The return value can be checked in order to find out if e.g. new data is available in a mailbox.

static OS_MAILBOX MyMailbox;
static char Buffer[10];

void Task(void) {
 char r;
 while (1) {
 r = OS_MAILBOX_Get(MyMailbox, Buffer);
 if (r == 0u) {
 // Process message
 }
 }
}

Blocking API

Blocking API functions suspend the task until it is activated again by another embOS API
function. The task does not cause any CPU load while it is waiting for the next activation.

static OS_MAILBOX MyMailbox;
static char Buffer[10];

void Task(void) {
 while (1) {
 // Suspend task until a new message is available
 OS_MAILBOX_GetBlocked(MyMailbox, Buffer);
 // Process message
 }
}

Blocking API with timeout

These API functions have an additional timeout. They are blocking until the timeout occurs.

static OS_MAILBOX MyMailbox;
static char Buffer[10];

void Task(void) {
 char r;
 while (1) {
 // Suspend task until a new message is available or the timeout occurs
 r = OS_MAILBOX_GetTimed(MyMailbox, Buffer, 10);
 if (r == 0u) {
 // Process message
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

31 CHAPTER 1 embOS API with timeout

1.13 embOS API with timeout

1.13.1 Usage
The embOS system time in OS_Global.Time is based on a hardware counter. embOS API
functions like OS_TASK_Delay_ms() and OS_TASKEVENT_GetTimed() expect a timeout val-
ue as a parameter. Unless explicitly specified otherwise, the timeout unit is given in mil-
liseconds.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

32 CHAPTER 1 embOS API with timeout

1.13.2 Implementation details
OS_Global.Time holds the system time in counter cycles since reset and always is a signed
64-bit variable. After OS_Global.Time reaches 0xFFFFFFFFFFFFFFFF, it starts at 0x0 again
- but even with a counter frequency of 1 Gigahertz, this only happens after ~585 years.

When calling OS_TASK_Delay_ms(), or any other API function with a timeout (e.g. OS_EVEN-
T_GetTimed()), embOS calculates the end time and stores it in OS_Global.TimeDex. The
end time is the current time plus the desired timeout.

OS_Global.TimeDex = OS_Global.Time + Timeout;

Example:
At OS_Global.Time = 5, the applications calls OS_TASK_Delay_Cycles(10);
This results in OS_Global.TimeDex = 15.

With each system tick, embOS checks whether the current system time is equal or greater
than OS_Global.TimeDex. This is implemented as a subtraction of signed values. This cal-
culation guarantees that overflows are handled correctly as long as the timeout value lim-
itation (explained below) is respected.

if ((OS_Global.Time - OS_Global.TimeDex) >= 0) {
 // Timeout has expired
} else {
 // Timeout has not yet expired
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

33 CHAPTER 1 embOS API with timeout

Description

For the following examples we assume 8-bit variables for easier understanding.
The range is 0x00 to 0xFF, where 0x00 to 0x7F represent positive values and 0x80 to 0xFF
negative values.

0x00 0
0x01 1
...
0x7F 127
0x80 -128
...
0xFF -1

Four cases exist: Both OS_Global.Time and OS_Global.TimeDex are positive values, both
are negative values, and one positive and one negative value (and vice versa).

OS_Global.Time and OS_Global.TimeDex are positive

OS_Global.Time = 100 (0x64)
Timeout = 20 (0x14)
OS_Global.TimeDex = 120 (0x78)
OS_Global.Time - OS_Global.TimeDex = -20 < 0 => Timeout has not yet expired

OS_Global.Time = 121 (0x79)
OS_Global.TimeDex = 120 (0x78)
OS_Global.Time - OS_Global.TimeDex = 1 >= 0 => Timeout has expired

OS_Global.Time and OS_Global.TimeDex are negative

OS_Global.Time = -128 (0x80)
Timeout = 8 (0x08)
OS_Global.TimeDex = -120 (0x88)
OS_Global.Time - OS_Global.TimeDex = -8 < 0 => Timeout has not yet expired

OS_Global.Time = -119 (0x89)
OS_Global.TimeDex = -120 (0x78)
OS_Global.Time - OS_Global.TimeDex = 1 >= 0 => Timeout has expired

OS_Global.Time is positive and OS_Global.TimeDex is negative

OS_Global.Time = 120 (0x88)
Timeout = 16 (0x10)
OS_Global.TimeDex = -120 (0x88)
OS_Global.Time - OS_Global.TimeDex = -16 < 0 => Timeout has not yet expired

OS_Global.Time = -119 (0x89)
OS_Global.TimeDex = -120 (0x88)
OS_Global.Time - OS_Global.TimeDex = 1 >= 0 => Timeout has expired

OS_Global.Time is negative and OS_Global.TimeDex is positive

OS_Global.Time = -1
Timeout = 16
OS_Global.TimeDex = 15
OS_Global.Time - OS_Global.TimeDex = -16 < 0 => Timeout has not yet expired

OS_Global.Time = 16
OS_Global.TimeDex = 15
OS_Global.Time - OS_Global.TimeDex = 1 >= 0 => Timeout has expired

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

34 CHAPTER 1 embOS API with timeout

Limitation

This check may only be performed if the difference between OS_Global.Time and OS_Glob-
al.TimeDex is less than half of the available range minus one. Otherwise, it is undecidable
whether OS_Global.Time has lapped OS_Global.TimeDex. The following example shows
how the calculation fails if the timeout limit is violated.

8-bit range => Maximum timeout value = 128 - 1 = 127

OS_Global.Time = 0
Invalid Timeout = 130
OS_Global.TimeDex = 130
OS_Global.Time - OS_Global.TimeDex = 126 > 0
=> Wrong result, Timeout has not yet expired

Conclusion

As long as the timeout limitation is not violated, an overflow of OS_Global.Time is no
problem. As shown in the above examples all calculations are performed correctly.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

35 CHAPTER 1 Static vs. Dynamic Memory Allocation

1.14 Static vs. Dynamic Memory Allocation
Most embOS API functions require an according RTOS object. The RTOS object is based on a
C structure and stores application specific information. For example, if you create a new task
with OS_TASK_Create(), you will need to specify a task control block. OS_TASK_Create()
expects a pointer to an RTOS object of the type OS_TASK to store information like the task
priority.

Examples for RTOS objects:
• OS_TASK
• OS_TIMER
• OS_EVENT
• OS_MUTEX
• OS_SEMAPHORE
• OS_RWLOCK
• OS_MAILBOX
• OS_QUEUE
• OS_WD

It is the developer’s responsibility to allocate memory for the OS object. The memory can
be allocated statically or dynamically. Whether it is preferable to use static or dynamic
memory allocation depends on the application. Both methods can be used with embOS and
also within the same embOS application.

Static allocation

static OS_MUTEX _Mutex;

int main(void) {
 ...
 OS_MUTEX_Create(&_Mutex);
 ...
 return 0;
}

Dynamic allocation

static OS_MUTEX* _pMutex;

int main(void) {
 ...
 _pMutex = (OS_MUTEX*)malloc(sizeof(OS_MUTEX));
 if (_pMutex != NULL) {
 OS_MUTEX_Create(_pMutex);
 }
 ...
 return 0;
}

Note

An OS object may be modified by an embOS API function only. You must not modify an
OS object directly. For example, you must not free memory containing an OS object
which is still in use.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

36 CHAPTER 1 Static vs. Dynamic Memory Allocation

Bad examples

Write to a member of an OS object:

static OS_MUTEX _Mutex;

int main(void) {
 ...
 OS_MUTEX_Create(&_Mutex);
 _Mutex.UseCnt = 42;
 ...
 return 0;
}

Memory freed while the OS object is still in use:

static OS_MUTEX* _pMutex;

void Task(void) {
 while (1) {
 OS_MUTEX_LockBlocked(_pMutex);
 }
}

int main(void) {
 ...
 _pMutex = (OS_MUTEX*)malloc(sizeof(OS_MUTEX));
 OS_MUTEX_Create(_pMutex);
 free(_pMutex);
 ...
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

37 CHAPTER 1 Callback / Hook routines

1.15 Callback / Hook routines
Both terms are used with embOS and mean the same. Some embOS API functions use a
function pointer parameter for a callback routine. The callback routine must be implemented
by the application and defined as determined by the function pointer type. The following
function pointer types are used:

Type Definition

OS_ROUTINE_VOID void Routine(void)

OS_ROUTINE_VOID_PTR void Routine(void* p)

OS_ROUTINE_CHAR void Routine(OS_U8 Data)

OS_ROUTINE_WD_PTR void Routine(OS_CONST_PTR OS_WD* pWD)

OS_ROUTINE_TASK_PTR void Routine(OS_CONST_PTR OS_TASK* pTask)

OS_ROUTINE_TASK_PTR_ERRORCODE void Routine(OS_CONST_PTR OS_TASK* pTask)

Example

void OS_WD_Config(OS_ROUTINE_VOID* pfTrigger, OS_ROUTINE_WD_PTR* pfReset);

static void _TriggerRoutine(void) {
 ...
}

static void _ResetRoutine(OS_CONST_PTR OS_WD* pWD) {
 ...
}

int main(void) {
 ...
 OS_WD_Config(&_TriggerRoutine, &_ResetRoutine);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

38 CHAPTER 1 embOS library modes

1.16 embOS library modes
embOS comes in different builds or versions of the libraries. The reason for different builds
is that requirements vary during development. While developing software, the performance
(and resource usage) is not as important as in the final version which usually goes as
release build into the product. But during development, even small programming errors
should be caught by use of assertions. These assertions are compiled into the debug build
of the embOS libraries and make the code a little bigger (about 50%) and also slightly
slower than the release or stack-check build used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for your
final product (release or stack-check build of the libraries), and a safer (though bigger
and slower) build for development which will catch most common application programming
errors. Of course, you may also use the release build of embOS during development, but
it will not catch these errors.

The features are enabled and disabled with compile-time switches in the C source code.
For example the macro OS_DEBUG controls whether the debug code is included in the build.
Please have a look in the chapter Compile time switches on page 539 for more details.

The following features are included in the different embOS builds:

Debug code

The embOS debug code detects application programming errors like calling an API func-
tion from an invalid context. An application using an embOS debug library has to include
OS_Error.c. OS_Error.c contains the OS_Error() function which will be called if a debug
assertion fails. It is advisable to always use embOS debug code during development.

Stack Check

The embOS stack check detects overflows of task stacks, system stack and interrupt stack.
Furthermore, it enables additional information in embOSView and IDE RTOS plug-ins, and
provides additional embOS API regarding stack information. An application using an em-
bOS stack check library has to include OS_Error.c. OS_Error.c contains the OS_Error()
function which will be called if a stack overflow occurs.

Profiling

The embOS profiling code makes precise information available about the execution time
of individual tasks. You may always use the profiling libraries, but they induce larger task
control blocks as well as additional ROM and runtime overhead. This overhead is usually
acceptable, but for best performance you may want to use non-profiling builds of embOS
if you do not use this feature.

Libraries including support for profiling do also include the support for SystemView.

embOS API Trace

embOS API trace saves information about called API in a trace buffer. The trace data can
be visualized in e.g. SystemView.

embOSView API Trace

embOSView API trace saves information about called API in a trace buffer. The trace data
can be visualized in embOSView.

Round-Robin

Round-Robin lets all tasks at the same priority execute periodically for a pre-defined period
of time.

Object Names

Tasks and OS object names can be used to easily identify a task or e.g. a mailbox in tools
like embOSView, SystemView or IDE RTOS plug-ins.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

39 CHAPTER 1 embOS library modes

Task Context Extension

For some applications it might be useful or required to have individual data in tasks that are
unique to the task or to execute specific actions at context switch. With the task context
extension support each task control block includes function pointer to a save and a restore
routine which are executed during the context switch from and to the task.

1.16.1 Available library modes
In your application program, you need to let the compiler know which build of embOS you
are using. This is done by adding the corresponding define to your preprocessor settings and
linking the appropriate library file. If the preprocessor setting does not match the library,
a linker error will occur. Using the preprocessor define, RTOS.h will set embOS structures
to the same configuration that was used during the creation of the library, thus ensuring
identical structure definitions in both the application and the library. If no preprocessor
setting is given, OS_Config.h will be included and will set a library mode automatically
(see OS_Config.h).

Name / Define

D
eb

u
g

 C
o

d
e

S
tack C

h
eck

P
ro

filin
g

em
b

O
S

A
P

I T
race

em
b

O
S

V
iew

A
P

I T
race

R
o

u
n

d
-R

o
b

in

O
b

ject N
am

es

T
ask C

o
n

text
E

xten
sio

n

OS_LIBMODE_XR

OS_LIBMODE_R ● ● ●
OS_LIBMODE_S ● ● ● ●
OS_LIBMODE_SP ● ● ● ● ● ●
OS_LIBMODE_D ● ● ● ● ●
OS_LIBMODE_DP ● ● ● ● ● ● ●
OS_LIBMODE_DT ● ● ● ● ● ● ● ●
OS_LIBMODE_SAFE ● ● ● ● ● ● ●

1.16.2 OS_Config.h
OS_Config.h is part of every embOS port and located in the Start\Inc folder. Use of
OS_Config.h makes it easier to define the embOS library mode: Instead of defining OS_LIB-
MODE_* in your preprocessor settings, you may define DEBUG=1 in your preprocessor settings
in debug compile configurations and define nothing in the preprocessor settings in release
compile configurations. Subsequently, OS_Config.h will automatically define OS_LIBMOD-
E_DP for debug compile configurations and OS_LIBMODE_R for release compile configura-
tions.

Compile Configuration Preprocessor Define Define Set by OS_Config.h

Debug DEBUG=1 OS_LIBMODE_DP

Release OS_LIBMODE_R

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 2

Kernel

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

41 CHAPTER 2 Introduction

2.1 Introduction
The embOS kernel is started with OS_Start() in main() after the kernel was initialized
with OS_Init(). Typically, applications will also initialize the required hardware, and create
at least one task before calling OS_Start(). OS_Start() usually never returns but runs
the embOS scheduler which decides which task to run next. It is possible to stop and de-
initialize the kernel with OS_Stop() and OS_DeInit().

Example

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_Start(); // Start embOS

 return 0;
}

Interrupts in main()

OS_Start() enables interrupts, but interrupts may also be used in main(). It is not nec-
essary to disable interrupts in main(). When using embOS interrupts in main(), please en-
sure they are enabled after OS_Init() only. It is good practice to call OS_Init() as first
instruction in main().

void UART_ISR(void) {
 // Handle UART interrupt
}

int main(void) {
 OS_Init(); // Initialize embOS
 UART_Init(); // Initialize UART and UART interrupts
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_Start(); // Start embOS

 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

42 CHAPTER 2 API functions

2.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_ConfigStop() Configures the OS_Stop() function. ●
OS_DeInit() De-initializes the embOS kernel. ●
OS_Init() Initializes the embOS kernel. ●

OS_IsRunning()
Determines whether the embOS kernel was start-
ed by a call to OS_Start(). ● ● ● ● ●

OS_Start() Starts the embOS kernel. ●

OS_Stop()
Stops the embOS kernel and returns from OS_S-
tart(). ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

43 CHAPTER 2 API functions

2.2.1 OS_ConfigStop()

Description

Configures the OS_Stop() function.

Prototype

void OS_ConfigStop(OS_MAIN_CONTEXT* pContext,
 void* Addr,
 OS_U32 Size);

Parameters

Parameter Description

pContext Pointer to an object of type OS_MAIN_CONTEXT.
Addr Address of the buffer which is used to save the main() stack.
Size Size of the buffer.

Additional information

This function configures the OS_Stop() function. When configured, OS_Start() saves the
context and stack from within main(), which subsequently are restored by OS_Stop(). The
main() context and stack are saved to the resources configured by OS_ConfigStop(). Only
the stack that was actually used during main() is saved. Therefore, the size of the buffer
depends on the used stack. If the buffer is too small, debug builds of embOS will call
OS_Error() with the error code OS_ERR_OSSTOP_BUFFER. The structure OS_MAIN_CONTEXT
is core and compiler specific; it is specifically defined with each embOS port.

Example

#include "RTOS.h"
#include "stdio.h"

#define BUFFER_SIZE (32u)
static OS_U8 Buffer[BUFFER_SIZE]; // Buffer for main stack copy
static OS_MAIN_CONTEXT MainContext; // Main context control structure
static OS_STACKPTR int StackHP[128]; // Task stack
static OS_TASK TCBHP; // Task control block

static void HPTask(void) {
 OS_TASK_Delay_ms(50);
 OS_INT_Disable();
 OS_Stop();
}

int main(void) {
 int TheAnswerToEverything = 42;
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_ConfigStop(&MainContext, Buffer, BUFFER_SIZE);
 OS_Start(); // Start embOS
 //
 // We arrive here because OS_Stop() was called.
 // The local stack variable still has its value.
 //
 printf("%d", TheAnswerToEverything);
 while (TheAnswerToEverything == 42) {
 }
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

44 CHAPTER 2 API functions

2.2.2 OS_DeInit()

Description

De-initializes the embOS kernel.

Prototype

void OS_DeInit(void);

Additional information

OS_DeInit() can be used to de-initializes the embOS kernel and the hardware which was
initialized in OS_Init(). OS_DeInit() is usually used after returning from OS_Start(). It
does not de-initialize the hardware which was configured in e.g. OS_InitHW() but it resets
all embOS variables to their default values.

Example

#define BUFFER_SIZE (32u)

static OS_STACKPTR int StackHP[128] // Task stacks
static OS_TASK TCBHP; // Task control blocks
static OS_U8 Buffer[BUFFER_SIZE];
static OS_MAIN_CONTEXT MainContext;

static void HPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(50);
 OS_Stop();
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_ConfigStop(&MainContext, Buffer, BUFFER_SIZE);
 OS_Start(); // Start embOS
 OS_DeInit();
 OS_DeInitHW();
 DoSomeThingElse();
 //
 // Start embOS for the 2nd time
 //
 OS_Init();
 OS_InitHW();
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_ConfigStop(&MainContext, Buffer, BUFFER_SIZE);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

45 CHAPTER 2 API functions

2.2.3 OS_Init()

Description

Initializes the embOS kernel.

Prototype

void OS_Init(void);

Additional information

In library mode OS_LIBMODE_SAFE all RTOS variables are explicitly initialized. All other li-
brary modes presume that, according to the C standard, all initialized variables have their
initial value and all non initialized variables are set to zero.

Note

OS_Init() must be called prior to any other embOS API.
When using embOS API in C++ constructors, please be aware C++ constructors might
be executed before main().

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

46 CHAPTER 2 API functions

2.2.4 OS_IsRunning()

Description

Determines whether the embOS kernel was started by a call to OS_Start().

Prototype

OS_BOOL OS_IsRunning(void);

Return value

= 0 Kernel is not started.
≠ 0 Kernel is running, OS_Start() has been called.

Additional information

This function may be helpful for some functions which might be called from main() or from
running tasks. As long as the kernel is not started and a function is called from main(),
blocking task switches are not allowed. A function which may be called from a task or
main() may use OS_IsRunning() to determine whether a subsequent call to a blocking API
function is allowed.

Example

void PrintStatus() {
 OS_BOOL b;

 b = OS_ISRunning();
 if (b == 0) {
 printf("embOS scheduler not started, yet.\n");
 } else {
 printf("embOS scheduler is running.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

47 CHAPTER 2 API functions

2.2.5 OS_Start()

Description

Starts the embOS scheduler.

Prototype

void OS_Start(void);

Additional information

This function starts the embOS scheduler, which will activate and start the task with the
highest priority.

OS_Start() marks embOS as running; this may be examined by a call of the function
OS_IsRunning(). OS_Start() automatically enables interrupts. It must be called from
main() context only.

embOS will reuse the main stack after OS_Start() was called. Therefore, local data locat-
ed on the main stack may not be used after calling OS_Start(). If OS_Stop() is used,
OS_ConfigStop() will save the main stack and restore it upon stopping embOS.

It is mandatory to call OS_TIME_ConfigSysTimer() before calling OS_Start().

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

48 CHAPTER 2 API functions

2.2.6 OS_Stop()

Description

Stops the embOS kernel and returns from OS_Start().

Prototype

void OS_Stop(void);

Additional information

This function stops the embOS kernel and the application returns from OS_Start().
OS_ConfigStop() must be called prior to OS_Stop(). If OS_ConfigStop() was not called,
debug builds of embOS will call OS_Error() with the error code OS_ERR_CONFIG_OSSTOP.
OS_Stop() restores context and stack to their state prior to calling OS_Start(). OS_Stop()
does not deinitialize any hardware. It’s the application’s responsibility to de-initialize all
hardware that was initialized during OS_InitHW().

It is possible to restart embOS after OS_Stop(). To do so, OS_Init() must be called and
any task must be recreated. It also is the application’s responsibility to initialize all embOS
variables to their default values. With the embOS source code, this can easily be achieved
using the compile time switch OS_INIT_EXPLICITLY.

With some cores it is not possible to save and restore the main() stack. This is e.g. true for
8051. Hence, in that case no functionality should be implemented that relies on the stack
to be preserved. But OS_Stop() can be used anyway.

Example

#include "RTOS.h"
#include "stdio.h"

#define BUFFER_SIZE (32u)
static OS_U8 Buffer[BUFFER_SIZE];
static OS_MAIN_CONTEXT MainContext;

static OS_STACKPTR int StackHP[128];
static OS_TASK TCBHP;

static void HPTask(void) {
 OS_TASK_Delay_ms(50);
 OS_Stop();
}

int main(void) {
 int TheAnswerToEverything = 42;
 OS_Init();
 OS_InitHW();
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_ConfigStop(&MainContext, Buffer, BUFFER_SIZE);
 OS_Start();
 //
 // We arrive here because OS_Stop() was called.
 // The local stack variable still has its value.
 //
 printf("%d", TheAnswerToEverything);
 while (1) {
 }
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 3

Tasks

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

50 CHAPTER 3 Introduction

3.1 Introduction
A task that should run under embOS needs a task control block (TCB), a task stack, and a
task body written in C. The following rules apply to task routines:
• The task routine can either not take parameters (void parameter list), in which case

OS_TASK_Create() is used to create it, or take a single void pointer as parameter, in
which case OS_TASK_CreateEx() is used to create it.

• The task routine must not return.
• The task routine must be implemented as an endless loop or it must terminate itself

(see examples below).

3.1.1 Example of a task routine as an endless loop

void Task1(void) {
 while(1) {
 DoSomething(); // Do something
 OS_TASK_Delay(10); // Give other tasks a chance to run
 }
}

3.1.2 Example of a task routine that terminates itself

void Task2(void) {
 char DoSomeMore;
 do {
 DoSomeMore = DoSomethingElse(); // Do something
 OS_TASK_Delay(10); // Give other tasks a chance to run
 } while (DoSomeMore);
 OS_TASK_Terminate(NULL); // Terminate this task
}

There are different ways to create a task: On the one hand, embOS offers a simple macro
to facilitate task creation, which is sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a function is available allowing “fine-tuning” of all parameters.
For most applications, at least initially, we recommend using the macro.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

51 CHAPTER 3 Cooperative vs. preemptive task switches

3.2 Cooperative vs. preemptive task switches
In general, preemptive task switches are an important feature of an RTOS. Preemptive
task switches are required to guarantee responsiveness of high-priority, time critical tasks.
However, it may be desirable to disable preemptive task switches for certain tasks in some
circumstances. The default behavior of embOS is to allow preemptive task switches in all
circumstances.

3.2.1 Disabling preemptive task switches for tasks of equal
priority

In some situations, preemptive task switches between tasks running at identical priorities
are not desirable. To inhibit time slicing of equal-priority tasks, the time slice of the tasks
running at identical priorities must be set to zero as in the example below:

#include "RTOS.h"

#define PRIO_COOP 10
#define TIME_SLICE_NULL 0

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void TaskEx(void* pData) {
 while (1) {
 OS_TASK_Delay ((OS_TIME) pData);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CreateEx(&TCBHP, "HP Task", PRIO_COOP, TaskEx, StackHP,
 sizeof(StackHP), TIME_SLICE_NULL, (void *) 50);
 OS_TASK_CreateEx(&TCBLP, "LP Task", PRIO_COOP, TaskEx, StackLP,
 sizeof(StackLP), TIME_SLICE_NULL, (void *) 200);
 OS_Start(); // Start embOS
 return 0;
}

3.2.2 Completely disabling preemptions for a task
This is simple: The first line of code should be OS_TASK_EnterRegion() as shown in the
following sample:

void MyTask(void* pContext) {
 OS_TASK_EnterRegion(); // Disable preemptive context switches
 while (1) {
 // Do something. In the code, make sure that you call a blocking
 // function periodically to give other tasks a chance to run.
 }
}

This will entirely disable preemptive context switches from that particular task and will
therefore affect the timing of higher-priority tasks. Do not use this carelessly.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

52 CHAPTER 3 Extending the task context

3.3 Extending the task context
For some applications it might be useful or required to have individual data in tasks that are
unique to the task. Local variables, declared in the task, are unique to the task and remain
valid, even when the task is suspended and resumed again. When the same task function
is used for multiple tasks, local variables in the task may be used, but cannot be initialized
individually for every task. embOS offers different options to extend the task context.

3.3.1 Passing one parameter to a task during task creation
Very often it is sufficient to have just one individual parameter passed to a task. Using the
OS_TASK_CREATEEX() or OS_TASK_CreateEx() function to create a task allows passing a
void-pointer to the task. The pointer may point to individual data, or may represent any
data type that can be held within a pointer.

3.3.2 Extending the task context individually at runtime
Sometimes it may be required to have an extended task context for individual tasks to store
global data or special CPU registers such as floating-point registers in the task context.
The standard libraries for file I/O, locale support and others may require task-local stor-
age for specific data like errno and other variables. embOS enables extension of the task
context for individual tasks during runtime by a call of OS_TASK_SetContextExtension().
The sample application file OS_ExtendTaskContext.c delivered in the application samples
folder of embOS demonstrates how the individual task context extension can be used.

3.3.3 Extending the task context by using own task struc-
tures

When complex data is needed for an individual task context, the OS_TASK_CREATEEX() or
OS_TASK_CreateEx() functions may be used, passing a pointer to individual data structures
to the task. Alternatively you may define your own task structure which can be used. Note,
that the first item in the task structure must be an embOS task control structure OS_TASK.
This can be followed by any amount and type of additional data of different types.

The following code shows the example application OS_ExtendedTask.c which is delivered
in the sample application folder of embOS.

#include "RTOS.h"

/***
*
* Types, local
*
**
*/

//
// Custom task structure with extended task context.
//
typedef struct {
 OS_TASK Task; // OS_TASK has to be the first element
 OS_TIME Timeout; // Any other data type may be used to extend the context
 char* pString; // Any number of elements may be used to extend the context
} MY_APP_TASK;

/***
*
* Static data
*
**
*/
static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

53 CHAPTER 3 Extending the task context

static MY_APP_TASK TCBHP, TCBLP; // Task-control-blocks

/***
*
* Local functions
*
**
*/

/***
*
* MyTask()
*/
static void MyTask(void) {
 MY_APP_TASK* pThis;
 OS_TIME Timeout;
 char* pString;

 pThis = (MY_APP_TASK*)OS_TASK_GetID();
 while (1) {
 Timeout = pThis->Timeout;
 pString = pThis->pString;
 OS_COM_SendString(pString);
 OS_TASK_Delay(Timeout);
 }
}

/***
*
* Global functions
*
**
*/

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 //
 // Create the extended tasks just as normal tasks.
 // Note that the first parameter has to be of type OS_TASK
 //
 OS_TASK_CREATE(&TCBHP.Task, "HP Task", 100, MyTask, StackHP);
 OS_TASK_CREATE(&TCBLP.Task, "LP Task", 50, MyTask, StackLP);
 //
 // Give task contexts individual data
 //
 TCBHP.Timeout = 200;
 TCBHP.pString = "HP task running\n";
 TCBLP.Timeout = 500;
 TCBLP.pString = "LP task running\n";
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

54 CHAPTER 3 API functions

3.4 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TASK_AddContextExtension() Adds a task context extension. ●

OS_TASK_AddTerminateHook()
Adds a hook (callback) function
to the list of functions which are
called when a task is terminated.

● ●

OS_TASK_Create() Creates a new task. ● ●

OS_TASK_CreateEx()
Creates a new task and passes a
parameter to the task. ● ●

OS_TASK_Delay()

Suspends the calling task for a
specified amount of milliseconds,
or waits actively when called from
main().

● ● ●

OS_TASK_Delay_Cycles()

Suspends the calling task for a
specified amount of cycles, or
waits actively when called from
main().

● ● ●

OS_TASK_Delay_ms()

Suspends the calling task for a
specified amount of milliseconds,
or waits actively when called from
main().

● ● ●

OS_TASK_Delay_us()

Suspends the calling task for a
specified amount of microseconds,
or waits actively when called from
main().

● ● ●

OS_TASK_DelayUntil()

Suspends the calling task until a
specified time in milliseconds, or
waits actively when called from
main().

● ● ●

OS_TASK_DelayUntil_Cycles()
Suspends the calling task until a
specified time in cycles, or waits
actively when called from main().

● ● ●

OS_TASK_DelayUntil_ms()

Suspends the calling task until a
specified time in milliseconds, or
waits actively when called from
main().

● ● ●

OS_TASK_DelayUntil_us()

Suspends the calling task until a
specified time in microseconds, or
waits actively when called from
main().

● ● ●

OS_TASK_GetID()
Returns a pointer to the task con-
trol block structure of the current-
ly scheduled task.

● ● ● ● ●

OS_TASK_GetName()
Returns a pointer to the name of a
task. ● ● ● ● ●

OS_TASK_GetNumTasks() Returns the number of tasks. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

55 CHAPTER 3 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TASK_GetPriority()
Returns the task priority of a
specified task. ● ● ● ● ●

OS_TASK_GetStatus() Returns the current task status. ● ● ● ● ●

OS_TASK_GetSuspendCnt()
Returns the suspension count and
thus suspension state of the spec-
ified task.

● ● ● ● ●

OS_TASK_GetTimeSliceRem()
Returns the remaining time slice
value of a task in milliseconds. ● ● ● ● ●

OS_TASK_IsTask()
Determines whether a task control
block belongs to a valid task. ● ● ● ● ●

OS_TASK_Index2Ptr()
Returns the task control block of
the task with the specified Index. ● ● ● ● ●

OS_TASK_RemoveAllTerminate-
Hooks()

Removes all hook functions from
the OS_ON_TERMINATE_HOOK list
which contains the list of functions
that are called when a task is ter-
minated.

● ●

OS_TASK_RemoveTerminateHook()

This function removes a hook
function from the OS_ON_TERMI-
NATE_HOOK list which contains the
list of functions that are called
when a task is terminated.

● ●

OS_TASK_Resume()
Decrements the suspend count of
the specified task and resumes it
if the suspend count reaches zero.

● ● ● ●

OS_TASK_ResumeAll()

Decrements the suspend count of
all tasks that have a nonzero sus-
pend count and resumes these
tasks when their respective sus-
pend count reaches zero.

● ● ●

OS_TASK_SetContextExtension()
Makes global variables or proces-
sor registers task-specific. ●

OS_TASK_SetDefaultContextEx-
tension()

Sets the default task context ex-
tension. ● ●

OS_TASK_SetDefaultStartHook()
Sets a default hook routine which
is executed before a task starts. ● ●

OS_TASK_SetInitialSuspendCnt()
Sets the initial suspend count for
newly created tasks to 1 or 0. ● ● ● ●

OS_TASK_SetName()
Allows modification of a task name
at runtime. ● ● ● ●

OS_TASK_SetPriority()
Assigns a priority to a specified
task. ● ●

OS_TASK_SetTimeSlice()
Assigns a specified time-slice peri-
od to a specified task. ● ● ● ●

OS_TASK_Suspend()
Suspends the specified task and
increments a counter. ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

56 CHAPTER 3 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TASK_SuspendAll()
Suspends all tasks except the run-
ning task. ● ● ● ●

OS_TASK_Terminate() Ends (terminates) a task. ● ●

OS_TASK_Wake()
Ends delay of a specified task im-
mediately. ● ● ● ●

OS_TASK_Yield()
Calls the scheduler to force a task
switch. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

57 CHAPTER 3 API functions

3.4.1 OS_TASK_AddContextExtension()

Description

Adds a task context extension. The task context can be extended with OS_TASK_Set-
ContextExtension() only once. Additional task context extensions can be added with
OS_TASK_AddContextExtension(). OS_TASK_AddContextExtension() can also be called
for the first task context extension.
The function OS_TASK_AddContextExtension() requires an additional parameter of type
OS_EXTEND_TASK_CONTEXT_LINK which is used to create a task specific linked list of task
context extensions.

Prototype

void OS_TASK_AddContextExtension
 (OS_EXTEND_TASK_CONTEXT_LINK* pExtendContextLink,
 OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExtendContext);

Parameters

Parameter Description

pExtendContextLink Pointer to the OS_EXTEND_TASK_CONTEXT_LINK structure.

pExtendContext

Pointer to the OS_EXTEND_TASK_CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

Additional information

The object of type OS_EXTEND_TASK_CONTEXT_LINK is task specific and must only be used
for one task. It can be located e.g. on the task stack. pExtendContext, pExtendContext-
>pfSave and pExtendContext->pfRestore must not be NULL. An embOS debug build calls
OS_Error(OS_ERR_EXTEND_CONTEXT) when one of the function pointers is NULL.

Note

embOS interrupts must not be enabled in the save and restore functions.

Example

static void HPTask(void) {
 OS_EXTEND_TASK_CONTEXT_LINK p;
 //
 // Extend task context by VFP registers
 //
 OS_TASK_SetContextExtension(&_SaveRestoreVFP);
 //
 // Extend task context by global variable
 //
 OS_TASK_AddContextExtension(&p, &_SaveRestoreGlobalVar);
 a = 1.2;
 while (1) {
 b = 3 * a;
 GlobalVar = 1;
 OS_TASK_Delay(10);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

58 CHAPTER 3 API functions

3.4.2 OS_TASK_AddTerminateHook()

Description

Adds a hook (callback) function to the list of functions which are called when a task is
terminated.

Prototype

void OS_TASK_AddTerminateHook(OS_ON_TERMINATE_HOOK* pHook,
 OS_ROUTINE_TASK_PTR* pfRoutine);

Parameters

Parameter Description

pHook
Pointer to a variable of type OS_ON_TERMINATE_HOOK which
will be inserted into the linked list of functions to be called
during OS_TASK_Terminate().

pfRoutine
Pointer to the function of type OS_ROUTINE_TASK_PTR which
shall be called when a task is terminated.

Additional information

For some applications, it may be useful to allocate memory or objects specific to tasks. For
other applications, it may be useful to have task-specific information on the stack. When a
task is terminated, the task-specific objects may become invalid. A callback function may
be hooked into OS_TASK_Terminate() by calling OS_TASK_AddTerminateHook() to allow
the application to invalidate all task-specific objects before the task is terminated. The
callback function of type OS_ROUTINE_TASK_PTR receives the ID of the terminated task as
its parameter.

Note

The variable of type OS_ON_TERMINATE_HOOK must reside in memory as a global or
static variable. It may be located on a task stack, as local variable, but it must not be
located on any stack of any task that might be terminated.

If a task terminates itself, its task control block and task stack are still used until the
scheduler switches to another task or OS_Idle(). You must not use the task control
block or task stack for anything else before the scheduler was executed. For example
you must not free the task control block or task stack in the hook function when using
heap memory for the task control block or task stack.

Example

OS_ON_TERMINATE_HOOK _TerminateHook;

void TerminateHookFunc(OS_CONST_PTR OS_TASK* pTask) {
 // This function is executed upon calling OS_TASK_Terminate().
 if (pTask == &MyTask) {
 free(MytaskBuffer);
 }
}
...
int main(void) {
 OS_TASK_AddTerminateHook(&_TerminateHook, TerminateHookFunc);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

59 CHAPTER 3 API functions

3.4.3 OS_TASK_Create()

Description

Creates a new task.

Prototype

void OS_TASK_Create(OS_TASK* pTask,
 const char* sName,
 OS_PRIO Priority,
 OS_ROUTINE_VOID* pfRoutine,
 void OS_STACKPTR *pStack,
 OS_UINT StackSize,
 OS_UINT TimeSlice);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

sName

Pointer to the name of the task. Can be NULL if not used.
embOS does not copy the task name, but uses the pointer
exclusively. When using an embOS build without task name
support, this parameter is ignored.

Priority

Priority of the task. Must be within the following range:
1 ≤ Priority ≤ 28 - 1 = 0xFF for 8/16-bit CPUs
1 ≤ Priority ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities. The type OS_PRIO is
defined as a 32-bit value for 32-bit CPUs and as an 8-bit val-
ue for 8 or 16-bit CPUs by default.

pfRoutine Pointer to a function that should run as the task body.

pStack
Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack area.

StackSize Size of stack in bytes.

TimeSlice

Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
notes the time in milliseconds that the task will run be-
fore it suspends, and must be in the following range: 0 ≤
TimeSlice ≤ 255.

Additional information

OS_TASK_Create() creates a task and makes it ready for execution. The newly created
task will be activated by the scheduler as soon as there is no other task with higher priority
ready for execution.

OS_TASK_Create() can be called either from main() during initialization or from any other
task. The recommended strategy is to create all tasks during initialization in main() to keep
the structure of your application easy to maintain.

The absolute value of Priority is of no importance, only the value in comparison to the
priorities of other tasks matters. If there is another task with the same priority, the new
task will be placed immediately before it.

The stack indicated by pStack must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be aligned
to a multiple of the processor word size.

A TimeSlice value of zero is allowed and disables round-robin task switches (see sample
in chapter Disabling preemptive task switches for tasks of equal priority on page 51).

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

60 CHAPTER 3 API functions

Note

With embOS-MPU OS_MPU_ConfigMem() must be called before creating any task.

Note

embOS offers a macro that calls OS_TASK_Create() with two pre-defined parameters,
OS_TASK_CREATE(), allowing to more easily create tasks. OS_TASK_CREATE() deter-
mines the value of StackSize automatically using sizeof(). This is possible only if
the memory area has been defined at compile time. Furthermore, OS_TASK_CREATE()
uses a default TimeSlice of 2. If the macro shall be used, its definition is as follows:

#define OS_TASK_CREATE(pTask, pName, Priority, pRoutine, pStack) \
 OS_TASK_Create((pTask), \
 (pName), \
 (OS_PRIO)(Priority), \
 (pRoutine), \
 (void OS_STACKPTR*)(pStack), \
 sizeof(pStack), \
 2u \
)

Note

Up until embOS V5.8.2, OS_TASK_Create() expected the task name and time-
slice parameters to be omitted in OS_LIBMODE_XR. From embOS V5.10.0 onward,
OS_TASK_Create() expects all parameters to be present independent of the library
mode. This means existing applications which call OS_TASK_Create() in OS_LIBMOD-
E_XR need to be updated accordingly.

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(200);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_Create(&TCBHP, "HP Task", 100, HPTask, StackHP, sizeof(StackHP), 2);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

61 CHAPTER 3 API functions

3.4.4 OS_TASK_CreateEx()

Description

Creates a new task and passes a parameter to the task.

Prototype

void OS_TASK_CreateEx(OS_TASK* pTask,
 const char* sName,
 OS_PRIO Priority,
 OS_ROUTINE_VOID_PTR* pfRoutine,
 void OS_STACKPTR *pStack,
 OS_UINT StackSize,
 OS_UINT TimeSlice,
 void* pContext);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

sName

Pointer to the name of the task. Can be NULL if not used.
embOS does not copy the task name, but uses the pointer
exclusively. When using an embOS build without task name
support, this parameter is ignored.

Priority

Priority of the task. Must be within the following range:
1 ≤ Priority ≤ 28 - 1 = 0xFF for 8/16-bit CPUs
1 ≤ Priority ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities. The type OS_PRIO is
defined as a 32-bit value for 32-bit CPUs and as an 8-bit val-
ue for 8 or 16-bit CPUs by default.

pfRoutine Pointer to a function that should run as the task body.

pStack
Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack area.

StackSize Size of stack in bytes.

TimeSlice

Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
notes the time (in milliseconds) that the task will run be-
fore it suspends, and must be in the following range: 0 ≤
TimeSlice ≤ 255.

pContext Parameter passed to the created task.

Additional information

This function works the same way as OS_TASK_Create(), but allows passing a parameter,
pContext, to the task. Using a void pointer as additional parameter gives the flexibility to
pass any kind of data to the task function.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

62 CHAPTER 3 API functions

Note

embOS offers a macro that calls OS_TASK_CreateEx() with two pre-defined para-
meters, OS_TASK_CREATEEX(), allowing to more easily create tasks. OS_TASK_CRE-
ATEEX() determines the value of StackSize automatically using sizeof(). This is
possible only if the memory area has been defined at compile time. Furthermore,
OS_TASK_CREATEEX() uses a default TimeSlice of 2. If the macro shall be used, its
definition is as follows:

#define OS_TASK_CREATEEX(pTask, pName, Priority, pRoutine, pStack, pContext)
 OS_TASK_CreateEx((pTask),
 (pName),
 (OS_PRIO)(Priority),
 (pRoutine),
 (void OS_STACKPTR*)(pStack),
 sizeof(pStack),
 2u,
 (pContext)
)

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void Task(void* pContext) {
 while (1) {
 OS_TASK_Delay_ms((int)pContext);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CreateEx(&TCBHP, "HP Task", 100, Task,
 StackHP, sizeof(StackHP), 2, (void*) 50);
 OS_TASK_CREATEEX(&TCBLP, "LP Task", 50, Task,
 StackLP, (void*)200);
 OS_Start(); // Start embOS
 return 0;
}

Note

Up until embOS V5.8.2, OS_TASK_CreateEx() expected the task name and time-
slice parameters to be omitted in OS_LIBMODE_XR. From embOS V5.10.0 onward,
OS_TASK_CreateEx() expects all parameters to be present independent of the library
mode. This means existing applications which call OS_TASK_CreateEx() in OS_LIB-
MODE_XR need to be updated accordingly.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

63 CHAPTER 3 API functions

3.4.5 OS_TASK_Delay()

Description

Suspends the calling task for a specified amount of milliseconds, or waits actively when
called from main().

Prototype

void OS_TASK_Delay(OS_U32 ms);

Parameters

Parameter Description

ms Number of milliseconds to delay.

Additional information

Using OS_TASK_Delay(), the point in time at which the delay expires will be aligned to full
milliseconds. For example, a delay of 10 milliseconds which is started at a system time of
0.5 milliseconds will expire at a system time of 10 milliseconds. The minimal delay duration
therefore will be in the following range: ms - 1 ≤ delay ≤ ms. OS_TASK_Delay() may be
used to reduce the amount of context switches, for it can group several delay expirations
to one single point in time.

If OS_TASK_Delay() is called from main(), it will actively wait for the timeout to expire.
Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer() must
have been called before calling OS_TASK_Delay().

OS_TASK_Delay() is intended for applications that have previously utilized embOS (in which
delays can expire with a system tick interrupt only, which typically occurred each millisec-
ond). For creating new applications with embOS-Ultra, consider using OS_TASK_Delay_m-
s() instead.

Example

void Hello(void) {
 printf("Hello");
 printf("The next output will occur in 5000 milliseconds.\n");
 OS_TASK_Delay_ms(5000);
 printf("Delay is over.\n");
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

64 CHAPTER 3 API functions

3.4.6 OS_TASK_Delay_Cycles()

Description

Suspends the calling task for a specified amount of cycles, or waits actively when called
from main().

Prototype

void OS_TASK_Delay_Cycles(OS_U32 Cycles);

Parameters

Parameter Description

Cycles Number of cycles to delay.

Additional information

The parameter Cycles specifies the minimum time interval in cycles during which the task
is suspended. For example, a delay of 1000 cycles which is started at a system time of 500
cycles will expire at a system time of 1500 cycles.

If OS_TASK_Delay_Cycles() is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer()
must have been called before calling OS_TASK_Delay_Cycles().

Example

void Hello(void) {
 printf("Hello");
 printf("The next output will occur in 5000 Cycles.\n");
 OS_TASK_Delay_Cycles(5000);
 printf("Delay is over.\n");
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

65 CHAPTER 3 API functions

3.4.7 OS_TASK_Delay_ms()

Description

Suspends the calling task for a specified amount of milliseconds, or waits actively when
called from main().

Prototype

void OS_TASK_Delay_ms(OS_U32 ms);

Parameters

Parameter Description

ms Number of milliseconds to delay.

Additional information

The parameter ms specifies the minimum time interval in milliseconds during which the task
is suspended. For example, a delay of 10 milliseconds which is started at a system time of
0.5 milliseconds will expire at a system time of 10.5 milliseconds.

If OS_TASK_Delay_ms() is called from main(), it will actively wait for the timeout to expire.
Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer() must
have been called before calling OS_TASK_Delay_ms().

Example

void Hello(void) {
 printf("Hello");
 printf("The next output will occur in 5000 milliseconds.\n");
 OS_TASK_Delay_ms(5000);
 printf("Delay is over.\n");
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

66 CHAPTER 3 API functions

3.4.8 OS_TASK_Delay_us()

Description

Suspends the calling task for a specified amount of microseconds, or waits actively when
called from main().

Prototype

void OS_TASK_Delay_us(OS_U32 us);

Parameters

Parameter Description

us Number of microseconds to delay.

Additional information

The parameter us specifies the minimum time interval in microseconds during which the
task is suspended. For example, a delay of 10 microseconds which is started at a system
time of 0.5 microseconds will expire at a system time of 10.5 microseconds.

If OS_TASK_Delay_us() is called from main(), it will actively wait for the timeout to expire.
Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer() must
have been called before calling OS_TASK_Delay_us().

Example

void Hello(void) {
 printf("Hello");
 printf("The next output will occur in 5000 microseconds.\n");
 OS_TASK_Delay_us(5000);
 printf("Delay is over.\n");
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

67 CHAPTER 3 API functions

3.4.9 OS_TASK_DelayUntil()

Description

Suspends the calling task until a specified time in milliseconds, or waits actively when called
from main().

Prototype

void OS_TASK_DelayUntil(OS_TIME ms);

Parameters

Parameter Description

ms

Time in milliseconds to delay until. The given value is converted in-
to Cycles automatically and the result must be within the following
range:
0 ≤ Cycles ≤ 264 - 1 = 0xFFFFFFFFFFFFFFFF.
Also, the following additional condition must be met:
1 ≤ (Cycles - OS_Global.Time) ≤ 263 - 1 = 0x7FFFFFFFFFFFFFFF.

Additional information

OS_TASK_DelayUntil() suspends the calling task until the global time variable OS_Glob-
al.Time reaches the specified value. The main advantage of this function is that it avoids
potentially accumulating delays.

If OS_TASK_DelayUntil() is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer()
must have been called before calling OS_TASK_DelayUntil().

There is no functional difference between OS_TASK_DelayUntil() and OS_TASK_DelayUn-
til_ms().

Example

int sec, min;

void TaskShowTime(void) {
 OS_U32 t0;
 t0 = 0u;
 while (1) {
 ShowTime(); // Routine to display time
 t0 += 1000;
 OS_TASK_DelayUntil(t0);
 if (sec < 59) {
 sec++;
 } else {
 sec = 0;
 min++;
 }
 }
}

If the example above used OS_TASK_Delay() instead of OS_TASK_DelayUntil(), this could
lead to accumulating overhead between delays if OS_TASK_Delay() is not called exactly
each second (which may e.g. happen if interrupts or higher priority tasks are executed
instead). This would cause the simple “clock” to be slow. Using OS_TASK_DelayUntil()
avoids this accumulating overhead.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

68 CHAPTER 3 API functions

3.4.10 OS_TASK_DelayUntil_Cycles()

Description

Suspends the calling task until a specified time in cycles, or waits actively when called from
main().

Prototype

void OS_TASK_DelayUntil_Cycles(OS_TIME Cycles);

Parameters

Parameter Description

Cycles

Time in cycles to delay until. Must be within the following
range:
1 ≤ (Cycles - OS_Global.Time) ≤ 263 - 1 =
0x7FFFFFFFFFFFFFFF.
Please note that these are signed values.

Additional information

OS_TASK_DelayUntil_Cycles() suspends the calling task until the global time variable
OS_Global.Time reaches the specified value. The main advantage of this function is that
it avoids potentially accumulating delays.

If OS_TASK_DelayUntil_Cycles() is called from main(), it will actively wait for the time-
out to expire. Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSys-
Timer() must have been called before calling OS_TASK_DelayUntil_Cycles().

Example

void Hello(void) {
 OS_U32 t0;
 t0 = 0u;
 while (1) {
 printf("Hello");
 printf("The next output will occur in 5000 Cycles.\n");
 t0 += 5000;
 OS_TASK_DelayUntil_Cycles(t0);
 printf("Delay is over.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

69 CHAPTER 3 API functions

3.4.11 OS_TASK_DelayUntil_ms()

Description

Suspends the calling task until a specified time in milliseconds, or waits actively when called
from main().

Prototype

void OS_TASK_DelayUntil_ms(OS_TIME ms);

Parameters

Parameter Description

ms

Time in milliseconds to delay until. The given value is con-
verted into Cycles automatically and the result must be
within the following range:
1 ≤ (Cycles - OS_Global.Time) ≤ 263 - 1 =
0x7FFFFFFFFFFFFFFF.
Please note that these are signed values.

Additional information

OS_TASK_DelayUntil_ms() suspends the calling task until the global time variable
OS_Global.Time reaches the specified value. The main advantage of this function is that
it avoids potentially accumulating delays.

If OS_TASK_DelayUntil_ms() is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer()
must have been called before calling OS_TASK_DelayUntil_ms().

There is no functional difference between OS_TASK_DelayUntil_ms() and OS_TASK_De-
layUntil().

Example

int sec, min;

void TaskShowTime(void) {
 OS_U32 t0;
 t0 = 0u;
 while (1) {
 ShowTime(); // Routine to display time
 t0 += 1000;
 OS_TASK_DelayUntil_ms(t0);
 if (sec < 59) {
 sec++;
 } else {
 sec = 0;
 min++;
 }
 }
}

If the example above used OS_TASK_Delay_ms() instead of OS_TASK_DelayUntil_ms(),
this could lead to accumulating overhead between delays if OS_TASK_Delay_ms() is not
called exactly each second (which may e.g. happen if interrupts or higher priority tasks
are executed instead). This would cause the simple “clock” to be slow. Using OS_TASK_De-
layUntil_ms() avoids this accumulating overhead.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

70 CHAPTER 3 API functions

3.4.12 OS_TASK_DelayUntil_us()

Description

Suspends the calling task until a specified time in microseconds, or waits actively when
called from main().

Prototype

void OS_TASK_DelayUntil_us(OS_TIME us);

Parameters

Parameter Description

us

Time in microseconds to delay until. The given value is con-
verted into Cycles automatically and the result must be
within the following range:
1 ≤ (Cycles - OS_Global.Time) ≤ 263 - 1 =
0x7FFFFFFFFFFFFFFF.
Please note that these are signed values.

Additional information

OS_TASK_DelayUntil_us() suspends the calling task until the global time variable
OS_Global.Time reaches the specified value. The main advantage of this function is that
it avoids potentially accumulating delays.

If OS_TASK_DelayUntil_us() is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled. Furthermore, OS_TIME_ConfigSysTimer()
must have been called before calling OS_TASK_DelayUntil_us().

Example

void Hello(void) {
 OS_U32 t0;
 t0 = 0u;
 while (1) {
 printf("Hello");
 printf("The next output will occur in 5000 microseconds.\n");
 t0 += 5000;
 OS_TASK_DelayUntil_us(t0);
 printf("Delay is over.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

71 CHAPTER 3 API functions

3.4.13 OS_TASK_GetID()

Description

Returns a pointer to the task control block structure of the currently scheduled task. This
pointer is unique for the task and is used as a task Id.

Prototype

OS_TASK *OS_TASK_GetID(void);

Return value

= NULL No task is executing.
≠ NULL Pointer to the task control block of the currently running task.

Additional information

When called from a task, this function may be used for determining which task is currently
executing. This can be helpful if the action(s) of a function depend(s) on which task is
executing it.

If called from an interrupt service routine, this function may be used to determine the
interrupted task (if any).

Example

void PrintCurrentTaskID(void) {
 OS_TASK* pTask;
 pTask = OS_TASK_GetID();
 printf("Task ID 0x%x\n", pTask);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

72 CHAPTER 3 API functions

3.4.14 OS_TASK_GetName()

Description

Returns a pointer to the name of a task.

Prototype

char *OS_TASK_GetName(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Return value

A pointer to the name of the task. NULL indicates that the task has no name. If NULL is
passed for pTask, the function returns the name of the running task. If there is no currently
running task, the return value is “OS_Idle()”. If pTask is not NULL and does not specify a
valid task, a debug build of embOS calls OS_Error().

When using an embOS build without task name support, OS_TASK_GetName() returns “n/
a” in any case. The embOS OS_LIBMODE_XR library mode does not support task names.

Example

void PrintTaskName(void) {
 char* s;
 s = OS_TASK_GetName(NULL);
 printf("Task name: %s\n", s);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

73 CHAPTER 3 API functions

3.4.15 OS_TASK_GetNumTasks()

Description

Returns the number of tasks.

Prototype

int OS_TASK_GetNumTasks(void);

Return value

Number of tasks.

Example

void PrintNumberOfTasks(void) {
 int NumTasks;
 NumTasks = OS_TASK_GetNumTasks();
 printf("Number of tasks %d\n", NumTasks);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

74 CHAPTER 3 API functions

3.4.16 OS_TASK_GetPriority()

Description

Returns the task priority of a specified task.

Prototype

OS_PRIO OS_TASK_GetPriority(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask
Pointer to a task control block of type OS_TASK or NULL for
current task.

Return value

Priority of the specified task (range 1 to 255 for 8/16-bit CPUs and up to 4294967295 for
32-bit CPUs).

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void PrintPriority(const OS_TASK* pTask) {
 OS_PRIO Prio;
 Prio = OS_TASK_GetPriority(pTask);
 printf("Priority of task 0x%x = %u\n", pTask, Prio);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

75 CHAPTER 3 API functions

3.4.17 OS_TASK_GetStatus()

Description

Returns the current task status.

Prototype

OS_TASK_STATUS OS_TASK_GetStatus(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Return value

Task status.

Possible return values are:
READY_FOR_EXECUTION
DELAYED
WAITS_FOR_TASKEVENT
WAITS_FOR_TASKEVENT_WITH_TIMEOUT
WAITS_FOR_MUTEX
WAITS_FOR_MUTEX_WITH_TIMEOUT
WAITS_FOR_COMMUNICATION
WAITS_FOR_SEMAPHORE
WAITS_FOR_SEMAPHORE_WITH_TIMEOUT
WAITS_FOR_MEMPOOL
WAITS_FOR_MEMPOOL_WITH_TIMEOUT
WAITS_FOR_MESSAGE_IN_QUEUE
WAITS_FOR_MESSAGE_IN_QUEUE_WITH_TIMEOUT
WAITS_FOR_SPACE_IN_MAILBOX
WAITS_FOR_SPACE_IN_MAILBOX_WITH_TIMEOUT
WAITS_FOR_MESSAGE_IN_MAILBOX
WAITS_FOR_MESSAGE_IN_MAILBOX_WITH_TIMEOUT
WAITS_FOR_EVENTOBJECT
WAITS_FOR_EVENTOBJECT_WITH_TIMEOUT
WAITS_FOR_SPACE_IN_QUEUE
WAITS_FOR_SPACE_IN_QUEUE_WITH_TIMEOUT
RUNNING
SUSPENDED

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void PrintTaskStatus(void) {
 OS_TASK_STATUS status;

 status = OS_TASK_GetStatus(&TCB);
 printf("Task status: %u\n", status);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

76 CHAPTER 3 API functions

3.4.18 OS_TASK_GetSuspendCnt()

Description

Returns the suspension count and thus suspension state of the specified task. This function
may be used to examine whether a task is suspended by previous calls of OS_TASK_Sus-
pend().

Prototype

OS_U8 OS_TASK_GetSuspendCnt(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Return value

Suspension count of the specified task.

= 0 Task is not suspended.
> 0 Task is suspended by at least one call of OS_TASK_Suspend().

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void ResumeTask(OS_TASK* pTask) {
 OS_U8 SuspendCnt;
 SuspendCnt = OS_TASK_GetSuspendCnt(pTask);
 while (SuspendCnt > 0u) {
 OS_TASK_Resume(pTask); // May cause a task switch
 SuspendCnt--;
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

77 CHAPTER 3 API functions

3.4.19 OS_TASK_GetTimeSliceRem()

Description

Returns the remaining time slice value of a task in milliseconds.

Prototype

OS_U8 OS_TASK_GetTimeSliceRem(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Return value

Remaining time slice value of the task in milliseconds.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

The return value is valid only when using an embOS build with round-robin support. In all
other builds it will be 0. The embOS OS_LIBMODE_XR library mode does not support round-
robin.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TASK_Get-
TimeSliceRem().

Example

void PrintRemainingTimeSlices(void) {
 OS_U8 slices;

 slices = OS_TASK_GetTimeSliceRem(NULL);
 printf("Remaining Time Slices: %d\n", slices);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

78 CHAPTER 3 API functions

3.4.20 OS_TASK_IsTask()

Description

Determines whether a task control block belongs to a valid task.

Prototype

OS_BOOL OS_TASK_IsTask(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Return value

= 0 TCB is not used by any task.
≠ 0 TCB is used by a task.

Additional information

This function checks if the specified task is present in the internal task list. When a task is
terminated it is removed from the internal task list. In applications that create and terminate
tasks dynamically, this function may be useful to determine whether the task control block
and stack for one task may be reused for another task.

Example

void PrintTCBStatus(OS_TASK* pTask) {
 OS_BOOL b;

 b = OS_TASK_IsTask(pTask);
 if (b == 0) {
 printf("TCB can be reused for another task.\n");
 } else {
 printf("TCB refers to a valid task.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

79 CHAPTER 3 API functions

3.4.21 OS_TASK_Index2Ptr()

Description

Returns the task control block of the task with the specified Index.

Prototype

OS_TASK *OS_TASK_Index2Ptr(int TaskIndex);

Parameters

Parameter Description

TaskIndex
Index of a task control block in the task list.
This is a zero based index. TaskIndex 0 identifies the first
task control block.

Return value

= NULL No task control block with this index found.
≠ NULL Pointer to the task control block with the index TaskIndex.

Example

void PrintAllTaskNames(void) {
 OS_TASK* pTask;
 int TaskIndex;

 TaskIndex = 0;
 OS_TASK_EnterRegion();
 do {
 pTask = OS_TASK_Index2Ptr(TaskIndex);
 if (pTask != NULL) {
 printf("%s\n", pTask->sName);
 }
 TaskIndex++;
 } while (pTask != NULL);
 OS_TASK_LeaveRegion();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

80 CHAPTER 3 API functions

3.4.22 OS_TASK_RemoveAllTerminateHooks()

Description

Removes all hook functions from the OS_ON_TERMINATE_HOOK list which contains the list of
functions that are called when a task is terminated.

Prototype

void OS_TASK_RemoveAllTerminateHooks(void);

Additional information

OS_TASK_RemoveAllTerminateHooks() removes all hook functions which were previously
added by OS_TASK_AddTerminateHook().

Example

OS_ON_TERMINATE_HOOK _TerminateHook;

void TerminateHookFunc(OS_CONST_PTR OS_TASK* pTask) {
 // This function is called when OS_TASK_Terminate() is called.
 if (pTask == &MyTask) {
 free(MytaskBuffer);
 }
}
...
int main(void) {
 OS_TASK_AddTerminateHook(&_TerminateHook, TerminateHookFunc);
 OS_TASK_RemoveAllTerminateHooks();
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

81 CHAPTER 3 API functions

3.4.23 OS_TASK_RemoveTerminateHook()

Description

This function removes a hook function from the OS_ON_TERMINATE_HOOK list which contains
the list of functions that are called when a task is terminated.

Prototype

void OS_TASK_RemoveTerminateHook(OS_CONST_PTR OS_ON_TERMINATE_HOOK *pHook);

Parameters

Parameter Description

pHook Pointer to a variable of type OS_ON_TERMINATE_HOOK.

Additional information

OS_TASK_RemoveTerminateHook() removes the specified hook function which was previ-
ously added by OS_TASK_AddTerminateHook().

Example

OS_ON_TERMINATE_HOOK _TerminateHook;

void TerminateHookFunc(OS_CONST_PTR OS_TASK* pTask) {
 // This function is called when OS_TASK_Terminate() is called.
 if (pTask == &MyTask) {
 free(MytaskBuffer);
 }
}
...
int main(void) {
 OS_TASK_AddTerminateHook(&_TerminateHook, TerminateHookFunc);
 OS_TASK_RemoveTerminateHook(&_TerminateHook);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

82 CHAPTER 3 API functions

3.4.24 OS_TASK_Resume()

Description

Decrements the suspend count of the specified task and resumes it if the suspend count
reaches zero.

Prototype

void OS_TASK_Resume(OS_TASK* pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Additional information

The specified task’s suspend count is decremented. When the resulting value is zero, the
execution of the specified task is resumed. If the task is not blocked by other task blocking
mechanisms, the task is placed in the READY state and continues operation according to the
rules of the scheduler. In debug builds of embOS, OS_TASK_Resume() checks the suspend
count of the specified task. If the suspend count is zero when OS_TASK_Resume() is called,
OS_Error() is called with error OS_ERR_RESUME_BEFORE_SUSPEND.

Example

Please refer to the example of OS_TASK_Suspend().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

83 CHAPTER 3 API functions

3.4.25 OS_TASK_ResumeAll()

Description

Decrements the suspend count of all tasks that have a nonzero suspend count and resumes
these tasks when their respective suspend count reaches zero.

Prototype

void OS_TASK_ResumeAll(void);

Additional information

This function may be helpful to synchronize or start multiple tasks at the same time. The
function resumes all tasks, no specific task must be addressed. The function may be used
together with the functions OS_TASK_SuspendAll() and OS_TASK_SetInitialSuspendCn-
t().
The function may cause a task switch when a task with higher priority than the calling task
is resumed. The task switch will be executed after all suspended tasks are resumed.
The function may be called even when no task is suspended.

Example

Please refer to the example of OS_TASK_SetInitialSuspendCnt().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

84 CHAPTER 3 API functions

3.4.26 OS_TASK_SetContextExtension()

Description

Makes global variables or processor registers task-specific. The function may be used for
a variety of purposes. Typical applications are:
• Global variables such as “errno” in the C library, making the C-lib functions thread-safe.
• Additional, optional CPU / registers such as MAC / EMAC registers (multiply and

accumulate unit) if they are not saved in the task context per default.
• Coprocessor registers such as registers of a VFP (floating-point coprocessor).
• Data registers of an additional hardware unit such as a CRC calculation unit.

This allows the user to extend the task context as required. A major advantage is that
the task extension is task-specific. This means that the additional information (such as
floating-point registers) needs to be saved only by tasks that actually use these registers.
The advantage is that the task switching time of other tasks is not affected. The same is
true for the required stack space: Additional stack space is required only for the tasks which
actually save the additional registers.

Prototype

void OS_TASK_SetContextExtension
 (OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExtendContext);

Parameters

Parameter Description

pExtendContext

Pointer to the OS_EXTEND_TASK_CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

Additional information

pExtendContext, pExtendContext->pfSave and pExtendContext->pfRestore must not
be NULL. An embOS debug build calls OS_Error(OS_ERR_EXTEND_CONTEXT) when one of the
function pointers is NULL).
The save and restore functions must be declared according the function type used in the
structure. The sample below shows how the task stack must be addressed to save and
restore the extended task context.

The embOS OS_LIBMODE_XR library mode does not support task context extension.

Note

The task context can be extended only once per task with OS_TASK_SetContextEx-
tension(). The function must not be called multiple times for one task. Additional
task context extensions can be set with OS_TASK_AddContextExtension().

Note

embOS interrupts must not be enabled in the save and restore functions.

The OS_EXTEND_TASK_CONTEXT structure is defined as follows:

typedef struct OS_EXTEND_TASK_CONTEXT {
 void* (*pfSave) (void* pStack);
 void* (*pfRestore)(const void* pStack);
} OS_EXTEND_TASK_CONTEXT;

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

85 CHAPTER 3 API functions

Note

In embOS V4.16 and earlier the OS_EXTEND_TASK_CONTEXT structure was defined as
follows:

typedef struct OS_EXTEND_TASK_CONTEXT_STRUCT {
 void (*pfSave) (void OS_STACKPTR * pStack);
 void (*pfRestore)(const void OS_STACKPTR * pStack);
} OS_EXTEND_TASK_CONTEXT;

The Save/Restore functions did not return the stack pointer. When updating from
embOS V4.16 and earlier to embOS V4.20 and later please update your Save/Restore
functions accordingly.

Example

#include "RTOS.h"

//
// Custom structure with task context extension.
// In this case, the extended task context consists of just
// a single member, which is a global variable.
//
typedef struct {
 int GlobalVar;
} CONTEXT_EXTENSION;

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks
static int GlobalVar;

static void OS_STACKPTR* _Save(void OS_STACKPTR* pStack) {
 CONTEXT_EXTENSION* p;

 p = (CONTEXT_EXTENSION*)pStack;
#if (OS_STACK_GROWS_TOWARD_HIGHER_ADDR == 1)
 p++;
#else
 p--;
#endif
 p->GlobalVar = GlobalVar;
 return (void OS_STACKPTR*)p;
}

static void OS_STACKPTR* _Restore(const void OS_STACKPTR* pStack) {
 const CONTEXT_EXTENSION* p;

 p = (CONTEXT_EXTENSION*)pStack;
#if (OS_STACK_GROWS_TOWARD_HIGHER_ADDR == 1)
 p++;
#else
 p--;
#endif
 GlobalVar = p->GlobalVar;
 return (void OS_STACKPTR*)p;
}

const OS_EXTEND_TASK_CONTEXT _SaveRestore = {
 _Save, // Function pointer to save the task context
 _Restore // Function pointer to restore the task context
};

static void HPTask(void) {
 OS_TASK_SetContextExtension(&_SaveRestore);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

86 CHAPTER 3 API functions

 GlobalVar = 1;
 while (1) {
 OS_TASK_Delay_ms(10);
 }
}

static void LPTask(void) {
 OS_TASK_SetContextExtension(&_SaveRestore);
 GlobalVar = 2;
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

87 CHAPTER 3 API functions

3.4.27 OS_TASK_SetDefaultContextExtension()

Description

Sets the default task context extension.

Prototype

void OS_TASK_SetDefaultContextExtension
 (OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExtendContext);

Parameters

Parameter Description

pExtendContext

Pointer to the OS_EXTEND_TASK_CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

Additional information

After calling this function all newly started tasks will automatically use this context exten-
sion. The same task context extension is used for all tasks.
pExtendContext, pExtendContext->pfSave and pExtendContext->pfRestore must not
be NULL. An embOS debug build calls OS_Error(OS_ERR_EXTEND_CONTEXT) when one of the
function pointers is NULL).

Note

embOS interrupts must not be enabled in the save and restore functions.

Example

extern const OS_EXTEND_TASK_CONTEXT _SaveRestore;

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_SetDefaultContextExtension(&_SaveRestore);
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

88 CHAPTER 3 API functions

3.4.28 OS_TASK_SetDefaultStartHook()

Description

Sets a default hook routine which is executed before a task starts. May be used to perform
additional initialization for newly created tasks.

Prototype

void OS_TASK_SetDefaultStartHook(OS_ROUTINE_VOID* pfRoutine);

Parameters

Parameter Description

pfRoutine
Pointer to the hook routine.
If NULL is passed no hook routine gets executed.

Additional information

After calling OS_TASK_SetDefaultStartHook() all newly created tasks will automatically
call this hook routine when the tasks are started for the first time. The same hook function
is used for all tasks.

Example

void _HookRoutine(void) { // This routine is automatically executed before
 DoSomeThing(); // HPTask() gets executed
}

void HPTask(void) {
 while (1) {
 OS_TASK_Delay(10);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_SetDefaultStartHook(_HookRoutine); // Set task start hook routine
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

89 CHAPTER 3 API functions

3.4.29 OS_TASK_SetInitialSuspendCnt()

Description

Sets the initial suspend count for newly created tasks to 1 or 0. May be used to create
tasks which are initially suspended.

Prototype

void OS_TASK_SetInitialSuspendCnt(OS_U8 SuspendCnt);

Parameters

Parameter Description

SuspendCnt
1: Tasks will be created in suspended state.
0: Tasks will be created normally, unsuspended.

Additional information

Can be called at any time from main(), any task, ISR or software timer. After calling this
function with nonzero SuspendCnt, all newly created tasks will be automatically suspended
with a suspend count of one. This function may be used to inhibit further task switches,
which may be useful during system initialization.

Note

When this function is called from main() to initialize all tasks in suspended state, at
least one task must be resumed before the system is started by a call of OS_Start().
The initial suspend count should be reset to allow normal creation of tasks before the
system is started.

Example

//
// High priority task started first after OS_Start().
//
void InitTask(void) {
 OS_TASK_SuspendAll();
 // Prevent execution of all other existing tasks.
 OS_TASK_SetInitialSuspendCnt(1);
 // Prevent execution of subsequently created tasks.
 ... // New tasks may be created, but will not execute.
 ... // Even when InitTask() blocks itself, no other task may execute.
 OS_TASK_SetInitialSuspendCnt(0); // Reset initial suspend count for new tasks.
 OS_TASK_ResumeAll();
 // Resume all tasks that were blocked before or

 // were created in suspended state. May cause a
 // task switch.
 while (1) {
 ... // Do the normal work.
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

90 CHAPTER 3 API functions

3.4.30 OS_TASK_SetName()

Description

Allows modification of a task name at runtime.

Prototype

void OS_TASK_SetName(OS_TASK* pTask,
 const char* sName);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

sName
Pointer to a null-terminated string which is used as task
name. embOS does not copy the task name, but uses the
pointer exclusively.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

When using an embOS build without task name support, OS_TASK_SetName() performs no
modifications at all. The embOS OS_LIBMODE_XR library mode does not support task names.

Example

void Task(void) {
 OS_TASK_SetName(NULL, "Initializer Task");
 while (1) {
 OS_TASK_Delay(100);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

91 CHAPTER 3 API functions

3.4.31 OS_TASK_SetPriority()

Description

Assigns a priority to a specified task.

Prototype

void OS_TASK_SetPriority(OS_TASK* pTask,
 OS_PRIO Priority);

Parameters

Parameter Description

pTask
Pointer to a task control block of type OS_TASK or NULL for
current task.

Priority

Priority of the task. Must be within the following range:
1 ≤ Priority ≤ 28 - 1 = 0xFF for 8/16-bit CPUs
1 ≤ Priority ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs
Higher values indicate higher priorities. The type OS_PRIO is
defined as 32-bit value for 32-bit CPUs and 8-bit value for 8
or 16-bit CPUs per default.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Calling this function might lead to an immediate task switch.

Example

void Task(void) {
 OS_TASK_SetPriority(NULL, 20); // Change priority of this task to 20.
 while (1) {
 OS_TASK_Delay(100);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

92 CHAPTER 3 API functions

3.4.32 OS_TASK_SetTimeSlice()

Description

Assigns a specified time-slice period to a specified task.

Prototype

OS_U8 OS_TASK_SetTimeSlice(OS_TASK* pTask,
 OS_U8 TimeSlice);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

TimeSlice
New time slice period for the task in milliseconds. Must be
within the following range:
0 ≤ TimeSlice ≤ 255.

Return value

Previous time slice period of the task in milliseconds.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Setting the time slice period only affects tasks running in round-robin mode. The new time
slice period is interpreted as a reload value: It is used with the next activation of the task,
but does does not affect the remaining time slice of a running task.

A time slice value of zero is allowed, but disables round-robin task switches (see Disabling
preemptive task switches for tasks of equal priority on page 51).

OS_TASK_SetTimeSlice() assigns a time-slice only when using an embOS build with round-
robin support. The return value is valid only when using an embOS build without round-
robin support. The embOS OS_LIBMODE_XR library mode does not support round-robin. In
all other builds it will be 0.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TASK_Set-
TimeSlice().

Example

void Task(void) {
 OS_TASK_SetTimeSlice(NULL, 4); // Give this task a higher time slice
 while (1) {
 OS_TASK_Delay(100);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

93 CHAPTER 3 API functions

3.4.33 OS_TASK_Suspend()

Description

Suspends the specified task and increments a counter.

Prototype

void OS_TASK_Suspend(OS_TASK* pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Additional information

If pTask is NULL, the current task suspends. If the function succeeds, execution of the
specified task is suspended and the task’s suspend count is incremented. The specified task
will be suspended immediately. It can only be restarted by a call of OS_TASK_Resume() or
OS_TASK_ResumeAll().
OS_TASK_Suspend() may be called from main() but only if pTask is not NULL. Every task
has a suspend count with a maximum value of 3. If the suspend count is greater than zero,
the task is suspended.
In debug builds of embOS, upon calling OS_TASK_Suspend() more often than the maxi-
mum value without calling OS_TASK_Resume() the task’s internal suspend count is not in-
cremented and OS_Error() is called with error OS_ERR_SUSPEND_TOO_OFTEN.
Cannot be called from an interrupt handler or software timer as this function may cause an
immediate task switch. The debug build of embOS will call the OS_Error() function when
OS_TASK_Suspend() is not called from main() or a task.

Example

void HighPrioTask(void) {
 OS_TASK_Suspend(NULL);
 // Suspends itself, low priority task will be executed
}

void LowPrioTask(void) {
 OS_TASK_Resume(&HighPrioTCB); // Resumes the high priority task
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

94 CHAPTER 3 API functions

3.4.34 OS_TASK_SuspendAll()

Description

Suspends all tasks except the running task.

Prototype

void OS_TASK_SuspendAll(void);

Additional information

This function may be used to inhibit task switches. It may be useful during application
initialization or supervising.
The calling task will not be suspended.
After calling OS_TASK_SuspendAll(), the calling task may block or suspend itself. No other
task will be activated unless one or more tasks are resumed again. The tasks may be re-
sumed individually by a call of OS_TASK_Resume() or all at once by a call of OS_TASK_Re-
sumeAll().

Example

Please refer to the example of OS_TASK_SetInitialSuspendCnt().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

95 CHAPTER 3 API functions

3.4.35 OS_TASK_Terminate()

Description

Ends (terminates) a task.

Prototype

void OS_TASK_Terminate(OS_TASK* pTask);

Parameters

Parameter Description

pTask
Pointer to a task control block of type OS_TASK. A value of
NULL terminates the current task.

Additional information

The specified task will terminate immediately. The memory used for stack and task control
block can be reassigned.

All resources which are held by a task are released upon its termination. Any task may be
terminated regardless of its state.

Example

void Task(void) {
 OS_TASK_Terminate(&TCBHP); // Terminate HPTask()
 DoSomething();
 OS_TASK_Terminate(NULL); // Terminate itself
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

96 CHAPTER 3 API functions

3.4.36 OS_TASK_Wake()

Description

Ends delay of a specified task immediately.

Prototype

void OS_TASK_Wake(OS_TASK* pTask);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Additional information

Places the specified task, which is already suspended for a certain amount of time by a call
to OS_TASK_Delay(), OS_TASK_Delay_ms(), OS_TASK_Delay_us(), OS_TASK_Delay_Cy-
cles(), OS_TASK_DelayUntil(), OS_TASK_DelayUntil_ms(), OS_TASK_DelayUntil_us(),
or OS_TASK_DelayUntil_Cycles() back into the READY state.
The specified task will be activated immediately if it has a higher priority than the task that
had the highest priority before. If the specified task is not in the WAITING state (e.g. when
it has already been activated, or the delay has already expired, or for some other reason),
calling this function has no effect.

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 OS_TASK_Delay(10);
 OS_TASK_Wake(&TCBHP); // Wake HPTask() which is in delay state
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

97 CHAPTER 3 API functions

3.4.37 OS_TASK_Yield()

Description

Calls the scheduler to force a task switch.

Prototype

void OS_TASK_Yield(void);

Additional information

If the task is running on round-robin, it will be suspended if there is another task with equal
priority ready for execution.

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 DoSomething();
 }
}

static void LPTask(void) {
 while (1) {
 DoSomethingElse();
 //
 // This task doesn't need the complete time slice.
 // Give another task with the same priority the chance to run
 //
 OS_TASK_Yield();
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 100, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 4

Software Timers

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

99 CHAPTER 4 Introduction

4.1 Introduction
A software timer is an object that calls a user-specified routine after a specified delay. An
unlimited number of software timers can be created.

embOS software timers can be stopped, started and re-triggered much like hardware
timers. When defining a timer, you specify a routine to be called after the expiration of the
delay. Timer routines are similar to interrupt routines: they have a priority higher than the
priority of any task. For that reason they should be kept short just like interrupt routines.

Software timers are called by embOS with interrupts enabled, so they can be interrupted
by any hardware interrupt. But software timers run to completion and cannot interrupt
each other or be interrupted by a preemptive task switch. Generally, software timer run
in single-shot mode, which means they expire exactly once and call their callback routine
exactly once. By calling OS_TIMER_Restart() from within the callback routine, the timer is
restarted with its initial delay time and therefore functions as a periodic timer.

The state of timers can be checked by the functions OS_TIMER_GetStatus(), OS_TIMER_Ge-
tRemainingPeriod() and OS_TIMER_GetPeriod().

Example

#include "RTOS.h"
#include "BSP.h"

static OS_TIMER Timer0, Timer1;

static void Callback0(void) {
 BSP_ToggleLED(0);
 OS_TIMER_Restart(&Timer0);
}

static void Callback1(void) {
 BSP_ToggleLED(1);
 OS_TIMER_Restart(&Timer1);
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TIMER_CREATE(&Timer0, Callback0, 50u);
 OS_TIMER_CREATE(&Timer1, Callback1, 200u);
 OS_Start(); // Start embOS
 return 0;
}

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This allows
the callback function to be shared between different software timers. Since version 3.32m
of embOS, the extended timer structure and related extended timer functions were imple-
mented to allow parameter passing to the callback function. Except for the different call-
back function with parameter passing, extended timers behave exactly the same as regular
embOS software timers and may be used in parallel with these.

Example

#include "RTOS.h"
#include "BSP.h"

static OS_TIMER Timer0, Timer1;

static void Callback(void* Led) {
 BSP_ToggleLED((int)Led);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

100 CHAPTER 4 Introduction

 OS_TIMER_RestartEx(OS_TIMER_GetCurrentEx());
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TIMER_CREATEEX(&Timer0, Callback, 50u, (void*)0);
 OS_TIMER_CREATEEX(&Timer1, Callback, 200u, (void*)1);
 OS_Start(); // Start embOS
 return 0;
}

Note

embOS software timers can be configured for arbitrary periods either in milliseconds,
microseconds, or cycles. Internally, however, any software timer period is held in
cycles. This requires conversion of any period given in milliseconds or microseconds.
Due to using finite-precision arithmetics, that conversion is prone to roundoff errors:
Depending on the frequency of the used hardware counter, the conversion may result
in a software timer period that is short by a maximum of one single cycle. If this needs
to be avoided by the application, the timer period should be configured in cycles by
using appropriate software timer API functions.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

101 CHAPTER 4 API functions

4.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TIMER_Create()
Creates a software timer without
starting it. ● ● ● ●

OS_TIMER_Create_Cycles()
Creates a software timer without
starting it. ● ● ● ●

OS_TIMER_Create_ms()
Creates a software timer without
starting it. ● ● ● ●

OS_TIMER_Create_us()
Creates a software timer without
starting it. ● ● ● ●

OS_TIMER_CreateEx()
Creates an extended software
timer without starting it. ● ● ● ●

OS_TIMER_CreateEx_Cycles()
Creates an extended software
timer without starting it. ● ● ● ●

OS_TIMER_CreateEx_ms()
Creates an extended software
timer without starting it. ● ● ● ●

OS_TIMER_CreateEx_us()
Creates an extended software
timer without starting it. ● ● ● ●

OS_TIMER_Delete() Stops and deletes a software timer. ● ● ● ●

OS_TIMER_DeleteEx()
Stops and deletes an extended
software timer. ● ● ● ●

OS_TIMER_GetCurrent()
Returns a pointer to the data struc-
ture of the timer that just expired. ● ● ● ● ●

OS_TIMER_GetCurrentEx()
Returns a pointer to the data struc-
ture of the extended software
timer that just expired.

● ● ● ● ●

OS_TIMER_GetPeriod_Cycles()
Returns the reload value of a soft-
ware timer in cycles. ● ● ● ● ●

OS_TIMER_GetPeriod_ms()
Returns the reload value of a soft-
ware timer in milliseconds. ● ● ● ● ●

OS_TIMER_GetPeriod_us()
Returns the reload value of a soft-
ware timer in microseconds. ● ● ● ● ●

OS_TIMER_GetPeriodEx_Cycles()
Returns the reload value of an ex-
tended software timer in cycles. ● ● ● ● ●

OS_TIMER_GetPeriodEx_ms()
Returns the reload value of an ex-
tended software timer in millisec-
onds.

● ● ● ● ●

OS_TIMER_GetPeriodEx_us()
Returns the reload value of an ex-
tended software timer in microsec-
onds.

● ● ● ● ●

OS_TIMER_GetRemainingPeri-
od_Cycles()

Returns the remaining timer value
of a software timer in cycles. ● ● ● ● ●

OS_TIMER_GetRemainingPeri-
od_ms()

Returns the remaining timer value
of a software timer in milliseconds. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

102 CHAPTER 4 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TIMER_GetRemainingPeri-
od_us()

Returns the remaining timer val-
ue of a software timer in microsec-
onds.

● ● ● ● ●

OS_TIMER_GetRemainingPeri-
odEx_Cycles()

Returns the remaining timer value
of an extended software timer in
cycles.

● ● ● ● ●

OS_TIMER_GetRemainingPeri-
odEx_ms()

Returns the remaining timer value
of an extended software timer in
milliseconds.

● ● ● ● ●

OS_TIMER_GetRemainingPeri-
odEx_us()

Returns the remaining timer value
of an extended software timer in
microseconds.

● ● ● ● ●

OS_TIMER_GetStatus()
Returns the current timer status of
a software timer. ● ● ● ● ●

OS_TIMER_GetStatusEx()
Returns the current timer status of
an extended software timer. ● ● ● ● ●

OS_TIMER_Restart()
Restarts a software timer with its
initial time value. ● ● ● ● ●

OS_TIMER_RestartEx()
Restarts an extended software
timer with its initial time value. ● ● ● ● ●

OS_TIMER_SetPeriod()
Sets a new timer reload value for a
software timer in milliseconds. ● ● ● ● ●

OS_TIMER_SetPeriod_Cycles()
Sets a new timer reload value for a
software timer in cycles. ● ● ● ● ●

OS_TIMER_SetPeriod_ms()
Sets a new timer reload value for a
software timer in milliseconds. ● ● ● ● ●

OS_TIMER_SetPeriod_us()
Sets a new timer reload value for a
software timer in microseconds. ● ● ● ● ●

OS_TIMER_SetPeriodEx()
Sets a new timer reload value for
an extended software timer in mil-
liseconds.

● ● ● ● ●

OS_TIMER_SetPeriodEx_Cycles()
Sets a new timer reload value for
an extended software timer in cy-
cles.

● ● ● ● ●

OS_TIMER_SetPeriodEx_ms()
Sets a new timer reload value for
an extended software timer in mil-
liseconds.

● ● ● ● ●

OS_TIMER_SetPeriodEx_us()
Sets a new timer reload value for
an extended software timer in mi-
croseconds.

● ● ● ● ●

OS_TIMER_Start() Starts a software timer. ● ● ● ● ●
OS_TIMER_StartEx() Starts an extended software timer. ● ● ● ● ●
OS_TIMER_Stop() Stops a software timer. ● ● ● ● ●
OS_TIMER_StopEx() Stops an extended software timer. ● ● ● ● ●

OS_TIMER_Trigger()
Ends a software timer at once and
calls the timer callback function. ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

103 CHAPTER 4 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TIMER_TriggerEx()
Ends an extended software timer
at once and calls the timer callback
function.

● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

104 CHAPTER 4 API functions

4.2.1 OS_TIMER_Create()

Description

Creates a software timer without starting it.

Prototype

void OS_TIMER_Create(OS_TIMER* pTimer,
 OS_ROUTINE_VOID* pfTimerRoutine,
 OS_U32 ms);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

ms Initial period in milliseconds. Must not be zero.

Additional information

Using OS_TIMER_Create(), the point in time at which the timer becomes ready for execution
will be aligned to full milliseconds. For example, a software timer configured for a period
of 10 milliseconds which is started at a system time of 0.5 milliseconds will become ready
for execution at a system time of 10 milliseconds. The actual period therefore will be in
the following range: ms - 1 ≤ period ≤ ms. OS_TIMER_Create() may be used to reduce the
amount of context switches, for it can group several software timers’ executions to one
single point in time.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_Create().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_Start() or OS_TIMER_Restart().

OS_TIMER_Create() is intended for applications that have previously utilized embOS
(in which timers can execute with a system tick interrupt only, which typically oc-
curred each millisecond). For creating new applications with embOS-Ultra, consider using
OS_TIMER_Create_ms() instead.

Example

static OS_TIMER Timer;

static void Callback(void) {
 BSP_ToggleLED(0);
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitTask(void) {
 OS_TIMER_Create(&Timer, Callback, 100u);
 OS_TIMER_Start(&Timer);
}

Note

embOS offers a macro that calls the functions OS_TIMER_Create() and OS_TIMER_S-
tart() sequentially, allowing to more easily create software timers. As the macro
does “hide” the called functions, however, we typically suggest to call these functions
directly. If the macro shall still be used, its definition is as follows:

#define OS_TIMER_CREATE(pTimer, cb, Period) \

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

105 CHAPTER 4 API functions

 OS_TIMER_Create(pTimer, cb, Period); \
 OS_TIMER_Start(pTimer)

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

106 CHAPTER 4 API functions

4.2.2 OS_TIMER_Create_Cycles()

Description

Creates a software timer without starting it.

Prototype

void OS_TIMER_Create_Cycles(OS_TIMER* pTimer,
 OS_ROUTINE_VOID* pfTimerRoutine,
 OS_U32 Cycles);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

Cycles Initial period in cycles. Must not be zero.

Additional information

The parameter Cycles specifies the time interval at which the software timer becomes
ready for execution. For example, a software timer with a period of 1000 cycles which is
started at a system time of 500 cycles will be ready for execution at a system time of
1500 cycles.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_Create_Cy-
cles().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_Start() or OS_TIMER_Restart().

Example

static OS_TIMER Timer;

static void Callback(void) {
 BSP_ToggleLED(0);
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitFunc(void) {
 OS_TIMER_Create_Cycles(&Timer, Callback, 48000000u);
 OS_TIMER_Start(&Timer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

107 CHAPTER 4 API functions

4.2.3 OS_TIMER_Create_ms()

Description

Creates a software timer without starting it.

Prototype

void OS_TIMER_Create_ms(OS_TIMER* pTimer,
 OS_ROUTINE_VOID* pfTimerRoutine,
 OS_U32 ms);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

ms Initial period in milliseconds. Must not be zero.

Additional information

The parameter ms specifies the time interval at which the software timer becomes ready for
execution. For example, a software timer with a period of 10 milliseconds which is started
at a system time of 0.5 milliseconds will be ready for execution at a system time of 10.5
milliseconds.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_Create_ms().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_Start() or OS_TIMER_Restart().

Example

static OS_TIMER Timer;

static void Callback(void) {
 BSP_ToggleLED(0);
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitFunc(void) {
 OS_TIMER_Create_ms(&Timer, Callback, 100u);
 OS_TIMER_Start(&Timer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

108 CHAPTER 4 API functions

4.2.4 OS_TIMER_Create_us()

Description

Creates a software timer without starting it.

Prototype

void OS_TIMER_Create_us(OS_TIMER* pTimer,
 OS_ROUTINE_VOID* pfTimerRoutine,
 OS_U32 us);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

ms Initial period in microseconds. Must not be zero.

Additional information

The parameter us specifies the time interval at which the software timer becomes ready
for execution. For example, a software timer with a period of 10 microseconds which is
started at a system time of 0.5 microseconds will be ready for execution at a system time
of 10.5 microseconds.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_Create_us().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_Start() or OS_TIMER_Restart().

Example

static OS_TIMER Timer;

static void Callback(void) {
 BSP_ToggleLED(0);
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitFunc(void) {
 OS_TIMER_Create_us(&Timer, Callback, 100000u);
 OS_TIMER_Start(&Timer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

109 CHAPTER 4 API functions

4.2.5 OS_TIMER_CreateEx()

Description

Creates an extended software timer without starting it.

Prototype

void OS_TIMER_CreateEx(OS_TIMER_EX* pTimerEx,
 OS_ROUTINE_VOID_PTR* pfTimerRoutine,
 OS_U32 ms,
 void* pData);

Parameters

Parameter Description

pTimerEx
Pointer to an extended software timer object of type
OS_TIMER_EX.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

ms Initial period in milliseconds. Must not be zero.

pData
A void pointer which is used as parameter for the extended
timer callback function.

Additional information

Using OS_TIMER_CreateEx(), the point in time at which the timer becomes ready for exe-
cution will be aligned to full milliseconds. For example, a software timer configured for a
period of 10 milliseconds which is started at a system time of 0.5 milliseconds will become
ready for execution at a system time of 10 milliseconds. The actual period therefore will
be in the following range: ms - 1 ≤ period ≤ ms. OS_TIMER_CreateEx() may be used to
reduce the amount of context switches, for it can group several software timers’ executions
to one single point in time.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_CreateEx().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_StartEx() or OS_TIMER_RestartEx().

OS_TIMER_CreateEx() is intended for applications that have previously utilized embOS
(in which timers can execute with a system tick interrupt only, which typically oc-
curred each millisecond). For creating new applications with embOS-Ultra, consider using
OS_TIMER_CreateEx_ms() instead.

Example

static OS_TIMER_EX TimerEx0, TimerEx1;

static void Callback(void* pData) {
 BSP_ToggleLED((int)pData);
 OS_TIMER_RestartEx(NULL); // Make timer periodic
}

void InitTask(void) {
 OS_TIMER_CreateEx(&TimerEx0, Callback, 50u, (void*)0);
 OS_TIMER_CreateEx(&TimerEx1, Callback, 200u, (void*)1);
 OS_TIMER_StartEx(&TimerEx0);
 OS_TIMER_StartEx(&TimerEx1);
}

Note

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

110 CHAPTER 4 API functions

embOS offers a macro that calls the functions OS_TIMER_CreateEx() and
OS_TIMER_StartEx() sequentially, allowing to more easily create extended software
timers. As the macro does “hide” the called functions, however, we typically suggest to
call these functions directly. If the macro shall still be used, its definition is as follows:

#define OS_TIMER_CREATEEX(pTimer, cb, Period, pData) \
 OS_TIMER_CreateEx(pTimer, cb, Period, pData); \
 OS_TIMER_StartEx(pTimer)

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

111 CHAPTER 4 API functions

4.2.6 OS_TIMER_CreateEx_Cycles()

Description

Creates an extended software timer without starting it.

Prototype

void OS_TIMER_CreateEx_Cycles(OS_TIMER_EX* pTimerEx,
 OS_ROUTINE_VOID_PTR* pfTimerRoutine,
 OS_U32 Cycles,
 void* pData);

Parameters

Parameter Description

pTimerEx
Pointer to an extended software timer object of type
OS_TIMER_EX.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

Cycles Initial period in cycles. Must not be zero.

pData
A void pointer which is used as parameter for the extended
timer callback function.

Additional information

The parameter Cycles specifies the time interval at which the software timer becomes
ready for execution. For example, a software timer with a period of 1000 cycles which is
started at a system time of 500 cycles will be ready for execution at a system time of
1500 cycles.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_CreateEx_Cy-
cles().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_StartEx() or OS_TIMER_RestartEx().

Example

static OS_TIMER_EX TimerEx0, TimerEx1;

static void Callback(void* pData) {
 BSP_ToggleLED((int)pData);
 OS_TIMER_RestartEx(NULL); // Make timer periodic
}

void InitFunc(void) {
 OS_TIMER_CreateEx_Cycles(&TimerEx0, Callback, 12000000u, (void*)0);
 OS_TIMER_CreateEx_Cycles(&TimerEx1, Callback, 48000000u, (void*)1);
 OS_TIMER_StartEx(&TimerEx0);
 OS_TIMER_StartEx(&TimerEx1);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

112 CHAPTER 4 API functions

4.2.7 OS_TIMER_CreateEx_ms()

Description

Creates an extended software timer without starting it.

Prototype

void OS_TIMER_CreateEx_ms(OS_TIMER_EX* pTimerEx,
 OS_ROUTINE_VOID_PTR* pfTimerRoutine,
 OS_U32 ms,
 void* pData);

Parameters

Parameter Description

pTimerEx
Pointer to an extended software timer object of type
OS_TIMER_EX.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

ms Initial period in milliseconds. Must not be zero.

pData
A void pointer which is used as parameter for the extended
timer callback function.

Additional information

The parameter ms specifies the time interval at which the software timer becomes ready for
execution. For example, a software timer with a period of 10 milliseconds which is started
at a system time of 0.5 milliseconds will be ready for execution at a system time of 10.5
milliseconds.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_CreateEx_m-
s().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_StartEx() or OS_TIMER_RestartEx().

Example

static OS_TIMER_EX TimerEx0, TimerEx1;

static void Callback(void* pData) {
 BSP_ToggleLED((int)pData);
 OS_TIMER_RestartEx(NULL); // Make timer periodic
}

void InitFunc(void) {
 OS_TIMER_CreateEx_ms(&TimerEx0, Callback, 50u, (void*)0);
 OS_TIMER_CreateEx_ms(&TimerEx1, Callback, 200u, (void*)1);
 OS_TIMER_StartEx(&TimerEx0);
 OS_TIMER_StartEx(&TimerEx1);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

113 CHAPTER 4 API functions

4.2.8 OS_TIMER_CreateEx_us()

Description

Creates an extended software timer without starting it.

Prototype

void OS_TIMER_CreateEx_us(OS_TIMER_EX* pTimerEx,
 OS_ROUTINE_VOID_PTR* pfTimerRoutine,
 OS_U32 us,
 void* pData);

Parameters

Parameter Description

pTimerEx
Pointer to an extended software timer object of type
OS_TIMER_EX.

pfTimerRoutine
Pointer to the callback routine to be called by the RTOS after
expiration of the timer period.

us Initial period in microseconds. Must not be zero.

pData
A void pointer which is used as parameter for the extended
timer callback function.

Additional information

The parameter us specifies the time interval at which the software timer callback becomes
ready for execution. For example, a software timer with a period of 10 microseconds which
is started at a system time of 0.5 microseconds will be ready for execution at a system
time of 10.5 microseconds.

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIMER_Create-
Ex_us().

The timer is not automatically (re-)started. This must be done explicitly by a call to
OS_TIMER_StartEx() or OS_TIMER_RestartEx().

Example

static OS_TIMER_EX TimerEx0, TimerEx1;

static void Callback(void* pData) {
 BSP_ToggleLED((int)pData);
 OS_TIMER_RestartEx(NULL); // Make timer periodic
}

void InitFunc(void) {
 OS_TIMER_CreateEx_us(&TimerEx0, Callback, 500000u, (void*)0);
 OS_TIMER_CreateEx_us(&TimerEx1, Callback, 2000000u, (void*)1);
 OS_TIMER_StartEx(&TimerEx0);
 OS_TIMER_StartEx(&TimerEx1);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

114 CHAPTER 4 API functions

4.2.9 OS_TIMER_Delete()

Description

Stops and deletes a software timer.

Prototype

void OS_TIMER_Delete(OS_TIMER* pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Additional information

The timer is stopped and therefore removed from the linked list of running timers.

Example

static OS_TIMER Timer;

void Task(void) {
 //
 // Create and implicitly start timer
 //
 OS_TIMER_CREATE(&Timer, Callback, 100u);
 ...
 //
 // Delete timer
 //
 OS_TIMER_Delete(&Timer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

115 CHAPTER 4 API functions

4.2.10 OS_TIMER_DeleteEx()

Description

Stops and deletes an extended software timer.

Prototype

void OS_TIMER_DeleteEx(OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Additional information

The extended software timer is stopped and removed from the linked list of running timers.
In debug builds of embOS, the timer is also marked invalid.

Example

static OS_TIMER_EX TimerEx;

void Task(void) {
 //
 // Create and implicitly start timer
 //
 OS_TIMER_CREATEEX(&TimerEx, Callback, 100u, (void*)&TCB);
 ...
 //
 // Delete timer
 //
 OS_TIMER_DeleteEx(&TimerEx);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

116 CHAPTER 4 API functions

4.2.11 OS_TIMER_GetCurrent()

Description

Returns a pointer to the software timer object whose callback is currently executing.

Prototype

OS_TIMER *OS_TIMER_GetCurrent(void);

Return value

= NULL No software timer callback is currently being executed.
≠ NULL Pointer to the software timer object of type OS_TIMER.

Example

#include "RTOS.h"

static OS_TIMER Timer0, Timer1;

static void Callback(void) {
 OS_TIMER* pTimer = OS_TIMER_GetCurrent();
 OS_TIMER_Restart(pTimer); // Make timer periodic
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TIMER_CREATE(&Timer0, Callback, 50u);
 OS_TIMER_CREATE(&Timer1, Callback, 200u);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

117 CHAPTER 4 API functions

4.2.12 OS_TIMER_GetCurrentEx()

Description

Returns a pointer to the extended software timer object whose callback is currently exe-
cuting.

Prototype

OS_TIMER_EX* OS_TIMER_GetCurrentEx(void);

Return value

= NULL No software timer callback is currently being executed.
≠ NULL Pointer to the software timer object of type OS_TIMER_EX.

Example

#include "RTOS.h"
#include "BSP.h"

static OS_TIMER_EX TimerEx0, TimerEx1;

static void Callback(void* pData) {
 BSP_ToggleLED((int)pData);
 OS_TIMER* pTimerEx = OS_TIMER_GetCurrentEx();
 OS_TIMER_RestartEx(pTimerEx); // Make timer periodic
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TIMER_CREATEEX(&TimerEx0, Callback, 50u, (void*)0);
 OS_TIMER_CREATEEX(&TimerEx1, Callback, 200u, (void*)1);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

118 CHAPTER 4 API functions

4.2.13 OS_TIMER_GetPeriod_Cycles()

Description

Returns the reload value of a software timer in cycles.

Prototype

OS_U64 OS_TIMER_GetPeriod_Cycles(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

The reload value of the given software timer in cycles.

Additional information

The period returned is the reload value of the timer which was set as initial value when
the timer was created or which was modified using one of the functions OS_TIMER_SetPe-
riod(), OS_TIMER_SetPeriod_Cycles(), OS_TIMER_SetPeriod_ms(), or OS_TIMER_Set-
Period_us().

Example

static void PrintPeriod(OS_TIMER* pTimer) {
 int period;

 period = OS_TIMER_GetPeriod_Cycles(pTimer);
 printf("Period is %u cycles.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

119 CHAPTER 4 API functions

4.2.14 OS_TIMER_GetPeriod_ms()

Description

Returns the reload value of a software timer in milliseconds.

Prototype

OS_U32 OS_TIMER_GetPeriod_ms(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

The reload value of the given software timer in milliseconds.

Additional information

The period returned typically is the reload value of the timer which was set as initial
value when the timer was created or which was modified using one of the functions
OS_TIMER_SetPeriod(), OS_TIMER_SetPeriod_Cycles(), OS_TIMER_SetPeriod_ms(), or
OS_TIMER_SetPeriod_us(). However, due to finite integer arithmetic being used (both
when converting milliseconds into cycles and when converting cycles into milliseconds),
the returned period can be prone to rounding errors if the target’s counter frequency is
not a multiple of 1 kHz.

Example

static void PrintPeriod(OS_TIMER* pTimer) {
 int period;

 period = OS_TIMER_GetPeriod_ms(pTimer);
 printf("Period is %u milliseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

120 CHAPTER 4 API functions

4.2.15 OS_TIMER_GetPeriod_us()

Description

Returns the reload value of a software timer in microseconds.

Prototype

OS_U64 OS_TIMER_GetPeriod_us(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

The reload value of the given software timer in microseconds.

Additional information

The period returned typically is the reload value of the timer which was set as initial
value when the timer was created or which was modified using one of the functions
OS_TIMER_SetPeriod(), OS_TIMER_SetPeriod_Cycles(), OS_TIMER_SetPeriod_ms(), or
OS_TIMER_SetPeriod_us(). However, due to finite integer arithmetic being used (both
when converting microseconds into cycles and when converting cycles into microseconds),
the returned period can be prone to rounding errors if the target’s counter frequency is
not a multiple of 1 MHz.

Example

static void PrintPeriod(OS_TIMER* pTimer) {
 int period;

 period = OS_TIMER_GetPeriod_us(pTimer);
 printf("Period is %u microseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

121 CHAPTER 4 API functions

4.2.16 OS_TIMER_GetPeriodEx_Cycles()

Description

Returns the reload value of an extended software timer in cycles.

Prototype

OS_TIME OS_TIMER_GetPeriodEx_Cycles(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

The returned value is the current reload value of an extended software timer in cycles.

Additional information

The period returned is the reload value of the timer which was set as initial val-
ue when the timer was created or which was modified using one of the func-
tions OS_TIMER_SetPeriodEx(), OS_TIMER_SetPeriodEx_Cycles(), OS_TIMER_SetPeri-
odEx_ms(), or OS_TIMER_SetPeriodEx_us().

Example

static void PrintPeriodEx(OS_TIMER_EX* pTimerEx) {
 int period;

 period = OS_TIMER_GetPeriodEx_Cycles(pTimerEx);
 printf("Period is %u cycles.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

122 CHAPTER 4 API functions

4.2.17 OS_TIMER_GetPeriodEx_ms()

Description

Returns the reload value of an extended software timer in milliseconds.

Prototype

OS_TIME OS_TIMER_GetPeriodEx_ms(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

The returned value is the current reload value of an extended software timer in milliseconds.

Additional information

The period returned is the reload value of the timer which was set as initial val-
ue when the timer was created or which was modified using one of the func-
tions OS_TIMER_SetPeriodEx(), OS_TIMER_SetPeriodEx_Cycles(), OS_TIMER_SetPeri-
odEx_ms(), or OS_TIMER_SetPeriodEx_us().

Example

static void PrintPeriodEx(OS_TIMER_EX* pTimerEx) {
 int period;

 period = OS_TIMER_GetPeriodEx_ms(pTimerEx);
 printf("Period is %u milliseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

123 CHAPTER 4 API functions

4.2.18 OS_TIMER_GetPeriodEx_us()

Description

Returns the reload value of an extended software timer in microseconds.

Prototype

OS_TIME OS_TIMER_GetPeriodEx_us(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

The returned value is the current reload value of an extended software timer in microsec-
onds.

Additional information

The period returned is the reload value of the timer which was set as initial val-
ue when the timer was created or which was modified using one of the func-
tions OS_TIMER_SetPeriodEx(), OS_TIMER_SetPeriodEx_Cycles(), OS_TIMER_SetPeri-
odEx_ms(), or OS_TIMER_SetPeriodEx_us().

Example

static void PrintPeriodEx(OS_TIMER_EX* pTimerEx) {
 int period;

 period = OS_TIMER_GetPeriodEx_us(pTimerEx);
 printf("Period is %u microseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

124 CHAPTER 4 API functions

4.2.19 OS_TIMER_GetRemainingPeriod_Cycles()

Description

Returns the remaining timer value of a software timer in cycles.

Prototype

OS_U64 OS_TIMER_GetRemainingPeriod_Cycles(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

The remaining time until expiration of the given software timer in cycles.

Example

static void PrintRemainingPeriod_Cycles(OS_TIMER* pTimer) {
 int period;

 period = OS_TIMER_GetRemainingPeriod_Cycles(pTimer);
 printf("Remaining period is %u cycles.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

125 CHAPTER 4 API functions

4.2.20 OS_TIMER_GetRemainingPeriod_ms()

Description

Returns the remaining timer value of a software timer in milliseconds.

Prototype

OS_U32 OS_TIMER_GetRemainingPeriod_ms(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

The remaining time until expiration of the given software timer in milliseconds.

Additional information

Due to finite integer arithmetic being used when converting cycles into milliseconds, the
returned remaining period can be prone to rounding errors if the target’s counter frequency
is not a multiple of 1 kHz.

Example

static void PrintRemainingPeriod_ms(OS_TIMER* pTimer) {
 int period;

 period = OS_TIMER_GetRemainingPeriod_ms(pTimer);
 printf("Remaining period is %u milliseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

126 CHAPTER 4 API functions

4.2.21 OS_TIMER_GetRemainingPeriod_us()

Description

Returns the remaining timer value of a software timer in microseconds.

Prototype

OS_U64 OS_TIMER_GetRemainingPeriod_us(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

The remaining time until expiration of the given software timer in microseconds.

Additional information

Due to finite integer arithmetic being used when converting cycles into microseconds, the
returned remaining period can be prone to rounding errors if the target’s counter frequency
is not a multiple of 1 MHz.

Example

static void PrintRemainingPeriod_us(OS_TIMER* pTimer) {
 int period;

 period = OS_TIMER_GetRemainingPeriod_us(pTimer);
 printf("Remaining period is %u microseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

127 CHAPTER 4 API functions

4.2.22 OS_TIMER_GetRemainingPeriodEx_Cycles()

Description

Returns the remaining timer value of an extended software timer in cycles.

Prototype

OS_TIME OS_TIMER_GetRemainingPeriodEx_Cycles(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

The remaining time until expiration of the given extended software timer in cycles.

Example

static void PrintRemainingPeriodEx(OS_TIMER_EX* pTimerEx) {
 int period;

 period = OS_TIMER_GetRemainingPeriodEx_Cycles(pTimerEx);
 printf("Remaining period is %u cycles.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

128 CHAPTER 4 API functions

4.2.23 OS_TIMER_GetRemainingPeriodEx_ms()

Description

Returns the remaining timer value of an extended software timer in milliseconds.

Prototype

OS_TIME OS_TIMER_GetRemainingPeriodEx_ms(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

The remaining time until expiration of the given extended software timer in milliseconds.

Example

static void PrintRemainingPeriodEx(OS_TIMER_EX* pTimer) {
 int period;

 period = OS_TIMER_GetRemainingPeriodEx_ms(pTimer);
 printf("Remaining period is %u milliseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

129 CHAPTER 4 API functions

4.2.24 OS_TIMER_GetRemainingPeriodEx_us()

Description

Returns the remaining timer value of an extended software timer in microseconds.

Prototype

OS_TIME OS_TIMER_GetRemainingPeriodEx_us(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

The remaining time until expiration of the given extended software timer in microseconds.

Example

static void PrintRemainingPeriodEx(OS_TIMER_EX* pTimerEx) {
 int period;

 period = OS_TIMER_GetRemainingPeriodEx_us(pTimerEx);
 printf("Remaining period is %u microseconds.\n", period);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

130 CHAPTER 4 API functions

4.2.25 OS_TIMER_GetStatus()

Description

Returns the current timer status of a software timer.

Prototype

OS_BOOL OS_TIMER_GetStatus(OS_CONST_PTR OS_TIMER *pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Return value

Denotes whether the specified timer is running or not:

= 0 Timer has stopped.
≠ 0 Timer is running.

Example

static void PrintStatus(OS_TIMER* pTimer) {
 if (OS_TIMER_GetStatus(pTimer) == (OS_BOOL)0) {
 printf("Timer has stopped");
 } else {
 printf("Timer is running");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

131 CHAPTER 4 API functions

4.2.26 OS_TIMER_GetStatusEx()

Description

Returns the current timer status of an extended software timer.

Prototype

OS_BOOL OS_TIMER_GetStatusEx(OS_CONST_PTR OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Return value

Denotes whether the specified timer is running or not:

= 0 Timer has stopped.
≠ 0 Timer is running.

Example

static void PrintStatusEx(OS_TIMER_EX* pTimerEx) {
 if (OS_TIMER_GetStatusEx(pTimerEx) == (OS_BOOL)0) {
 printf("Timer has stopped");
 } else {
 printf("Timer is running");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

132 CHAPTER 4 API functions

4.2.27 OS_TIMER_Restart()

Description

Restarts a software timer with its initial time value.

Prototype

void OS_TIMER_Restart(OS_TIMER* pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Additional information

OS_TIMER_Restart() restarts the software timer using the initial time value programmed
at creation of the timer or which was set using one of the functions OS_TIMER_SetPeri-
od(), OS_TIMER_SetPeriod_Cycles(), OS_TIMER_SetPeriod_ms(), or OS_TIMER_SetPe-
riod_us().
OS_TIMER_Restart() can be called regardless the state of the timer. A running timer will
continue using the full initial time. A timer that was stopped before or had expired will be
restarted.
If NULL is passed for pTimer, the currently running timer is restarted. This can be used from
the software timer callback function only. If no timer is currently running, OS_Error() is
called with the error code OS_ERR_INV_TIMER.

Example

Please refer to the example for OS_TIMER_CREATE().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

133 CHAPTER 4 API functions

4.2.28 OS_TIMER_RestartEx()

Description

Restarts an extended software timer with its initial time value.

Prototype

void OS_TIMER_RestartEx(OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Additional information

OS_TIMER_RestartEx() restarts the software timer using the initial time value pro-
grammed at creation of the timer or which was set using one of the func-
tions OS_TIMER_SetPeriodEx(), OS_TIMER_SetPeriodEx_Cycles(), OS_TIMER_SetPeri-
odEx_ms(), or OS_TIMER_SetPeriodEx_us().
OS_TIMER_RestartEx() can be called regardless the state of the timer. A running timer
will continue using the full initial time. A timer that was stopped before or had expired will
be restarted.
If NULL is passed for pTimer, the currently running timer is restarted. This can be used from
the software timer callback function only. If no timer is currently running, OS_Error() is
called with the error code OS_ERR_INV_TIMER.

Example

Please refer to the example for OS_TIMER_CREATEEX().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

134 CHAPTER 4 API functions

4.2.29 OS_TIMER_SetPeriod()

Description

Sets a new timer reload value for a software timer in milliseconds.

Prototype

void OS_TIMER_SetPeriod(OS_TIMER* pTimer,
 OS_U32 ms);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.
ms Timer period in milliseconds. Must not be zero.

Additional information

OS_TIMER_SetPeriod() sets the timer period of the specified software timer. A call to
OS_TIMER_SetPeriod() does not affect the remaining time period of a running software
timer. Instead, ms is the reload value in milliseconds to be used when the timer is restarted
by calling OS_TIMER_Restart().

Using OS_TIMER_SetPeriod(), the point in time at which the timer becomes ready for
execution will be aligned to full milliseconds. For example, a software timer configured for a
period of 10 milliseconds which is started at a system time of 0.5 milliseconds will become
ready for execution at a system time of 10 milliseconds. The actual period therefore will
be in the following range: ms - 1 ≤ period ≤ ms. OS_TIMER_SetPeriod() may be used to
reduce the amount of context switches, for it can group several software timers’ executions
to one single point in time.

OS_TIMER_SetPeriod() is intended for applications that have previously utilized em-
bOS (in which timers can execute with a system tick interrupt only, which typically oc-
curred each millisecond). For creating new applications with embOS-Ultra, consider using
OS_TIMER_SetPeriod_ms() instead.

Example

static OS_TIMER Timer;

static void Callback(void) {
 TogglePulseOutput(); // Toggle output
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATE(&Timer, Callback, 500u);
 //
 // Set timer period to 200 milliseconds for further pulses
 //
 OS_TIMER_SetPeriod(&Timer, 200u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

135 CHAPTER 4 API functions

4.2.30 OS_TIMER_SetPeriod_Cycles()

Description

Sets a new timer reload value for a software timer in cycles.

Prototype

void OS_TIMER_SetPeriod_Cycles(OS_TIMER* pTimer,
 OS_U32 Cycles);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.
Cycles Timer period in cycles. Must not be zero.

Additional information

OS_TIMER_SetPeriod_Cycles() sets the timer period of the specified software timer. A call
to OS_TIMER_SetPeriod_Cycles() does not affect the remaining time period of a running
software timer. Instead, Cycles is the reload value in milliseconds to be used when the
timer is restarted by calling OS_TIMER_Restart().

The parameter Cycles specifies the time interval at which the software timer becomes
ready for execution. For example, a software timer configured for a period of 1000 cycles
which is started at a system time of 500 cycles will be ready for execution at a system
time of 1500 cycles.

Example

static OS_TIMER Timer;

static void Callback(void) {
 TogglePulseOutput(); // Toggle output
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATE(&Timer, Callback, 500u);
 //
 // Set timer period to 48,000,000 cycles for further pulses
 //
 OS_TIMER_SetPeriod_Cycles(&Timer, 48000000u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

136 CHAPTER 4 API functions

4.2.31 OS_TIMER_SetPeriod_ms()

Description

Sets a new timer reload value for a software timer in milliseconds.

Prototype

void OS_TIMER_SetPeriod_ms(OS_TIMER* pTimer,
 OS_U32 ms);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.
ms Timer period in milliseconds. Must not be zero.

Additional information

OS_TIMER_SetPeriod_ms() sets the timer period of the specified software timer. A call to
OS_TIMER_SetPeriod_ms() does not affect the remaining time period of a running software
timer. Instead, ms is the reload value in milliseconds to be used when the timer is restarted
by calling OS_TIMER_Restart().

The parameter ms specifies the time interval at which the software timer becomes ready for
execution. For example, a software timer configured for a period of 10 milliseconds which
is started at a system time of 0.5 milliseconds will become ready for execution at a system
time of 10.5 milliseconds.

Example

static OS_TIMER Timer;

static void Callback(void) {
 TogglePulseOutput(); // Toggle output
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATE(&Timer, Callback, 500u);
 //
 // Set timer period to 200 milliseconds for further pulses
 //
 OS_TIMER_SetPeriod_ms(&Timer, 200u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

137 CHAPTER 4 API functions

4.2.32 OS_TIMER_SetPeriod_us()

Description

Sets a new timer reload value for a software timer in microseconds.

Prototype

void OS_TIMER_SetPeriod_us(OS_TIMER* pTimer,
 OS_U32 us);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.
us Timer period in microseconds. Must not be zero.

Additional information

OS_TIMER_SetPeriod_us() sets the timer period of the specified software timer. A call to
OS_TIMER_SetPeriod_us() does not affect the remaining time period of a running software
timer. Instead, us is the reload value in microseconds to be used when the timer is restarted
by calling OS_TIMER_Restart().

The parameter us specifies the time interval at which the software timer becomes ready for
execution. For example, a software timer configured for a period of 10 microseconds which
is started at a system time of 0.5 microseconds will be ready for execution at a system
time of 10.5 microseconds.

Example

static OS_TIMER Timer;

static void Callback(void) {
 TogglePulseOutput(); // Toggle output
 OS_TIMER_Restart(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATE(&Timer, Callback, 500u);
 //
 // Set timer period to 200,000 microseconds for further pulses
 //
 OS_TIMER_SetPeriod_us(&Timer, 200000u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

138 CHAPTER 4 API functions

4.2.33 OS_TIMER_SetPeriodEx()

Description

Sets a new timer reload value for an extended software timer in milliseconds.

Prototype

void OS_TIMER_SetPeriodEx(OS_TIMER_EX* pTimerEx,
 OS_TIME Period);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.
Period Timer period in milliseconds. Must not be zero.

Additional information

OS_TIMER_SetPeriodEx() sets the timer period of the specified software timer. A call to
OS_TIMER_SetPeriodEx() does not affect the remaining time period of a running software
timer. Instead, ms is the reload value in milliseconds to be used when the timer is restarted
by calling OS_TIMER_RestartEx().
Using OS_TIMER_SetPeriodEx(), the point in time at which the timer becomes ready for
execution will be aligned to full milliseconds. For example, a software timer configured for a
period of 10 milliseconds which is started at a system time of 0.5 milliseconds will become
ready for execution at a system time of 10 milliseconds. The actual period therefore will
be in the following range: ms - 1 ≤ period ≤ ms.
OS_TIMER_SetPeriodEx() may be used to reduce the amount of context switches, for it
can group several software timers’ executions to one single point in time.
OS_TIMER_SetPeriodEx() is intended for applications that have previously utilized em-
bOS (in which timers can execute with a system tick interrupt only, which typically oc-
curred each millisecond). For creating new applications with embOS-Ultra, consider using
OS_TIMER_SetPeriodEx_ms() instead.

Example

static OS_TIMER_EX Timer;
static OS_TASK Task;

static void Callback(void* pData) {
 if (pData != NULL) {
 OS_TASKEVENT_Set((OS_TASK*)pData, 1u);
 }
 OS_TIMER_RestartEx(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start Pulse Timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATEEX(&Timer, Callback, 500u, (void*)&Task);
 //
 // Set timer period to 200 milliseconds for further pulses
 //
 OS_TIMER_SetPeriodEx(&Timer, 200);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

139 CHAPTER 4 API functions

4.2.34 OS_TIMER_SetPeriodEx_Cycles()

Description

Sets a new timer reload value for an extended software timer in cycles.

Prototype

void OS_TIMER_SetPeriodEx_Cycles(OS_TIMER_EX* pTimerEx,
 OS_TIME Period);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.
Period Timer period in cycles. Must not be zero.

Additional information

OS_TIMER_SetPeriodEx_Cycles() sets the timer period of the specified software timer. A
call to OS_TIMER_SetPeriodEx_Cycles() does not affect the remaining time period of a
running software timer. Instead, Cycles is the reload value in milliseconds to be used when
the timer is restarted by calling OS_TIMER_RestartEx().
The parameter Cycles specifies the time interval at which the software timer becomes
ready for execution. For example, a software timer with a period of 1000 cycles which is
started at a system time of 500 cycles will be ready for execution at a system time of
1500 cycles.

Example

static OS_TIMER_EX Timer;
static OS_TASK Task;

static void Callback(void* pData) {
 if (pData != NULL) {
 OS_TASKEVENT_Set((OS_TASK*)pData, 1u);
 }
 OS_TIMER_RestartEx(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start Pulse Timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATEEX(&Timer, Callback, 500u, (void*)&Task);
 //
 // Set timer period to 48,000,000 cycles for further pulses
 //
 OS_TIMER_SetPeriodEx_Cycles(&Timer, 48000000u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

140 CHAPTER 4 API functions

4.2.35 OS_TIMER_SetPeriodEx_ms()

Description

Sets a new timer reload value for an extended software timer in milliseconds.

Prototype

void OS_TIMER_SetPeriodEx_ms(OS_TIMER_EX* pTimerEx,
 OS_TIME Period);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.
Period Timer period in milliseconds. Must not be zero.

Additional information

OS_TIMER_SetPeriodEx_ms() sets the timer period of the specified software timer. A call
to OS_TIMER_SetPeriodEx_ms() does not affect the remaining time period of a running
software timer. Instead, ms is the reload value in milliseconds to be used when the timer
is restarted by calling OS_TIMER_RestartEx().
The parameter ms specifies the time interval at which the software timer becomes ready for
execution. For example, a software timer with a period of 10 milliseconds which is started
at a system time of 0.5 milliseconds will be ready for execution at a system time of 10.5
milliseconds.

Example

static OS_TIMER_EX Timer;
static OS_TASK Task;

static void Callback(void* pData) {
 if (pData != NULL) {
 OS_TASKEVENT_Set((OS_TASK*)pData, 1u);
 }
 OS_TIMER_RestartEx(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start Pulse Timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATEEX(&Timer, Callback, 500u, (void*)&Task);
 //
 // Set timer period to 200 milliseconds for further pulses
 //
 OS_TIMER_SetPeriodEx_ms(&Timer, 200);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

141 CHAPTER 4 API functions

4.2.36 OS_TIMER_SetPeriodEx_us()

Description

Sets a new timer reload value for an extended software timer in microseconds.

Prototype

void OS_TIMER_SetPeriodEx_us(OS_TIMER_EX* pTimerEx,
 OS_TIME Period);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.
Period Timer period in microseconds. Must not be zero.

Additional information

OS_TIMER_SetPeriodEx_us() sets the timer period of the specified software timer. A call
to OS_TIMER_SetPeriodEx_us() does not affect the remaining time period of a running
software timer. Instead, us is the reload value in microseconds to be used when the timer
is restarted by calling OS_TIMER_RestartEx().
The parameter us specifies the time interval at which the software timer becomes ready
for execution. For example, a software timer with a period of 10 microseconds which is
started at a system time of 0.5 microseconds will be ready for execution at a system time
of 10.5 microseconds.

Example

static OS_TIMER_EX Timer;
static OS_TASK Task;

static void Callback(void* pData) {
 if (pData != NULL) {
 OS_TASKEVENT_Set((OS_TASK*)pData, 1u);
 }
 OS_TIMER_RestartEx(&Timer); // Make timer periodic
}

void InitTask(void) {
 //
 // Create and implicitly start Pulse Timer with first pulse in 500 milliseconds
 //
 OS_TIMER_CREATEEX(&Timer, Callback, 500u, (void*)&Task);
 //
 // Set timer period to 200,000 microseconds for further pulses
 //
 OS_TIMER_SetPeriodEx_us(&Timer, 200000u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

142 CHAPTER 4 API functions

4.2.37 OS_TIMER_Start()

Description

Starts a software timer.

Prototype

void OS_TIMER_Start(OS_TIMER* pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Additional information

OS_TIMER_Start() is used for the following reasons:
• Start a timer which was created by OS_TIMER_Create(), OS_TIMER_Create_Cycles(),

OS_TIMER_Create_ms(), or OS_TIMER_Create_us(). The timer will start with its initial
timer value.

• Restart a timer which was stopped by calling OS_TIMER_Stop(). In this case, the timer
will continue with the remaining time value which was preserved upon stopping the
timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired: use OS_TIMER_Restart() to restart those timers.

Example

Please refer to the example for OS_TIMER_Create().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

143 CHAPTER 4 API functions

4.2.38 OS_TIMER_StartEx()

Description

Starts an extended software timer.

Prototype

void OS_TIMER_StartEx(OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Additional information

OS_TIMER_StartEx() is used for the following reasons:
• Start an extended software timer which was created by OS_TIMER_CreateEx(). The

timer will start with its initial timer value.
• Restart a timer which was stopped by calling OS_TIMER_StopEx(). In this case, the

timer will continue with the remaining time value which was preserved upon stopping
the timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_TIMER_RestartEx() to restart those timers.

Example

Please refer to the example for OS_TIMER_CreateEx().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

144 CHAPTER 4 API functions

4.2.39 OS_TIMER_Stop()

Description

Stops a software timer.

Prototype

void OS_TIMER_Stop(OS_TIMER* pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Additional information

The actual value of the software timer (the time until expiration) is maintained until
OS_TIMER_Start() lets the timer continue. The function has no effect on timers that are
not running, but have expired.

Example

static OS_TIMER TIMER100;

static void Task(void) {
 OS_TIMER_Restart(&TIMER100); // Start the timer
 ...
 OS_TIMER_Stop(&TIMER100); // Stop the timer
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

145 CHAPTER 4 API functions

4.2.40 OS_TIMER_StopEx()

Description

Stops an extended software timer.

Prototype

void OS_TIMER_StopEx(OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Additional information

The actual value of the extended software timer (the time until expiration) is maintained
until OS_TIMER_StartEx() lets the timer continue. The function has no effect on timers
that are not running, but have expired.

Example

static OS_TIMER_EX TIMER100;

static void Task(void) {
 OS_TIMER_RestartEx(&TIMER100); // Start the timer
 ...
 OS_TIMER_StopEx(&TIMER100); // Stop the timer
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

146 CHAPTER 4 API functions

4.2.41 OS_TIMER_Trigger()

Description

Ends a software timer at once and calls the timer callback function.

Prototype

void OS_TIMER_Trigger(OS_TIMER* pTimer);

Parameters

Parameter Description

pTimer Pointer to a software timer object of type OS_TIMER.

Additional information

OS_TIMER_Trigger() can be called regardless of the state of the timer. A running timer will
be stopped and the callback function is called. For a timer that was stopped before or had
expired the callback function will not be executed.

Example

static OS_TIMER TIMERUartRx;

void TimerUart(void) {
 HandleUartRx();
}

void UartRxIntHandler(void) {
 OS_TIMER_Trigger(&TIMERUartRx); // Character received, stop the software timer
}

void UartSendNextCharachter(void) {
 OS_TIMER_Start(&TIMERUartRx);
 // Send next UART character and wait for Rx character
}

int main(void) {
 OS_TIMER_Create(&TIMERUartRx, TimerUart, 20);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

147 CHAPTER 4 API functions

4.2.42 OS_TIMER_TriggerEx()

Description

Ends an extended software timer at once and calls the timer callback function.

Prototype

void OS_TIMER_TriggerEx (OS_TIMER_EX* pTimerEx);

Parameters

Parameter Description

pTimerEx Pointer to an extended software timer object of type OS_TIMER_EX.

Additional information

OS_TIMER_TriggerEx() can be called regardless of the state of the timer. A running timer
will be stopped and the callback function is called. For a timer that was stopped before or
had expired the callback function will not be executed.

Example

static OS_TIMER_EX TIMERUartRx;
static OS_U32 UartNum;

void TimerUart(void* pNum) {
 HandleUartRx((OS_U32)pNum);
}

void UartRxIntHandler(void) {
 OS_TIMER_TriggerEx(&TIMERUartRx);
 // Character received, stop the software timer
}

void UartSendNextCharachter(void) {
 OS_TIMER_StartEx(&TIMERUartRx);
 // Send next UART character and wait for Rx character
}

int main(void) {
 UartNum = 0;
 OS_TIMER_CreateEx(&TIMERUartRx, TimerUart, 20, (void*)&UartNum);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 5

Task Events

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

149 CHAPTER 5 Introduction

5.1 Introduction
Task events are another way of communicating between tasks. In contrast to semaphores
and mailboxes, task events are messages to a single, specified recipient. In other words,
a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for one
of several events) to occur. This task can be kept inactive until the event is signaled by
another task, a software timer or an interrupt handler. An event can be, for example, the
change of an input signal, the expiration of a timer, a key press, the reception of a character,
or a complete command.

Every task has an individual bit mask, which by default is the width of an unsigned integer,
usually the word size of the target processor. This means that 32 or 8 different events can
be signaled to and distinguished by every task. By calling OS_TASKEVENT_GetBlocked(), a
task waits for one of the events specified as a bit mask. As soon as one of the events occurs,
this task must be signaled by calling OS_TASKEVENT_Set(). The waiting task will then be put
in the READY state immediately. It will be activated according to the rules of the scheduler
as soon as it becomes the task with the highest priority of all tasks in the READY state.

By changing the definition of OS_TASKEVENT, which is defined as unsigned long on 32-bit
CPUs and unsigned char on 16 or 8-bit CPUs per default, the task events can be expanded
to 16 or 32 bits thus allowing more individual events, or reduced to smaller data types
on 32-bit CPUs.

Changing the definition of OS_TASKEVENT can only be done when using the embOS sources
in a project, or when the libraries are rebuilt from sources with the modified definition.

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TASKEVENT MyEvents;

 while (1) {
 MyEvents = OS_TASKEVENT_GetBlocked(3); // Wait for event bits 0 or 1
 if (MyEvents & 1) {
 _HandleEvent0();
 } else
 _HandleEvent1();
 }
 }
}

static void LPTask(void) {
 while (1) {
 OS_TASK_Delay_ms(200);
 OS_TASKEVENT_Set(&TCBHP, 1);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

150 CHAPTER 5 API functions

5.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TASKEVENT_Clear()
Returns the actual state of events and
then clears all events of a specified task. ● ● ● ● ●

OS_TASKEVENT_ClearEx()
Returns the actual state of events and
then clears the specified events for the
specified task.

● ● ● ● ●

OS_TASKEVENT_Get()
Returns a list of events that have oc-
curred for a specified task. ● ● ● ● ●

OS_TASKEVENT_GetBlocked()
Waits for one of the events specified in
the bit mask and clears the event mem-
ory when the function returns.

● ●

OS_TASKEVENT_GetSingle-
Blocked()

Waits for one of the specified events and
clears only those events that were speci-
fied in the event mask.

● ●

OS_TASKEVENT_GetSingle-
Timed()

Waits for one of the specified events
for a given time and clears only those
events that were specified in the event
mask.

● ●

OS_TASKEVENT_GetTimed()
Waits for the specified events for a giv-
en time, and clears all task events when
the function returns.

● ●

OS_TASKEVENT_Set() Signals event(s) to a specified task. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

151 CHAPTER 5 API functions

5.2.1 OS_TASKEVENT_Clear()

Description

Returns the actual state of events and then clears all events of a specified task.

Prototype

OS_TASKEVENT OS_TASKEVENT_Clear(OS_TASK* pTask);

Parameters

Parameter Description

pTask
Pointer to a task control block of type OS_TASK. The task
whose event mask is to be returned, NULL means current
task.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears all
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void Task(void) {
 OS_TASKEVENT MyEvents;

 MyEvents = OS_TASKEVENT_Clear(NULL);

 while (1) {
 //
 // Wait for event 0 or 1 to be signaled
 //
 MyEvents = OS_TASKEVENT_GetBlocked(3);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

152 CHAPTER 5 API functions

5.2.2 OS_TASKEVENT_ClearEx()

Description

Returns the actual state of events and then clears the specified events for the specified task.

Prototype

OS_TASKEVENT OS_TASKEVENT_ClearEx(OS_TASK* pTask,
 OS_TASKEVENT EventMask);

Parameters

Parameter Description

pTask
Pointer to a task control block of type OS_TASK. The task
whose event mask is to be returned, NULL means current
task.

EventMask
The bit mask containing the event bits which shall be
cleared.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears the
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void Task(void) {
 OS_TASKEVENT MyEvents;

 MyEvents = OS_TASKEVENT_ClearEx(NULL, 1);

 while (1) {
 //
 // Wait for event 0 or 1 to be signaled
 //
 MyEvents = OS_TASKEVENT_GetBlocked(3);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

153 CHAPTER 5 API functions

5.2.3 OS_TASKEVENT_Get()

Description

Returns a list of events that have occurred for a specified task.

Prototype

OS_TASKEVENT OS_TASKEVENT_Get(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask
Pointer to a task control block of type OS_TASK. The task
whose event mask is to be returned, NULL means current
task.

Return value

All events that have been signaled.

Additional information

By calling this function, all events remain signaled: event memory is not cleared. This is
one way for a task to query which events are signaled. The task is not suspended if no
events are signaled.

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

void PrintEvents(void) {
 OS_TASKEVENT MyEvents;

 MyEvents = OS_TASKEVENT_Get(NULL);
 printf("Events %u\n", MyEvents);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

154 CHAPTER 5 API functions

5.2.4 OS_TASKEVENT_GetBlocked()

Description

Waits for one of the events specified in the bit mask and clears the event memory when
the function returns.

Prototype

OS_TASKEVENT OS_TASKEVENT_GetBlocked(OS_TASKEVENT EventMask);

Parameters

Parameter Description

EventMask
The event bit mask containing the event bits, which shall be
waited for.

Return value

All events that have been signaled.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the specified
events will wake the task. These events are signaled by another task, a software timer or
an interrupt handler. Any bit that is set in the event mask enables the corresponding event.

When a task waits on multiple events, all of the specified events shall be requested by a
single call of OS_TASKEVENT_GetBlocked() and all events must be be handled when the
function returns.

Note that all events of the task are cleared when the function returns, even those events
that were not set in the parameters in the EventMask. The calling function must handle the
returned value, otherwise events may get lost. Consecutive calls of OS_TASKEVENT_Get-
Blocked() with different event masks will not work, as all events are cleared when the
function returns. If this is not desired, OS_TASKEVENT_GetSingleBlocked() may be used
instead.

Example

void Task(void) {
 OS_TASKEVENT MyEvents;

 while(1) {
 //
 // Wait for event 0 or 1 to be signaled
 //
 MyEvents = OS_TASKEVENT_GetBlocked(3);
 //
 // Handle all events
 //
 if (MyEvents & 1) {
 _HandleEvent0();
 }
 if (MyEvents & 2) {
 _HandleEvent1();
 }
 }
}

For another example, see OS_TASKEVENT_Set().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

155 CHAPTER 5 API functions

5.2.5 OS_TASKEVENT_GetSingleBlocked()

Description

Waits for one of the specified events and clears only those events that were specified in
the event mask.

Prototype

OS_TASKEVENT OS_TASKEVENT_GetSingleBlocked(OS_TASKEVENT EventMask);

Parameters

Parameter Description

EventMask
The event bit mask containing the event bits, which shall be
waited for and reset.

Return value

All requested events that have been signaled and were specified in the EventMask.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the requested
events will wake the task. These events are signaled by another task, a software timer, or an
interrupt handler. Any bit in the event mask may enable the corresponding event. When the
function returns, it delivers all of the requested events. The requested events are cleared
in the event state of the task. All other events remain unchanged and will not be returned.

OS_TASKEVENT_GetSingleBlocked() may be used in consecutive calls with individual re-
quests. Only requested events will be handled, no other events can get lost. When the
function waits on multiple events, the returned value must be evaluated because the func-
tion returns when at least one of the requested events was signaled. When the function
requests a single event, the returned value does not need to be evaluated.

Example

void Task(void) {
 OS_TASKEVENT MyEvents;

 while(1) {
 //
 // Wait for event 0 or 1 to be signaled
 //
 MyEvents = OS_TASKEVENT_GetSingleBlocked(3);
 //
 // Handle all events
 //
 if (MyEvents & 1) {
 _HandleEvent0();
 }
 if (MyEvents & 2) {
 _HandleEvent1();
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

156 CHAPTER 5 API functions

5.2.6 OS_TASKEVENT_GetSingleTimed()

Description

Waits for one of the specified events for a given time and clears only those events that
were specified in the event mask.

Prototype

OS_TASKEVENT OS_TASKEVENT_GetSingleTimed(OS_TASKEVENT EventMask,
 OS_U32 Timeout);

Parameters

Parameter Description

EventMask
The event bit mask containing the event bits, which shall be
waited for and reset.

Timeout
Maximum time in milliseconds until the event must be sig-
naled.

Return value

= 0 No event available within the specified timeout.
≠ 0 All events that have been signaled.

Additional information

If none of the specified events in the event mask are available, the task is suspended for
the given time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Timeout time.

If no event is signaled within the specified timeout, the calling task gets activated and
return zero.

Any bit in the event mask may enable the corresponding event. All unmasked events remain
unchanged.

Example

void Task(void) {
 OS_TASKEVENT MyEvents;

 while(1) {
 //
 // Wait for event 0 and 1 to be signaled within 10 milliseconds
 //
 MyEvents = OS_TASKEVENT_GetSingleTimed(3, 10);
 if (MyEvents == 0) {
 _HandleTimeout();
 } else {
 if (MyEvents & 1) {
 _HandleEvent0();
 }
 if (MyEvents & 2) {
 _HandleEvent1();
 }
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

157 CHAPTER 5 API functions

5.2.7 OS_TASKEVENT_GetTimed()

Description

Waits for the specified events for a given time, and clears all task events when the function
returns.

Prototype

OS_TASKEVENT OS_TASKEVENT_GetTimed(OS_TASKEVENT EventMask,
 OS_U32 Timeout);

Parameters

Parameter Description

EventMask
The event bit mask containing the event bits, which shall be
waited for.

Timeout
Maximum time in milliseconds until the events must be sig-
naled.

Return value

= 0 No event available within the specified timeout.
≠ 0 All events that have been signaled.

Additional information

If none of the specified events in the event mask are available, the task is suspended for
the given time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Timeout time.

If no event is signaled within the specified timeout, the calling task gets activated and
return zero.

Note that the function returns all events that were signaled until the task continues execu-
tion, even those which were not requested. The calling function must handle the returned
value, otherwise events may get lost. Consecutive calls of OS_TASKEVENT_GetTimed() with
different event masks will not work, as all events are cleared when the function returns. If
this is not desired, OS_TASKEVENT_GetSingleTimed() may be used instead.

Example

void Task(void) {
 OS_TASKEVENT MyEvents;

 while(1) {
 //
 // Wait for event 0 and 1 to be signaled within 10 milliseconds
 //
 MyEvents = OS_TASKEVENT_GetTimed(3, 10);
 if ((MyEvents & 3) == 0) {
 _HandleTimeout();
 } else {
 if (MyEvents & 1) {
 _HandleEvent0();
 }
 if (MyEvents & 2) {
 _HandleEvent1();
 }
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

158 CHAPTER 5 API functions

5.2.8 OS_TASKEVENT_Set()

Description

Signals event(s) to a specified task.

Prototype

void OS_TASKEVENT_Set(OS_TASK* pTask,
 OS_TASKEVENT Event);

Parameters

Parameter Description

pTask Pointer to a task control block of type OS_TASK.

Event
The event bit mask containing the event bits, which shall be
signaled.

Additional information

If the specified task is waiting for one of these events, it will be put in the READY state and
activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be received
either via the keyboard (EVENT_KEYPRESSED) or serial interface (EVENT_SERIN):

#define EVENT_KEYPRESSED (1u << 0)
#define EVENT_SERIN (1u << 1)

static OS_STACKPTR int Stack0[96]; // Task stacks
static OS_TASK TCB0; // Data area for tasks (task control blocks)

void Task0(void) {
 OS_TASKEVENT MyEvent;
 while(1)
 MyEvent = OS_TASKEVENT_GetBlocked(EVENT_KEYPRESSED | EVENT_SERIN)
 if (MyEvent & EVENT_KEYPRESSED) {
 // Handle key press
 }
 if (MyEvent & EVENT_SERIN) {
 // Handle serial reception
 }
 }
}

void Key_ISR(void) { // ISR for external interrupt
 OS_TASKEVENT_Set(&TCB0, EVENT_KEYPRESSED); // Notify task that key was pressed
}

void UART_ISR(void) { // ISR for UART interrupt
 OS_TASKEVENT_Set(&TCB0, EVENT_SERIN);
 // Notify task that a character was received
}

void InitTask(void) {
 OS_TASK_CREATE(&TCB0, "HPTask", 100, Task0, Stack0);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 6

Event Objects

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

160 CHAPTER 6 Introduction

6.1 Introduction
Event objects are another type of communication and synchronization object. In contrast
to task-events, event objects are standalone objects which are not owned by any task.

The purpose of an event object is to enable one or multiple tasks to wait for a particular
event to occur. The tasks can be kept suspended until the event is set by another task,
a software timer, or an interrupt handler. An event can be, for example, the change of
an input signal, the expiration of a timer, a key press, the reception of a character, or a
complete command.

Compared to a task event, the signaling function does not need to know which task is
waiting for the event to occur.

Using event object API

There are two groups of event object API functions. The first group does not have “mask”
as part of their name and operates on the complete event object. These functions are
OS_EVENT_Get(), OS_EVENT_GetBlocked(), OS_EVENT_GetTimed(), OS_EVENT_Pulse(),
and OS_EVENT_Set(). The second group does have “mask” as part of the API name and
operates on a event object bit mask. These functions are OS_EVENT_GetMask(), OS_EVEN-
T_GetMaskBlocked(), OS_EVENT_GetMaskMode(), OS_EVENT_GetMaskTimed(), OS_EVEN-
T_SetMask(), and OS_EVENT_SetMaskMode(). Any event object is in non-signaled state
when the event object value is zero, and in signaled state when the event object value is
unequal to zero. We do not recommend to use both API groups on the same event object.
For example, you must not wait for an event object with OS_EVENT_GetBlocked() and sig-
nal that event object with OS_EVENT_SetMask(), but with OS_EVENT_Set().

Reset mode

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_CreateEx()
or may be modified by a call of OS_EVENT_SetResetMode().
• OS_EVENT_RESET_MODE_SEMIAUTO:

This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embOS
versions (prior version 3.88a). Calling OS_EVENT_Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEMIAUTO to be compatible with older embOS versions.

• OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_GetTimed() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

• OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Mask mode

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT_CreateEx()
or may be modified by a call of OS_EVENT_SetMaskMode().
• OS_EVENT_MASK_MODE_OR_LOGIC:

This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.

• OS_EVENT_MASK_MODE_AND_LOGIC:
With this mode all specified event object mask bits must be signaled.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

161 CHAPTER 6 Introduction

6.1.1 Examples

Activate a task from interrupt by an event object

The following code example shows usage of an event object which is signaled from an ISR
handler to activate a task. The waiting task should reset the event after waiting for it.

static OS_EVENT _Event;

static void _ISRHandler(void) {
 OS_INT_Enter();
 //
 // Wake up task to do the rest of the work
 //
 OS_EVENT_Set(&_Event);
 OS_INT_Leave();
}

static void Task(void) {
 while (1) {
 OS_EVENT_GetBlocked(&_Event);
 //
 // Do the rest of the work (which has not been done in the ISR)
 //
 ...
 }
}

Activating multiple tasks using a single event object

The following sample program shows how to synchronize multiple tasks with one event
object.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128], StackHW[128];
static OS_TASK TCBHP, TCBLP, TCBHW;
static OS_EVENT HW_Event;

static void HPTask(void) {
 //
 // Wait until HW module is set up
 //
 OS_EVENT_GetBlocked(&HW_Event);
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 //
 // Wait until HW module is set up
 //
 OS_EVENT_GetBlocked(&HW_Event);
 while (1) {
 OS_TASK_Delay_ms(200);
 }
}

static void HWTask(void) {
 //
 // Wait until HW module is set up
 //
 OS_TASK_Delay_ms(100);
 //
 // Init done, send broadcast to waiting tasks

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

162 CHAPTER 6 Introduction

 //
 OS_EVENT_Set(&HW_Event);
 while (1) {
 OS_TASK_Delay_ms(40);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_TASK_CREATE(&TCBHW, "HWTask", 25, HWTask, StackHW);
 OS_EVENT_Create(&HW_Event);
 OS_Start(); // Start multitasking
 return 0;
}

Using event object mask bits

The following sample program shows how to use event object mask bits.

#include "RTOS.h"

#define EVENT1_BITMASK (1u << 0)
#define EVENT2_BITMASK (1u << 1)

static OS_STACKPTR int StackTask1[128], StackTask2[128], StackLP[128];
static OS_TASK TCBTask1, TCBTask2, TCBLP;
static OS_EVENT _Event;

static void Task1(void) {
 OS_EVENT_GetMaskBlocked(&_Event, EVENT1_BITMASK);
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

static void Task2(void) {
 OS_EVENT_GetMaskBlocked(&_Event, EVENT2_BITMASK);
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 OS_EVENT_SetMask(&_Event, EVENT1_BITMASK);
 OS_EVENT_SetMask(&_Event, EVENT2_BITMASK);
 while (1) {
 OS_TASK_Delay_ms(200);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBTask1, "Task 1", 100, Task1, StackTask1);
 OS_TASK_CREATE(&TCBTask2, "Task 2", 100, Task2, StackTask2);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_EVENT_Create(&_Event);
 OS_Start(); // Start multitasking
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

163 CHAPTER 6 API functions

6.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_EVENT_Create() Creates an event object. ● ● ● ●

OS_EVENT_CreateEx()
Creates an extended event object and
sets its reset behavior as well as mask
bits behavior.

● ● ● ●

OS_EVENT_Delete() Deletes an event object. ● ●

OS_EVENT_Get()
Retrieves current state of an event ob-
ject without modification or suspension. ● ● ● ● ●

OS_EVENT_GetBlocked()
Waits for an event object and suspends
the task until the event has been sig-
naled.

● ●

OS_EVENT_GetMask()
Returns the bits of an event object that
match the given EventMask. ● ● ●

OS_EVENT_GetMaskBlocked()
Waits for the specified event bits in
EventMask, depending on the current
mask mode.

● ●

OS_EVENT_GetMaskMode()
Retrieves the current mask mode (mask
bits behavior) of an event object. ● ● ● ● ●

OS_EVENT_GetMaskTimed()
Waits for the specified event bits Event-
Mask with timeout, depending on the
current mask mode.

● ●

OS_EVENT_GetResetMode()
Returns the reset mode (reset behavior)
of an event object. ● ● ● ● ●

OS_EVENT_GetTimed()
Waits for an event and suspends the
task for a specified time or until the
event has been signaled.

● ●

OS_EVENT_Pulse()
Signals an event object and resumes
waiting tasks, then resets the event ob-
ject to non-signaled state.

● ● ● ● ●

OS_EVENT_Reset()
Resets the specified event object to non-
signaled state. ● ● ● ● ●

OS_EVENT_ResetMask()
Resets the specified mask bits in the
event object to non-signaled state. ● ● ● ● ●

OS_EVENT_Set()
Sets an event object to signaled state,
or resumes tasks which are waiting at
the event object.

● ● ● ● ●

OS_EVENT_SetMask()
Sets the event mask bits of an event ob-
ject. ● ● ● ● ●

OS_EVENT_SetMaskMode()
Sets the mask mode of an event object
to OR/AND logic. ● ● ● ● ●

OS_EVENT_SetResetMode()
Sets the reset behavior of an event ob-
ject to automatic, manual or semi-auto. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

164 CHAPTER 6 API functions

6.2.1 OS_EVENT_Create()

Description

Creates an event object.

Prototype

void OS_EVENT_Create(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

On creation, the event is set to non-signaled state.

The event is created with the default reset behavior which is semi-auto. Since version
3.88a of embOS, the reset behavior of the event can be modified by a call of the function
OS_EVENT_SetResetMode().

Example

static OS_EVENT _Event;

void HPTask(void) {
 OS_EVENT_GetMaskBlocked(&_Event, 3); // Wait for bit 0 AND 1 to be set
}

void LPTask(void) {
 OS_EVENT_SetMask(&_Event, 1); // Resumes HPTask due to OR logic
}

int main(void) {
 ...
 OS_EVENT_Create(&_Event);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

165 CHAPTER 6 API functions

6.2.2 OS_EVENT_CreateEx()

Description

Creates an extended event object and sets its reset behavior as well as mask bits behavior.

Prototype

void OS_EVENT_CreateEx(OS_EVENT* pEvent,
 unsigned int Mode);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Mode

Specifies the reset and mask bits behavior of the event ob-
ject. You can use one of the predefined reset modes:
OS_EVENT_RESET_MODE_SEMIAUTO
OS_EVENT_RESET_MODE_MANUAL
OS_EVENT_RESET_MODE_AUTO
and one of the mask modes:
OS_EVENT_MASK_MODE_OR_LOGIC
OS_EVENT_MASK_MODE_AND_LOGIC
which are described under additional information.

Additional information

On creation, the event is set to non-signaled state.

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_CreateEx()
or may be modified by a call of OS_EVENT_SetResetMode().
• OS_EVENT_RESET_MODE_SEMIAUTO:

This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embOS
versions (prior version 3.88a). Calling OS_EVENT_Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEMIAUTO to be compatible with older embOS versions.

• OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_GetTimed() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

• OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT_CreateEx()
or may be modified by a call of OS_EVENT_SetMaskMode().
• OS_EVENT_MASK_MODE_OR_LOGIC:

This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.

• OS_EVENT_MASK_MODE_AND_LOGIC:
With this mode all specified event object mask bits must be signaled.

Example

static OS_EVENT _Event;

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

166 CHAPTER 6 API functions

void HPTask(void) {
 OS_EVENT_GetMaskBlocked(&_Event, 3); // Wait for bit 0 AND 1 to be set
}

void LPTask(void) {
 OS_EVENT_SetMask(&_Event, 1); // Does not resume HPTask
 OS_EVENT_SetMask(&_Event, 2);
 // Resume HPTask since both bits are now set
}

int main(void) {
 ...
 OS_EVENT_CreateEx(&_Event, OS_EVENT_RESET_MODE_AUTO |
 OS_EVENT_MASK_MODE_AND_LOGIC);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

167 CHAPTER 6 API functions

6.2.3 OS_EVENT_Delete()

Description

Deletes an event object.

Prototype

void OS_EVENT_Delete(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

A debug build of embOS checks whether pEvent addresses a valid event object and will call
OS_Error() with error code OS_ERR_EVENT_INVALID in case of an error. Before deleting
an event object, make sure that no task is waiting for the event object. If any task is
waiting at the event object, a debug build of embOS calls OS_Error() with error code
OS_ERR_EVENT_DELETE.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 OS_EVENT_Delete(&_Event);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

168 CHAPTER 6 API functions

6.2.4 OS_EVENT_Get()

Description

Retrieves current state of an event object without modification or suspension.

Prototype

OS_BOOL OS_EVENT_Get(OS_CONST_PTR OS_EVENT *pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Return value

= 0 Event object is not set to signaled state.
≠ 0 Event object is set to signaled state.

Additional information

By calling this function, the actual state of the event object remains unchanged. pEvent
must address an existing event object, which has been created before by a call of OS_EVEN-
T_Create().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get(). A debug build of embOS will check whether pEvent addresses a valid
event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of
an error.

Example

static OS_EVENT _Event;

void Task(void) {
 OS_BOOL Status;

 Status = OS_EVENT_Get(&_Event);
 printf("Event Object Status: %d\n", Status);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

169 CHAPTER 6 API functions

6.2.5 OS_EVENT_GetBlocked()

Description

Waits for an event object and suspends the task until the event has been signaled.

Prototype

void OS_EVENT_GetBlocked(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

The state of the event object after calling OS_EVENT_GetBlocked() depends on the reset
mode of the event object which was set by creating the event object by a call of OS_EVEN-
T_CreateEx() or OS_EVENT_SetResetMode().

The event is consumed when OS_EVENT_RESET_MODE_AUTO is selected. The event is not
consumed when OS_EVENT_RESET_MODE_MANUAL is selected. With OS_EVENT_RESET_MOD-
E_SEMIAUTO the event is consumed only when it was already set before.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetBlocked(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in
case of an error.

Example

static OS_EVENT _Event;

void HPTask(void) {
 OS_EVENT_GetBlocked(&_Event); // Suspends the task
}

void LPTask(void) {
 OS_EVENT_Pulse(&_Event); // Signals the HPTask
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

170 CHAPTER 6 API functions

6.2.6 OS_EVENT_GetMask()

Description

Returns the bits of an event object that match the given EventMask. The returned event
mask bits are consumed unless OS_EVENT_RESET_MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_GetMask(OS_EVENT* pEvent,
 OS_TASKEVENT EventMask);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

EventMask
The bit mask containing the event bits which shall be re-
trieved.

Return value

All events that have been signaled and were specified in the EventMask.

Additional information

The state of the event object after calling OS_EVENT_GetMask() depends on the reset mode
of the event object which was set by creating the event object by a call of OS_EVENT_Cre-
ateEx() or OS_EVENT_SetResetMode().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetMask(). A debug build of embOS will check whether pEvent addresses a valid
event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of
an error.

Example

static OS_EVENT _Event;

void Task(void) {
 OS_TASKEVENT EventMask;

 EventMask = ~0; // Request all event bits
 EventMask = OS_EVENT_GetMask(&_Event, EventMask);
 printf("Signaled Event Bits: 0x%X\n", EventMask);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

171 CHAPTER 6 API functions

6.2.7 OS_EVENT_GetMaskBlocked()

Description

Waits for the specified event bits in EventMask, depending on the current mask mode. The
task is suspended until the event(s) have been signaled. It returns the bits of the event
object that match the given EventMask. The returned event mask bits are consumed unless
OS_EVENT_RESET_MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_GetMaskBlocked(OS_EVENT* pEvent,
 OS_TASKEVENT EventMask);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

EventMask
The event bit mask containing the event bits, which shall be
waited for.

Return value

All requested events that have been signaled and were specified in the EventMask.

Additional information

The state of the event object after calling OS_EVENT_GetMaskBlocked() depends on the
reset mode of the event object which was set by creating the event object by a call of
OS_EVENT_CreateEx() or OS_EVENT_SetResetMode().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetMaskBlocked(). A debug build of embOS will check whether pEvent address-
es a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID
in case of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 //
 // Waits either for the first or second, or for
 // both event bits to be signaled, depending on
 // the specified mask mode.
 //
 OS_EVENT_GetMaskBlocked(&_Event, 0x3);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

172 CHAPTER 6 API functions

6.2.8 OS_EVENT_GetMaskMode()

Description

Retrieves the current mask mode (mask bits behavior) of an event object.

Prototype

OS_EVENT_MASK_MODE OS_EVENT_GetMaskMode(OS_CONST_PTR OS_EVENT *pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Return value

The mask mode which is currently set.
Modes are defined in enum OS_EVENT_MASK_MODE.
OS_EVENT_MASK_MODE_OR_LOGIC (0x00u): Mask bits are used with OR logic (default).
OS_EVENT_MASK_MODE_AND_LOGIC (0x04u): Mask bits are used with AND logic.

Additional information

Since version 4.34 of embOS, the mask mode of an event object can be controlled by
the OS_EVENT_CreateEx() function or set after creation using the new function OS_EVEN-
T_SetMaskMode(). If needed, the current setting of the mask mode can be retrieved with
OS_EVENT_GetMaskMode().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetMaskMode(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in
case of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 OS_EVENT_MASK_MODE MaskMode;

 MaskMode = OS_EVENT_GetMaskMode(&_Event);
 if (MaskMode == OS_EVENT_MASK_MODE_OR_LOGIC) {
 printf("Logic: OR\n");
 } else {
 printf("Logic: AND\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

173 CHAPTER 6 API functions

6.2.9 OS_EVENT_GetMaskTimed()

Description

Waits for the specified event bits EventMask with timeout, depending on the current mask
mode. The task is suspended for the specified time or until the event(s) have been signaled.
It returns the bits of the event object that match the given EventMask. The returned event
mask bits are consumed unless OS_EVENT_RESET_MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_GetMaskTimed(OS_EVENT* pEvent,
 OS_TASKEVENT EventMask,
 OS_U32 Timeout);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

EventMask
The event bit mask containing the event bits, which shall be
waited for.

Timeout Maximum time in milliseconds until events must be signaled.

Return value

= 0 Timeout.
≠ 0 All events that have been signaled and were specified in the EventMask.

Additional information

The state of the event object after calling OS_EVENT_GetMaskTimed() depends on the reset
mode of the event object which was set by creating the event object by a call of OS_EVEN-
T_CreateEx() or OS_EVENT_SetResetMode().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetMaskTimed(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in
case of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 //
 // Waits either for the first or second, or for
 // both event bits to be signaled, depending on
 // the specified mask mode. The task resumes after
 // 1000 milliseconds, if the needed event bits were not
 // signaled.
 //
 OS_EVENT_GetMaskTimed(&_Event, 0x3, 1000);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

174 CHAPTER 6 API functions

6.2.10 OS_EVENT_GetResetMode()

Description

Returns the reset mode (reset behavior) of an event object.

Prototype

OS_EVENT_RESET_MODE OS_EVENT_GetResetMode(OS_CONST_PTR OS_EVENT *pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Return value

The reset mode which is currently set.
Modes are defined in enum OS_EVENT_RESET_MODE.
OS_EVENT_RESET_MODE_SEMIAUTO (0x00u): As previous mode (default).
OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set, has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset automatically.

Additional information

Since version 3.88a of embOS, the reset mode of an event object can be controlled by the
new OS_EVENT_CreateEx() function or set after creation using the new function OS_EVEN-
T_SetResetMode(). If needed, the current setting of the reset mode can be retrieved with
OS_EVENT_GetResetMode().

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetResetMode(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in
case of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 OS_EVENT_RESET_MODE ResetMode;

 ResetMode = OS_EVENT_GetResetMode(&_Event);
 if (ResetMode == OS_EVENT_RESET_MODE_SEMIAUTO) {
 printf("Reset Mode: SEMIAUTO\n");
 } else if (ResetMode == OS_EVENT_RESET_MODE_MANUAL) {
 printf("Reset Mode: MANUAL\n");
 } else {
 printf("Reset Mode: AUTO\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

175 CHAPTER 6 API functions

6.2.11 OS_EVENT_GetTimed()

Description

Waits for an event and suspends the task for a specified time or until the event has been
signaled. The event is consumed unless OS_EVENT_RESET_MODE_MANUAL is selected.

Prototype

char OS_EVENT_GetTimed(OS_EVENT* pEvent,
 OS_U32 Timeout);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Timeout
Maximum time in milliseconds until the event must be sig-
naled.

Return value

= 0 Success, the event was signaled within the specified time.
≠ 0 If the event was not signaled within the specified time.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_GetTimed(). A debug build of embOS will check whether pEvent addresses a
valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case
of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 if (OS_EVENT_GetTimed(&_Event, 1000) == 0) {
 // event was signaled within timeout time, handle event
 } else {
 // event was not signaled within timeout time, handle timeout
 }
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

176 CHAPTER 6 API functions

6.2.12 OS_EVENT_Pulse()

Description

Signals an event object and resumes waiting tasks, then resets the event object to non-
signaled state.

Prototype

void OS_EVENT_Pulse(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains in non-signaled state, regardless the reset mode.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Pulse(). A debug build of embOS will check whether pEvent addresses a valid
event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of
an error.

Example

static OS_EVENT _Event;

void HPTask(void) {
 OS_EVENT_GetBlocked(&_Event); // Suspends the task
}

void LPTask(void) {
 OS_EVENT_Pulse(&_Event); // Signals the HPTask
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

177 CHAPTER 6 API functions

6.2.13 OS_EVENT_Reset()

Description

Resets the specified event object to non-signaled state.

Prototype

void OS_EVENT_Reset(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Reset(). A debug build of embOS will check whether pEvent addresses a valid
event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of
an error.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 OS_EVENT_Reset(&_Event);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

178 CHAPTER 6 API functions

6.2.14 OS_EVENT_ResetMask()

Description

Resets the specified mask bits in the event object to non-signaled state.

Prototype

void OS_EVENT_ResetMask(OS_EVENT* pEvent,
 OS_TASKEVENT EventMask);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

EventMask
The event bit mask containing the event bits which shall be
cleared.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_ResetMask(). A debug build of embOS will check whether pEvent addresses a
valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case
of an error. OS_EVENT_ResetMask() resets only the event mask bits specified in EventMask.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 OS_EVENT_ResetMask(&_Event, 1);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

179 CHAPTER 6 API functions

6.2.15 OS_EVENT_Set()

Description

Sets an event object to signaled state, or resumes tasks which are waiting at the event
object.

Prototype

void OS_EVENT_Set(OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Additional information

If no tasks are waiting at the event object, the event object is set to signaled state. Any
task that is already waiting for the event object will be resumed. The state of the event
object after calling OS_EVENT_Set() then depends on the reset mode of the event object.
• With reset mode OS_EVENT_RESET_MODE_SEMIAUTO:

This is the default mode when the event object was created with OS_EVENT_Create().
This was the only mode available in embOS versions prior version 3.88a. If tasks were
waiting, the event is reset when the waiting tasks are resumed.

• With reset mode OS_EVENT_RESET_MODE_AUTO:
The event object is automatically reset when waiting tasks are resumed and continue
operation.

• With reset mode OS_EVENT_RESET_MODE_MANUAL:
The event object remains signaled when waiting tasks are resumed and continue
operation. The event object must be reset by the calling task.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Set(). A debug build of embOS will check whether pEvent addresses a valid
event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of
an error.

Example

Examples on how to use the OS_EVENT_Set() function are shown in Examples on page 161.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

180 CHAPTER 6 API functions

6.2.16 OS_EVENT_SetMask()

Description

Sets the event mask bits of an event object.

Prototype

void OS_EVENT_SetMask(OS_EVENT* pEvent,
 OS_TASKEVENT EventMask);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

EventMask
The event bit mask containing the event bits, which shall be
signaled.

Additional information

Any task that is already waiting for matching event mask bits on this event object will be
resumed. OS_EVENT_SetMask() does not clear any event mask bits.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_SetMask(). A debug build of embOS will check whether pEvent addresses a valid
event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in case of
an error.

Example

static OS_EVENT _Event;

void Task(void) {
 OS_TASKEVENT EventMask;

 ...
 EventMask = 1 << ((sizeof(OS_TASKEVENT) * 8) - 1); // Set MSB event bit
 OS_EVENT_SetMask(&_Event, EventMask); // Signal MSB event bit
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

181 CHAPTER 6 API functions

6.2.17 OS_EVENT_SetMaskMode()

Description

Sets the mask mode of an event object to OR/AND logic.

Prototype

void OS_EVENT_SetMaskMode(OS_EVENT* pEvent,
 OS_EVENT_MASK_MODE MaskMode);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

MaskMode

Event Mask mode.
Modes are defined in enum OS_EVENT_MASK_MODE.
OS_EVENT_MASK_MODE_OR_LOGIC (0x00u): Mask bits are used
with OR logic (default).
OS_EVENT_MASK_MODE_AND_LOGIC (0x04u): Mask bits are
used with AND logic.

Additional information

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT_CreateEx()
or may be modified by a call of OS_EVENT_SetMaskMode(). The following mask modes are
defined and can be used as parameter:
• OS_EVENT_MASK_MODE_OR_LOGIC:

This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.

• OS_EVENT_MASK_MODE_AND_LOGIC:
With this mode all specified event mask bits must be signaled.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_SetMaskMode(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in
case of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 ...
 // Set the mask mode for the event object to AND logic
 OS_EVENT_SetMaskMode(&_Event, OS_EVENT_MASK_MODE_AND_LOGIC);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

182 CHAPTER 6 API functions

6.2.18 OS_EVENT_SetResetMode()

Description

Sets the reset behavior of an event object to automatic, manual or semi-auto.

Prototype

void OS_EVENT_SetResetMode(OS_EVENT* pEvent,
 OS_EVENT_RESET_MODE ResetMode);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

ResetMode

Controls the reset mode of the event object.
OS_EVENT_RESET_MODE_SEMIAUTO (0x00u): As previous mode
(default).
OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set,
has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset auto-
matically.

Additional information

Implementation of event objects in embOS versions before 3.88a unfortunately was not
consistent with respect to the state of the event after calling OS_EVENT_Set() or OS_EVEN-
T_GetBlocked() functions. The state of the event was different when tasks were waiting
or not.

Since embOS version 3.88a, the state of the event (reset behavior) can be controlled after
creation by the new function OS_EVENT_SetResetMode(), or during creation by the new
OS_EVENT_CreateEx() function. The following reset modes are defined and can be used
as parameter:
• OS_EVENT_RESET_MODE_SEMIAUTO:

This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embOS
versions (prior version 3.88a). Calling OS_EVENT_Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEMIAUTO to be compatible with older embOS versions.

• OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_GetTimed() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

• OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_SetResetMode(). A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error() with error code OS_ERR_EVENT_INVALID in
case of an error.

Example

static OS_EVENT _Event;

void Task(void) {
 // Set the reset mode for the event object to manual

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

183 CHAPTER 6 API functions

 OS_EVENT_SetResetMode(&_Event, OS_EVENT_RESET_MANUAL);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 7

Mutexes

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

185 CHAPTER 7 Introduction

7.1 Introduction
Mutexes are used for managing resources by avoiding conflicts caused by simultaneous use
of a resource. The resource managed can be of any kind: a part of the program that is not
reentrant, a piece of hardware like the display, a flash memory that can only be written
to by a single task at a time, a motor in a CNC control that can only be controlled by one
task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_MUTEX_LockBlocked() or OS_MU-
TEX_Lock() routines of embOS. If the mutex is available, the program execution of the
task continues, but the mutex is blocked for other tasks. If a second task now tries to
acquire the same mutex while it is in use by the first task, this second task is suspended
until the first task releases the mutex. However, if the first task that uses the mutex calls
OS_MUTEX_LockBlocked() again for that mutex, it is not suspended because the mutex is
blocked only for other tasks.

The following diagram illustrates the process of using a mutex:

A mutex contains a counter that keeps track of how many times the mutex has been
claimed by calling OS_MUTEX_Lock() or OS_MUTEX_LockBlocked() by a particular task. It
is released when that counter reaches zero, which means the OS_MUTEX_Unlock() routine
must be called exactly the same number of times as OS_MUTEX_LockBlocked() or OS_MU-
TEX_Lock(). If it is not, the mutex remains blocked for other tasks.

On the other hand, a task cannot release a mutex that it does not own by calling OS_MU-
TEX_Unlock(). In debug builds of embOS, a call of OS_MUTEX_Unlock() for a mutex that
is not owned by this task will result in a call to the error handler OS_Error().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

186 CHAPTER 7 Introduction

Example of using a mutex

Here, two tasks access a (debug) terminal completely independently from each other. The
terminal is a resource that needs to be protected with a mutex. One task may not interrupt
another task which is writing to the terminal, as otherwise the following might occur:
• Task A begins writing to the terminal
• Task B interrupts Task A and writes to the terminal
• Task A is resumed and its output is written at a wrong position

To avoid this type of situation, every time the terminal is to be accessed by a task it is
first claimed by a call to OS_MUTEX_LockBlocked() (and is automatically waited for if the
mutex is blocked). After the terminal has been written to, it is released by a call to OS_MU-
TEX_Unlock().

The sample application file OS_Mutexes.c delivered in the application samples folder of
embOS demonstrates how mutex can be used in the above scenario:

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static OS_MUTEX Mutex;

static void _Write(char const* s) {
 OS_MUTEX_LockBlocked(&Mutex);
 printf(s);
 OS_MUTEX_Unlock(&Mutex);
}

static void HPTask(void) {
 while (1) {
 _Write("HPTask\n");
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 while (1) {
 _Write("LPTask\n");
 OS_TASK_Delay_ms(200);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_MUTEX_Create(&Mutex); // Creates mutex
 OS_Start(); // Start multitasking
 return 0;
}

Priority inversion / priority inheritance

embOS supports priority inheritance as a solution for the priority inversion problem when
a mutex is used by multiple tasks. Please have a look in the chapter Priority inversion /
priority inheritance on page 22 for more details.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

187 CHAPTER 7 Introduction

Deadlock

Occasionally, you might want to access two resources at once. Perhaps you are using one
of the resources, and then discover that the other resource is needed as well. A problem
exists if two tasks attempt to claim both resources but lock the associated mutexes in
different orders.

HPTask runs first, claims Mutex_A and then calls OS_TASK_Delay_ms() which executes a
task switch to LPTask. LPTask claims Mutex_B and tries to claim Mutex_A. Since Mutex_A is
already acquired by HPTask it cannot be acquired by LPTask and LPTask is blocked. When
the delay has expired HPTask tries to claim Mutex_B which is already acquired by LPTask.
Both tasks are blocked now.

static void HPTask(void) {
 while (1) {
 OS_MUTEX_LockBlocked(&Mutex_A);
 OS_TASK_Delay_ms(1);
 OS_MUTEX_LockBlocked(&Mutex_B);
 OS_MUTEX_Unlock(&Mutex_B);
 OS_MUTEX_Unlock(&Mutex_A);
 }
}

static void LPTask(void) {
 while (1) {
 OS_MUTEX_LockBlocked(&Mutex_B);
 OS_MUTEX_LockBlocked(&Mutex_A);
 OS_MUTEX_Unlock(&Mutex_A);
 OS_MUTEX_Unlock(&Mutex_B);
 }
}

The best way to avoid this problem is to make sure that when tasks lock multiple mutexes,
the tasks do so in the same order. When locks are always taken in a prescribed order,
deadlock should not occur.

However, this technique cannot always be used. Sometimes, you must take the mutex-
es in an order other than prescribed. To prevent deadlock in such a situation, use OS_MU-
TEX_Lock() instead of the blocking API. One task must release its mutexes when the task
discovers that deadlock would otherwise be inevitable.

static void HPTask(void) {
 while (1) {
 OS_MUTEX_LockBlocked(&Mutex_A);
 OS_TASK_Delay_ms(1);
 OS_MUTEX_LockBlocked(&Mutex_B);
 OS_MUTEX_Unlock(&Mutex_B);
 OS_MUTEX_Unlock(&Mutex_A);
 }
}

static void LPTask(void) {
 while (1) {
 OS_MUTEX_LockBlocked(&Mutex_B);
 if (OS_MUTEX_Lock(&Mutex_A) == 0) {
 OS_MUTEX_Unlock(&Mutex_B);
 } else {
 OS_MUTEX_Unlock(&Mutex_A);
 OS_MUTEX_Unlock(&Mutex_B);
 }
 OS_TASK_Delay_ms(1);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

188 CHAPTER 7 API functions

7.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_MUTEX_Create() Creates a mutex. ● ●
OS_MUTEX_Delete() Deletes a specified mutex. ● ●
OS_MUTEX_GetOwner() Returns the mutex owner if any. ● ● ●

OS_MUTEX_GetValue()
Returns the value of the usage counter
of a specified mutex. ● ● ●

OS_MUTEX_IsMutex()
Returns whether a mutex has already
been created. ● ● ●

OS_MUTEX_Lock()
Requests a specified mutex and blocks it
for other tasks if it is available. ● ● ●

OS_MUTEX_LockBlocked()
Claims a mutex and blocks it for other
tasks. ● ● ●

OS_MUTEX_LockTimed()
Tries to claim a mutex and blocks it for
other tasks if it is available within a
specified time.

● ● ●

OS_MUTEX_Unlock()
Releases a mutex currently in use by a
task. ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

189 CHAPTER 7 API functions

7.2.1 OS_MUTEX_Create()

Description

Creates a mutex.

Prototype

void OS_MUTEX_Create(OS_MUTEX* pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Additional information

After creation, the mutex is not locked. The mutex counter value is zero.

Example

static OS_MUTEX _Mutex;

int main(void) {
 ...
 OS_MUTEX_Create(&_Mutex);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

190 CHAPTER 7 API functions

7.2.2 OS_MUTEX_Delete()

Description

Deletes a specified mutex. The memory of that mutex may be reused for other purposes
or may be used for creating another mutex using the same memory.

Prototype

void OS_MUTEX_Delete(OS_MUTEX* pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Additional information

A debug build of embOS checks whether pMutex addresses a valid mutex and will call
OS_Error() with error code OS_ERR_INV_MUTEX in case of an error. Before deleting a mutex,
make sure that no task is claiming the mutex. A debug build of embOS will call OS_Error()
with the error code OS_ERR_MUTEX_DELETE if a mutex is still in use.

Example

static OS_MUTEX _Mutex;

int Task(void) {
 ...
 OS_MUTEX_Delete(&_Mutex);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

191 CHAPTER 7 API functions

7.2.3 OS_MUTEX_GetOwner()

Description

Returns the mutex owner if any. When a task is currently using (blocking) the mutex the
task Id (address of task according task control block) is returned.

Prototype

OS_TASK *OS_MUTEX_GetOwner(OS_CONST_PTR OS_MUTEX *pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Return value

= NULL The mutex is not used by any task.
≠ NULL Task Id (address of the task control block).

Additional information

If a mutex was used in main() the return value of OS_MUTEX_GetOwner() is ambiguous.
The return value NULL can mean it is currently used in main() or it is currently unused.
Therefore, OS_MUTEX_GetOwner() must not be used to check if a mutex is available. Please
use OS_MUTEX_GetValue() instead.

It is also good practice to free all used mutexes in main() before calling OS_Start().

Example

Please find an example at OS_MUTEX_GetValue().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

192 CHAPTER 7 API functions

7.2.4 OS_MUTEX_GetValue()

Description

Returns the value of the usage counter of a specified mutex.

Prototype

int OS_MUTEX_GetValue(OS_CONST_PTR OS_MUTEX *pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Return value

The counter value of the mutex.
A value of zero means the mutex is available.

Example

static OS_MUTEX _Mutex;

void CheckMutex(void) {
 int Value;
 OS_TASK* Owner;

 Value = OS_MUTEX_GetValue(&_Mutex);
 if (Value == 0) {
 printf("Mutex is currently unused");
 } else {
 Owner = OS_MUTEX_GetOwner(&_Mutex);
 if (Owner == NULL) {
 printf("Mutex was used in main()");
 } else {
 printf("Mutex is currently used in task 0x%X", Owner);
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

193 CHAPTER 7 API functions

7.2.5 OS_MUTEX_IsMutex()

Description

Returns whether a mutex has already been created.

Prototype

OS_BOOL OS_MUTEX_IsMutex(OS_CONST_PTR OS_MUTEX *pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Return value

= 0 Mutex has not been created or was deleted.
≠ 0 Mutex has already been created.

Additional information

OS_MUTEX_IsMutex() returns 1 if a mutex was created with OS_MUTEX_Create() and not
yet deleted with OS_MUTEX_Delete(). OS_MUTEX_IsMutex() returns 0 if a mutex was not
yet created with OS_MUTEX_Create() or it was deleted with OS_MUTEX_Delete().

Example

static OS_MUTEX _Mutex;

int main(void) {
 ...
 if (OS_MUTEX_IsMutex(&_Mutex) != (OS_BOOL)0) {
 printf("Mutex has already been created");
 } else {
 printf("Mutex has not yet been created");
 }
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

194 CHAPTER 7 API functions

7.2.6 OS_MUTEX_Lock()

Description

Requests a specified mutex and blocks it for other tasks if it is available. Continues execution
in any case.

Prototype

char OS_MUTEX_Lock(OS_MUTEX* pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Return value

= 0 Mutex was not available.
≠ 0 Mutex was available, now in use by calling task.

Additional information

The following diagram illustrates how OS_MUTEX_Lock() works:

Example

if (OS_MUTEX_Lock(&Mutex_LCD)) {
 DispTime(); // Access the resource LCD
 OS_MUTEX_Unlock(&Mutex_LCD); // Resource LCD is no longer needed
} else {
 ... // Do something else
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

195 CHAPTER 7 API functions

7.2.7 OS_MUTEX_LockBlocked()

Description

Claims a mutex and blocks it for other tasks.

Prototype

int OS_MUTEX_LockBlocked(OS_MUTEX* pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Return value

The counter value of the mutex.
A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:
• Case A: The mutex is not in use.

If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

• Case B: The mutex is used by this task.
The counter of the mutex is incremented. The program continues without a break.

• Case C: The mutex is being used by another task.
The execution of this task is suspended until the mutex is released. In the meantime if
the task blocked by the mutex has a higher priority than the task blocking the mutex,
the blocking task is assigned the priority of the task requesting the mutex. This is called
priority inheritance. Priority inheritance can only temporarily increase the priority of a
task, never reduce it.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

Example

static OS_MUTEX _Mutex;

void Task(void) {
 ...
 OS_MUTEX_LockBlocked(&_Mutex);
 ...
 OS_MUTEX_Unlock(&_Mutex);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

196 CHAPTER 7 API functions

The following diagram illustrates how OS_MUTEX_LockBlocked() works:

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

197 CHAPTER 7 API functions

7.2.8 OS_MUTEX_LockTimed()

Description

Tries to claim a mutex and blocks it for other tasks if it is available within a specified time.

Prototype

int OS_MUTEX_LockTimed(OS_MUTEX* pMutex,
 OS_U32 Timeout);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Timeout
Maximum time in milliseconds until the mutex must be avail-
able.

Return value

= 0 Failed, mutex not available before timeout.
≠ 0 Success, mutex available, current usage count of mutex.

A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:
• Case A: The mutex is not in use.

If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

• Case B: The mutex is used by this task.
The counter of the mutex is incremented. The program continues without a break.

• Case C: The mutex is being used by another task.
The execution of this task is suspended until the mutex is released or the timeout time
expired. In the meantime if the task blocked by the mutex mutex has a higher priority
than the task blocking the mutex, the blocking task is assigned the priority of the task
requesting the mutex. This is called priority inheritance. Priority inheritance can only
temporarily increase the priority of a task, never reduce it.
If the mutex becomes available during the timeout, the calling task claims the mutex
and the function returns a value greater than zero, otherwise, if the mutex does not
become available, the function returns zero.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mutex becomes available before the calling task is resumed.
Anyhow, the function will not claim the mutex because it was not available within the
requested time.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

OS_TIME_ConfigSysTimer() must have been called before calling OS_MUTEX_LockTimed().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

198 CHAPTER 7 API functions

Example

static OS_MUTEX _Mutex;

void Task(void) {
 ...
 if (OS_MUTEX_LockTimed(&_Mutex, 100)) {
 ... // Mutex acquired
 } else {
 ... // Timeout
 }
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

199 CHAPTER 7 API functions

7.2.9 OS_MUTEX_Unlock()

Description

Releases a mutex currently in use by a task.

Prototype

void OS_MUTEX_Unlock(OS_MUTEX* pMutex);

Parameters

Parameter Description

pMutex Pointer to a mutex object of type OS_MUTEX.

Additional information

OS_MUTEX_Unlock() may be used on a mutex only after that mutex has been locked by
calling OS_MUTEX_Lock(), OS_MUTEX_LockBlocked(), or OS_MUTEX_LockTimed(). OS_MU-
TEX_Unlock() decrements the usage counter of the mutex, which must never become
negative. If the counter becomes negative, debug builds will call the embOS error handler
OS_Error() with error code OS_ERR_UNUSE_BEFORE_USE. In a debug build OS_Error() will
also be called if OS_MUTEX_Unlock() is called from a task which does not own the mutex.
The error code in this case is OS_ERR_MUTEX_OWNER.

Example

Please find an example at OS_MUTEX_Lock().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 8

Semaphores

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

201 CHAPTER 8 Introduction

8.1 Introduction
A semaphore is a mechanism that can be used to provide synchronization of tasks.
Semaphores which allow an arbitrary resource count are called counting semaphores, while
semaphores which are restricted to the values 0 and 1 are called binary semaphores.

One way to use semaphores is for signaling from one task (or ISR/software timer) to another
task. For example, if two tasks need to execute the same total number of times over the
long run: A counting semaphore can be created with an initial count of zero (no ’tokens’ in
it). Every time the first task runs, it puts a token into the semaphore, thus incrementing
the semaphore’s count. The second task of the pair waits at the semaphore for tokens to
appear, and runs once for each new token, thus consuming the token and decrementing
the semaphore’s count. If the first task runs with moderate bursts, the second task will
eventually ’catch up’ to the same total number of executions.
Binary semaphores can be used for signaling from task to task, too, in situations where
signals (counts, tokens) will not accumulate or need not be counted.

Counting semaphores are also used for regulating the access of tasks to multiple equivalent
serially-shareable resources. For instance, 10 tasks may wish to share 4 identical printers.
In this case, a counting semaphore can be created and initialized with 4 tokens. Tasks are
then programmed to take a token before printing, and return the token after printing is
done.

Example of using counter semaphore for signaling

Here, an interrupt is issued every time data is received from a peripheral source. The in-
terrupt service routine then signals the arrival of data to a worker task, which subsequently
processes that data. When the worker task is blocked from execution, e.g. by a higher-pri-
ority task, the semaphore’s counter effectively tracks the number of data packets to be
processed by the worker task, which will be executed for that exact number of times when
resumed.

The following sample application shows how semaphores can be used in the above scenario:

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int Stack[128]; // Task stack
static OS_TASK TCB; // Task control block
static OS_SEMAPHORE Sema; // Semaphore
static OS_TIMER Timer; // Timer to emulate interrupt

static void Task(void) {
 while(1) {
 OS_SEMAPHORE_TakeBlocked(&Sema); // Wait for signaling of received data
 printf("Task is processing data\n"); // Act on received data
 }
}

static void TimerCallback(void) {
 // Software timer function to emulate an interrupt
 OS_SEMAPHORE_Give(&Sema); // Signal data reception
 OS_TIMER_Restart(&Timer);
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TIMER_Create(&Timer, TimerCallback, 10);
 OS_TIMER_Start(&Timer);
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_SEMAPHORE_Create(&Sema, 0); // Creates semaphore
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

202 CHAPTER 8 Introduction

Example of using semaphore for regulating the access to shareable resources:

Ten tasks need to print messages on four available printers. The access to the printer must
not be interrupted by another task. It is not essential for a task which actual printer is
used and the Printer() function does not care about this aspect (this is a limitation of the
example but not relevant). The example creates the semaphore with 4 tokens. Each token
represents one printer. If a task wants to use one of the printers it takes one token and
give it back after the print job is done. When no token (printer) is available the task is
suspended until a token is again available.

#include "RTOS.h"
#include <stdio.h>

#define NUM_PRINTERS 4
#define NUM_TASKS 10

static OS_STACKPTR int Stack[NUM_TASKS][128]; // Task stack
static OS_TASK TCB[NUM_TASKS]; // Task control block
static OS_SEMAPHORE Sema; // Semaphore

static void Print(const char* s) {
 OS_SEMAPHORE_TakeBlocked(&Sema);
 // Print message on one of the available printers
 OS_SEMAPHORE_Give(&Sema);
}

static void Task(void) {
 while(1) {
 Print("Hello World");
 }
}

int main(void) {
 OS_U32 i;

 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 for (i = 0u; i < NUM_TASKS; i++) {
 OS_TASK_CREATE(&TCB[i], "Task", 100, Task, Stack[i]);
 }
 OS_SEMAPHORE_Create(&Sema, NUM_PRINTERS); // Creates semaphore
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

203 CHAPTER 8 API functions

8.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_SEMAPHORE_Create()
Creates a semaphore with a specified
initial count value. ● ●

OS_SEMAPHORE_Delete() Deletes a semaphore. ● ●

OS_SEMAPHORE_GetValue()
Returns the current counter value of a
specified semaphore. ● ● ● ● ●

OS_SEMAPHORE_Give()
Increments the counter of a sema-
phore. ● ● ● ● ●

OS_SEMAPHORE_GiveMax()
Increments the counter of a sema-
phore up to a specified maximum val-
ue.

● ● ● ● ●

OS_SEMAPHORE_SetValue()
Sets the counter value of a specified
semaphore. ● ● ●

OS_SEMAPHORE_Take()
Decrements the counter of a sema-
phore, if it was signaled. ● ● ● ● ●

OS_SEMAPHORE_TakeBlocked()
Decrements the counter of a sema-
phore. ● ●

OS_SEMAPHORE_TakeTimed()
Decrements a semaphore counter if
the semaphore is available within a
specified time.

● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

204 CHAPTER 8 API functions

8.2.1 OS_SEMAPHORE_Create()

Description

Creates a semaphore with a specified initial count value.

Prototype

void OS_SEMAPHORE_Create(OS_SEMAPHORE* pSema,
 OS_UINT InitValue);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

InitValue
Initial count value of the semaphore:
0 ≤ InitValue ≤ 216 - 1 = 0xFFFF for 8/16-bit CPUs.
0 ≤ InitValue ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs.

Example

static OS_SEMA _Sema;

int main(void) {
 ...
 OS_SEMAPHORE_Create(&_Sema, 8);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

205 CHAPTER 8 API functions

8.2.2 OS_SEMAPHORE_Delete()

Description

Deletes a semaphore.

Prototype

void OS_SEMAPHORE_Delete(OS_SEMAPHORE* pSema);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

A debug build of embOS checks whether pSema addresses a valid semaphore and will call
OS_Error() with error code OS_ERR_INV_SEMAPHORE in case of an error. Before deleting
a semaphore, make sure that no task is waiting for it. A debug build of embOS will call
OS_Error() with the error code OS_ERR_SEMAPHORE_DELETE if any tasks is waiting for the
semaphore.

Example

static OS_SEMA _Sema;

void Task(void) {
 ...
 OS_SEMAPHORE_Delete(&_Sema);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

206 CHAPTER 8 API functions

8.2.3 OS_SEMAPHORE_GetValue()

Description

Returns the current counter value of a specified semaphore.

Prototype

int OS_SEMAPHORE_GetValue(OS_CONST_PTR OS_SEMAPHORE *pSema);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Return value

The current counter value of the semaphore.

Example

static OS_SEMA _Sema;

void PrintSemaValue(void) {
 int Value;

 Value = OS_SEMAPHORE_GetValue(&_Sema);
 printf("Sema Value: %d\n", Value)
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

207 CHAPTER 8 API functions

8.2.4 OS_SEMAPHORE_SetValue()

Description

Sets the counter value of a specified semaphore.

Prototype

OS_U8 OS_SEMAPHORE_SetValue(OS_SEMAPHORE* pSema,
 OS_UINT Value);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Value
Count value of the semaphore:
0 ≤ Value ≤ 216 - 1 = 0xFFFF for 8/16-bit CPUs.
0 ≤ Value ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs.

Return value

= 0: In any case. The return value can safely be ignored.

Example

static OS_SEMA _Sema;

void Task(void) {
 ...
 OS_SEMAPHORE_SetValue(&_Sema, 0);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

208 CHAPTER 8 API functions

8.2.5 OS_SEMAPHORE_Give()

Description

Increments the counter of a semaphore.

Prototype

void OS_SEMAPHORE_Give(OS_SEMAPHORE* pSema);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

OS_SEMAPHORE_Give() signals an event to a semaphore by incrementing its counter. If one
or more tasks are waiting for an event to be signaled to this semaphore, the task with
the highest priority becomes the running task. The counter can have a maximum value
of 0xFFFF for 8/16-bit CPUs or 0xFFFFFFFF for 32-bit CPUs. It is the responsibility of the
application to make sure that this limit is not exceeded. A debug build of embOS detects
a counter overflow and calls OS_Error() with error code OS_ERR_SEMAPHORE_OVERFLOW if
an overflow occurs.

Example

Please refer to the example in the introduction of chapter Semaphores on page 200.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

209 CHAPTER 8 API functions

8.2.6 OS_SEMAPHORE_GiveMax()

Description

Increments the counter of a semaphore up to a specified maximum value.

Prototype

void OS_SEMAPHORE_GiveMax(OS_SEMAPHORE* pSema,
 OS_UINT MaxValue);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

MaxValue
Count value of the semaphore:
1 ≤ MaxValue ≤ 216 - 1 = 0xFFFF for 8/16-bit CPUs.
1 ≤ MaxValue ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs.

Additional information

As long as current value of the semaphore counter is below the specified maximum value,
OS_SEMAPHORE_GiveMax() signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the tasks are
placed into the READY state and the task with the highest priority becomes the running task.

Calling OS_SEMAPHORE_GiveMax() with a MaxValue of 1 makes a counting semaphore be-
have like a binary semaphore.

Example

static OS_SEMA _Sema;

void Task(void) {
 ...
 OS_SEMAPHORE_GiveMax(&_Sema, 8);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

210 CHAPTER 8 API functions

8.2.7 OS_SEMAPHORE_Take()

Description

Decrements the counter of a semaphore, if it was signaled.

Prototype

OS_BOOL OS_SEMAPHORE_Take(OS_SEMAPHORE* pSema);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Return value

= 0 Failed, semaphore was not signaled before the call.
≠ 0 Success, semaphore was available and counter was decremented once.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE_Take() does not wait and does not modify the sem-
aphore counter.

Example

static OS_SEMA _Sema;

void Task(void) {
 ...
 if (OS_SEMAPHORE_Take(&_Sema) != 0) {
 printf("Semaphore decremented successfully.\n");
 } else {
 printf("Semaphore not signaled.\n");
 }
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

211 CHAPTER 8 API functions

8.2.8 OS_SEMAPHORE_TakeBlocked()

Description

Decrements the counter of a semaphore.

Prototype

void OS_SEMAPHORE_TakeBlocked(OS_SEMAPHORE* pSema);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE_TakeBlocked() waits until the counter is incremented
by another task, a timer or an interrupt handler by a call to OS_SEMAPHORE_Give(). The
counter is then decremented and program execution continues. An unlimited number of
tasks can wait for a semaphore. According to the rules of the scheduler, of all the tasks
waiting for the semaphore, the task with the highest priority will continue program exe-
cution.

Example

Please refer to the example in the introduction of chapter Semaphores on page 200.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

212 CHAPTER 8 API functions

8.2.9 OS_SEMAPHORE_TakeTimed()

Description

Decrements a semaphore counter if the semaphore is available within a specified time.

Prototype

OS_BOOL OS_SEMAPHORE_TakeTimed(OS_SEMAPHORE* pSema,
 OS_U32 Timeout);

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Timeout
Maximum time in milliseconds until the semaphore must be
available.

Return value

= 0 Failed, semaphore not available before timeout.
≠ 0 Success, semaphore was available and counter decremented.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE_TakeTimed() waits until the semaphore is signaled
by another task, a timer, or an interrupt handler by a call to OS_SEMAPHORE_Give(). The
counter is then decremented and program execution continues. If the semaphore was not
signaled within the specified time the program execution continues, but returns a value of
zero. An unlimited number of tasks can wait for a semaphore. According to the rules of
the scheduler, of all the tasks waiting for the semaphore, the task with the highest priority
will continue program execution.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the semaphore becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because
the semaphore was not available within the requested time. In this case, the state of the
semaphore is not modified by OS_SEMAPHORE_TakeTimed().

Example

static OS_SEMA _Sema;

void Task(void) {
 ...
 if (OS_SEMAPHORE_TakeTimed(&_Sema, 100)) {
 ... // Semaphore acquired
 } else {
 ... // Timeout
 }
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 9

Readers-Writer Lock

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

214 CHAPTER 9 Introduction

9.1 Introduction
A readers-writer lock is a synchronization primitive that solves the readers-writer problem.
A readers-writer lock allows concurrent access for read-only operations, while write opera-
tions require exclusive access. This means that multiple tasks can read the data in parallel
but an exclusive lock is needed for writing or modifying data. When a writer is writing the
data, all other writers or readers will be blocked until the writer has finished writing. A
common use might be to control access to a data structure in memory that cannot be up-
dated atomically and is invalid (and should not be read by another task) until the update is
complete. An embOS readers-writer lock is implemented using semaphores and mutexes.

#include "RTOS.h"
#include "stdio.h"

#define NUM_READERS 2

static OS_STACKPTR int StackRd1[128], StackRd2[128], StackWr[128];
static OS_TASK TCBRd1, TCBRd2, TCBWr;
static OS_RWLOCK Lock;
static OS_U32 GlobalVar;

static void RdTask(void) {
 while (1) {
 OS_RWLOCK_RdLockBlocked(&Lock);
 printf("%u\n", GlobalVar);
 OS_RWLOCK_RdUnlock(&Lock);
 }
}

static void WrTask(void) {
 while (1) {
 OS_RWLOCK_WrLockBlocked(&Lock);
 GlobalVar++;
 OS_RWLOCK_WrUnlock(&Lock);
 OS_TASK_Delay_ms(10);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBRd1, "Reader Task 1", 100, RdTask, StackRd1);
 OS_TASK_CREATE(&TCBRd2, "Reader Task 2", 100, RdTask, StackRd2);
 OS_TASK_CREATE(&TCBWr, "Writer Task" , 101, WrTask, StackWr);
 OS_RWLOCK_Create(&Lock, NUM_READERS);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

215 CHAPTER 9 API functions

9.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_RWLOCK_Create() Creates a readers-writer lock. ● ●
OS_RWLOCK_Delete() Deletes a readers-writer lock. ● ●

OS_RWLOCK_RdLock()
Claims a lock and blocks it for writer
tasks. ● ● ● ● ●

OS_RWLOCK_RdLockBlocked()
Claims a lock and blocks it for writer
tasks. ● ●

OS_RWLOCK_RdLockTimed()
Claims a lock if the lock is available
within the specified timeout and blocks
it for writer tasks.

● ●

OS_RWLOCK_RdUnlock()
Releases a lock currently used by the
reader task. ● ● ● ● ●

OS_RWLOCK_WrLock()
Claims a lock and blocks it for writer
and reader tasks. ● ● ●

OS_RWLOCK_WrLockBlocked()
Claims a lock and blocks it for writer
and reader tasks. ● ●

OS_RWLOCK_WrLockTimed()
Claims a lock if the lock is available
within the specified timeout and blocks
it for writer and reader tasks.

● ●

OS_RWLOCK_WrUnlock()
Releases a lock currently used by the
writer task. ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

216 CHAPTER 9 API functions

9.2.1 OS_RWLOCK_Create()

Description

Creates a readers-writer lock.

Prototype

void OS_RWLOCK_Create(OS_RWLOCK* pLock,
 OS_UINT NumReaders);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

NumReaders
Number of reader tasks. Maximum number is:
0 ≤ InitValue ≤ 216 - 1 = 0xFFFF for 8/16-bit CPUs.
0 ≤ InitValue ≤ 232 - 1 = 0xFFFFFFFF for 32-bit CPUs.

Additional information

If you use readers-writer lock from an unprivileged task you need not only access to the
lock object itself but also to the semaphore and the mutex member. Please see embOS-MPU
example below.

Example

#define NUM_READERS 2

static OS_RWLOCK Lock;

int main(void) {
 ...
 OS_RWLOCK_Create(&Lock, NUM_READERS);
 ...
 return 0;
}

Example using embOS-MPU

static OS_RWLOCK Lock;

static const OS_MPU_OBJ _aList[] = {{&Lock, OS_MPU_OBJTYPE_RWLOCK},
 {&Lock.Semaphore, OS_MPU_OBJTYPE_SEMA},
 {&Lock.Mutex, OS_MPU_OBJTYPE_MUTEX},
 {NULL, OS_MPU_OBJTYPE_INVALID}};

static void Task(void) {
 OS_MPU_SetAllowedObjects(&TCB, _aList);
 OS_MPU_SwitchToUnprivState();
 while (1) {
 OS_RWLOCK_RdLockBlocked(&Lock);
 ReadData();
 OS_RWLOCK_RdUnlock(&Lock);
 };
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

217 CHAPTER 9 API functions

9.2.2 OS_RWLOCK_Delete()

Description

Deletes a readers-writer lock.

Prototype

void OS_RWLOCK_Delete(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Additional information

A debug build of embOS checks whether pLock addresses a valid readers-writer lock and
will call OS_Error() with error code OS_ERR_RWLOCK_INVALID in case of an error. Before
deleting a readers-writer lock, make sure that no task is waiting for it.

Example

static OS_RWLOCK Lock;

void Task(void) {
 ...
 OS_RWLOCK_Delete(&Lock);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

218 CHAPTER 9 API functions

9.2.3 OS_RWLOCK_RdLock()

Description

Claims a lock and blocks it for writer tasks. Reader tasks can still access the guarded object.
OS_RWLOCK_RdLock() returns at once in any case.

Prototype

OS_BOOL OS_RWLOCK_RdLock(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Return value

= 0 Failed, lock could not be claimed.
≠ 0 Success, lock was available.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_BOOL r;

 r = OS_RWLOCK_RdLock(&Lock);
 if (r != 0) {
 ReadSomeData();
 OS_RWLOCK_RdUnlock(&Lock);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

219 CHAPTER 9 API functions

9.2.4 OS_RWLOCK_RdLockBlocked()

Description

Claims a lock and blocks it for writer tasks. Reader tasks can still access the guarded object.
OS_RWLOCK_RdLockBlocked() suspends the current task and returns once a read lock is
available.

Prototype

void OS_RWLOCK_RdLockBlocked(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_RWLOCK_RdLockBlocked(&Lock);
 ReadSomeData();
 OS_RWLOCK_RdUnlock(&Lock);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

220 CHAPTER 9 API functions

9.2.5 OS_RWLOCK_RdLockTimed()

Description

Claims a lock if the lock is available within the specified timeout and blocks it for writer tasks.
Reader tasks can still access the guarded object. OS_RWLOCK_RdLockTimed() suspends the
current task and returns once a reader lock is available or the timeout has expired.

Prototype

OS_BOOL OS_RWLOCK_RdLockTimed(OS_RWLOCK* pLock,
 OS_U32 Timeout);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Timeout
Maximum time in milliseconds until the lock must be avail-
able.

Return value

= 0 Failed, lock could not be claimed within the timeout.
≠ 0 Success, lock was available.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_BOOL r;

 r = OS_RWLOCK_RdLockTimed(&Lock, 100);
 if (r != 0) {
 ReadSomeData();
 OS_RWLOCK_RdUnlock(&Lock);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

221 CHAPTER 9 API functions

9.2.6 OS_RWLOCK_RdUnlock()

Description

Releases a lock currently used by the reader task.

Prototype

void OS_RWLOCK_RdUnlock(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_RWLOCK_RdLockBlocked(&Lock);
 ReadSomeData();
 OS_RWLOCK_RdUnlock(&Lock);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

222 CHAPTER 9 API functions

9.2.7 OS_RWLOCK_WrLock()

Description

Claims a lock and blocks it for writer and reader tasks. OS_RWLOCK_WrLock() returns at
once in any case.

Prototype

OS_BOOL OS_RWLOCK_WrLock(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Return value

= 0 Failed, writer lock could not be claimed.
≠ 0 Success, writer lock was available.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_BOOL r;

 r = OS_RWLOCK_WrLock(&Lock);
 if (r != 0) {
 WriteSomeData();
 OS_RWLOCK_WrUnlock(&Lock);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

223 CHAPTER 9 API functions

9.2.8 OS_RWLOCK_WrLockBlocked()

Description

Claims a lock and blocks it for writer and reader tasks. OS_RWLOCK_WrLockBlocked() sus-
pends the current task and returns once the write lock is available.

Prototype

void OS_RWLOCK_WrLockBlocked(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_RWLOCK_WrLockBlocked(&Lock);
 WriteSomeData();
 OS_RWLOCK_WrUnlock(&Lock);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

224 CHAPTER 9 API functions

9.2.9 OS_RWLOCK_WrLockTimed()

Description

Claims a lock if the lock is available within the specified timeout and blocks it for writer
and reader tasks. It requires all readers to relinquish their locks before the writer lock can
be acquired. OS_RWLOCK_WrLockTimed() suspends the current task and returns once the
writer lock is available or the timeout has expired.

Prototype

OS_BOOL OS_RWLOCK_WrLockTimed(OS_RWLOCK* pLock,
 OS_U32 Timeout);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Timeout
Maximum time in milliseconds until the lock must be avail-
able.

Return value

= 0 Failed, lock could not be claimed.
≠ 0 Success, lock was available.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_BOOL r;

 r = OS_RWLOCK_WrLockTimed(&Lock, 100);
 if (r != 0) {
 WriteSomeData();
 OS_RWLOCK_WrUnlock(&Lock);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

225 CHAPTER 9 API functions

9.2.10 OS_RWLOCK_WrUnlock()

Description

Releases a lock currently used by the writer task.

Prototype

void OS_RWLOCK_WrUnlock(OS_RWLOCK* pLock);

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RWLOCK.

Example

static OS_RWLOCK Lock;

void Task(void) {
 OS_RWLOCK_WrLockBlocked(&Lock);
 WriteSomeData();
 OS_RWLOCK_WrUnlock(&Lock);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 10

Mailboxes

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

227 CHAPTER 10 Introduction

10.1 Introduction
In the preceding chapters, task synchronization by the use of semaphores was described.
Unfortunately, semaphores cannot transfer data from one task to another. If we need to
transfer data between tasks for example via a buffer, we could use a mutex every time we
accessed the buffer. But doing so would make the program less efficient. Another major
disadvantage would be that we could not access the buffer from an interrupt handler,
because the interrupt handler is not allowed to wait for the mutex.

One solution would be the usage of global variables. In this case we would need to disable
interrupts each time and in each place that we accessed these variables. This is possible,
but it is a path full of pitfalls. It is also not easy for a task to wait for a character to be
placed in a buffer without polling the global variable that contains the number of characters
in the buffer. Again, there is solution -- the task could be notified by an event signaled to
the task each time a character is placed in the buffer. This is why there is an easier way to
do this with a real-time OS: The use of mailboxes.

A mailbox is a buffer that is managed by the real-time operating system. The buffer behaves
like a normal buffer; you can deposit something (called a message) and retrieve it later.
Mailboxes usually work as FIFO: first in, first out. So a message that is deposited first will
usually be retrieved first. “Message” might sound abstract, but very simply it means “item
of data”. It will become clearer in the typical applications explained in the following section.

Limitations:

Both the number of mailboxes and buffers are limited only by the amount of available
memory. However, the number of messages per mailbox, the message size per mailbox,
and the buffer size per mailbox are limited by software design.

Number of messages on 8 or 16-bit CPUs:
 1 <= x <= 215 - 1 = 0x7FFF
Number of messages on 32-bit CPUs:
 1 <= x <= 231 - 1 = 0x7FFFFFFF
Message size in bytes on 8 or 16-bit CPUs:
 1 <= x <= 215 - 1 = 0x7FFF
Message size in bytes on 32-bit CPUs:
 1 <= x <= 215 - 1 = 0x7FFF
Maximum buffer size in bytes for one mailbox on 8 or 16-bit CPUs:
 216 = 0xFFFF
Maximum buffer size in bytes for one mailbox on 32-bit CPUs:
 232 = 0xFFFFFFFF

These limitations have been placed on mailboxes to guarantee efficient coding and also to
ensure efficient management. These limitations are typically not a problem.

A mailbox can be used by more than one producer, but must be used by one consumer
only. This means that more than one task or interrupt handler is allowed to deposit new
data into the mailbox, but it does not make sense to retrieve messages by multiple tasks.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

228 CHAPTER 10 Introduction

10.1.1 Single-byte mailbox functions
In many (if not the most) situations, mailboxes are used simply to hold and transfer sin-
gle-byte messages. This is the case, for example, with a mailbox that takes the character
received or sent via serial interface, or typically with a mailbox used as a keyboard buffer.
In some of these cases, time is very critical, especially if a lot of data is transferred in short
periods of time.

To minimize the overhead caused by the mailbox management of embOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions OS_MAILBOX_PutBlocked(), OS_MAILBOX_Put(), OS_MAILBOX_GetBlocked(), and
OS_MAILBOX_Get() can transfer messages of sizes between 1 and 32,767 bytes each.

Their single-byte equivalents OS_MAILBOX_PutBlocked1(), OS_MAILBOX_Put1(), OS_MAIL-
BOX_GetBlocked1(), and OS_MAILBOX_Get1() work the same way with the exception that
they execute much faster because management is simpler. It is recommended to use the
single-byte versions if you transfer a lot of single-byte data via mailboxes.

The routines OS_MAILBOX_PutBlocked1(), OS_MAILBOX_Put1(), OS_MAILBOX_Get-
Blocked1(), and OS_MAILBOX_Get1() work exactly the same way as their universal equiv-
alents. The only difference is that they must only be used for single-byte mailboxes.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

229 CHAPTER 10 Introduction

Example

#define MAX_MSG_SIZE (9) // Max. number of bytes per message
#define MAX_MSG_NUM (2) // Max. number of messages per Mailbox

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks
static OS_MAILBOX MyMailbox;
static char MyMailboxBuffer[MAX_MSG_SIZE * MAX_MSG_NUM];

static void HPTask(void) {
 char aData[MAX_MSG_SIZE];

 while (1) {
 OS_MAILBOX_GetBlocked(&MyMailbox, (void *)aData);
 OS_COM_SendString(aData);
 }
}

static void LPTask(void) {
 while (1) {
 OS_MAILBOX_PutBlocked(&MyMailbox, "Hello\0 ");
 OS_MAILBOX_PutBlocked(&MyMailbox, "World !\n");
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_MAILBOX_Create(&MyMailbox, MAX_MSG_SIZE, MAX_MSG_NUM, &MyMailboxBuffer);
 OS_COM_SendString("embOS OS_Mailbox example");
 OS_COM_SendString("\n\nDemonstrating message passing\n");
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

230 CHAPTER 10 API functions

10.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_MAILBOX_Clear()
Clears all messages in the specified
mailbox. ● ● ● ● ●

OS_MAILBOX_Create() Creates a new mailbox. ● ●
OS_MAILBOX_Delete() Deletes a specified mailbox. ● ●

OS_MAILBOX_Get()
Retrieves a new message of a prede-
fined size from a mailbox if a message
is available.

● ● ● ● ●

OS_MAILBOX_Get1()
Retrieves a new message of size 1
from a mailbox if a message is avail-
able.

● ● ● ● ●

OS_MAILBOX_GetBlocked()
Retrieves a new message of a prede-
fined size from a mailbox. ● ●

OS_MAILBOX_GetBlocked1()
Retrieves a new message of size 1
from a mailbox. ● ●

OS_MAILBOX_GetMessageCnt()
Returns the number of messages cur-
rently available in a specified mailbox. ● ● ● ● ●

OS_MAILBOX_GetTimed()
Retrieves a new message of a prede-
fined size from a mailbox if a message
is available within a given time.

● ●

OS_MAILBOX_GetTimed1()
Retrieves a new message of size 1
from a mailbox if a message is avail-
able within a given time.

● ●

OS_MAILBOX_GetPtr()
Retrieves a pointer to a new message
of a predefined size from a mailbox, if
a message is available.

● ● ● ● ●

OS_MAILBOX_GetPtrBlocked()
Retrieves a pointer to a new message
of a predefined size from a mailbox. ● ●

OS_MAILBOX_IsInUse()
Delivers information whether the mail-
box is currently in use. ● ● ● ● ●

OS_MAILBOX_Peek()
Peeks a message from a mailbox with-
out removing the message. ● ● ● ● ●

OS_MAILBOX_Purge()
Deletes the last retrieved message in a
mailbox. ● ● ● ● ●

OS_MAILBOX_Put()
Stores a new message of a predefined
size in a mailbox if the mailbox is able
to accept one more message.

● ● ● ● ●

OS_MAILBOX_Put1()
Stores a new message of size 1 in a
mailbox if the mailbox is able to accept
one more message.

● ● ● ● ●

OS_MAILBOX_PutBlocked()
Stores a new message of a predefined
size in a mailbox. ● ●

OS_MAILBOX_PutBlocked1()
Stores a new message of size 1 in a
mailbox. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

231 CHAPTER 10 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_MAILBOX_PutFront()

Stores a new message of a predefined
size into a mailbox in front of all other
messages if the mailbox is able to ac-
cept one more message.

● ● ● ● ●

OS_MAILBOX_PutFront1()

Stores a new message of size 1 into a
mailbox in front of all other messages
if the mailbox is able to accept one
more message.

● ● ● ● ●

OS_MAILBOX_PutFront-
Blocked()

Stores a new message of a predefined
size at the beginning of a mailbox in
front of all other messages.

● ●

OS_MAILBOX_PutFront-
Blocked1()

Stores a new message of size 1 at the
beginning of a mailbox in front of all
other messages.

● ●

OS_MAILBOX_PutTimed()

Stores a new message of a predefined
size in a mailbox if the mailbox is able
to accept one more message within a
given time.

● ●

OS_MAILBOX_PutTimed1()

Stores a new message of size 1 in a
mailbox if the mailbox is able to ac-
cept one more message within a given
time.

● ●

OS_MAILBOX_WaitBlocked()
Waits until a message is available, but
does not retrieve the message from
the mailbox.

● ●

OS_MAILBOX_WaitTimed()

Waits until a message is available or
the timeout has expired, but does not
retrieve the message from the mail-
box.

● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

232 CHAPTER 10 API functions

10.2.1 OS_MAILBOX_Clear()

Description

Clears all messages in the specified mailbox.

Prototype

void OS_MAILBOX_Clear(OS_MAILBOX* pMB);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Additional information

When the mailbox is in use, a debug build of embOS will call OS_Error() with error code
OS_ERR_MB_INUSE.

OS_MAILBOX_Clear() may cause a task switch.

Example

static OS_MAILBOX _MBKey;

void ClearKeyBuffer(void) {
 OS_MAILBOX_Clear(&_MBKey);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

233 CHAPTER 10 API functions

10.2.2 OS_MAILBOX_Create()

Description

Creates a new mailbox.

Prototype

void OS_MAILBOX_Create(OS_MAILBOX* pMB,
 OS_U16 sizeofMsg,
 OS_UINT maxnofMsg,
 void* Buffer);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

sizeofMsg
Size of a message in bytes. Valid values are
1 ≤ sizeofMsg ≤ 32,767.

maxnofMsg
Maximum number of messages. Valid values are
1 ≤ MaxnofMsg ≤ 32,767 on 8 or 16-bit CPUs, or
1 ≤ MaxnofMsg ≤ 2,147,483,647 on 32-bit CPUs.

Buffer

Pointer to a memory area used as buffer. The buffer must
be big enough to hold the given number of messages of
the specified size: sizeofMsg * maxnoMsg bytes. For 8/16-
bit CPUs the total buffer size for one mailbox is limited to
65,536 Bytes.

Example

Mailbox used as keyboard buffer:

static OS_MAILBOX _MBKey;
char MBKeyBuffer[6];

void InitKeyMan(void) {
 //
 // Create mailbox, functioning as type ahead buffer
 //
 OS_MAILBOX_Create(&_MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

Mailbox used for transferring complex commands from one task to another:

/*
* Example of mailbox used for transferring commands to a task
* that controls a motor
*/
typedef struct {
 char Cmd;
 int Speed[2];
 int Position[2];
} MOTORCMD;

OS_MAILBOX MBMotor;

#define NUM_MOTORCMDS 4

char BufferMotor[sizeof(MOTORCMD) * NUM_MOTORCMDS];

void MOTOR_Init(void) {
 /* Create mailbox that holds commands messages */
 OS_MAILBOX_Create(&MBMotor, sizeof(MOTORCMD), NUM_MOTORCMDS, &BufferMotor);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

234 CHAPTER 10 API functions

}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

235 CHAPTER 10 API functions

10.2.3 OS_MAILBOX_Delete()

Description

Deletes a specified mailbox.

Prototype

void OS_MAILBOX_Delete(OS_MAILBOX* pMB);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Additional information

A debug build of embOS checks whether pMB addresses a valid mailbox and will call OS_Er-
ror() with error code OS_ERR_INV_MAILBOX in case of an error. When the mailbox is cur-
rently in use, a debug build of embOS will call OS_Error() with error code OS_ERR_M-
B_INUSE. Before deleting a mailbox, make sure that no task is waiting for it. A debug build
of embOS will call OS_Error() with the error code OS_ERR_MAILBOX_DELETE if any tasks
is waiting for the mailbox.

Example

static OS_MAILBOX _MBSerIn;

void Cleanup(void) {
 OS_MAILBOX_Delete(&_MBSerIn);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

236 CHAPTER 10 API functions

10.2.4 OS_MAILBOX_Get()

Description

Retrieves a new message of a predefined size from a mailbox if a message is available.

Prototype

char OS_MAILBOX_Get(OS_MAILBOX* pMB,
 void* pDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
created.

Return value

= 0 Success; message retrieved.
≠ 0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and the memory area where pDest points
to remains unchanged, but the program execution continues. This function never suspends
the calling task. It may therefore also be called from an interrupt routine.

Example

#define MESSAGE_SIZE 4

static OS_MAILBOX _MBData;
static char _Buffer[MESSAGE_SIZE];

char GetData(void) {
 return OS_MAILBOX_Get(&_MBData, &_Buffer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

237 CHAPTER 10 API functions

10.2.5 OS_MAILBOX_Get1()

Description

Retrieves a new message of size 1 from a mailbox if a message is available.

Prototype

char OS_MAILBOX_Get1(OS_MAILBOX* pMB,
 char* pDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
created.

Return value

= 0 Success; message retrieved.
≠ 0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and the memory area where pDest points
to remains unchanged, but the program execution continues. This function never suspends
the calling task. It may therefore also be called from an interrupt routine.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Get()
and OS_MAILBOX_Get1().

Example

static OS_MAILBOX _MBKey;

//
// If a key has been pressed, it is taken out of the mailbox
// and returned to caller. Otherwise zero is returned.
//
char GetKey(void) {
 char c = 0;

 OS_MAILBOX_Get1(&_MBKey, &c);
 return c;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

238 CHAPTER 10 API functions

10.2.6 OS_MAILBOX_GetBlocked()

Description

Retrieves a new message of a predefined size from a mailbox.

Prototype

void OS_MAILBOX_GetBlocked(OS_MAILBOX* pMB,
 void* pDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAILBOX_Get()/OS_MAILBOX_Get1() instead if you need to retrieve data
from a mailbox from within an interrupt routine.

Example

#define MESSAGE_SIZE 4

static OS_MAILBOX _MBData;
static char _Buffer[MESSAGE_SIZE];

char WaitData(void) {
 return OS_MAILBOX_GetBlocked(&_MBData, &_Buffer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

239 CHAPTER 10 API functions

10.2.7 OS_MAILBOX_GetBlocked1()

Description

Retrieves a new message of size 1 from a mailbox.

Prototype

void OS_MAILBOX_GetBlocked1(OS_MAILBOX* pMB,
 char* pDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAILBOX_Get()/OS_MAILBOX_Get1() instead if you need to retrieve data
from a mailbox from within an interrupt routine.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Get-
Blocked() and OS_MAILBOX_GetBlocked1().

Example

static OS_MAILBOX _MBKey;

char WaitKey(void) {
 char c;

 OS_MAILBOX_GetBlocked1(&_MBKey, &c);
 return c;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

240 CHAPTER 10 API functions

10.2.8 OS_MAILBOX_GetMessageCnt()

Description

Returns the number of messages currently available in a specified mailbox.

Prototype

OS_UINT OS_MAILBOX_GetMessageCnt(OS_CONST_PTR OS_MAILBOX *pMB);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Return value

The number of messages currently available in the mailbox.

Example

static OS_MAILBOX _MBData;

void PrintAvailableMessages() {
 OS_UINT NumOfMsgs;

 NumOfMsgs = OS_MAILBOX_GetMessageCnt(&_MBData);
 printf("Mailbox contains %u messages.\n", NumOfMsgs);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

241 CHAPTER 10 API functions

10.2.9 OS_MAILBOX_GetTimed()

Description

Retrieves a new message of a predefined size from a mailbox if a message is available
within a given time.

Prototype

char OS_MAILBOX_GetTimed(OS_MAILBOX* pMB,
 void* pDest,
 OS_U32 Timeout);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
created.

Timeout
Maximum time in milliseconds until the requested message
must be available.

Return value

= 0 Success; message retrieved.
≠ 0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and the task is suspended for the given
timeout. The task continues execution according to the rules of the scheduler as soon as
a message is available within the given timeout, or after the timeout value has expired.
If the timeout has expired and no message was available within the timeout the memory
area where pDest points to remains unchanged.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case, no message is retrieved
from the mailbox.

Example

#define MESSAGE_SIZE 4

static OS_MAILBOX _MBData;
static char _Buffer[MESSAGE_SIZE];

char WaitData(void) {
 //
 // Wait for up to 10 milliseconds
 //
 return OS_MAILBOX_GetTimed(&_MBData, &_Buffer, 10);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

242 CHAPTER 10 API functions

10.2.10 OS_MAILBOX_GetTimed1()

Description

Retrieves a new message of size 1 from a mailbox if a message is available within a given
time.

Prototype

char OS_MAILBOX_GetTimed1(OS_MAILBOX* pMB,
 char* pDest,
 OS_U32 Timeout);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
created.

Timeout
Maximum time in milliseconds until the requested message
must be available.

Return value

= 0 Success; message retrieved.
≠ 0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and the task is suspended for the given
timeout. The task continues execution according to the rules of the scheduler as soon as
a message is available within the given timeout, or after the timeout value has expired.
If the timeout has expired and no message was available within the timeout the memory
area where pDest points to remains unchanged.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case, no message is retrieved
from the mailbox.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Get-
Timed() and OS_MAILBOX_GetTimed1().

Example

static OS_MAILBOX _MBKey;
//
// If a key has been pressed, it is taken out of the mailbox
// and returned to caller. Otherwise zero is returned.
//
char GetKey(void) {
 char c = 0;
 OS_MAILBOX_GetTimed1(&_MBKey, &c, 10); // Wait for 10 milliseconds
 return c;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

243 CHAPTER 10 API functions

10.2.11 OS_MAILBOX_GetPtr()

Description

Retrieves a pointer to a new message of a predefined size from a mailbox, if a message
is available. Non blocking function.

Prototype

char OS_MAILBOX_GetPtr(OS_MAILBOX* pMB,
 void** ppDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

ppDest
Pointer to the memory area that a pointer to the message
should be stored at. The message size (in bytes) was defined
when the mailbox was created.

Return value

= 0 Success; message retrieved.
≠ 0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and ppDest remains unchanged, but
the program execution continues. This function never suspends the calling task. It may
therefore also be called from an interrupt routine.

The retrieved message is not removed from the mailbox, this must be done by a call
of OS_MAILBOX_Purge() after the message was processed. Only one message can be
processed at a time. As long as the message is not removed from the mailbox, the mail-
box is marked “in use”. Following calls of OS_MAILBOX_Clear(), OS_MAILBOX_Delete(),
OS_MAILBOX_GetBlocked*() and OS_MAILBOX_GetPtrBlocked*() functions are not allowed
until OS_MAILBOX_Purge() is called and will call OS_Error() in debug builds of embOS.

Example

static OS_MAILBOX _MBKey;

void PrintMessage(void) {
 char* p;
 char r;

 r = OS_MAILBOX_GetPtr(&_MBKey, (void**)&p);
 if (r == 0) {
 printf("%d\n", *p);
 OS_MAILBOX_Purge(&_MBKey);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

244 CHAPTER 10 API functions

10.2.12 OS_MAILBOX_GetPtrBlocked()

Description

Retrieves a pointer to a new message of a predefined size from a mailbox.

Prototype

void OS_MAILBOX_GetPtrBlocked(OS_MAILBOX* pMB,
 void** ppDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

ppDest
Pointer to the memory area that a pointer to the message
should be stored at. The message size (in bytes) was defined
when the mailbox was created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAILBOX_GetPtr() instead if you need to retrieve data from a mailbox
from within an interrupt routine.

The retrieved message is not removed from the mailbox, this must be done by a call
of OS_MAILBOX_Purge() after the message was processed. Only one message can be
processed at a time. As long as the message is not removed from the mailbox, the mail-
box is marked “in use”. Following calls of OS_MAILBOX_Clear(), OS_MAILBOX_Delete(),
OS_MAILBOX_GetBlocked*() and OS_MAILBOX_GetPtrBlocked*() functions are not allowed
until OS_MAILBOX_Purge() is called and will call OS_Error() in debug builds of embOS.

Example

static OS_MAILBOX _MBKey;

void PrintMessage(void) {
 char* p;

 OS_MAILBOX_GetPtrBlocked(&_MBKey, (void**)&p);
 printf("%d\n", *p);
 OS_MAILBOX_Purge(&_MBKey);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

245 CHAPTER 10 API functions

10.2.13 OS_MAILBOX_IsInUse()

Description

Delivers information whether the mailbox is currently in use.

Prototype

OS_BOOL OS_MAILBOX_IsInUse(OS_CONST_PTR OS_MAILBOX *pMB);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Return value

= 0 Mailbox is not in use.
≠ 0 Mailbox is in use and may not be deleted or cleared.

Additional information

A mailbox must not be cleared or deleted when it is in use. In use means a task or function
currently holds a pointer to a message in the mailbox.

OS_MAILBOX_IsInUse() can be used to examine the state of the mailbox before it can be
cleared or deleted, as these functions must not be performed as long as the mailbox is used.

Example

static OS_MAILBOX _MBKey;

void PrintMessage(void) {
 OS_BOOL IsInUse;

 IsInUse = OS_MAILBOX_IsInUse(&_MBKey);
 if (IsInUse == 0u) {
 printf("Mailbox is not in use.\n");
 OS_MAILBOX_Clear(&_MBKey);
 } else {
 printf("Mailbox is in use.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

246 CHAPTER 10 API functions

10.2.14 OS_MAILBOX_Peek()

Description

Peeks a message from a mailbox without removing the message. The message is copied
to *pDest if one was available.

Prototype

char OS_MAILBOX_Peek(OS_CONST_PTR OS_MAILBOX *pMB,
 void* pDest);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pDest Pointer to a buffer that should receive the message.

Return value

= 0 Success, message was available and is copied to *pDest.
≠ 0 Mail could not be retrieved (mailbox is empty).

Additional information

This function is non-blocking and never suspends the calling task. It may therefore be
called from an interrupt routine. If no message was available the memory area where pDest
points to remains unchanged.

Example

#define MESSAGE_SIZE 4

static OS_MAILBOX _MBData;
static char _Buffer[MESSAGE_SIZE];

char PeekData(void) {
 return OS_MAILBOX_Peek(&_MBData, &_Buffer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

247 CHAPTER 10 API functions

10.2.15 OS_MAILBOX_Purge()

Description

Deletes the last retrieved message in a mailbox.

Prototype

void OS_MAILBOX_Purge(OS_MAILBOX* pMB);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Additional information

This routine should be called by the task that retrieved the last message from the mailbox,
after the message is processed.

Once a message was retrieved by a call of OS_MAILBOX_GetPtrBlocked() or OS_MAIL-
BOX_GetPtr(), the message must be removed from the mailbox by a call of OS_MAIL-
BOX_Purge() before a following message can be retrieved from the mailbox. Follow-
ing calls of OS_MAILBOX_Clear(), OS_MAILBOX_Delete(), OS_MAILBOX_GetBlocked*() and
OS_MAILBOX_GetPtrBlocked*() functions are not allowed until OS_MAILBOX_Purge() is
called and will call OS_Error() in debug builds of embOS.

Consecutive calls of OS_MAILBOX_Purge() or calling OS_MAILBOX_Purge() without having
retrieved a message from the mailbox will also call OS_Error() in embOS debug builds.

Example

static OS_MAILBOX _MBKey;

void PrintMessage(void) {
 char* p;

 OS_MAILBOX_GetPtrBlocked(&_MBKey, (void**)&p);
 printf("%d\n", *p);
 OS_MAILBOX_Purge(&_MBKey);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

248 CHAPTER 10 API functions

10.2.16 OS_MAILBOX_Put()

Description

Stores a new message of a predefined size in a mailbox if the mailbox is able to accept
one more message.

Prototype

char OS_MAILBOX_Put(OS_MAILBOX* pMB,
 OS_CONST_PTR void *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Return value

= 0 Success; message stored.
≠ 0 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine.

Example

static OS_MAILBOX _MBData;

void AddMessage(struct Data* pData) {
 char Result;

 Result = OS_MAILBOX_Put(&_MBData, pData);
 if (Result != 0) {
 printf("Was not able to add the message to the mailbox.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

249 CHAPTER 10 API functions

10.2.17 OS_MAILBOX_Put1()

Description

Stores a new message of size 1 in a mailbox if the mailbox is able to accept one more
message.

Prototype

char OS_MAILBOX_Put1(OS_MAILBOX* pMB,
 OS_CONST_PTR char *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Return value

= 0 Success; message stored.
≠ 0 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Put()
and OS_MAILBOX_Put1().

Example

static OS_MAILBOX _MBKey;
static char _MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
 return OS_MAILBOX_Put1(&_MBKey, &k); /* Store key if space in buffer */
}

This example can be used with the sample program shown earlier to handle a mailbox as
keyboard buffer.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

250 CHAPTER 10 API functions

10.2.18 OS_MAILBOX_PutBlocked()

Description

Stores a new message of a predefined size in a mailbox.

Prototype

void OS_MAILBOX_PutBlocked(OS_MAILBOX* pMB,
 OS_CONST_PTR void *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a sus-
pension, it must not be called from an interrupt routine. Use OS_MAILBOX_Put()/OS_MAIL-
BOX_Put1() instead if you need to store data in a mailbox from within an interrupt routine.
When using a debug build of embOS, calling from an interrupt routine will call the error
handler OS_Error() with error code OS_ERR_ILLEGAL_IN_ISR.

Example

static OS_MAILBOX _MBData;

void AddMessage(struct Data* pData) {
 OS_MAILBOX_PutBlocked(&_MBData, pData);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

251 CHAPTER 10 API functions

10.2.19 OS_MAILBOX_PutBlocked1()

Description

Stores a new message of size 1 in a mailbox.

Prototype

void OS_MAILBOX_PutBlocked1(OS_MAILBOX* pMB,
 OS_CONST_PTR char *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a sus-
pension, it must not be called from an interrupt routine. Use OS_MAILBOX_Put()/OS_MAIL-
BOX_Put1() instead if you need to store data in a mailbox from within an interrupt routine.
When using a debug build of embOS, calling from an interrupt routine will call the error
handler OS_Error() with error code OS_ERR_ILLEGAL_IN_ISR.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Put-
Blocked() and OS_MAILBOX_PutBlocked1().

Example

Single-byte mailbox as keyboard buffer:

static OS_MAILBOX _MBKey;
static char MBKeyBuffer[6];

void KEYMAN_StoreKey(char k) {
 OS_MAILBOX_PutBlocked1(&_MBKey, &k); /* Store key, wait if no space in buffer
 */
}

void KEYMAN_Init(void) {
 /* Create mailbox functioning as type ahead buffer */
 OS_MAILBOX_Create(&_MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

252 CHAPTER 10 API functions

10.2.20 OS_MAILBOX_PutFront()

Description

Stores a new message of a predefined size into a mailbox in front of all other messages if
the mailbox is able to accept one more message. The new message will be retrieved first.

Prototype

char OS_MAILBOX_PutFront(OS_MAILBOX* pMB,
 OS_CONST_PTR void *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Return value

= 0 Success; message stored.
≠ 0 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine. This function is useful to store
“emergency” messages into a mailbox which must be handled quickly. It may also be used
in general instead of OS_MAILBOX_Put() to change the FIFO structure of a mailbox into a
LIFO structure.

Example

static OS_MAILBOX _MBData;

void AddMessage(struct Data* pData) {
 char Result;

 Result = OS_MAILBOX_PutFront(&_MBData, pData);
 if (Result != 0) {
 printf("Was not able to add the message to the mailbox.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

253 CHAPTER 10 API functions

10.2.21 OS_MAILBOX_PutFront1()

Description

Stores a new message of size 1 into a mailbox in front of all other messages if the mailbox
is able to accept one more message. The new message will be retrieved first.

Prototype

char OS_MAILBOX_PutFront1(OS_MAILBOX* pMB,
 OS_CONST_PTR char *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Return value

= 0 Success; message stored.
≠ 0 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine. This function is useful to store
“emergency” messages into a mailbox which must be handled quickly. It may also be used
in general instead of OS_MAILBOX_Put() to change the FIFO structure of a mailbox into a
LIFO structure.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Put-
Front() and OS_MAILBOX_PutFront1().

Example

static OS_MAILBOX _MBData;

void AddMessage(char c) {
 char Result;

 Result = OS_MAILBOX_PutFront1(&_MBData, &c);
 if (Result != 0) {
 printf("Was not able to add the message to the mailbox.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

254 CHAPTER 10 API functions

10.2.22 OS_MAILBOX_PutFrontBlocked()

Description

Stores a new message of a predefined size at the beginning of a mailbox in front of all other
messages. This new message will be retrieved first.

Prototype

void OS_MAILBOX_PutFrontBlocked(OS_MAILBOX* pMB,
 OS_CONST_PTR void *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a
suspension, it must not be called from an interrupt routine. Use OS_MAILBOX_PutFront()/
OS_MAILBOX_PutFront1() instead if you need to store data in a mailbox from within an
interrupt routine.

This function is useful to store “emergency” messages into a mailbox which must be handled
quickly. It may also be used in general instead of OS_MAILBOX_PutBlocked() to change
the FIFO structure of a mailbox into a LIFO structure.

Example

static OS_MAILBOX _MBData;

void AddMessage(struct Data* pData) {
 OS_MAILBOX_PutFrontBlocked(&_MBData, pData);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

255 CHAPTER 10 API functions

10.2.23 OS_MAILBOX_PutFrontBlocked1()

Description

Stores a new message of size 1 at the beginning of a mailbox in front of all other messages.
This new message will be retrieved first.

Prototype

void OS_MAILBOX_PutFrontBlocked1(OS_MAILBOX* pMB,
 OS_CONST_PTR char *pMail);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a
suspension, it must not be called from an interrupt routine. Use OS_MAILBOX_PutFront()/
OS_MAILBOX_PutFront1() instead if you need to store data in a mailbox from within an
interrupt routine.

This function is useful to store “emergency” messages into a mailbox which must be handled
quickly. It may also be used in general instead of OS_MAILBOX_PutBlocked() to change
the FIFO structure of a mailbox into a LIFO structure.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Put-
FrontBlocked() and OS_MAILBOX_PutFrontBlocked1().

Example

Single-byte mailbox as keyboard buffer which will follow the LIFO pattern:

static OS_MAILBOX _MBCmd;
static char _MBCmdBuffer[6];

void KEYMAN_StoreCommand(char k) {
 OS_MAILBOX_PutFrontBlocked1(&_MBCmd, &k);
 // Store command, wait if no space in buffer
}

void KEYMAN_Init(void) {
 /* Create mailbox for command buffer */
 OS_MAILBOX_Create(&_MBCmd, 1, sizeof(_MBCmdBuffer), &_MBCmdBuffer);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

256 CHAPTER 10 API functions

10.2.24 OS_MAILBOX_PutTimed()

Description

Stores a new message of a predefined size in a mailbox if the mailbox is able to accept one
more message within a given time. Returns when a new message has been stored in the
mailbox (mailbox not full) or a timeout occurred.

Prototype

OS_BOOL OS_MAILBOX_PutTimed(OS_MAILBOX* pMB,
 OS_CONST_PTR void *pMail,
 OS_U32 Timeout);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Timeout
Maximum time in milliseconds until the given message must
be stored.

Return value

= 0 Success; message stored.
≠ 0 Message could not be stored within the given timeout (mailbox is full). destina-

tion remains unchanged.

Additional information

If the mailbox is full, no message is stored and the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a new
message is accepted within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mailbox accepts new messages after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the mailbox was not available within the requested time. In this case, no message is stored
in the mailbox.

Example

static OS_MAILBOX _MBData;

void AddMessage(char* pData) {
 OS_MAILBOX_PutTimed(&_MBData, pData, 10); // Wait maximum 10 milliseconds
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

257 CHAPTER 10 API functions

10.2.25 OS_MAILBOX_PutTimed1()

Description

Stores a new message of size 1 in a mailbox if the mailbox is able to accept one more
message within a given time. Returns when a new message has been stored in the mailbox
(mailbox not full) or a timeout occurred.

Prototype

OS_BOOL OS_MAILBOX_PutTimed1(OS_MAILBOX* pMB,
 OS_CONST_PTR char *pMail,
 OS_U32 Timeout);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.
pMail Pointer to the message to store.

Timeout
Maximum time in milliseconds until the given message must
be stored.

Return value

= 0 Success; message stored.
≠ 0 Message could not be stored within the given timeout (mailbox is full). destina-

tion remains unchanged.

Additional information

If the mailbox is full, no message is stored and the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a new
message is accepted within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mailbox accepts new messages after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the mailbox was not available within the requested time. In this case, no message is stored
in the mailbox.

See Single-byte mailbox functions on page 228 for differences between OS_MAILBOX_Put-
Timed() and OS_MAILBOX_PutTimed1().

Example

static OS_MAILBOX _MBKey;

void SetKey(char c) {
 OS_MAILBOX_PutTimed1(&_MBKey, &c, 10); // Wait maximum 10 milliseconds
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

258 CHAPTER 10 API functions

10.2.26 OS_MAILBOX_WaitBlocked()

Description

Waits until a message is available, but does not retrieve the message from the mailbox.

Prototype

void OS_MAILBOX_WaitBlocked(OS_MAILBOX* pMB);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Additional information

If the mailbox is empty, the task is suspended until a message is available, otherwise the
task continues. The task continues execution according to the rules of the scheduler as
soon as a message is available, but the message is not retrieved from the mailbox.

Example

static OS_MAILBOX _MBData;

void Task(void) {
 while (1) {
 OS_MAILBOX_WaitBlocked(&_MBData);
 ...
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

259 CHAPTER 10 API functions

10.2.27 OS_MAILBOX_WaitTimed()

Description

Waits until a message is available or the timeout has expired, but does not retrieve the
message from the mailbox.

Prototype

char OS_MAILBOX_WaitTimed(OS_MAILBOX* pMB,
 OS_U32 Timeout);

Parameters

Parameter Description

pMB Pointer to a mailbox object of type OS_MAILBOX.

Timeout
Maximum time in milliseconds until the requested message
must be available.

Return value

= 0 Success; message available.
≠ 0 Timeout; no message available within the given timeout time.

Additional information

If the mailbox is empty, the task is suspended for the given timeout. The task continues
execution according to the rules of the scheduler as soon as a message is available within
the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time.

Example

static OS_MAILBOX _MBData;

void Task(void) {
 char Result;

 Result = OS_MAILBOX_WaitTimed(&_MBData, 10);
 if (Result == 0) {
 // Compute message
 } else {
 // Timeout
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 11

Queues

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

261 CHAPTER 11 Introduction

11.1 Introduction
In the preceding chapter, inter-task communication using mailboxes was described. Mail-
boxes can handle small messages with fixed data size only. Queues enable inter-task com-
munication with larger messages or with messages of differing lengths.

A queue consists of a data buffer and a control structure that is managed by the real-time
operating system. The queue behaves like a normal buffer; you can deposit something
(called a message) in the queue and retrieve it later. Queues work as FIFO: first in, first out.
So a message that is deposited first will be retrieved first. There are three major differences
between queues and mailboxes:
1. Queues accept messages of differing lengths. When depositing a message into a queue,

the message size is passed as a parameter.
2. Retrieving a message from the queue does not copy the message, but returns a pointer

to the message and its size. This enhances performance because the data is copied only
when the message is written into the queue.

3. The retrieving function must delete every message after processing it.
4. A new message can only be retrieved from the queue when the previous message was

deleted from the queue.

The queue data buffer contains the messages and some additional management infor-
mation. Each message has a message header containing the message size. The define
OS_Q_SIZEOF_HEADER defines the size of the message header. Additionally, the queue buffer
will be aligned for those CPUs which need data alignment. Therefore the queue data buffer
size must be bigger than the sum of all messages.

Limitations:

Both the number of queues and buffers are limited only by the amount of available memory.
However, the individual message size and the buffer size per queue are limited by software
design.

Message size in bytes on 8 or 16-bit CPUs:
 1 <= x <= 215 - (1 + OS_Q_SIZEOF_HEADER + MESSAGE_ALIGNMENT)
Message size in bytes on 32-bit CPUs:
 1 <= x <= 231 - (1 + OS_Q_SIZEOF_HEADER + MESSAGE_ALIGNMENT)
Maximum buffer size in bytes for one queue on 8 or 16-bit CPUs:
 216 = 0xFFFF
Maximum buffer size in bytes for one queue on 32-bit CPUs:
 232 = 0xFFFFFFFF

Similar to mailboxes, queues can be used by more than one producer, but must be used
by one consumer only. This means that more than one task or interrupt handler is allowed
to deposit new data into the queue, but it does not make sense to retrieve messages by
multiple tasks.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

262 CHAPTER 11 Introduction

Example

#define MESSAGE_ALIGNMENT (4u) // Depends on core/compiler
#define MESSAGES_SIZE_HELLO (7u + OS_Q_SIZEOF_HEADER + MESSAGE_ALIGNMENT)
#define MESSAGES_SIZE_WORLD (9u + OS_Q_SIZEOF_HEADER + MESSAGE_ALIGNMENT)
#define QUEUE_SIZE (MESSAGES_SIZE_HELLO + MESSAGES_SIZE_WORLD)

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static OS_QUEUE MyQueue;
static char MyQBuffer[QUEUE_SIZE];

static void HPTask(void) {
 char* pData;
 int Len;

 while (1) {
 Len = OS_QUEUE_GetPtrBlocked(&MyQueue, (void**)&pData);
 OS_TASK_Delay_ms(10);
 //
 // Evaluate Message
 //
 if (Len > 0) {
 OS_COM_SendString(pData);
 OS_QUEUE_Purge(&MyQueue);
 }
 }
}

static void LPTask(void) {
 while (1) {
 OS_QUEUE_Put(&MyQueue, "\nHello\0", 7);
 OS_QUEUE_Put(&MyQueue, "\nWorld !\0", 9);
 OS_TASK_Delay_ms(500);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_QUEUE_Create(&MyQueue, &MyQBuffer, sizeof(MyQBuffer));
 OS_COM_SendString("embOS OS_Queue example");
 OS_COM_SendString("\n\nDemonstrating message passing\n");
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

263 CHAPTER 11 API functions

11.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_QUEUE_Clear()
Clears all messages in the specified
queue. ● ● ● ● ●

OS_QUEUE_Create()
Creates and initializes a message
queue. ● ● ● ●

OS_QUEUE_Delete() Deletes a specific message queue. ● ● ● ●

OS_QUEUE_GetMessageCnt()
Returns the number of messages that
are currently stored in a queue. ● ● ● ● ●

OS_QUEUE_GetMessageSize()
Returns the size of the first message in
the queue. ● ● ● ● ●

OS_QUEUE_GetPtr()
Retrieve the pointer to a message from
the message queue if a message is
available.

● ● ● ● ●

OS_QUEUE_GetPtrBlocked()
Retrieve the pointer to a message from
the message queue. ● ●

OS_QUEUE_GetPtrTimed()
Retrieve the pointer to a message from
the message queue within a specified
time if a message is available.

● ●

OS_QUEUE_IsInUse()
Delivers information whether the queue
is currently in use. ● ● ● ● ●

OS_QUEUE_PeekPtr()
Retrieve the pointer to a message from
the message queue. ● ● ● ● ●

OS_QUEUE_Purge()
Deletes the last retrieved message in a
queue. ● ● ● ● ●

OS_QUEUE_Put()
Stors a new message of given size in a
queue. ● ● ● ● ●

OS_QUEUE_PutEx()

Stores a new message, of which the
distinct parts are distributed in memo-
ry as indicated by a OS_QUEUE_SRCLIST
structure, in a queue.

● ● ● ● ●

OS_QUEUE_PutBlocked()
Stores a new message of given size in a
queue. ● ●

OS_QUEUE_PutBlockedEx()

Stores a new message, of which the
distinct parts are distributed in memo-
ry as indicated by a OS_QUEUE_SRCLIST
structure, in a queue.

● ●

OS_QUEUE_PutTimed()
Stores a new message of given size in a
queue if space is available within a giv-
en time.

● ●

OS_QUEUE_PutTimedEx()

Stores a new message, of which the
distinct parts are distributed in memo-
ry as indicated by a OS_QUEUE_SRCLIST
structure, in a queue.

● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

264 CHAPTER 11 API functions

11.2.1 OS_QUEUE_Clear()

Description

Clears all messages in the specified queue.

Prototype

void OS_QUEUE_Clear(OS_QUEUE* pQ);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Additional information

When the queue is in use, a debug build of embOS will call OS_Error() with error code
OS_ERR_QUEUE_INUSE.

OS_QUEUE_Clear() may cause a task switch.

Example

static OS_QUEUE _Queue;

void ClearQueue() {
 OS_QUEUE_Clear(&_Queue);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

265 CHAPTER 11 API functions

11.2.2 OS_QUEUE_Create()

Description

Creates and initializes a message queue.

Prototype

void OS_QUEUE_Create(OS_QUEUE* pQ,
 void* pData,
 OS_UINT Size);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.
pData Pointer to a memory area used as data buffer for the queue.
Size Size in bytes of the data buffer.

Additional information

The define OS_Q_SIZEOF_HEADER can be used to calculate the additional management in-
formation bytes needed for each message in the queue data buffer. But it does not account
for the additional space needed for data alignment. Thus the number of messages that can
actually be stored in the queue buffer depends on the message sizes.

Example

#define MESSAGE_CNT 100
#define MESSAGE_SIZE 100
#define MEMORY_QSIZE (MESSAGE_CNT * (MESSAGE_SIZE + OS_Q_SIZEOF_HEADER))

static OS_QUEUE _MemoryQ;
static char _acMemQBuffer[MEMORY_QSIZE];

void MEMORY_Init(void) {
 OS_QUEUE_Create(&_MemoryQ, &_acMemQBuffer, sizeof(_acMemQBuffer));
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

266 CHAPTER 11 API functions

11.2.3 OS_QUEUE_Delete()

Description

Deletes a specific message queue.

Prototype

void OS_QUEUE_Delete(OS_QUEUE* pQ);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Additional information

A debug build of embOS checks whether pQueue addresses a valid queue and will call
OS_Error() with error code OS_ERR_QUEUE_INVALID in case of an error. When the queue
is currently in use, a debug build of embOS will call OS_Error() with error code OS_ER-
R_QUEUE_INUSE. Before deleting a queue, make sure that no task is waiting for it. A debug
build of embOS will call OS_Error() with the error code OS_ERR_QUEUE_DELETE if any tasks
is waiting for the queue.

Example

static OS_QUEUE _QSerIn;

void Cleanup(void) {
 OS_QUEUE_Delete(&_QSerIn);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

267 CHAPTER 11 API functions

11.2.4 OS_QUEUE_GetMessageCnt()

Description

Returns the number of messages that are currently stored in a queue.

Prototype

int OS_QUEUE_GetMessageCnt(OS_CONST_PTR OS_QUEUE *pQ);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Return value

The number of messages in the queue.

Example

static OS_QUEUE _Queue;

void PrintNumberOfMessages() {
 int Cnt;

 Cnt = OS_QUEUE_GetMessageCnt(&_Queue);
 printf("%d messages available.\n", Cnt);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

268 CHAPTER 11 API functions

11.2.5 OS_QUEUE_GetMessageSize()

Description

Returns the size of the first message in the queue.

Prototype

int OS_QUEUE_GetMessageSize(OS_CONST_PTR OS_QUEUE *pQ);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Return value

= 0 No data available.
> 0 Size of message in bytes.

Additional information

If the queue is empty OS_QUEUE_GetMessageSize() returns zero. If a message is avail-
able OS_QUEUE_GetMessageSize() returns the size of that message. The message is not
retrieved from the queue.

Example

static OS_QUEUE _MemoryQ;

static void _MemoryTask(void) {
 int Len;

 while (1) {
 Len = OS_QUEUE_GetMessageSize(&_MemoryQ); // Get message length
 if (Len > 0) {
 printf("Message with size %d retrieved\n", Len);
 OS_QUEUE_Purge(&_MemoryQ); // Delete message
 }
 OS_TASK_Delay_ms(10);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

269 CHAPTER 11 API functions

11.2.6 OS_QUEUE_GetPtr()

Description

Retrieve the pointer to a message from the message queue if a message is available.

Prototype

int OS_QUEUE_GetPtr(OS_QUEUE* pQ,
 void** ppData);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

ppData
Address of the pointer which will be set to the address of the
message.

Return value

= 0 No message available in queue.
> 0 Size of the message that was retrieved from the queue.

Additional information

If the queue is empty, the function returns zero and ppData will not be set. This function
never suspends the calling task. It may therefore be called from an interrupt routine or
timer. If a message could be retrieved it is not removed from the queue, this must be done
by a call of OS_QUEUE_Purge() after the message was processed. Only one message can
be processed at a time. As long as the message is not removed from the queue, the queue
is marked “in use”.

Following calls of OS_QUEUE_Clear(), OS_QUEUE_Delete(), OS_QUEUE_GetPtr(),
OS_QUEUE_GetPtrBlocked() and OS_QUEUE_GetPtrTimed() functions are not allowed until
OS_QUEUE_Purge() is called and will call OS_Error() in debug builds of embOS.

Example

static OS_QUEUE _MemoryQ;

static void _MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 Len = OS_QUEUE_GetPtr(&_MemoryQ, &pData); // Check message
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, Len); // Process message
 OS_QUEUE_Purge(&_MemoryQ); // Delete message
 } else {
 DoSomethingElse();
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

270 CHAPTER 11 API functions

11.2.7 OS_QUEUE_GetPtrBlocked()

Description

Retrieve the pointer to a message from the message queue.

Prototype

int OS_QUEUE_GetPtrBlocked(OS_QUEUE* pQ,
 void** ppData);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

ppData
Address of the pointer which will be set to the address of the
message.

Return value

Size of the message in bytes.

Additional information

If the queue is empty, the calling task is suspended until the queue receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine or timer. Use OS_GetPtrCond() instead. The retrieved message is not removed
from the queue, this must be done by a call of OS_QUEUE_Purge() after the message was
processed. Only one message can be processed at a time. As long as the message is not
removed from the queue, the queue is marked “in use”.

Following calls of OS_QUEUE_Clear(), OS_QUEUE_Delete(), OS_QUEUE_GetPtr(),
OS_QUEUE_GetPtrBlocked() and OS_QUEUE_GetPtrTimed() functions are not allowed until
OS_QUEUE_Purge() is called and will call OS_Error() in debug builds of embOS.

Example

static OS_QUEUE _MemoryQ;

static void _MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 Len = OS_QUEUE_GetPtrBlocked(&_MemoryQ, &pData); // Get message
 Memory_WritePacket(*(U32*)pData, Len); // Process message
 OS_QUEUE_Purge(&_MemoryQ); // Delete message
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

271 CHAPTER 11 API functions

11.2.8 OS_QUEUE_GetPtrTimed()

Description

Retrieve the pointer to a message from the message queue within a specified time if a
message is available.

Prototype

int OS_QUEUE_GetPtrTimed(OS_QUEUE* pQ,
 void** ppData,
 OS_U32 Timeout);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

ppData
Address of the pointer which will be set to the address of the
message.

Timeout
Maximum time in milliseconds until the requested message
must be available.

Return value

= 0 No message available in queue.
> 0 Size of the message that was retrieved from the queue.

Sets the pointer ppData to the message that should be retrieved.

Additional information

If the queue is empty no message is retrieved, the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a message
is available within the given timeout, or after the timeout value has expired. If no message
is retrieved within the timeout ppData will not be set.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that a message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case the state of the queue is
not modified by OS_QUEUE_GetPtrTimed() and a pointer to the message is not delivered.
As long as a message was retrieved and the message is not removed from the queue, the
queue is marked “in use”.

Following calls of OS_QUEUE_Clear(), OS_QUEUE_Delete(), OS_QUEUE_GetPtr(),
OS_QUEUE_GetPtrBlocked() and OS_QUEUE_GetPtrTimed() functions are not allowed until
OS_QUEUE_Purge() is called and will call OS_Error() in debug builds of embOS.

Example

static OS_QUEUE _MemoryQ;

static void _MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 Len = OS_QUEUE_GetPtrTimed(&_MemoryQ, &pData, 10); // Check message
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, Len); // Process message
 OS_QUEUE_Purge(&_MemoryQ); // Delete message
 } else { // Timeout
 DoSomethingElse();
 }

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

272 CHAPTER 11 API functions

 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

273 CHAPTER 11 API functions

11.2.9 OS_QUEUE_IsInUse()

Description

Delivers information whether the queue is currently in use.

Prototype

OS_BOOL OS_QUEUE_IsInUse(OS_CONST_PTR OS_QUEUE *pQ);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Return value

= 0 Queue is not in use.
≠ 0 Queue is in use and may not be deleted or cleared.

Additional information

A queue must not be cleared or deleted when it is in use. In use means a task or function
currently accesses the queue and holds a pointer to a message in the queue.

OS_QUEUE_IsInUse() can be used to examine the state of the queue before it can be cleared
or deleted, as these functions must not be performed as long as the queue is used.

Example

void DeleteQ(OS_QUEUE* pQ) {
 OS_INT_IncDI(); // Avoid state change of the queue by task or interrupt
 //
 // Wait until queue is not used
 //
 while (OS_QUEUE_IsInUse(pQ) != 0) {
 OS_TASK_Delay_ms(1);
 }
 OS_QUEUE_Delete(pQ);
 OS_INT_DecRI();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

274 CHAPTER 11 API functions

11.2.10 OS_QUEUE_PeekPtr()

Description

Retrieve the pointer to a message from the message queue. The message must not be
purged.

Prototype

int OS_QUEUE_PeekPtr(OS_CONST_PTR OS_QUEUE *pQ,
 void** ppData);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

ppData
Address of the pointer which will be set to the address of the
message.

Return value

= 0 No message available.
≠ 0 Size of message in bytes.

Additional information

Sets the pointer ppData to the message that should be retrieved. If no message is available
ppData will not be set.

Note

Ensure the queues state is not altered as long as a message is processed. That is the
reason for calling OS_INT_IncDI() in the sample. Ensure no cooperative task switch
is performed, as this may also alter the queue state and buffer.

Example

static OS_QUEUE _MemoryQ;
static void _MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 // Avoid state changes of the queue by task or interrupt
 OS_INT_IncDI();
 Len = OS_QUEUE_PeekPtr(&_MemoryQ, &pData); // Get message
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, Len); // Process message
 }
 OS_INT_DecRI();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

275 CHAPTER 11 API functions

11.2.11 OS_QUEUE_Purge()

Description

Deletes the last retrieved message in a queue.

Prototype

void OS_QUEUE_Purge(OS_QUEUE* pQ);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Additional information

This routine should be called by the task that retrieved the last message from the queue,
after the message is processed.

Once a message was retrieved by a call of OS_QUEUE_GetPtrBlocked(), OS_QUEUE_GetP-
tr() or OS_QUEUE_GetPtrTimed(), the message must be removed from the queue by a
call of OS_QUEUE_Purge() before a following message can be retrieved from the queue.

Consecutive calls of OS_QUEUE_Purge() or calling OS_QUEUE_Purge() without having re-
trieved a message from the queue will call the embOS error handler OS_Error() in embOS
debug builds.

Example

static OS_QUEUE _MemoryQ;

static void _MemoryTask(void) {
 int Len;
 char* pData;

 while (1) {
 Len = OS_QUEUE_GetPtrBlocked(&_MemoryQ, &pData); // Get message
 Memory_WritePacket(*(U32*)pData, Len); // Process message
 OS_QUEUE_Purge(&_MemoryQ); // Delete message
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

276 CHAPTER 11 API functions

11.2.12 OS_QUEUE_Put()

Description

Stors a new message of given size in a queue.

Prototype

int OS_QUEUE_Put(OS_QUEUE* pQ,
 OS_CONST_PTR void *pSrc,
 OS_UINT Size);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.
pSrc Pointer to the message to store.

Size
Size of the message to store. Valid values are:
1 ≤ Size ≤ 215 - 1 = 0x7FFF for 8/16-bit CPUs.
1 ≤ Size ≤ 231 - 1 = 0x7FFFFFFF for 32-bit CPUs.

Return value

= 0 Success, message stored.
≠ 0 Message could not be stored (queue is full).

Additional information

This routine never suspends the calling task and may therefore be called from an interrupt
routine.
When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

static OS_QUEUE _MemoryQ;

int MEMORY_Write(const char* pData, OS_UINT Len) {
 return OS_QUEUE_Put(&_MemoryQ, pData, Len);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

277 CHAPTER 11 API functions

11.2.13 OS_QUEUE_PutEx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a OS_QUEUE_SRCLIST structure, in a queue.

Prototype

int OS_QUEUE_PutEx(OS_QUEUE* pQ,
 OS_CONST_PTR OS_QUEUE_SRCLIST *pSrcList,
 OS_UINT NumSrc);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

pSrcList
Pointer to an array of OS_QUEUE_SRCLIST structures which
contain pointers to the data to store.

NumSrc Number of OS_QUEUE_SRCLIST structures at pSrcList.

Return value

= 0 Success, message stored.
≠ 0 Message could not be stored (queue is full).

Additional information

This routine never suspends the calling task and may therefore be called from main(), an
interrupt routine or a software timer.
When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

OS_CONST_PTR OS_QUEUE_SRCLIST aDataList[] = { {"Hello ", 6},
 {"World!", 6}
 };
OS_QUEUE_PutEx(&_MemoryQ, aDataList, 2);

11.2.13.1 The OS_QUEUE_SRCLIST structure
The OS_QUEUE_SRCLIST structure consists of two elements:

Parameter Description

pSrc Pointer to a part of the message to store.

Size
Size of the part of the message. Valid values are:
1 ≤ Size ≤ 215 - 1 = 0x7FFF for 8/16-bit CPUs.
1 ≤ Size ≤ 231 - 1 = 0x7FFFFFFF for 32-bit CPUs.

Note

The total size of all parts of the message must not exceed 0x7FFF on 8/16-bit CPUs,
or 0x7FFFFFFF on 32-bit CPUs, respectively.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

278 CHAPTER 11 API functions

11.2.14 OS_QUEUE_PutBlocked()

Description

Stores a new message of given size in a queue.

Prototype

void OS_QUEUE_PutBlocked(OS_QUEUE* pQ,
 OS_CONST_PTR void *pSrc,
 OS_UINT Size);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.
pSrc Pointer to the message to store.

Size
Size of the message to store. Valid values are:
1 ≤ Size ≤ 215 - 1 = 0x7FFF for 8/16-bit CPUs.
1 ≤ Size ≤ 231 - 1 = 0x7FFFFFFF for 32-bit CPUs.

Additional information

If the queue is full, the calling task is suspended.
When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

static OS_QUEUE _MemoryQ;

void StoreMessage(const char* pData, OS_UINT Len)
 OS_QUEUE_PutBlocked(&_MemoryQ, pData, Len);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

279 CHAPTER 11 API functions

11.2.15 OS_QUEUE_PutBlockedEx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a OS_QUEUE_SRCLIST structure, in a queue. Blocks the calling task when queue is full.

Prototype

void OS_QUEUE_PutBlockedEx(OS_QUEUE* pQ,
 OS_CONST_PTR OS_QUEUE_SRCLIST *pSrcList,
 OS_UINT NumSrc);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

pSrcList
Pointer to an array of OS_QUEUE_SRCLIST structures which
contain pointers to the data to store.

NumSrc Number of OS_QUEUE_SRCLIST structures at pSrcList.

Additional information

If the queue is full, the calling task is suspended.
When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

For more information on the OS_QUEUE_SRCLIST structure, refer to The OS_QUEUE_SRCLIST
structure in the chapter The OS_QUEUE_SRCLIST structure on page 277.

Example

OS_CONST_PTR OS_QUEUE_SRCLIST aDataList[] = { {"Hello ", 6},
 {"World!", 6}
 };
OS_QUEUE_PutEx(&_MemoryQ, aDataList, 2);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

280 CHAPTER 11 API functions

11.2.16 OS_QUEUE_PutTimed()

Description

Stores a new message of given size in a queue if space is available within a given time.

Prototype

char OS_QUEUE_PutTimed(OS_QUEUE* pQ,
 OS_CONST_PTR void *pSrc,
 OS_UINT Size,
 OS_U32 Timeout);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.
pSrc Pointer to the message to store.

Size
Size of the message to store. Valid values are:
1 ≤ Size ≤ 215 - 1 = 0x7FFF for 8/16-bit CPUs.
1 ≤ Size ≤ 231 - 1 = 0x7FFFFFFF for 32-bit CPUs.

Timeout
Maximum time in milliseconds until the given message must
be stored.

Return value

= 0 Success, message stored.
≠ 0 Message could not be stored within the specified time (insufficient space).

Additional information

If the queue holds insufficient space, the calling task is suspended until space for the mes-
sage is available, or the specified timeout time has expired. If the message could be de-
posited into the queue within the sepcified time, the function returns zero.
When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

static OS_QUEUE _MemoryQ;

int MEMORY_WriteTimed(const char* pData, OS_UINT Len, OS_TIME Timeout) {
 return OS_QUEUE_PutTimed(&_MemoryQ, pData, Len, Timeout);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

281 CHAPTER 11 API functions

11.2.17 OS_QUEUE_PutTimedEx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated by
a OS_QUEUE_SRCLIST structure, in a queue. Suspends the calling task for a given timeout
when the queue is full.

Prototype

char OS_QUEUE_PutTimedEx(OS_QUEUE* pQ,
 OS_CONST_PTR OS_QUEUE_SRCLIST *pSrcList,
 OS_UINT NumSrc,
 OS_U32 Timeout);

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

pSrcList
Pointer to an array of OS_QUEUE_SRCLIST structures which
contain pointers to the data to store.

NumSrc Number of OS_QUEUE_SRCLIST structures at pSrcList.

Timeout
Maximum time in milliseconds until the given message must
be stored.

Return value

= 0 Success, message stored.
≠ 0 Message could not be stored within the specified time (insufficient space).

Additional information

If the queue holds insufficient space, the calling task is suspended until space for the mes-
sage is available or the specified timeout time has expired. If the message could be de-
posited into the queue within the specified time, the function returns zero.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

For more information on the OS_QUEUE_SRCLIST structure, refer to The OS_QUEUE_SRCLIST
structure in the chapter The OS_QUEUE_SRCLIST structure on page 277.

Example

OS_CONST_PTR OS_QUEUE_SRCLIST aDataList[] = { {"Hello ", 6},
 {"World!", 6}
 };
OS_QUEUE_PutEx(&MemoryQ, aDataList, 2, 100);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 12

Watchdog

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

283 CHAPTER 12 Introduction

12.1 Introduction
A watchdog timer is a hardware timer that is used to reset a microcontroller after a speci-
fied amount of time. During normal operation, the microcontroller application periodically
restarts (“triggers” or “feeds”) the watchdog timer to prevent it from timing out. In case of
malfunction, however, the watchdog timer will eventually time out and subsequently reset
the microcontroller. This allows to detect and recover from microcontroller malfunctions.

For example, in a system without an RTOS, the watchdog timer would be triggered period-
ically from a single point in the application. When the application does not run properly,
the watchdog timer will not be triggered and thus the watchdog will cause a reset of the
microcontroller.

In a system that includes an RTOS, on the other hand, multiple tasks run at the same time.
It may happen that one or more of these tasks runs properly, while other tasks fail to run as
intended. Hence it may be insufficient to trigger the watchdog from one of these tasks only.
Therefore, embOS offers a watchdog support module that allows to automatically check if
all tasks, software timers, or even interrupt routines are executing properly. The embOS
watchdog support does not replace the hardware watchdog, but eases the use of hardware
watchdogs in an RTOS application.

Example

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128];
static OS_TASK TCBHP, TCBLP;
static OS_WD WatchdogHP, WatchdogLP;
static OS_TIMER Timer;

static void _TriggerWatchDog(void) {
 WD_REG = TRIGGER_WD; // Trigger the hardware watchdog.
}

static void _Reset(OS_CONST_PTR OS_WD* pWD) {
 OS_USE_PARA(pWD);
 // Applications can use pWD to detect WD expiration cause.
 SYSTEM_CTRL_REG = PERFORM_RESET; // Reboot microcontroller.
}

static void TimerCallback(void) {
 OS_WD_Check();
 OS_TIMER_Restart(&Timer);
}

static void HPTask(void) {
 OS_WD_Add(&WatchdogHP, 50);
 while (1) {
 OS_TASK_Delay_ms(50);
 OS_WD_Trigger(&WatchdogHP);
 }
}

static void LPTask(void) {
 OS_WD_Add(&WatchdogLP, 200);
 while (1) {
 OS_TASK_Delay_ms(200);
 OS_WD_Trigger(&WatchdogLP);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

284 CHAPTER 12 Introduction

 OS_WD_Config(&_TriggerWatchDog, &_Reset);
 OS_TIMER_Create(&Timer, TimerCallback, 10);
 OS_TIMER_Start(&Timer);
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

285 CHAPTER 12 API functions

12.2 API functions

Routine Description
m

ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_WD_Add() Adds a software watchdog timer to the watchdog list. ● ● ● ●
OS_WD_Check() Checks if a watchdog timer expired. ● ● ● ●
OS_WD_Config() Sets the watchdog callback functions. ● ●
OS_WD_Remove() Removes a watchdog timer from the watchdog list. ● ● ● ●
OS_WD_Trigger() Triggers/Feeds a watchdog timer. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

286 CHAPTER 12 API functions

12.2.1 OS_WD_Add()

Description

Adds a software watchdog timer to the watchdog list.

Prototype

void OS_WD_Add(OS_WD* pWD,
 OS_U32 Timeout);

Parameters

Parameter Description

pWD Pointer to a watchdog object of type OS_WD.

Timeout
Maximum time in milliseconds until the watchdog must be
fed.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_WD_Add().

Example

static OS_WD _myWD;

void HPTask(void) {
 OS_WD_Add(&_myWD, 50);
 while (1) {
 OS_WD_Trigger(&_myWD);
 OS_TASK_Delay_ms(50);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

287 CHAPTER 12 API functions

12.2.2 OS_WD_Check()

Description

Checks if a watchdog timer expired. If no watchdog timer expired the hardware watchdog
is triggered. If a watchdog timer expired, the callback function is called.

Prototype

void OS_WD_Check(void);

Additional information

OS_WD_Check() must be called periodically. It is good practice to call it from the system
tick handler.

Example

void SysTick_Handler(void) {
 OS_INT_Enter();
 OS_Tick_Handle();
 OS_WD_Check();
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

288 CHAPTER 12 API functions

12.2.3 OS_WD_Config()

Description

Sets the watchdog callback functions.

Prototype

void OS_WD_Config(OS_ROUTINE_VOID* pfTrigger,
 OS_ROUTINE_WD_PTR* pfReset);

Parameters

Parameter Description

pfTrigger
Function pointer to hardware watchdog trigger callback func-
tion.

pfReset
Function pointer to callback function which is called in case
of an expired watchdog timer. pfReset is optional and may
be NULL.

Additional information

pfReset may be used to perform additional operations inside a callback function prior to
the reset of the microcontroller. For example, a message may be written to a log file. If
pfReset is NULL, no callback function gets executed, but the hardware watchdog will still
cause a reset of the microcontroller.

Example

static void _TriggerWatchDog(void) {
 WD_REG = TRIGGER_WD; // Trigger the hardware watchdog
}

static void _Reset(OS_CONST_PTR OS_WD* pWD) {
 //
 // Store information about expired watchdog prior to reset.
 //
 _WriteLogMessage(pWD);
 //
 // Reboot microcontroller
 //
 SYSTEM_CTRL_REG = PERFORM_RESET;
}

int main(void) {
 ...
 OS_WD_Config(&_TriggerWatchDog, &_Reset);
 OS_Start();
}

Note

In previous versions of embOS, OS_WD_Config() expected the parameter pfReset-
Func to be of a different type.
Since embOS V4.40, instead of a callback of the type voidRoutine*, OS_WD_Config()
expects a callback of type OS_WD_RESET_CALLBACK*. This allows for passing the rele-
vant OS_WD structure to the routine, e.g. for further examination by the application.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

289 CHAPTER 12 API functions

12.2.4 OS_WD_Remove()

Description

Removes a watchdog timer from the watchdog list.

Prototype

void OS_WD_Remove(OS_CONST_PTR OS_WD *pWD);

Parameters

Parameter Description

pWD Pointer to a watchdog object of type OS_WD.

Example

int main(void) {
 OS_WD_Add(&_myWD);
 OS_WD_Remove(&_myWD);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

290 CHAPTER 12 API functions

12.2.5 OS_WD_Trigger()

Description

Triggers/Feeds a watchdog timer.

Prototype

void OS_WD_Trigger(OS_WD* pWD);

Parameters

Parameter Description

pWD Pointer to a watchdog object of type OS_WD.

Additional information

Each software watchdog timer must be triggered (fed) periodically. If not, the timeout
expires and OS_WD_Check() will no longer trigger the hardware watchdog timer, but will
call the reset callback function (if any).

Example

static OS_WD _myWD;

static void HPTask(void) {
 OS_WD_Add(&_myWD, 50);
 while (1) {
 OS_TASK_Delay_ms(50);
 OS_WD_Trigger(&_myWD);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 13

Multi-core Support

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

292 CHAPTER 13 Introduction

13.1 Introduction
embOS can be utilized on multi-core processors by running separate embOS instances on
each individual core. For synchronization purposes and in order to exchange data between
the cores, embOS includes a comprehensive spinlock API which can be used to control
access to shared memory, peripherals, etc.

Spinlocks

Spinlocks constitute a general purpose locking mechanism in which any process trying to
acquire the lock is caused to actively wait until the lock becomes available. To do so, the
process trying to acquire the lock remains active and repeatedly checks the availability of
the lock in a loop. Effectively, the process will “spin” until it acquires the lock.

Once acquired by a process, spinlocks are usually held by that process until they are ex-
plicitly released. If held by one process for longer duration, spinlocks may severely impact
the runtime behavior of other processes trying to acquire the same spinlock. Therefore,
spinlocks should be held by one process for short periods of time only.

Usage of spinlocks with embOS

embOS spinlocks are intended for inter-core synchronization and communication. They are
not intended for synchronization of individual tasks running on the same core, on which
semaphores, queues and mailboxes should be used instead.

However, multitasking still has to be taken into consideration when using embOS spinlocks.
Specifically, an embOS task holding a spinlock should not be preempted, for this would
prevent that task from releasing the spinlock as fast as possible, which may in return
impact the runtime behavior of other cores attempting to acquire the spinlock. Declaration
of critical regions therefore is explicitly recommended while holding spinlocks.

embOS spinlocks are usually implemented using hardware instructions specific to one ar-
chitecture, but a portable software implementation is provided in addition. If appropriate
hardware instructions are unavailable for the specific architecture in use, the software im-
plementation is provided exclusively.

Note

It is important to use matching implementations on each core of the multi-core proces-
sor that shall access the same spinlock.

For example, a core supporting a hardware implementation may use that implementation
to access a spinlock that is shared with another core that supports the same hardware
implementation. At the same time, that core may use the software implementation to access
a different spinlock that is shared with a different core that does not support the same
hardware implementation. However, in case all three cores in this example should share
the same spinlock, each of them has to use the software implementation.

To know the spinlock’s location in memory, each core’s application must declare the ap-
propriate OS_SPINLOCK variable (or OS_SPINLOCK_SW, respectively) at an identical memory
address. Initialization of the spinlock, however, must be performed by one core only. This
API is not available in embOS library mode OS_LIBMODE_SAFE.

Example of using spinlocks

Two cores of a multi-core processor shall access an hardware peripheral, e.g. a LC display.
To avoid situations in which both cores access the LCD simultaneously, access must be
restricted through usage of a spinlock: Every time the LCD is used by one core, it must first
claim the spinlock through the respective embOS API call. After the LCD has been written
to, the spinlock is released by another embOS API call.

Data exchange between cores can be implemented analogously, e.g. through declaration
of a buffer in shared memory: Here, every time a core shall write data to the buffer, it
must acquire the spinlock first. After the data has been written to the buffer, the spinlock

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

293 CHAPTER 13 Introduction

is released. This ensures that neither core can interfere with the writing of data by the
other core.

Core 0:

#include "RTOS.h"

static OS_STACKPTR int Stack[128]; // Task stack
static OS_TASK TCB; // Task-control-block
static OS_SPINLOCK MySpinlock @ ".shared_mem";

static void Task(void) {
 while (1) {
 OS_TASK_EnterRegion(); // Inhibit preemptive task switches
 OS_SPINLOCK_Lock(&MySpinlock); // Acquire spinlock
 //
 // Perform critical operation
 //
 OS_SPINLOCK_Unlock(&MySpinlock); // Release spinlock
 OS_TASK_LeaveRegion(); // Re-allow preemptive task switches
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize Hardware for OS
 OS_SPINLOCK_Create(&MySpinlock); // Initialize Spinlock
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start(); // Start multitasking
 return 0;
}

Core 1:

#include "RTOS.h"

static OS_STACKPTR int Stack[128]; // Task stack
static OS_TASK TCB; // Task-control-block
static OS_SPINLOCK MySpinlock @ ".shared_mem";

static void Task(void) {
 while (1) {
 OS_TASK_EnterRegion(); // Inhibit preemptive task switches
 OS_SPINLOCK_Lock(&MySpinlock); // Acquire spinlock
 //
 // Perform critical operation
 //
 OS_SPINLOCK_Unlock(&MySpinlock); // Release spinlock
 OS_TASK_LeaveRegion(); // Re-allow preemptive task switches
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize Hardware for OS
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start(); // Start multitasking
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

294 CHAPTER 13 API functions

13.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_SPINLOCK_Create() Creates a hardware-specific spinlock. ● ●

OS_SPINLOCK_Lock()

Acquires a hardware-specific spinlock.
Busy waiting until the spinlock becomes
available. This function is unavailable for
some architectures.

● ●

OS_SPINLOCK_Unlock Creates a hardware-specific spinlock. ● ●

OS_SPINLOCK_SW_Create()
Creates a software-implementation spin-
lock. ● ●

OS_SPINLOCK_SW_Lock()
Acquires a software-implementation spin-
lock. ● ●

OS_SPINLOCK_SW_Unlock()
Releases a software-implementation spin-
lock. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

295 CHAPTER 13 API functions

13.2.1 OS_SPINLOCK_Create()

Description

Creates a hardware-specific spinlock.

Prototype

void OS_SPINLOCK_Create(OS_SPINLOCK* pSpinlock);

Parameters

Parameter Description

pSpinlock
Pointer to a spinlock object of type OS_SPINLOCK. The vari-
able must reside in shared memory.

Additional information

After creation, the spinlock is not locked.

Example

Please refer to the example in the introduction of chapter Multi-core Support on page 291.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

296 CHAPTER 13 API functions

13.2.2 OS_SPINLOCK_Lock()

Description

OS_SPINLOCK_Lock() acquires a hardware-specific spinlock. If the spinlock is unavailable,
the calling task will not be blocked, but will actively wait until the spinlock becomes avail-
able.
This function is unavailable for architectures that do not support an appropriate instruction
set.

Prototype

void OS_SPINLOCK_Lock(OS_SPINLOCK* pSpinlock);

Parameters

Parameter Description

pSpinlock
Pointer to a variable of type OS_SPINLOCK reserved for the manage-
ment of the spinlock.

Additional information

A task that has acquired a spinlock must not call OS_SPINLOCK_Lock() for that spinlock
again. The spinlock must first be released by a call to OS_SPINLOCK_Unlock().

The following diagram illustrates how OS_SPINLOCK_Lock() works:

Example

Please refer to the example in the introduction of chapter Multi-core Support on page 291.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

297 CHAPTER 13 API functions

13.2.3 OS_SPINLOCK_Unlock

Description

Releases a hardware-specific spinlock. This function is unavailable for architectures that do
not support an appropriate instruction set.

Prototype

void OS_SPINLOCK_Unlock(OS_SPINLOCK* pSpinlock);

Parameters

Parameter Description

pSpinlock
Pointer to a variable of type OS_SPINLOCK reserved for the manage-
ment of the spinlock.

Example

Please refer to the example in the introduction of chapter Multi-core Support on page 291.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

298 CHAPTER 13 API functions

13.2.4 OS_SPINLOCK_SW_Create()

Description

Creates a software-implementation spinlock.

Prototype

void OS_SPINLOCK_SW_Create(OS_SPINLOCK_SW* pSpinlock);

Parameters

Parameter Description

pSpinlock
Pointer to a spinlock object of type OS_SPINLOCK_SW. The
variable must reside in shared memory.

Additional information

After creation, the spinlock is not locked.

Example

Please refer to the example in the introduction of chapter Multi-core Support on page 291.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

299 CHAPTER 13 API functions

13.2.5 OS_SPINLOCK_SW_Lock()

Description

Acquires a software-implementation spinlock. If the spinlock is unavailable, the calling task
will not be blocked, but will actively wait until the spinlock becomes available.

Prototype

void OS_SPINLOCK_SW_Lock(OS_SPINLOCK_SW* pSpinlock,
 OS_UINT Id);

Parameters

Parameter Description

pSpinlock Pointer to a spinlock object of type OS_SPINLOCK_SW.

Id

Unique identifier to specify the core accessing the spinlock.
Valid values are 0 ≤ Id < OS_SPINLOCK_MAX_CORES. By de-
fault, OS_SPINLOCK_MAX_CORES is defined to 4 and may be
changed when using source code. An embOS debug build
calls OS_Error() in case invalid values are used.

Additional information

A task that has acquired a spinlock must not call OS_SPINLOCK_SW_Lock() for that spinlock
again. The spinlock must first be released by a call to OS_SPINLOCK_SW_Unlock().

OS_SPINLOCK_SW_Lock() implements Lamport’s bakery algorithm, published by Leslie Lam-
port in “Communications of the Association for Computing Machinery”, 1974, Volume 17,
Number 8. An excerpt is publicly available at research.microsoft.com.

The following diagram illustrates how OS_SPINLOCK_SW_Lock() works:

Example

Please refer to the example in the introduction of chapter Multi-core Support on page 291.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

300 CHAPTER 13 API functions

13.2.6 OS_SPINLOCK_SW_Unlock()

Description

Releases a software-implementation spinlock.

Prototype

void OS_SPINLOCK_SW_Unlock(OS_SPINLOCK_SW* pSpinlock,
 OS_UINT Id);

Parameters

Parameter Description

pSpinlock Pointer to a spinlock object of type OS_SPINLOCK_SW.

Id

Unique identifier to specify the core accessing the spinlock.
Valid values are 0 ≤ Id < OS_SPINLOCK_MAX_CORES. By de-
fault, OS_SPINLOCK_MAX_CORES is defined to 4 and may be
changed when using source code. An embOS debug build
calls OS_Error() in case invalid values are used.

Example

Please refer to the example in the introduction of chapter Multi-core Support on page 291.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 14

Interrupts

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

302 CHAPTER 14 What are interrupts?

14.1 What are interrupts?
This chapter explains how to use interrupt service routines (ISRs) in cooperation with em-
bOS. Specific details for your CPU and compiler can be found in the CPU & Compiler Specifics
manual of the embOS documentation.

Interrupts are interruptions of a program caused by hardware. When an interrupt occurs,
the CPU saves its registers and executes a subroutine called an interrupt service routine,
or ISR. After the ISR is completed, the program returns to the highest-priority task which
is ready for execution. Normal interrupts are maskable. Maskable interrupts can occur at
any time unless they are disabled. ISRs are also nestable -- they can be recognized and
executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond very quickly
to external events such as the status change on an input, the expiration of a hardware
timer, reception or completion of transmission of a character via serial interface, or other
types of events. Interrupts effectively allow events to be processed as they occur.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

303 CHAPTER 14 Interrupt latency

14.2 Interrupt latency
Interrupt latency is the time between an interrupt request and the execution of the first
instruction of the interrupt service routine. Every computer system has an interrupt latency.
The latency depends on various factors and differs even on the same computer system. The
value that one is typically interested in is the worst case interrupt latency. The interrupt
latency is the sum of a number of individual smaller delays explained below.

Note

Interrupt latency caused by embOS can be avoided entirely when using zero latency
interrupts, which are explained in chapter Zero interrupt latency on page 305.

14.2.1 Causes of interrupt latencies
• The first delay is typically in the hardware: The interrupt request signal needs to be

synchronized to the CPU clock. Depending on the synchronization logic, typically up to
three CPU cycles can be lost before the interrupt request reaches the CPU core.

• The CPU will typically complete the current instruction. This instruction can take
multiple cycles to complete; on most systems, divide, push-multiple, or memory-copy
instructions are the instructions which require most clock cycles. On top of the cycles
required by the CPU, there are in most cases additional cycles required for memory
access. In an ARM7 system, the instruction STMDB SP!,{R0-R11,LR}; typically is the
worst case instruction. It stores thirteen 32-bit registers to the stack, which, in an ARM7
system, takes 15 clock cycles to complete.

• The memory system may require additional cycles for wait states.
• After the current instruction is completed, the CPU performs a mode switch or pushes

registers (typically, PC and flag registers) to the stack. In general, modern CPUs (such
as ARM) perform a mode switch, which requires fewer CPU cycles than saving registers.

• Pipeline fill
Most modern CPUs are pipelined. Execution of an instruction happens in various stages
of the pipeline. An instruction is executed when it has reached its final stage of the
pipeline. Because the mode switch flushes the pipeline, a few extra cycles are required
to refill the pipeline.

14.2.2 Additional causes for interrupt latencies
There can be additional causes for interrupt latencies. These depend on the type of system
used, but we list a few of them.
• Latencies caused by cache line fill. If the memory system has one or multiple caches,

these may not contain the required data. In this case, not only the required data is
loaded from memory, but in a lot of cases a complete line fill needs to be performed,
reading multiple words from memory.

• Latencies caused by cache write back. A cache miss may cause a line to be replaced.
If this line is marked as dirty, it needs to be written back to main memory, causing an
additional delay.

• Latencies caused by MMU translation table walks. Translation table walks can take a
considerable amount of time, especially as they involve potentially slow main memory
accesses. In real-time interrupt handlers, translation table walks caused by the TLB not
containing translations for the handler and/or the data it accesses can increase interrupt
latency significantly.

• Application program. Of course, the application program can cause additional latencies
by disabling interrupts. This can make sense in some situations, but of course causes
additional latencies.

• Interrupt routines. On most systems, one interrupt disables further interrupts. Even if
the interrupts are re-enabled in the ISR, this takes a few instructions, causing additional
latency.

• Real-time Operating system (RTOS). An RTOS also needs to temporarily disable the
interrupts which can call API-functions of the RTOS. Some RTOSes disable all interrupts,

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

304 CHAPTER 14 Interrupt latency

effectively increasing interrupt latency for all interrupts, some (like embOS) disable only
low-priority interrupts and do thereby not affect the latency of high priority interrupts.

14.2.3 How to measure latency and detect its cause
It is sometimes desirable to detect the cause for high interrupt latency. High interrupt
latency may occur if interrupts are disabled for extended periods of time, or if a low level
interrupt handler is executed before the actual interrupt handler. In these regards, embOS
related functions like OS_INT_Enter() add to interrupt latency as well.

To measure interrupt latency and detect its cause, a timer interrupt may be used. For ex-
ample, if the hardware timer counts upwards starting from zero after each compare-match-
interrupt, its current counter value may be read from within the interrupt service routine
to evaluate how many timer cycles (and thus how much time) have lapsed between the
interrupt’s occurrence and the actual execution of the interrupt handler:

static int Latency = 0;

void TimerIntHandler(void) {
 OS_INT_Enter();
 Latency = TIMER_CNT_VALUE; // Get current timer value
 OS_INT_Leave();
}

If this measurement is repeated several times, different results will occur. This is for the
reason that the interrupt will sometimes be asserted while interrupts have been disabled
by the application, while at other times interrupts are enabled when this interrupt request
occurs. Thus, an application may keep track of minimum and maximum latency as shown
below:

static int Latency = 0;
static int MaxLatency = 0;
static int MinLatency = 0xFFFFFFFF;

void TimerIntHandler(void) {
 OS_INT_Enter();
 Latency = TIMER_CNT_VALUE; // Get current timer value
 MinLatency = (Latency < MinLatency) ? Latency : MinLatency;
 MaxLatency = (Latency > MaxLatency) ? Latency : MaxLatency;
 OS_INT_Leave();
}

Using this method, MinLatency will hold the latency that was caused by hardware (and
any low-level interrupt handler, if applicable). On the other hand, MaxLatency will hold
the latency caused both by hardware and interrupt-masking in software. Therefore, by
subtracting MaxLatency - MinLatency, it is possible to calculate the exact latency that
was caused by interrupt-masking (typically performed by the operating system).

Based on this information, a threshold may be defined to detect the cause of high interrupt
latency. E.g., a breakpoint may be set for when the current timer value exceeds a pre-
defined threshold as shown below:

static int Latency = 0;

void TimerIntHandler(void) {
 OS_INT_Enter();
 Latency = TIMER_CNT_VALUE; // Get current timer value
 if (Latency > LATENCY_THRESHOLD) {
 while (1); // Set a breakpoint here
 }
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

305 CHAPTER 14 Interrupt latency

If code trace information is available upon hitting the breakpoint, the exact cause for the
latency may be checked through a trace log.

Note

If the hardware timer interrupt is the only interrupt in the system, its priority may be
chosen arbitrarily. Otherwise, in case other interrupts occur during measurement as
well, the timer interrupt should be configured to match the specific priority for which
to measure latency. This is important, for other (possibly non-nestable) interrupts
will influence the results depending on their priority relative to the timer interrupt’s
priority, which may or may not be desired on a case-to-case basis.
Also, in order to provide meaningful results, the interrupt should occur quite frequent-
ly. Hence, the timer reload value typically is configured for small periods of time, but
must ensure that interrupt execution will not consume the entire CPU time.

14.2.4 Zero interrupt latency
Zero interrupt latency in the strict sense is not possible as explained above. What we mean
when we say “Zero interrupt latency” is that the latency of high priority interrupts is not
affected by the RTOS; a system using embOS will have the same worst case interrupt
latency for high priority interrupts as a system running without embOS.

Why is Zero latency important?

In some systems, a maximum interrupt response time or latency can be clearly defined.
This maximum latency can arise from requirements such as maximum reaction time for a
protocol or a software UART implementation that requires very precise timing.

For example a UART receiving at up to 800 kHz in software using ARM FIQ on a 48 MHz
ARM7. This would be impossible to do if FIQ were disabled even for short periods of time.

In many embedded systems, the quality of the product depends on event reaction time
and therefore latency. Typical examples would be systems which periodically read a value
from an A/D converter at high speed, where the accuracy depends on accurate timing. Less
jitter means a better product.

Why can a zero latency ISR not use the embOS API?

embOS disables embOS interrupts when embOS data structures are modified. During this
time zero latency ISRs are enabled. If they would call an embOS function, which also
modifies embOS data, the embOS data structures would be corrupted.

How can a zero latency ISR communicate with a task?

The most common way is to use global variables, e.g. a periodical read from an ADC and
the result is stored in a global variable.

Another way is to assert an interrupt request for an embOS interrupt from within the zero
latency ISR, which may then communicate or wake up one or more tasks. This is helpful if
you want to receive high amounts of data in your zero latency ISR. The embOS ISR may
then store the data bytes e.g. in a message queue or in a mailbox.

14.2.5 High / low priority interrupts
Most CPUs support interrupts with different priorities. Different priorities have two effects:
• If different interrupts occur simultaneously, the interrupt with higher priority takes

precedence and its ISR is executed first.
• Interrupts can never be interrupted by other interrupts of the same or lower priority.

The number of interrupt levels depends on the CPU and the interrupt controller. Details
are explained in the CPU/MCU/SoC manuals and the CPU & Compiler Specifics manual of
embOS. embOS distinguishes two different levels of interrupts: High and low priority in-

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

306 CHAPTER 14 Interrupt latency

terrupts. High priority interrupts are named “Zero latency interrupts” and low priority
interrupts are named “embOS interrupts”. The embOS port-specific documentations ex-
plain which interrupts are considered high and which are considered low priority for that
specific port. In general, the differences between those two are as follows:

embOS interrupts
• May call embOS API functions
• Latencies caused by embOS
• Also called “Low priority interrupts”

Zero latency interrupts
• May not call embOS API functions
• No latencies caused by embOS (Zero latency)
• Also called “High priority interrupts”

Example of different interrupt priority levels

Let’s assume we have a CPU which supports eight interrupt priority levels. With embOS,
the interrupt levels are divided per default equal in low priority and high priority interrupt
levels. The four highest priority levels are considered “Zero latency interrupts” and the
four lowest priority interrupts are considered as “embOS interrupts”. For ARM CPUs, which
support regular interrupts (IRQ) and fast interrupt (FIQ), FIQ is considered as “Zero latency
interrupt” when using embOS.

For most implementations the high-priority threshold is adjustable. For details, refer to the
processor specific embOS manual.

14.2.5.1 Using embOS API from zero latency interrupts
Zero latency interrupts are prohibited from using embOS functions. This is a consequence
of embOS’s zero latency design, according to which embOS never disables zero latency
interrupts. This means that zero latency interrupts can interrupt the operating system at any
time, even in critical sections such as the modification of RTOS-maintained linked lists. This
design decision has been made because zero interrupt latencies for zero latency interrupts
usually are more important than the ability to call OS functions.

However, zero latency interrupts may use embOS functions in an indirect manner: The zero
latency interrupt triggers an embOS interrupt by setting the appropriate interrupt request
flag. Subsequently, that embOS interrupt may call the OS functions that the zero latency
interrupt was not allowed to use.

The task 1 is interrupted by a high priority interrupt. This zero latency interrupt is not
allowed to call an embOS API function directly. Therefore the zero latency interrupt triggers
an embOS interrupt, which is allowed to call embOS API functions. The embOS interrupt
calls an embOS API function to resume task 2. How the embOS interrupt gets triggered is
device specific and cannot be explained here in general. But with most devices and interrupt

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

307 CHAPTER 14 Interrupt latency

controllers, it is possible to set a pending flag for an interrupt. This could for example be an
unused peripheral interrupt like a hardware timer. Please refer to your core and/or device
manual for more details.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

308 CHAPTER 14 Rules for interrupt handlers

14.3 Rules for interrupt handlers

14.3.1 General rules
There are some general rules for interrupt service routines (ISRs). These rules apply to
both single-task programming as well as to multitask programming using embOS.
• ISR preserves all registers.

Interrupt handlers must restore the environment of a task completely. This environment
normally consists of the registers only, so the ISR must make sure that all registers
modified during interrupt execution are saved at the beginning and restored at the end
of the interrupt routine

• Interrupt handlers must finish quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt handler
should only be used for storing a received value or to trigger an operation in the regular
program (task). It should not wait in any form or perform a polling operation.

14.3.2 Additional rules for preemptive multitasking
A preemptive multitasking system like embOS needs to know if the code that is executing
is part of the current task or an interrupt handler. This is necessary because embOS cannot
perform a task switch during the execution but only at the end of an ISR.

If a task switch was to occur during the execution of an ISR, the ISR would continue as soon
as the interrupted task became the current task again. This is not a problem for interrupt
handlers that do not allow further interruptions (which do not enable interrupts) and that
do not call any embOS functions.

This leads us to the following rule:
• ISRs that re-enable interrupts or use any embOS function need to call OS_INT_Enter()

at the beginning, before executing anything else, and call OS_INT_Leave() immediately
before returning.

If a higher priority task is made ready by the ISR, the task switch may be performed in
the routine OS_INT_Leave(). The end of the ISR is executed later on, when the interrupted
task has been made ready again. Please consider this behavior if you debug an interrupt
routine, this has proven to be the most efficient way of initiating a task switch from within
an interrupt service routine.

14.3.3 Nesting interrupt routines
By default, interrupts are disabled in an ISR because most CPU disables interrupts with the
execution of the interrupt handler. Re-enabling interrupts in an interrupt handler allows
the execution of further interrupts with equal or higher priority than that of the current
interrupt. These are known as nested interrupts, illustrated in the diagram below:

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

309 CHAPTER 14 Rules for interrupt handlers

For applications requiring short interrupt latency, you may re-enable interrupts inside an
ISR by using OS_INT_EnterNestable() and OS_INT_LeaveNestable() within the interrupt
handler.

Nested interrupts can lead to problems that are difficult to debug; therefore it is not rec-
ommended to enable interrupts within an interrupt handler. As it is important that embOS
keeps track of the status of the interrupt enable/disable flag, enabling and disabling of
interrupts from within an ISR must be done using the functions that embOS offers for this
purpose.

The routine OS_INT_EnterNestable() enables interrupts within an ISR and prevents fur-
ther task switches; OS_INT_LeaveNestable() disables interrupts immediately before end-
ing the interrupt routine, thus restoring the default condition. Re-enabling interrupts will
make it possible for an embOS scheduler interrupt to interrupt this ISR. In this case, embOS
needs to know that another ISR is still active and that it may not perform a task switch.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

310 CHAPTER 14 Rules for interrupt handlers

14.3.4 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_INT_Call()
Entry function for use in an embOS inter-
rupt handler. ●

OS_INT_CallNestable()
Entry function for use in an embOS inter-
rupt handler. ●

OS_INT_Enter()
Informs embOS that interrupt code is exe-
cuting. ●

OS_INT_EnterIntStack()
Switches to another stack in interrupt rou-
tines. ●

OS_INT_EnterNestable()
Informs embOS that interrupt code is exe-
cuting and reenables interrupts. ●

OS_INT_InInterrupt()
Checks if the calling function runs in an in-
terrupt context. ● ● ● ● ●

OS_INT_Leave()
Informs embOS that the end of the inter-
rupt routine has been reached; executes
task switching within ISR.

●

OS_INT_LeaveIntStack() Switches back to the interrupt stack. ●

OS_INT_LeaveNestable()
Informs embOS that the end of the inter-
rupt routine has been reached; executes
task switching within ISR.

●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

311 CHAPTER 14 Rules for interrupt handlers

14.3.4.1 OS_INT_Call()

Description

Entry function for use in an embOS interrupt handler. Nestable interrupts are disabled.

Prototype

void OS_INT_Call(void (*pfRoutine)());

Parameters

Parameter Description

pfRoutine Pointer to a routine that should run on interrupt.

Additional information

OS_INT_Call() can be used as an entry function in an embOS interrupt handler, when the
corresponding interrupt should not be interrupted by another embOS interrupt.
OS_INT_Call() sets the interrupt priority of the CPU to the user definable ’fast’ interrupt
priority level, thus locking any other embOS interrupt. Fast interrupts are not disabled.

Note

For some specific CPUs OS_INT_Call() must be used to call an interrupt handler
because OS_INT_Enter()/OS_INT_Leave() may not be available.
OS_INT_Call() must not be used when OS_INT_Enter()/OS_INT_Leave() is available
Please refer to the CPU/compiler specific embOS manual.

Example

#pragma interrupt
void SysTick_Handler(void) {
 OS_INT_Call(_IsrTickHandler);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

312 CHAPTER 14 Rules for interrupt handlers

14.3.4.2 OS_INT_CallNestable()

Description

Entry function for use in an embOS interrupt handler. Nestable interrupts are enabled.

Prototype

void OS_INT_CallNestable(void (*pfRoutine)());

Parameters

Parameter Description

pfRoutine Pointer to a routine that should run on interrupt.

Additional information

OS_INT_CallNestable() can be used as an entry function in an embOS interrupt handler,
when interruption by higher prioritized embOS interrupts should be allowed.
OS_INT_CallNestable() does not alter the interrupt priority of the CPU, thus keeping all
interrupts with higher priority enabled.

Note

For some specific CPUs OS_INT_CallNestable() must be used to call an interrupt han-
dler because OS_INT_EnterNestable()/OS_INT_LeaveNestable() may not be avail-
able.
OS_INT_CallNestable() must not be used when OS_INT_EnterNestable()/OS_IN-
T_LeaveNestable() is available
Please refer to the CPU/compiler specific embOS manual.

Example

#pragma interrupt
void SysTick_Handler(void) {
 OS_INT_CallNestable(_IsrTickHandler);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

313 CHAPTER 14 Rules for interrupt handlers

14.3.4.3 OS_INT_Enter()

Description

Informs embOS that interrupt code is executing.

Prototype

void OS_INT_Enter(void);

Additional information

Note

This function is not available in all ports.

If OS_INT_Enter() is used, it should be the first function to be called in the interrupt
handler. It must be paired with OS_INT_Leave() as the last function called. The use of this
function has the following effects:
• disables task switches
• keeps interrupts in internal routines disabled.

Example

void ISR_Timer(void) {
 OS_INT_Enter();
 OS_TASKEVENT_Set(&Task, 1u); // Any functionality could be here
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

314 CHAPTER 14 Rules for interrupt handlers

14.3.4.4 OS_INT_EnterIntStack()

Description

OS_INT_EnterIntStack() and OS_INT_LeaveIntStack() can be used to switch the stack
pointer to another stack during execution of the interrupt routine.

Prototype

void OS_INT_EnterIntStack(void);

Additional information

The actual implementation is core and compiler dependent. Therefore, OS_INT_EnterIn-
tStack() and OS_INT_LeaveIntStack() are not implemented in all embOS ports. In that
case OS_INT_EnterIntStack() is defined for compatibility reasons to nothing. That sim-
plifies the porting of an existing embOS application to another embOS port.

Note

Please be aware any variables that are declared while using the initial stack, will no
longer be accessible after switching to the interrupt stack.

void ISR_Timer(void) {
 //
 // Accessible only before OS_INT_EnterIntStack() is called,
 // and after OS_INT_LeaveIntStack() was called.
 //
 int localvar = 0;

 OS_INT_Enter();
 OS_INT_EnterIntStack();
 OS_TASKEVENT_Set(&Task, Event);
 OS_INT_LeaveIntStack();
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

315 CHAPTER 14 Rules for interrupt handlers

14.3.4.5 OS_INT_EnterNestable()

Description

Re-enables interrupts and increments the embOS internal critical region counter, thus dis-
abling further task switches.

Prototype

void OS_INT_EnterNestable(void);

Additional information

Note

This function is not available in all ports.

This function should be the first call inside an interrupt handler when nested interrupts are
required. The function OS_INT_EnterNestable() is implemented as a macro and offers the
same functionality as OS_INT_Enter() in combination with OS_INT_DecRI(), but is more
efficient, resulting in smaller and faster code.

Example

_interrupt void ISR_Timer(void) {
 OS_INT_EnterNestable();
 OS_TASKEVENT_Set(&Task, 1); // Any functionality could be here
 OS_INT_LeaveNestable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

316 CHAPTER 14 Rules for interrupt handlers

14.3.4.6 OS_INT_InInterrupt()

Description

This function can be called to examine if the calling function is running in an interrupt
context. For application code, it may be useful to know if it is called from interrupt or task,
because some functions must not be called from an interrupt-handler.

Prototype

OS_BOOL OS_INT_InInterrupt(void);

Return value

= 0 Code is not executed in an interrupt handler.
≠ 0 Code is executed in an interrupt handler.

Additional information

Note

This function is not available in all ports.

The function delivers the interrupt state by checking the according CPU registers. It is
only implemented for those CPUs where it is possible to read the interrupt state from CPU
registers. In case of doubt please contact the embOS support.

Example

void foo(void) {
 if (OS_INT_InInterrupt() != 0) {
 // Do something within the ISR
 } else {
 printf("No interrupt context.\n")
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

317 CHAPTER 14 Rules for interrupt handlers

14.3.4.7 OS_INT_Leave()

Description

Informs embOS that the end of the interrupt routine has been reached; executes task
switching within ISR.

Prototype

void OS_INT_Leave(void);

Additional information

Note

This function is not available in all ports.

If OS_INT_Leave() is used, it should be the last function to be called in the interrupt handler.
If the interrupt has caused a task switch, that switch is performed immediately (unless the
program which was interrupted was in a critical region).

Example

void ISR_Timer(void) {
 OS_INT_Enter();
 OS_TASKEVENT_Set(&Task, 1); // Any functionality could be here
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

318 CHAPTER 14 Rules for interrupt handlers

14.3.4.8 OS_INT_LeaveIntStack()

Description

OS_INT_EnterIntStack() and OS_INT_LeaveIntStack() can be used to switch the stack
pointer to another stack during execution of the interrupt routine.

Prototype

void OS_INT_LeaveIntStack(void);

Additional information

The actual implementation is device and compiler dependent. Therefore OS_INT_EnterIn-
tStack() and OS_INT_LeaveIntStack() are not implemented in all embOS ports. In that
case OS_INT_EnterIntStack() is defined for compatibility reasons to nothing. That sim-
plifies the porting of an existing embOS application to another embOS port.

Example

void ISR_Timer(void) {
 OS_INT_Enter();
 OS_INT_EnterIntStack();
 OS_TASKEVENT_Set(&Task, 1);
 OS_INT_LeaveIntStack();
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

319 CHAPTER 14 Rules for interrupt handlers

14.3.4.9 OS_INT_LeaveNestable()

Description

Disables further interrupts, then decrements the embOS internal critical region count, thus
re-enabling task switches if the counter has reached zero.

Prototype

void OS_INT_LeaveNestable(void);

Additional information

Note

This function is not available in all ports.

This function is the counterpart of OS_INT_EnterNestable(), and must be the last function
call inside an interrupt handler when nested interrupts have been enabled by OS_INT_En-
terNestable().

The function OS_INT_LeaveNestable() is implemented as a macro and offers the same
functionality as OS_INT_Leave() in combination with OS_INT_IncDI(), but is more efficient,
resulting in smaller and faster code.

Example

_interrupt void ISR_Timer(void) {
 OS_INT_EnterNestable();
 OS_TASKEVENT_Set(&Task, 1); // Any functionality could be here
 OS_INT_LeaveNestable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

320 CHAPTER 14 Interrupt control

14.4 Interrupt control

14.4.1 Enabling / disabling interrupts
During the execution of a task, maskable interrupts are normally enabled. In certain sec-
tions of the program, however, it can be necessary to disable interrupts for short periods
of time to make a section of the program an atomic operation that cannot be interrupted.
We recommend disabling interrupts only for short periods of time, if possible (the longer
interrupts are disabled, the higher is the interrupt latency).

An example would be the access to a global volatile variable of type long on an 8/16-
bit CPU. To make sure that the value does not change between the two or more memory
accesses that are needed, interrupts must be temporarily disabled:

Bad example:

volatile long lvar;

void IntHandler(void) {
 lvar++;
}

void Routine(void) {
 lvar++;
}

Good example:

volatile long lvar;

void IntHandler(void) {
 lvar++;
}

void Routine(void) {
 OS_INT_Disable();
 lvar++;
 OS_INT_Enable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

321 CHAPTER 14 Interrupt control

14.4.2 Nested interrupt disable and enable calls
OS_INT_Disable() does not use a counter on how often it was executed and OS_INT_En-
able() does not evaluate any counter before enabling interrupts. The below sample fails
when the application expects that interrupts are still disabled after the call to bar().

void bar(void) {
 OS_INT_Disable();
 DoSomething();
 OS_INT_Enable();
}

void foo(void) {
 OS_INT_Disable();
 bar();
 DoSomethingElse();
 OS_INT_Enable();
}

To avoid this bar() must not enable embOS interrupts unconditionally but use OS_IN-
T_EnableConditional() instead and the routine foo() must call OS_INT_IncDI(). OS_IN-
T_IncDI() does not disable embOS interrupts only but also increments the interrupt disable
counter OS_Global.Counters.Cnt.DI. OS_INT_EnableConditional() enables embOS in-
terrupts only when the interrupt disable counter OS_Global.Counters.Cnt.DI is zero.

void bar(void) {
 OS_INT_Disable();
 DoSomething();
 OS_INT_EnableConditional();
}

void foo(void) {
 OS_INT_IncDI();
 foo();
 DoSomethingElse();
 OS_INT_DecRI();
}

Assuming the interrupt disable counter was zero it will be incremented with OS_IN-
T_IncDI() to one and embOS interrupts will be disabled. OS_INT_Disable() will again
disable embOS interrupts. OS_INT_EnableConditional() evaluates the interrupt disable
counter and since it is unequal to zero embOS interrupts will not be enabled. OS_INT_De-
cRI() decrements the interrupt disable counter which sets it to zero. It also evaluates the
interrupt disable counter and since it is equal to zero embOS interrupts will be re-enabled.

OS_Global.Counters.Cnt.DI is saved during the context switch in the task context and
is restored when the task is activated again. Therefore, the interrupt disable counter is
task specific. Disabling embOS interrupts in one task does not disable embOS interrupts
for other tasks or the kernel.

OS_INT_Disable() and OS_INT_Enable() can be used when no embOS API functions are
called between which could enable interrupts before the actual call to OS_INT_Enable()
and the interrupt disable counter OS_Global.Counters.Cnt.DI is zero. OS_INT_Disable()
/ OS_INT_Enable() are slightly more efficient than OS_INT_IncDI() / OS_INT_DecRI().
OS_INT_EnableConditional() should be used when the interrupt disable counter value
is unknown.

OS_INT_IncDI() / OS_INT_DecRI() can be used to avoid that embOS interrupts could be
enabled unconditionally. This could e.g. the case when you call an embOS API function
which internally disables and enables embOS interrupts. embOS API functions always en-
able embOS interrupts conditionally with OS_INT_EnableConditional().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

322 CHAPTER 14 Interrupt control

void foo(void) {
 OS_INT_IncDI();
 OS_TASK_Delay_ms(10);
 DoSomething() // embOS interrupts are still disabled
 OS_INT_DecRI();
}

14.4.3 Zero latency interrupt disable / enable
The embOS interrupt enable and disable functions enable and disable embOS interrupts
only. Zero latency interrupts are never implicitly enabled or disabled by embOS. However,
embOS provides additional API functions to enable and disable embOS and zero latency
interrupts.

In an application it may be required to disable and enable all interrupts. These API functions
have the suffix All. These functions affect the state of the CPU unconditionally and should
be used with care.

It is CPU specific whether zero latency interrupts are supported. If not, API functions with
the suffix All (like e.g. OS_INT_DisableAll()) behave exactly the same as the API func-
tions without this suffix.

14.4.4 Non-maskable interrupts (NMIs)
embOS performs atomic operations by disabling interrupts. However, a non-maskable in-
terrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations. There-
fore, NMIs should be used with great care and are prohibited from calling any embOS rou-
tines.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

323 CHAPTER 14 Interrupt control

14.4.5 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

Id
le

OS_INT_DecRI()
Decrements the counter
and enables interrupts if the
counter reaches 0.

● ● ● ● ●

OS_INT_Disable()
Disables interrupts. Does not
change the interrupt disable
counter.

● ● ● ● ●

OS_INT_DisableAll()
Disable all interrupts (high
and low priority) uncondition-
ally.

● ● ● ● ●

OS_INT_Enable()
Unconditionally enables inter-
rupts. ● ● ● ● ●

OS_INT_EnableAll()
Enable all interrupts (high and
low priority) unconditionally. ● ● ● ● ●

OS_INT_EnableConditional()
Restores the state of the in-
terrupt flag, based on the in-
terrupt disable counter.

● ● ● ● ●

OS_INT_IncDI()
Increments the interrupt dis-
able counter and disables in-
terrupts.

● ● ● ● ●

OS_INT_Preserve()
Preserves the embOS inter-
rupt state. ● ● ● ● ●

OS_INT_PreserveAll()
Preserves the current inter-
rupt disable state. ● ● ● ● ●

OS_INT_PreserveAndDisable()
Preserves the current inter-
rupt disable state and then
disables interrupts.

● ● ● ● ●

OS_INT_PreserveAndDisableAll()
Preserves the current inter-
rupt disable state and then
disables all interrupts.

● ● ● ● ●

OS_INT_Restore()
Restores the embOS interrupt
state. ● ● ● ● ●

OS_INT_RestoreAll()
Restores the interrupt disable
state which was preserved be-
fore.

● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

324 CHAPTER 14 Interrupt control

14.4.5.1 OS_INT_DecRI()

Description

OS_INT_DecRI() decrements the embOS interrupt disable counter OS_Global.Counter-
s.Cnt.DI and enables embOS interrupts if the interrupt disable counter reaches zero.

Prototype

void OS_INT_DecRI(void);

Additional information

Short for Decrement and Restore Interrupts. It is important that OS_INT_IncDI() and
OS_INT_DecRI() are used as a pair.

OS_INT_IncDI() increments the interrupt disable counter. Interrupts will not be switched
on within the running task before the matching OS_INT_DecRI() is executed.

The interrupt disable counter OS_Global.Counters.Cnt.DI is task specific. A task switch
may change the value, so if interrupts are disabled they could be enabled in the next task
and vice versa.

You can safely call embOS API between OS_INT_IncDI() and OS_INT_DecRI(). The embOS
API will not enable interrupts.

Example

volatile long lvar;

void Routine(void) {
 OS_INT_IncDI();
 lvar++;
 OS_INT_DecRI();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

325 CHAPTER 14 Interrupt control

14.4.5.2 OS_INT_Disable()

Description

OS_INT_Disable() disables embOS interrupts.

Prototype

void OS_INT_Disable(void);

Additional information

OS_INT_Disable() does not disable zero latency interrupts.

embOS interrupts can be re-enabled by calling OS_INT_Enable().

OS_INT_Disable() does not preserve the interrupt disable state. Please use OS_INT_Pre-
serve() or OS_INT_PreserveAndDisable() instead when the interrupt disable state should
be preserved.

OS_INT_Disable() does not increment the interrupt disable counter OS_Global.Counter-
s.Cnt.DI. An embOS API function may re-enable embOS interrupts. Please use OS_IN-
T_IncDI() and OS_INT_DecRI() instead.

void Task(void) {
 OS_INT_Disable();
 OS_TASK_Delay_ms(10);
 DoSomething(); // embOS interrupts may be executed
}

Therefore, it is not recommend to call any embOS API function after OS_INT_Disable()
except OS_INT_Enable().

Example

void Routine(void) {
 OS_INT_Disable(); // Disable embOS interrupts
 //
 // Execute any code that should be executed with interrupts disabled.
 // No embOS function should be called.
 //
 DoSomething();
 OS_INT_Enable(); // Re-enable embOS interrupts unconditionally.
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

326 CHAPTER 14 Interrupt control

14.4.5.3 OS_INT_DisableAll()

Description

OS_INT_DisableAll() disables embOS interrupts and zero latency interrupts.

Prototype

void OS_INT_DisableAll(void);

Additional information

embOS interrupts and zero latency interrupts can be re-enabled by calling OS_INT_En-
ableAll().

OS_INT_DisableAll() does not preserve the interrupt disable state. Please use OS_INT_P-
reserveAll() or OS_INT_PreserveAndDisableAll() instead when the interrupt disable
state should be preserved.

OS_INT_DisableAll() does not increment the interrupt disable counter.

An embOS API function may re-enable embOS interrupts depending on the CPU. Please
refer to the CPU and compiler specific manual for more details.

void Task(void) {
 OS_INT_DisableAll();
 OS_TASK_Delay_ms(10);
 DoSomething(); // embOS interrupts may be executed
}

Therefore, it is not recommend to call any embOS API function after OS_INT_DisableAll()
except OS_INT_EnableAll().

Example

void Routine(void) {
 OS_INT_DisableAll(); // Disable interrupts
 //
 // Execute any code that should be executed with interrupts disabled
 // No embOS function should be called.
 //
 DoSomething();
 OS_INT_EnableAll(); // Re-enable interrupts unconditionally
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

327 CHAPTER 14 Interrupt control

14.4.5.4 OS_INT_Enable()

Description

OS_INT_Enable() enables embOS interrupts.

Prototype

void OS_INT_Enable(void);

Additional information

OS_INT_Enable() does not enable zero latency interrupts.

OS_INT_Enable() does not decrement or check the interrupt disable counter OS_Glob-
al.Counters.Cnt.DI but enables interrupts unconditionally. If interrupts should be en-
abled only when the interrupt disable counter OS_Global.Counters.Cnt.DI is zero please
use OS_INT_EnableConditional() instead.

Example

void Routine(void) {
 OS_INT_Disable(); // Disable embOS interrupts
 DoSomething();
 OS_INT_Enable(); // Re-enable embOS interrupts unconditionally
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

328 CHAPTER 14 Interrupt control

14.4.5.5 OS_INT_EnableAll()

Description

OS_INT_EnableAll() enables embOS interrupts and zero latency interrupts.

Prototype

void OS_INT_EnableAll(void);

Additional information

OS_INT_EnableAll() does not decrement or check the interrupt disable counter OS_Glob-
al.Counters.Cnt.DI but enables interrupts unconditionally.

Example

void Routine(void) {
 OS_INT_DisableAll(); // Disable interrupts
 DoSomething();
 OS_INT_EnableAll(); // Re-enable interrupts unconditionally
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

329 CHAPTER 14 Interrupt control

14.4.5.6 OS_INT_EnableConditional()

Description

OS_INT_EnableConditional() enables embOS interrupts conditionally depending on the
interrupt disable counter OS_Global.Counters.Cnt.DI.

Prototype

void OS_INT_EnableConditional(void);

Additional information

OS_INT_EnableConditional() enables embOS interrupts only if the interrupt disable
counter OS_Global.Counters.Cnt.DI is zero.

Example

void Routine (void) {
 OS_INT_Disable();
 DoSomething();
 OS_INT_EnableConditional();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

330 CHAPTER 14 Interrupt control

14.4.5.7 OS_INT_IncDI()

Description

OS_INT_IncDI() disables embOS interrupts and increments the interrupt disable counter
OS_Global.Counters.Cnt.DI.

Prototype

void OS_INT_IncDI(void);

Additional information

Short for Increment and Disable interrupts. OS_INT_IncDI() does not disable zero
latency interrupts.

It is important that OS_INT_IncDI() and OS_INT_DecRI() are used as a pair. Interrupts
will not be switched on within the running task before the matching OS_INT_DecRI() is
executed.

The interrupt disable counter OS_Global.Counters.Cnt.DI is task specific. A task switch
may change the value, so if interrupts are disabled they could be enabled in the next task
and vice versa.

You can safely call embOS API between OS_INT_IncDI() and OS_INT_DecRI(). The embOS
API will not enable interrupts.

Example

void Routine (void) {
 OS_INT_IncDI();
 DoSomething();
 OS_INT_DecRI();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

331 CHAPTER 14 Interrupt control

14.4.5.8 OS_INT_Preserve()

Description

OS_INT_Preserve() preserves the current embOS interrupt disable state of the CPU.

Prototype

void OS_INT_Preserve(OS_U32* pState);

Parameters

Parameter Description

pState
Pointer to an OS_U32 variable that receives the interrupt
state.

Additional information

If the embOS interrupt disable state is not known and embOS interrupts should be disabled
by a call of OS_INT_Disable(), the current embOS interrupt disable state can be preserved
with OS_INT_Preserve() and restored later by a call of OS_INT_Restore().

OS_INT_Preserve() preserves the embOS interrupt disable state but not the zero latency
interrupt state.

The pair of function calls OS_INT_Preserve() and OS_INT_Restore() can be nested, as
long as the interrupt disable state is stored into an individual variable on each call of OS_IN-
T_Preserve().

Example

void Sample(void) {
 OS_U32 IntState;

 OS_INT_Preserve(&IntState); // Remember the interrupt disable state.
 OS_INT_Disable(); // Disable embOS interrupts
 //
 // Execute any code that should be executed with embOS interrupts disabled.
 //
 DoSomething();
 OS_INT_Restore(&IntState); // Restore the interrupt disable state
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

332 CHAPTER 14 Interrupt control

14.4.5.9 OS_INT_PreserveAll()

Description

OS_INT_PreserveAll() preserves the current zero latency interrupt disable state of the
CPU.

Prototype

void OS_INT_PreserveAll (OS_U32* pState);

Parameters

Parameter Description

pState
Pointer to an OS_U32 variable that receives the interrupt
state.

Additional information

If the zero latency interrupt disable state is not known and zero latency interrupts should
be disabled by a call of OS_INT_DisableAll(), the current zero latency interrupt disable
state can be preserved with with OS_INT_PreserveAll() and restored later by a call of
OS_INT_RestoreAll().

OS_INT_PreserveAll() preserves the zero latency interrupt disable state but not the em-
bOS interrupt disable state.

The pair of function calls OS_INT_PreserveAll() and OS_INT_RestoreAll() can be nested,
as long as the interrupt disable state is stored into an individual variable on each call of
OS_INT_Preserve().

Example

void Sample(void) {
 OS_U32 IntState;

 // Remember the interrupt disable state.
 OS_INT_PreserveAll(&IntState);
 OS_INT_DisableAll(); // Disable interrupts
 //
 // Execute any code that should be executed with interrupts disabled
 //
 DoSomething();
 OS_INT_RestoreAll(&IntState); // Restore the interrupt disable state
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

333 CHAPTER 14 Interrupt control

14.4.5.10 OS_INT_PreserveAndDisable()

Description

OS_INT_PreserveAndDisable() preserves the current embOS interrupt disable state of the
CPU and then disables embOS interrupts.

Prototype

void OS_INT_PreserveAndDisable (OS_U32* pState);

Parameters

Parameter Description

pState
Pointer to an OS_U32 variable that receives the interrupt
state.

Additional information

If the embOS interrupt disable state is not known and embOS interrupts should be disabled,
the current embOS interrupt disable state can be preserved and embOS interrupts disabled
with OS_INT_PreserveAndDisable() and restored later by a call of OS_INT_Restore().

OS_INT_PreserveAndDisable() preserves the embOS interrupt disable state but not the
zero latency interrupt state.

The pair of function calls OS_INT_PreserveAndDisable() and OS_INT_Restore() can be
nested, as long as the interrupt disable state is stored into an individual variable on each
call of OS_INT_PreserveAndDisable().

Example

void Sample(void) {
 OS_U32 IntState;

 // Remember the interrupt disable state and disables interrupts.
 OS_INT_PreserveAndDisable(&IntState);
 //
 // Execute any code that should be executed with interrupts disabled
 //
 DoSomething();
 OS_INT_Restore(&IntState); // Restore the interrupt disable state
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

334 CHAPTER 14 Interrupt control

14.4.5.11 OS_INT_PreserveAndDisableAll()

Description

OS_INT_PreserveAndDisableAll() preserves the current zero latency interrupt disable
state of the CPU and disables embOS interrupts and zero latency interrupts.

Prototype

void OS_INT_PreserveAndDisableAll (OS_U32* pState);

Parameters

Parameter Description

pState
Pointer to an OS_U32 variable that receives the interrupt
state.

Additional information

If the zero latency interrupt disable state is not known and interrupts should be disabled
by a call of OS_INT_DisableAll(), the current interrupt disable state can be preserved
and interrupts disabled with with OS_INT_PreserveAll() and restored later by a call of
OS_INT_RestoreAll().

OS_INT_PreserveAndDisableAll() preserves the zero latency interrupt disable state but
not the embOS interrupt disable state.

An embOS API function may re-enable embOS interrupts depending on the CPU. Please
refer to the CPU and compiler specific manual for more details.

The pair of function calls OS_INT_PreserveAndDisableAll() and OS_INT_RestoreAll()
can be nested, as long as the interrupt disable state is stored into an individual variable on
each call of OS_INT_PreserveAndDisableAll().

Example

void Sample(void) {
 OS_U32 IntState;

 // Remember the interrupt disable state and disables interrupts.
 OS_INT_PreserveAndDisableAll(&IntState);
 //
 // Execute any code that should be executed with interrupts disabled
 //
 DoSomething();
 OS_INT_RestoreAll(&IntState); // Restore the interrupt disable state
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

335 CHAPTER 14 Interrupt control

14.4.5.12 OS_INT_Restore()

Description

OS_INT_Restore() restores the embOS interrupt disable state.

Prototype

void OS_INT_Restore (OS_U32* pState);

Parameters

Parameter Description

pState
Pointer to an OS_U32 variable that holds the interrupt disable
state.

Additional information

OS_INT_Restore() restores the embOS interrupt disable state of the CPU which was saved
before by a call of OS_INT_Preserve() or OS_INT_PreserveAndDisable().

Example

void Sample(void) {
 OS_U32 IntState;

 OS_INT_Preserve(&IntState); // Remember the interrupt disable state.
 OS_INT_Disable(); // Disable embOS interrupts
 //
 // Execute any code that should be executed with embOS interrupts disabled
 //
 DoSomething();
 OS_INT_Restore(&IntState); // Restore the interrupt disable state
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

336 CHAPTER 14 Interrupt control

14.4.5.13 OS_INT_RestoreAll()

Description

OS_INT_RestoreAll() restores the zero latency interrupt disable state.

Prototype

void OS_INT_RestoreAll (OS_U32* pState);

Parameters

Parameter Description

pState
Pointer to an OS_U32 variable that holds the interrupt disable
state.

Additional information

OS_INT_RestoreAll() restores the zero latency interrupt disable state of the CPU which
was saved before by a call of OS_INT_PreserveAll() or OS_INT_PreserveAndDisableAl-
l().

Example

void Sample(void) {
 OS_U32 IntState;

 // Remember the interrupt disable state.
 OS_INT_PreserveAll(&IntState);
 OS_INT_DisableAll(); // Disable interrupts
 //
 // Execute any code that should be executed with interrupts disabled
 // No embOS function should be called
 //
 DoSomething();
 OS_INT_RestoreAll(&IntState); // Restore the interrupt disable state
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 15

Critical Regions

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

338 CHAPTER 15 Introduction

15.1 Introduction
Critical regions are program sections which should not be interrupted by another task. A
critical region can be used anywhere during execution of a task. Depending on the appli-
cation, it can be necessary for some critical program sections to disable preemptive task
switches and execution of software timers or even interrupts.

It depends on the application whether disabling task switches is sufficient or interrupts need
to be disabled as well. Disabling interrupts can mean to disable embOS interrupts or even
to also disable zero latency interrupts. Cooperative task switches are never affected and
will be executed in critical regions. Interrupts, too, may still occur in critical regions.

They may also be used in software timers and interrupts. However, since those are executed
as critical regions anyways, critical regions do not have any effect on them.

Critical regions can be nested; they will then be effective until the outermost region is left. If
a task switch becomes pending during the execution of a critical region, it will be performed
immediately once the region is left.

A typical example for critical regions is the execution of time-critical hardware accesses
(for example, writing multiple bytes into an EEPROM where the bytes must be written in a
certain amount of time), or writing to global variables that are accessed by different tasks
and therefore must ensure that data is consistent.

Example

void HPTask(void) {
 OS_TASK_EnterRegion();
 DoSomething(); // This code will not be interrupted by other tasks
 OS_TASK_LeaveRegion();
}

Note

Cooperative task switches are still executed, although preemptive task switches are
disabled in critical sections.

void HPTask(void) {
 OS_TASK_EnterRegion();
 OS_TASK_Delay_ms(100);
 // OS_TASK_Delay_ms() will cause a cooperative task switch
 OS_TASK_LeaveRegion();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

339 CHAPTER 15 API functions

15.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

Id
le

OS_TASK_EnterRegion()
Indicates the beginning of a critical region
to embOS. ● ● ● ● ●

OS_TASK_LeaveRegion()
Indicates to embOS the end of a critical
region. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

340 CHAPTER 15 API functions

15.2.1 OS_TASK_EnterRegion()

Description

Indicates the beginning of a critical region to embOS.

Prototype

void OS_TASK_EnterRegion(void);

Additional information

The critical region counter (OS_Global.Counters.Cnt.Region) is zero by default. It
gets incremented upon calling OS_TASK_EnterRegion() and decremented upon calling
OS_TASK_LeaveRegion(). Critical regions can be nested: the critical region ends when this
counter reaches zero again. The counter is specific for all tasks, its value is saved and
restored on any task switch.

Interrupts are not disabled in a critical region. However, preemptive task switches are. If
any interrupt triggers a task switch, the task switch stays pending until the final call of
OS_TASK_LeaveRegion(). When the counter reaches zero, a pending task switch is exe-
cuted.

Cooperative task switches are not affected and will be executed in critical regions. When
a task is running in a critical region and calls any blocking embOS function, the task will
be suspended. When the task is resumed, the critical region counter is restored, the task
continues to run in a critical region until OS_TASK_LeaveRegion() is called.

Example

Please refer to the example in the introduction of chapter Critical Regions on page 337.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

341 CHAPTER 15 API functions

15.2.2 OS_TASK_LeaveRegion()

Description

Indicates to embOS the end of a critical region. Decrements the critical region counter and
checks if a task switch is pending if the counter reaches 0.

Prototype

void OS_TASK_LeaveRegion(void);

Additional information

A critical region counter (OS_Global.Counters.Cnt.Region), which is zero by default, is
decremented. If this counter reaches zero, the critical region ends. A task switch which
became pending during a critical region will be executed in OS_TASK_EnterRegion() when
the counter reaches zero.

Example

Please refer to the example in the introduction of chapter Critical Regions on page 337.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

342 CHAPTER 15 Disabling context transitions

15.3 Disabling context transitions
The following table shows which context transitions may occur after calling appropriate
embOS API:

Cooperative
task switch

Preemptive
task switch

Software
Timer

embOS
interrupt

Zero latency
interrupt

Regular execution ● ● ● ● ●
In critical region ● ● ●
With embOS inter-
rupts disabled ● ●

With all interrupts
disabled ●

Example

In the following example DoSomething() in the LPTask cannot be interrupt by the HPTask
or the software timer SoftwareTimer. But it can be interrupted by the interrupt routines
embOS_ISR and Zero_Latency_ISR.

void Zero_Latency_ISR(void) {
 DoSomething();
}

void embOS_ISR(void) {
 OS_INT_Enter();
 DoSomething();
 OS_INT_Leave();
}

void SoftwareTimer(void) {
 DoSomething();
 OS_TIMER_Restart(&Timer);
}

void HPTask(void) {
 while (1) {
 DoSomething();
 OS_TASK_Delay_ms(10);
 }
}

void LPTask(void) {
 while (1) {
 OS_TASK_EnterRegion();
 DoSomething();
 OS_TASK_LeaveRegion();
 }
}

In this example DoSomething() in the LPTask cannot be interrupt by the HPTask, the soft-
ware timer SoftwareTimer or the embOS interrupt routine embOS_ISR. But it can be inter-
rupted by the zero latency interrupt routine Zero_Latency_ISR.

void Zero_Latency_ISR(void) {
 DoSomething();
}

void embOS_ISR(void) {
 OS_INT_Enter();
 DoSomething();
 OS_INT_Leave();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

343 CHAPTER 15 Disabling context transitions

void SoftwareTimer(void) {
 DoSomething();
 OS_TIMER_Restart(&Timer);
}

void HPTask(void) {
 while (1) {
 DoSomething();
 OS_TASK_Delay_ms(10);
 }
}

void LPTask(void) {
 while (1) {
 OS_INT_Disable();
 DoSomething();
 OS_INT_Enable();
 }
}

In this last example, DoSomething() in the LPTask cannot be interrupt by any other func-
tion.

void Zero_Latency_ISR(void) {
 DoSomething();
}

void embOS_ISR(void) {
 OS_INT_Enter();
 DoSomething();
 OS_INT_Leave();
}

void SoftwareTimer(void) {
 DoSomething();
 OS_TIMER_Restart(&Timer);
}

void HPTask(void) {
 while (1) {
 DoSomething();
 OS_TASK_Delay_ms(10);
 }
}

void LPTask(void) {
 while (1) {
 OS_INT_DisableAll();
 DoSomething();
 OS_INT_EnableAll();
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 16

Time Measurement

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

345 CHAPTER 16 Introduction

16.1 Introduction
embOS-Ultra counts time in cycles and thus innately provides cycle precise measurement
functions. These functions can be used for e.g. measuring the execution time of any section
of code. The frequency depends on the frequency of the free running counter and does not
necessarily reflect the CPU frequency. The cycles can also be converted into nano-, micro-
or milliseconds by using embOS time conversion functions.

Note

The embOS time conversion functions use finite-precision arithmetics. Depending on
the frequency of the used hardware counter, this may incur roundoff errors (e.g. a
maximum of one cycle when converting to cycles, a maximum of one microsecond
when converting to microseconds, etc.).

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

346 CHAPTER 16 Introduction

Example

The following sample demonstrates how to measure the execution time of a section of code:

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int Stack[1000]; // Task stacks
static OS_TASK TCB; // Task-control-blocks
static volatile int Dummy;

static void UserCode(void) {
 for (Dummy=0; Dummy < 11000; Dummy++); // Burn some time
}

static void Task(void) {
 OS_U64 t0;
 OS_U64 t1;
 OS_U64 Cycles;
 OS_U64 Overhead;

 while (1) {
 //
 // Measure overhead
 //
 t0 = OS_TIME_Get_Cycles();
 t1 = OS_TIME_Get_Cycles();
 Overhead = t1 - t0;
 //
 // Measure user code
 //
 t0 = OS_TIME_Get_Cycles();
 UserCode(); // Execute the user code to be benchmarked
 t1 = OS_TIME_Get_Cycles();
 Cycles = (t1 - t0) - Overhead;
 printf("\n===== Measurement =====\n");
 printf("Timer Freq: %u Hertz\n", OS_INFO_GetTimerFreq());
 printf("%9u cycles\n", Cycles);
 printf("%9u nanoseconds\n", OS_TIME_ConvertCycles2ns(Cycles));
 printf("%9u microseconds\n", OS_TIME_ConvertCycles2us(Cycles));
 printf("%9u millisecones\n", OS_TIME_ConvertCycles2ms(Cycles));
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start(); // Start multitasking
 return 0;
}

The output of the sample is as follows:

 ...
===== Measurement =====
Timer Freq: 168000000 Hz
 121013 cycles
 720315 nanoseconds
 720 microseconds
 0 milliseconds
 ...

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

347 CHAPTER 16 API functions

16.2 API functions

Routine Description
m

ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TIME_ConfigSysTimer()
Configures the system time parame-
ters for according timing functions, em-
bOSView and profiling.

●

OS_TIME_ConvertCycles2ms()
Converts counter cycles into millisec-
onds. ● ● ● ● ●

OS_TIME_ConvertCycles2ns()
Converts counter cycles into nanosec-
onds. ● ● ● ● ●

OS_TIME_ConvertCycles2us()
Converts counter cycles into microsec-
onds. ● ● ● ● ●

OS_TIME_Convertms2Cycles()
Converts milliseconds into counter cy-
cles. ● ● ● ● ●

OS_TIME_Convertns2Cycles()
Converts nanoseconds into counter cy-
cles. ● ● ● ● ●

OS_TIME_Convertus2Cycles()
Converts microseconds into counter cy-
cles. ● ● ● ● ●

OS_TIME_Get_ms()
Returns the elapsed milliseconds since
the start of the counter. ● ● ● ● ●

OS_TIME_Get_us()
Returns the elapsed microseconds since
the start of the counter. ● ● ● ● ●

OS_TIME_Get_Cycles()
Returns the elapsed cycles since the
start of the counter. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

348 CHAPTER 16 API functions

16.2.1 OS_TIME_ConfigSysTimer()

Description

Configures the system time parameters for according timing functions, embOSView
and profiling. This function is usually called once from OS_InitHW() (implemented in
RTOSInit.c).

Prototype

void OS_TIME_ConfigSysTimer(OS_CONST_PTR OS_SYSTIMER_CONFIG *pConfig);

Parameters

Parameter Description

pConfig Pointer to a data structure of type OS_SYSTIMER_CONFIG.

Additional information

This function must be called before calling OS_Start(), or before any time-related API
function is called from main().

The OS_SYSTIMER_CONFIG struct

OS_TIME_ConfigSysTimer() uses the struct OS_SYSTIMER_CONFIG:

Member Description

TimerFreq Counter frequency in Hz

Example

Please refer to the example in the chapter OS_InitHW() on page 523.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

349 CHAPTER 16 API functions

16.2.2 OS_TIME_ConvertCycles2ms()

Description

Converts counter cycles into milliseconds.

Prototype

OS_U64 OS_TIME_ConvertCycles2ms(OS_U32 Cycles);

Parameters

Parameter Description

Cycles Counter cycles.

Return value

The converted value in milliseconds.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_ConvertCy-
cles2ms().

Example

void Convert(void) {
 OS_U64 ms;

 ms = OS_TIME_ConvertCycles2ms(2000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

350 CHAPTER 16 API functions

16.2.3 OS_TIME_ConvertCycles2ns()

Description

Converts counter cycles into nanoseconds.

Prototype

OS_U64 OS_TIME_ConvertCycles2ns(OS_U32 Cycles);

Parameters

Parameter Description

Cycles Counter cycles.

Return value

The converted value in nanoseconds.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_ConvertCy-
cles2ns().

Example

void Convert(void) {
 OS_U64 ns;

 ns = OS_TIME_ConvertCycles2ns(2000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

351 CHAPTER 16 API functions

16.2.4 OS_TIME_ConvertCycles2us()

Description

Converts counter cycles into microseconds.

Prototype

OS_U64 OS_TIME_ConvertCycles2us(OS_U32 Cycles);

Parameters

Parameter Description

Cycles Counter cycles.

Return value

The converted value in microseconds.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_ConvertCy-
cles2us().

Example

void Convert(void) {
 OS_U64 us;

 us = OS_TIME_ConvertCycles2us(2000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

352 CHAPTER 16 API functions

16.2.5 OS_TIME_Convertms2Cycles()

Description

Converts milliseconds into counter cycles.

Prototype

OS_U64 OS_TIME_Convertms2Cycles(OS_U32 ms);

Parameters

Parameter Description

ms Milliseconds.

Return value

The converted value in counter cycles.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_Convertms2Cy-
cles().

Example

void Convert(void) {
 OS_U64 Cycles;

 Cycles = OS_TIME_Convertms2Cycles(100);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

353 CHAPTER 16 API functions

16.2.6 OS_TIME_Convertns2Cycles()

Description

Converts nanoseconds into counter cycles.

Prototype

OS_U64 OS_TIME_Convertns2Cycles(OS_U32 ns);

Parameters

Parameter Description

ns Nanoseconds.

Return value

The converted value in counter cycles.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_Convertns2Cy-
cles().

Example

void Convert(void) {
 OS_U64 Cycles;

 Cycles = OS_TIME_Convertns2Cycles(100);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

354 CHAPTER 16 API functions

16.2.7 OS_TIME_Convertus2Cycles()

Description

Converts microseconds into counter cycles.

Prototype

OS_U64 OS_TIME_Convertus2Cycles(OS_U32 us);

Parameters

Parameter Description

us Microseconds.

Return value

The converted value in counter cycles.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_Convertus2Cy-
cles().

Example

void Convert(void) {
 OS_U64 Cycles;

 Cycles = OS_TIME_Convertus2Cycles(100);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

355 CHAPTER 16 API functions

16.2.8 OS_TIME_Get_ms()

Description

Returns the elapsed milliseconds since the start of the counter.

Prototype

OS_U64 OS_TIME_Get_ms(void);

Return value

The elapsed milliseconds since the start of the counter.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_Get_ms().

Example

void Benchmark(void) {
 OS_U64 ms0, ms;

 ms0 = OS_TIME_Get_ms();
 DoSomeThing();
 ms = OS_TIME_Get_ms() - ms0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

356 CHAPTER 16 API functions

16.2.9 OS_TIME_Get_us()

Description

Returns the elapsed microseconds since the start of the counter.

Prototype

OS_U64 OS_TIME_Get_us(void);

Return value

The elapsed microseconds since the start of the counter.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_Get_us().

Example

void Benchmark(void) {
 OS_U64 us0, us;

 us0 = OS_TIME_Get_us();
 DoSomeThing();
 us = OS_TIME_Get_us() - us0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

357 CHAPTER 16 API functions

16.2.10 OS_TIME_Get_Cycles()

Description

Returns the elapsed cycles since the start of the counter.

Prototype

OS_U64 OS_TIME_Get_Cycles(void);

Return value

The elapsed cycles since the start of the counter.

Additional information

OS_TIME_ConfigSysTimer() must have been called before calling OS_TIME_Get_Cycles().

Example

void Benchmark(void) {
 OS_U64 Cycles0, Cycles;

 Cycles0 = OS_TIME_Get_Cycles();
 DoSomeThing();
 Cycles = OS_TIME_Get_Cycles() - Cycles0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 17

Low Power Support

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

359 CHAPTER 17 Introduction

17.1 Introduction
embOS-Ultra provides several means to control the power consumption of your target hard-
ware. These include:
• The embOS peripheral power control module, which allows control of the power

consumption of specific peripherals.
• The possibility to enter power save modes with the embOS function OS_Idle() until an

embOS interrupt occurs which can call the power-up callback.

Note

Since embOS-Ultra does not have a periodic system tick, the tickless support imple-
mented in the regular embOS is not included with embOS-Ultra. If the application
needs to revert some low power settings after waking up from deep sleep, OS_POW-
ER_SetISREntryCallback() can be used to do so.

17.2 Starting power save modes in OS_Idle()
In case your controller supports some kind of power save mode, it is possible to use it
with embOS. To enter a low power mode, you would usually implement the respective
functionality inside OS_Idle(), which is located in the embOS source file RTOSInit.c.

OS_Idle() is executed whenever no task is ready for execution and may thus be used to
enter low power modes whenever circumstances allow for it.
After entering OS_Idle(), the application is resumed only when an interrupt occurs. When
that happens, it may be necessary to revert the initialized low power mode. To do so, em-
bOS allows to register a callback routine that gets executed upon ISR entry. The callback
function is then deleted as soon as it was executed, to avoid its execution when the applica-
tion did not enter any low mode. It therefore must be registered in OS_Idle() every time a
low power mode is entered. This can be done using the API function OS_POWER_SetISREn-
tryCallback().

Note

The callback routine is executed with embOS interrupts only. It is not executed with
zero latency interrupts.

static void _Callback(void) {
 ... // Revert low power mode
}

void OS_Idle(void) { // Idle loop: No task is ready to execute
 while (1) {
 OS_POWER_SetISREntryCallback(_Callback);
 _EnterLowPowerMode(); // Configure and enter device specific sleep mode
 }
}

Note

Interrupts might occur after the callback was set but before low power mode was
entered, in which case the callback would need to be re-registered. If the architecture
allows for this, we suggest disabling interrupts before entering low-power mode.

For further information on OS_Idle(), refer to OS_Idle() on page 518.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

360 CHAPTER 17 Peripheral power control

17.3 Peripheral power control

17.3.1 Introduction
The embOS peripheral power control is used to determine if a peripheral’s clock or its power
supply can be switched off to save power.

It includes three functions: OS_POWER_GetMask(), OS_POWER_UsageInc() and OS_POW-
ER_UsageDec(). These functions can be used to add peripheral power control to any em-
bOS start project.

If a peripheral gets initialized a call to OS_POWER_UsageInc() increments a specific entry in
the power management counter to signal that it is in use. When a peripheral is no longer
in use, a call to OS_POWER_UsageDec() decrements this counter. Within OS_Idle() a call of
OS_POWER_GetMask() generates a bit mask which describes which clock or power supply is
in use, and which is not and may therefore be switched off.

This is an example for the peripheral power control. As it depends on the used hardware,
its implementation is fictional: A, B and C are used to represent arbitrary peripherals.

#define OS_POWER_USE_A (1 << 0) // peripheral "A"
#define OS_POWER_USE_B (1 << 1) // peripheral "B"
#define OS_POWER_USE_C (1 << 2) // peripheral "C"
#define OS_POWER_USE_ALL (OS_POWER_USE_A | OS_POWER_USE_B | OS_POWER_USE_C)

In the following function the peripherals A and C have been initialized and were marked in-
use by a call to OS_POWER_UsageInc():

void _InitAC(void) {
 ...
 OS_POWER_UsageInc(OS_POWER_USE_A); // Mark "A" as used
 OS_POWER_UsageInc(OS_POWER_USE_C); // Mark "C" as used
 ...
}

After some time, C will not be used any more and can therefore be marked as unused by
a call to OS_POWER_UsageDec():

void _WorkDone(void) {
 ...
 OS_POWER_UsageDec(OS_POWER_USE_C); // Mark "C" as unused
 ...
}

While in OS_Idle(), a call to OS_POWER_GetMask() retrieves a bit mask from the power
management counter. That bit mask subsequently is used to modify the corresponding bits
of a control register, leaving only those bits set that represent a peripheral which is in-use.

void OS_Idle(void) { // Idle loop: No task is ready to execute
 OS_UINT PowerMask;
 OS_U16 ClkControl;
 //
 // Initially disable interrupts
 //
 OS_INT_IncDI();
 //
 // Examine which peripherals may be switched off
 //
 PowerMask = OS_POWER_GetMask();
 //
 // Store the content of CTRLREG and clear all OS_POWER_USE related bits
 //
 ClkControl = CTRLREG & ~OS_POWER_USE_ALL;
 //

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

361 CHAPTER 17 Peripheral power control

 // Set only bits for used peripherals and write them to the specific register
 // In this case only "A" is marked as used, so "C" gets switched off
 //
 CTRLREG = ClkControl | PowerMask;
 //
 // Re-enable interrupts
 //
 OS_INT_DecRI();
 for (;;) {
 _do_nothing();
 };
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

362 CHAPTER 17 API functions

17.4 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

Id
le

OS_POWER_GetMask()
Retrieves the power manage-
ment counter. ● ● ● ● ● ●

OS_POWER_SetISREntryCallback()
Sets a callback function to be
executed on ISR entry. ● ● ● ● ●

OS_POWER_UsageDec()
Decrements the power man-
agement counter(s). ● ● ● ● ● ●

OS_POWER_UsageInc()
Increments the power man-
agement counter(s). ● ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

363 CHAPTER 17 API functions

17.4.1 OS_POWER_GetMask()

Description

Retrieves the power management counter.

Prototype

OS_UINT OS_POWER_GetMask(void);

Return value

A bit mask which describes whether a peripheral is in use or not.

Additional information

This function generates a bit mask from the power management counter it retrieves. The
bit mask describes which peripheral is in use and which one can be turned off. Switching
off a peripheral can be done by writing this mask into the specific register. Please refer to
the Example for additional information.

Example

Please refer to the example in the introduction of chapter Peripheral power control on
page 360.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

364 CHAPTER 17 API functions

17.4.2 OS_POWER_SetISREntryCallback()

Description

Sets a callback function to be executed on ISR entry.

Prototype

void OS_POWER_SetISREntryCallback(OS_ROUTINE_VOID* pfRoutine);

Parameters

Parameter Description

pfRoutine Pointer to an OS_ROUTINE_VOID function.

Additional information

The intended purpose for this callback is powering up the device after idle times / low power
modes. For example, the device could be powered down in OS_Idle() after registering
this callback. Subsequently, when an interrupt wakes the device from low power mode,
this callback can perform clock initializations, etc. After execution the callback is deleted
automatically to not interfere with regular application execution. It therefore needs to be
registered in OS_Idle() again before entering low power mode again.

Example

For an example, refer to Starting power save modes in OS_Idle() on page 359;

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

365 CHAPTER 17 API functions

17.4.3 OS_POWER_UsageDec()

Description

Decrements the power management counter(s).

Prototype

void OS_POWER_UsageDec(OS_UINT Index);

Parameters

Parameter Description

Index

Contains a mask with bits set for those counters which
should be updated. (Bit 0 => Counter 0) The debug version
checks for underflow, overflow and undefined counter num-
ber.

Additional information

When a peripheral is no longer in use this function is called to mark the peripheral as unused
and signal that it can be switched off.

Example

Please refer to the example in the introduction of chapter Peripheral power control on
page 360.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

366 CHAPTER 17 API functions

17.4.4 OS_POWER_UsageInc()

Description

Increments the power management counter(s).

Prototype

void OS_POWER_UsageInc(OS_UINT Index);

Parameters

Parameter Description

Index

Contains a mask with bits set for those counters which
should be updated. (Bit 0 => Counter 0) The debug version
checks for underflow, overflow and undefined counter num-
ber.

Additional information

When a peripheral is in use this function is called to mark the peripheral as in use.

Example

Please refer to the example in the introduction of chapter Peripheral power control on
page 360.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 18

Heap Type Memory
Management

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

368 CHAPTER 18 Introduction

18.1 Introduction
ANSI C offers some basic dynamic memory management functions. These are e.g. mal-
loc(), free(), and realloc(). Unfortunately, these routines are not thread-safe, unless
a special thread-safe implementation exists in the compiler runtime libraries; they can on-
ly be used from one task or by multiple tasks if they are called sequentially. Therefore,
embOS offer thread safe variants of these routines. These variants have the same names
as their ANSI counterparts, but are prefixed OS_HEAP_; they are called OS_HEAP_malloc(),
OS_HEAP_free(), OS_HEAP_realloc(). The thread-safe variants that embOS offers use the
standard ANSI routines, but they guarantee that the calls are serialized using a mutex.

If heap memory management is not supported by the standard C libraries, embOS heap
memory management is not implemented.

This API is not available in embOS library mode OS_LIBMODE_SAFE.

Note

Many modern toolchain standard libraries can be made thread-safe with hook func-
tions which are implemented by embOS. With it functions like malloc(), free()
and realloc() are thread-safe and is not necessary to use OS_HEAP_malloc(),
OS_HEAP_free() and OS_HEAP_realloc(). Please have a look in the core/compiler
specific embOS manual for more details.

Example

void HPTask(void) {
 OS_U32* p;

 while (1) {
 p = (OS_U32*)OS_HEAP_malloc(4);
 *p = 42;
 OS_HEAP_free(p);
 }
}

void LPTask(void) {
 OS_U16* p;

 while (1) {
 p = (OS_U16*)OS_HEAP_malloc(2);
 *p = 0;
 OS_HEAP_free(p);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

369 CHAPTER 18 API functions

18.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_HEAP_free() Frees a block of memory previously allocated. ● ●
OS_HEAP_malloc() Allocates a block of memory on the heap. ● ●
OS_HEAP_realloc() Changes the allocation size. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

370 CHAPTER 18 API functions

18.2.1 OS_HEAP_free()

Description

Frees a block of memory previously allocated.
This is the thread safe free() variant.

Prototype

void OS_HEAP_free(void* pMemBlock);

Parameters

Parameter Description

pMemBlock
Pointer to a memory block previously allocated with
OS_HEAP_malloc().

Example

void UseHeapMem(void) {
 char* sText;

 sText = (char*)OS_HEAP_malloc(20);
 strcpy(sText, "Hello World");
 printf(sText);
 OS_HEAP_free(sText);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

371 CHAPTER 18 API functions

18.2.2 OS_HEAP_malloc()

Description

Allocates a block of memory on the heap.
This is the thread safe malloc() variant.

Prototype

void *OS_HEAP_malloc(unsigned int Size);

Parameters

Parameter Description

Size Size of the requested memory block in bytes.

Return value

Upon successful completion with size not equal zero, OS_HEAP_malloc() returns a pointer
to the allocated space. Otherwise, it returns a NULL pointer.

Example

void UseHeapMem(void) {
 char* sText;

 sText = (char*)OS_HEAP_malloc(20);
 strcpy(sText, "Hello World");
 printf(sText);
 OS_HEAP_free(sText);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

372 CHAPTER 18 API functions

18.2.3 OS_HEAP_realloc()

Description

Changes the allocation size.
This is the thread safe realloc() variant.

Prototype

void *OS_HEAP_realloc(void* pMemBlock,
 unsigned int NewSize);

Parameters

Parameter Description

pMemBlock
Pointer to a memory block previously allocated with
OS_HEAP_malloc().

NewSize New size for the memory block in bytes.

Return value

Upon successful completion, OS_HEAP_realloc() returns a pointer to the reallocated mem-
ory block. Otherwise, it returns a NULL pointer.

Example

void UseHeapMem(void) {
 char* sText;

 sText = (char*)OS_HEAP_malloc(10);
 strcpy(sText, "Hello");
 printf(sText);
 sText = (char*)OS_HEAP_realloc(sText, 20);
 strcpy(sText, "Hello World");
 printf(sText);
 OS_HEAP_free(sText);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 19

Fixed Block Size Memory Pools

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

374 CHAPTER 19 Introduction

19.1 Introduction
Fixed block size memory pools contain a specific number of fixed-size blocks of memory.
The location in memory of the pool, the size of each block, and the number of blocks are
set at runtime by the application via a call to the OS_MEMPOOL_Create() function. The
advantage of fixed memory pools is that a block of memory can be allocated from within
any task in a very short, determined period of time.

Example

#include "RTOS.h"
#include <string.h>
#include <stdio.h>

#define BLOCK_SIZE (16)
#define NUM_BLOCKS (16)
#define POOL_SIZE (NUM_BLOCKS * BLOCK_SIZE)

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task-control-blocks
static OS_MEMPOOL MEMF;
static OS_U8 aPool[POOL_SIZE];

static void HPTask(void) {
 char* a;

 while (1) {
 //
 // Request one memory block
 //
 a = OS_MEMPOOL_AllocBlocked(&MEMF);
 //
 // Work with memory block
 //
 strcpy(a, "Hello World\n");
 printf(a);
 OS_MEMPOOL_FreeEx(&MEMF, a); // Release memory block
 OS_TASK_Delay (10);
 }
}

static void LPTask(void) {
 char* b;

 while (1) {
 //
 // Request one memory block when available in max. next 10 milliseconds
 //
 b = OS_MEMPOOL_AllocTimed(&MEMF, 10);
 if (b != 0) {
 //
 // Work with memory block
 //
 b[0] = 0x12;
 b[1] = 0x34;
 //
 // Release memory block
 //
 OS_MEMPOOL_FreeEx(&MEMF, b);
 }
 OS_TASK_Delay (50);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

375 CHAPTER 19 Introduction

 OS_InitHW(); // Initialize hardware for embOS
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 //
 // Create [NUM_BLOCKS] blocks with a size of [BLOCK_SIZE] each
 //
 OS_MEMPOOL_Create(&MEMF, aPool, NUM_BLOCKS, BLOCK_SIZE);
 OS_Start(); // Start multitasking
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

376 CHAPTER 19 API functions

19.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_MEMPOOL_Alloc()
Requests allocation of a memory
block. ● ● ● ● ●

OS_MEMPOOL_AllocBlocked()
Allocates a memory block from
pool. ● ●

OS_MEMPOOL_AllocTimed()
Allocates a memory block from
pool with a timeout. ● ●

OS_MEMPOOL_Create()
Creates and initializes a fixed block
size memory pool. ● ●

OS_MEMPOOL_Delete()
Deletes a fixed block size memory
pool. ● ●

OS_MEMPOOL_Free()
Releases a memory block that was
previously allocated. ● ● ● ● ●

OS_MEMPOOL_FreeEx()
Releases a memory block that was
previously allocated. ● ● ● ● ●

OS_MEMPOOL_GetBlockSize()
Returns the size of a single memo-
ry block in the pool. ● ● ● ● ●

OS_MEMPOOL_GetMaxUsed()

Returns maximum number of
blocks in a pool that have been
used simultaneously since creation
of the pool.

● ● ● ● ●

OS_MEMPOOL_GetNumBlocks()
Returns the total number of mem-
ory blocks in the pool. ● ● ● ● ●

OS_MEMPOOL_GetNumFreeBlocks()
Returns the number of free memo-
ry blocks in the pool. ● ● ● ● ●

OS_MEMPOOL_IsInPool()

Information routine to examine
whether a memory block reference
pointer belongs to the specified
memory pool.

● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

377 CHAPTER 19 API functions

19.2.1 OS_MEMPOOL_Alloc()

Description

Requests allocation of a memory block. Continues execution without blocking.

Prototype

void *OS_MEMPOOL_Alloc(OS_MEMPOOL* pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Return value

≠ NULL Pointer to the allocated block.
= NULL If no block has been allocated.

Additional information

The calling task is never suspended by calling OS_MEMPOOL_Alloc(). The returned pointer
must be passed as a parameter to OS_MEMPOOL_Free() or OS_MEMPOOL_FreeEx()to free
the memory block. The pointer must not be modified.

Example

static OS_MEMPOOL _MemPool;

void Task(void) {
 void* pData;

 pData = OS_MEMPOOL_Alloc(&_MemPool);
 if (pData != NULL) {
 // Success: Work with the allocated memory.
 } else {
 // Failed: Do something else.
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

378 CHAPTER 19 API functions

19.2.2 OS_MEMPOOL_AllocBlocked()

Description

Allocates a memory block from pool. Suspends until memory is available.

Prototype

void *OS_MEMPOOL_AllocBlocked(OS_MEMPOOL* pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Return value

Pointer to the allocated memory block.

Additional information

If there is no free memory block in the pool, the calling task is suspended until a memory
block becomes available. The returned pointer must be passed as a parameter to OS_MEM-
POOL_Free() or OS_MEMPOOL_FreeEx()to free the memory block. The pointer must not be
modified.

Example

Please refer to the example in the introduction of chapter Fixed Block Size Memory Pools
on page 373.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

379 CHAPTER 19 API functions

19.2.3 OS_MEMPOOL_AllocTimed()

Description

Allocates a memory block from pool with a timeout. Suspends until memory is available
or a timeout occurs.

Prototype

void *OS_MEMPOOL_AllocTimed(OS_MEMPOOL* pMEMF,
 OS_U32 Timeout);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Timeout
Maximum time in milliseconds until the memory block must
be available.

Return value

= NULL No memory block could be allocated within the specified time.
≠ NULL Pointer to the allocated memory block.

Additional information

If there is no free memory block in the pool, the calling task is suspended until a memory
block becomes available or the timeout has expired. The returned pointer must be passed
as a parameter to OS_MEMPOOL_Free() or OS_MEMPOOL_FreeEx()to free the memory block.
The pointer must not be modified.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the memory block becomes available after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the memory block was not available within the requested time.

Example

static OS_MEMPOOL _MemPool;

void Task(void) {
 void* pData;

 pData = OS_MEMPOOL_AllocTimed(&_MemPool, 20);
 if (pData != NULL) {
 // Success: Work with the allocated memory.
 } else {
 // Failed: Do something else.
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

380 CHAPTER 19 API functions

19.2.4 OS_MEMPOOL_Create()

Description

Creates and initializes a fixed block size memory pool.

Prototype

void OS_MEMPOOL_Create(OS_MEMPOOL* pMEMF,
 void* pPool,
 OS_UINT NumBlocks,
 OS_UINT BlockSize);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

pPool
Pointer to memory to be used for the memory pool. Required
size is: NumBlocks * BlockSize.

NumBlocks
Number of blocks in the pool.
1 ≤ NumBlocks ≤ 215 - 1 = 0x7FFF for 8/16-bit CPUs
1 ≤ NumBlocks ≤ 231 - 1 = 0x7FFFFFFF for 32-bit CPUs

BlockSize
Size in bytes of one block.
1 ≤ BlockSize ≤ 215 - 1 = 0x7FFF for 8/16-bit CPUs
1 ≤ BlockSize ≤ 231 - 1 = 0x7FFFFFFF for 32-bit CPUs

Example

#define NUM_BLOCKS (16)
#define BLOCK_SIZE (16)
#define POOL_SIZE (NUM_BLOCKS * BLOCK_SIZE)

static OS_U8 _aPool[POOL_SIZE];
static OS_MEMPOOL _MyMEMF;

void Init(void) {
 // Create 16 Blocks with size of 16 bytes
 OS_MEMPOOL_Create(&_MyMEMF, _aPool, NUM_BLOCKS, BLOCK_SIZE);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

381 CHAPTER 19 API functions

19.2.5 OS_MEMPOOL_Delete()

Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory blocks
inside this pool can no longer be used.

Prototype

void OS_MEMPOOL_Delete(OS_MEMPOOL* pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Additional information

A debug build of embOS checks whether pMEMF addresses a valid memory pool and will call
OS_Error() with error code OS_ERR_MEMF_INV in case of an error. Before deleting a memory
pool, make sure that no task is waiting for it. A debug build of embOS will call OS_Error()
with the error code OS_ERR_MEMF_DELETE if any tasks is waiting for the memory pool.

Example

static OS_MEMPOOL MyMEMF;

int main(void) {
 ...
 //
 // Delete memory pool
 //
 OS_MEMPOOL_Delete(&MyMEMF);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

382 CHAPTER 19 API functions

19.2.6 OS_MEMPOOL_Free()

Description

Releases a memory block that was previously allocated. The memory pool does not need
to be denoted.

Prototype

void OS_MEMPOOL_Free(void* pMemBlock);

Parameters

Parameter Description

pMemBlock Pointer to the memory block.

Additional information

This function may be used instead of OS_MEMPOOL_FreeEx(). It has the advantage that only
one parameter is needed since embOS will automatically determine the associated memory
pool. The memory block becomes available for other tasks waiting for a memory block from
the associated pool, which may cause a subsequent task switch.

Example

static OS_MEMPOOL _MemPool;

void Task(void) {
 void* pData;

 pData = OS_MEMPOOL_Alloc(&_MemPool); // Allocate memory
 ... // Work with allocated memory
 OS_MEMPOOL_Free(pData); // Free allocated memory
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

383 CHAPTER 19 API functions

19.2.7 OS_MEMPOOL_FreeEx()

Description

Releases a memory block that was previously allocated.

Prototype

void OS_MEMPOOL_FreeEx(OS_MEMPOOL* pMEMF,
 void* pMemBlock);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.
pMemBlock Pointer to memory block to free.

Additional information

The memory block becomes available for other tasks waiting for a memory block from the
associated pool, which may cause a subsequent task switch.

Example

Please refer to the example in the introduction of chapter Fixed Block Size Memory Pools
on page 373.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

384 CHAPTER 19 API functions

19.2.8 OS_MEMPOOL_GetBlockSize()

Description

Returns the size of a single memory block in the pool.

Prototype

int OS_MEMPOOL_GetBlockSize(OS_CONST_PTR OS_MEMPOOL *pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Return value

Size in bytes of a single memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

Example

static OS_MEMPOOL _MemPool;

void PrintBlockSize(void) {
 int Size;

 Size = OS_MEMPOOL_GetBlockSize(&_MemPool);
 printf("Block Size: %d\n", Size);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

385 CHAPTER 19 API functions

19.2.9 OS_MEMPOOL_GetMaxUsed()

Description

Returns maximum number of blocks in a pool that have been used simultaneously since
creation of the pool.

Prototype

int OS_MEMPOOL_GetMaxUsed(OS_CONST_PTR OS_MEMPOOL *pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Return value

Maximum number of blocks in the specified memory pool that were used simultaneously
since the pool was created.

Example

static OS_MEMPOOL _MemPool;

void PrintMemoryUsagePeak(void) {
 int BlockCnt, UsedBlocks;
 void* pData;

 pData = OS_MEMPOOL_AllocBlocked(&_MemPool);

 BlockCnt = OS_MEMPOOL_GetNumBlocks(&_MemPool);
 UsedBlocks = OS_MEMPOOL_GetMaxUsed(&_MemPool);
 if (UsedBlocks != 0) {
 printf("Max used Memory: %d%%\n", (int)
(((float)UsedBlocks / BlockCnt) * 100));
 } else {
 printf("Max used Memory: 0%%");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

386 CHAPTER 19 API functions

19.2.10 OS_MEMPOOL_GetNumBlocks()

Description

Returns the total number of memory blocks in the pool.

Prototype

int OS_MEMPOOL_GetNumBlocks(OS_CONST_PTR OS_MEMPOOL *pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Return value

Returns the number of blocks in the specified memory pool. This is the value that was given
as parameter during creation of the memory pool.

Example

Please refer to the example of OS_MEMPOOL_GetMaxUsed() or OS_MEMPOOL_GetNumFree-
Blocks().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

387 CHAPTER 19 API functions

19.2.11 OS_MEMPOOL_GetNumFreeBlocks()

Description

Returns the number of free memory blocks in the pool.

Prototype

int OS_MEMPOOL_GetNumFreeBlocks(OS_CONST_PTR OS_MEMPOOL *pMEMF);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.

Return value

The number of free blocks currently available in the specified memory pool.

Example

static OS_MEMPOOL _MemPool;

void PrintMemoryUsage(void) {
 int BlockCnt;
 int UnusedBlocks;
 void* pData;

 pData = OS_MEMPOOL_AllocBlocked(&_MemPool);

 BlockCnt = OS_MEMPOOL_GetNumBlocks(&_MemPool);
 UnusedBlocks = OS_MEMPOOL_GetNumFreeBlocks(&_MemPool);
 if (UnusedBlocks != 0) {
 printf("Used Memory: %d%%\n", 100 - (int)
(((float)UnusedBlocks / BlockCnt) * 100));
 } else {
 printf("Used Memory: 0%%");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

388 CHAPTER 19 API functions

19.2.12 OS_MEMPOOL_IsInPool()

Description

Information routine to examine whether a memory block reference pointer belongs to the
specified memory pool.

Prototype

OS_BOOL OS_MEMPOOL_IsInPool(OS_CONST_PTR OS_MEMPOOL *pMEMF,
 OS_CONST_PTR void *pMemBlock);

Parameters

Parameter Description

pMEMF Pointer to a memory pool object of type OS_MEMPOOL.
pMemBlock Pointer to a memory block that should be checked.

Return value

= 0 Pointer does not belong to the specified memory pool.
≠ 0 Pointer belongs to the specified memory pool.

Example

static OS_MEMPOOL _MemPool;

void CheckPointerLocation(OS_MEMPOOL* pMEMF, void* Pointer) {
 if (OS_MEMPOOL_IsInPool(pMEMF, Pointer) == 0) {
 printf("Pointer doesn't belong to the specified memory pool.\n");
 } else {
 printf("Pointer belongs to the specified memory pool.\n");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 20

System Tick

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

390 CHAPTER 20 Introduction

20.1 Introduction
The embOS system tick is an interrupt that calls the embOS tick handler OS_TICK_Handle().
The latter triggers the scheduler when it needs to schedule a task or execute a software
timer.

20.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TICK_Handle() embOS timer tick handler. ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

391 CHAPTER 20 API functions

20.2.1 OS_TICK_Handle()

Description

embOS timer tick handler.

Prototype

void OS_TICK_Handle(void);

Additional information

The embOS tick handler must not be called by the application, but must be called from the
hardware timer interrupt handler.

OS_TIME_ConfigSysTimer() as well as OS_INT_Enter() or OS_INT_EnterNestable()
must have been called before calling OS_TICK_Handle().

Example

void SysTick_Handler(void) {
 OS_INT_EnterNestable();
 OS_TICK_Handle();
 OS_INT_LeaveNestable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 21

Debugging

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

393 CHAPTER 21 Runtime application errors

21.1 Runtime application errors
Many application errors can be detected during runtime.
These are for example:
• Invalid usage of embOS API
• Usage of uninitialized embOS data structures
• Invalid pointers
• Stack overflow

Which runtime errors can be detected depends on how many checks are performed. Un-
fortunately, additional checks cost memory and performance (it is not that significant, but
there is a difference). Not all embOS library modes include the debug and stack check code.
For example OS_LIBMODE_DP includes the debug and stack check, whereas OS_LIBMODE_R
does not contain any debug or stack check code.

Note

If an application error is detected and OS_Error() is called, do not switch to another
embOS library mode which does not contain the debug checks. While doing so avoids
calls to OS_Error() but it does not fix the original application error and subsequent
behavior is unpredictable.

When embOS detects a runtime error, it calls the following routine:

void OS_Error(OS_STATUS ErrCode);

This routine is shipped as source code as part of the module OS_Error.c. Although this
function is named OS_Error(), it does not show embOS errors but application errors. It
is called with disabled preemptive task switches and, after re-enabling interrupts, loops
forever as follows:

Example

void OS_Error(OS_STATUS ErrCode) {
 //
 // Disabling preemptive task switches avoids that other higher priority
 // tasks preempt OS_Error() which makes debugging easier.
 //
 OS_TASK_EnterRegion();
 //
 // Enable interrupts for embOSView communication.
 //
 OS_Global.Counters.Cnt.DI = 0u;
 OS_INT_Enable();
 //
 // OS_Global.Status will be shown in e.g. embOSView and IDE plugins.
 // It is available in debug and stack check builds only.
 //
#if (OS_DEBUG != 0) || (OS_SUPPORT_STACKCHECK != 0)
 OS_Global.Status = ErrCode;
#endif
 //
 // Endless loop may be left by setting ErrCode to OS_OK (0).
 //
 while (ErrCode != OS_OK) {
 }
}

If you are using embOSView, you can see the value and meaning of OS_Global.Status
in the system variable window.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

394 CHAPTER 21 Runtime application errors

When using a debugger, you should set a breakpoint at the beginning of this routine or
simply stop the program after a failure. The error code is passed to the function as a
parameter. You should add OS_Global.Status to your watch window.

Your call stack window shows where the error occurred. If a call stack windows is not
available you can (as described below) step back to the program sequence causing the
problem.

You can modify the routine to accommodate to your own hardware; this could mean that
your target hardware sets an error-indicating LED or shows a small message on the display.

Note

When modifying the OS_Error() routine, the last statement needs to be the infinite
loop.

If you look at the OS_Error() routine, you will see that it is more complicated than neces-
sary. The actual error code is passed to OS_Error() to the argument ErrCode. The program
then waits for this variable to be reset. Simply reset this variable to 0 using your debugger,
and you can easily step back to the program sequence causing the problem. Most of the
time, looking at this part of the program will make the problem clear.

21.1.1 List of error codes

Value enum value Explanation

0 OS_OK No error, everything OK.

100 OS_ERR_ISR_INDEX
Index value out of bounds during interrupt
controller initialization or interrupt installa-
tion.

101 OS_ERR_ISR_VECTOR
Default interrupt handler called, but inter-
rupt vector not initialized.

102 OS_ERR_ISR_PRIO Wrong interrupt priority.
103 OS_ERR_WRONG_STACK Wrong stack used before main().

104 OS_ERR_ISR_NO_HANDLER
No interrupt handler was defined for this
interrupt.

105 OS_ERR_TLS_INIT
OS_TLS_Init() called multiple times from
one task.

106 OS_ERR_MB_BUFFER_SIZE
For 16-bit CPUs, the maximum buffer size
for a mailbox (65535 bytes) exceeded.

116 OS_ERR_EXTEND_CONTEXT
OS_TASK_SetContextExtension() called
multiple times from one task.

118 OS_ERR_INTERNAL
OS_ChangeTask() called without Region
Counter set (or other internal error).

119 OS_ERR_IDLE_RETURNS OS_Idle() must not return.
120 OS_ERR_TASK_STACK Task stack overflow or invalid task stack.
121 OS_ERR_SEMAPHORE_OVERFLOW Semaphore value overflow.

122 OS_ERR_POWER_OVER
Counter overflows when calling OS_POW-
ER_UsageInc().

123 OS_ERR_POWER_UNDER
Counter underflows when calling OS_POW-
ER_UsageDec().

124 OS_ERR_POWER_INDEX
Index to high, exceeds (OS_POW-
ER_NUM_COUNTERS - 1).

125 OS_ERR_SYS_STACK System stack overflow.
126 OS_ERR_INT_STACK Interrupt stack overflow.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

395 CHAPTER 21 Runtime application errors

Value enum value Explanation

128 OS_ERR_INV_TASK
Task control block invalid, not initialized or
overwritten.

129 OS_ERR_INV_TIMER
Timer control block invalid, not initialized
or overwritten.

130 OS_ERR_INV_MAILBOX
Mailbox control block invalid, not initialized
or overwritten.

132 OS_ERR_INV_SEMAPHORE
Control block for semaphore invalid, not
initialized or overwritten.

133 OS_ERR_INV_MUTEX
Control block for mutex invalid, not initial-
ized or overwritten.

135 OS_ERR_MAILBOX_NOT1

One of the following 1-byte mailbox func-
tions has been used on a multibyte mail-
box: OS_MAILBOX_Get1(), OS_MAIL-
BOX_GetBlocked1(), OS_MAILBOX_Get-
Timed1(), OS_MAILBOX_Put1(), OS_MAIL-
BOX_PutBlocked1(), OS_MAILBOX_Put-
Front1(), OS_MAILBOX_PutFront-
Blocked1() or OS_MAILBOX_PutTimed1().
• OS_MAILBOX_Get1()
• OS_MAILBOX_GetBlocked1()
• OS_MAILBOX_GetTimed1()
• OS_MAILBOX_Put1()
• OS_MAILBOX_PutBlocked1()
• OS_MAILBOX_PutFront1()
• OS_MAILBOX_PutFrontBlocked1()
• OS_MAILBOX_PutTimed1()

136 OS_ERR_MAILBOX_DELETE
OS_MAILBOX_Delete() was called on a
mailbox with waiting tasks.

137 OS_ERR_SEMAPHORE_DELETE
OS_SEMAPHORE_Delete() was called on a
semaphore with waiting tasks.

138 OS_ERR_MUTEX_DELETE
OS_MUTEX_Delete() was called on a mutex
which is claimed by a task.

140 OS_ERR_MAILBOX_NOT_IN_LIST

The mailbox is not in the list of mailboxes
as expected. Possible reasons may be that
one mailbox data structure was overwrit-
ten.

142 OS_ERR_TASKLIST_CORRUPT The OS internal task list is destroyed.
143 OS_ERR_QUEUE_INUSE Queue in use.
144 OS_ERR_QUEUE_NOT_INUSE Queue not in use.
145 OS_ERR_QUEUE_INVALID Queue invalid.

146 OS_ERR_QUEUE_DELETE
A queue was deleted by a call of
OS_QUEUE_Delete() while tasks are wait-
ing at the queue.

147 OS_ERR_MB_INUSE Mailbox in use.
148 OS_ERR_MB_NOT_INUSE Mailbox not in use.

149 OS_ERR_MESSAGE_SIZE_ZERO
Attempt to store a message with size of
zero.

150 OS_ERR_UNUSE_BEFORE_USE
OS_MUTEX_Unlock() has been called on a
mutex that hasn’t been locked before.

151 OS_ERR_LEAVEREGION_BEFORE_EN-
TERREGION

OS_TASK_LeaveRegion() has been called
before OS_TASK_EnterRegion().

152 OS_ERR_LEAVEINT Error in OS_INT_Leave().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

396 CHAPTER 21 Runtime application errors

Value enum value Explanation

153 OS_ERR_DICNT_OVERFLOW

The interrupt disable counter (OS_Glob-
al.Counters.Cnt.DI) is out of range
(0-15). The counter is affected by the fol-
lowing API calls:
• OS_INT_IncDI()
• OS_INT_DecRI()
• OS_INT_Enter()
• OS_INT_Leave()

154 OS_ERR_INTERRUPT_DISABLED
OS_TASK_Delay() or OS_TASK_DelayUn-
til() called from inside a critical region
with interrupts disabled.

155 OS_ERR_TASK_ENDS_WITHOUT_TER-
MINATE

Task routine returns without 0S_TASK_Ter-
minate().

156 OS_ERR_MUTEX_OWNER
OS_MUTEX_Unlock() has been called from
a task which does not own the mutex.

157 OS_ERR_REGIONCNT The Region counter overflows (>255).

158 OS_ERR_DELAYUS_INTERRUP-
T_DISABLED

OS_TASK_Delay_us() called with interrupts
disabled.

159 OS_ERR_MUTEX_OVERFLOW
OS_MUTEX_Lock(), OS_MUTEX_Lock-
Blocked() or OS_MUTEX_LockTimed() has
been called too often from the same task.

160 OS_ERR_ILLEGAL_IN_ISR

Illegal function call in an interrupt service
routine: A routine that must not be called
from within an ISR has been called from
within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER

Illegal function call in a software timer: A
routine that must not be called from with-
in a software timer has been called from
within a timer.

162 OS_ERR_ILLEGAL_OUT_ISR Not a legal API outside interrupt.

163 OS_ERR_OS_INT_ENTER_CALLED
OS_INT_Enter() has been called, but CPU
is not in ISR state.

164 OS_ERR_OS_INT_ENTER_NOT_CALLED
OS_INT_Enter() has not been called, but
CPU is in ISR state.

165 OS_ERR_INIT_NOT_CALLED OS_Init() was not called.

166 OS_ERR_ISR_PRIORITY_INVALID
embOS API called from ISR with an invalid
priority.

167 OS_ERR_CPU_STATE_ILLEGAL CPU runs in illegal mode.

168 OS_ERR_CPU_STATE_UNKNOWN
CPU runs in unknown mode or mode could
not be read.

169 OS_ERR_TICKLESS_WITH_FRACTION-
AL_TICK

OS_TICKLESS_AdjustTime() was called
despite OS_TICK_Config() has been called
before.

170 OS_ERR_2USE_TASK
Task control block has been initialized by
calling a create function twice.

171 OS_ERR_2USE_TIMER
Timer control block has been initialized by
calling a create function twice.

172 OS_ERR_2USE_MAILBOX
Mailbox control block has been initialized
by calling a create function twice.

174 OS_ERR_2USE_SEMAPHORE
Semaphore has been initialized by calling a
create function twice.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

397 CHAPTER 21 Runtime application errors

Value enum value Explanation

175 OS_ERR_2USE_MUTEX
Mutex has been initialized by calling a cre-
ate function twice.

176 OS_ERR_2USE_MEMF
Fixed size memory pool has been initial-
ized by calling a create function twice.

177 OS_ERR_2USE_QUEUE
Queue has been initialized by calling a cre-
ate function twice.

178 OS_ERR_2USE_EVENT
Event object has been initialized by calling
a create function twice.

179 OS_ERR_2USE_WATCHDOG
Watchdog has been initialized by calling a
create function twice.

180 OS_ERR_NESTED_RX_INT
OS_Rx interrupt handler for embOSView is
nested. Disable nestable interrupts.

181 OS_ERR_ISR_ENTRY_FUNC_INVALID
Invalid function pointer for ISR entry call-
back.

185 OS_ERR_SPINLOCK_INV_CORE
Invalid core ID specified for accessing a
OS_SPINLOCK_SW struct.

190 OS_ERR_MEMF_INV
Fixed size memory block control structure
not created before use.

191 OS_ERR_MEMF_INV_PTR
Pointer to memory block does not belong
to memory pool on Release.

192 OS_ERR_MEMF_PTR_FREE
Pointer to memory block is already free
when calling OS_MEMPOOL_Release(). Pos-
sibly, same pointer was released twice.

193 OS_ERR_MEMF_RELEASE

OS_MEMPOOL_Release() was called for a
memory pool, that had no memory block
allocated (all available blocks were already
free before).

194 OS_ERR_MEMF_POOLADDR
OS_MEMPOOL_Create() was called with a
memory pool base address which is not lo-
cated at a word aligned base address.

195 OS_ERR_MEMF_BLOCKSIZE
OS_MEMPOOL_Create() was called with a
data block size which is not a multiple of
processors word size.

196 OS_ERR_MEMF_DELETE
OS_MEMPOOL_Delete() was called on a
memory pool with waiting tasks.

200 OS_ERR_SUSPEND_TOO_OFTEN
Number of nested calls to OS_TASK_Sus-
pend() exceeded 3.

201 OS_ERR_RESUME_BEFORE_SUSPEND
OS_TASK_Resume() called on a task that
was not suspended.

202 OS_ERR_TASK_PRIORITY

OS_TASK_Create() was called with a task
priority which is already assigned to an-
other task. This error can only occur when
embOS was compiled without round-robin
support.

203 OS_ERR_TASK_PRIORITY_INVALID The value 0 was used as task priority.
205 OS_ERR_TIMER_PERIOD_INVALID The value 0 was used as timer period.

210 OS_ERR_EVENT_INVALID
An OS_EVENT object was used before it was
created.

212 OS_ERR_EVENT_DELETE
An OS_EVENT object was deleted with wait-
ing tasks.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

398 CHAPTER 21 Runtime application errors

Value enum value Explanation

220 OS_ERR_WAITLIST_RING
This error should not occur. Please contact
the support.

221 OS_ERR_WAITLIST_PREV
This error should not occur. Please contact
the support.

222 OS_ERR_WAITLIST_NEXT
This error should not occur. Please contact
the support.

223 OS_ERR_TICKHOOK_INVALID Invalid tick hook.
224 OS_ERR_TICKHOOK_FUNC_INVALID Invalid tick hook function.

225 OS_ERR_NOT_IN_REGION
A function was called without declaring the
necessary critical region.

226 OS_ERR_ILLEGAL_IN_MAIN Not a legal API call from main().
227 OS_ERR_ILLEGAL_IN_TASK Not a legal API after OS_Start().
228 OS_ERR_ILLEGAL_AFTER_OSSTART Not a legal API after OS_Start().
229 OS_ERR_ILLEGAL_IN_IDLE Not a legal API call from OS_Idle().

230 OS_ERR_NON_ALIGNED_INVALIDATE
Cache invalidation needs to be cache line
aligned.

234 OS_ERR_HW_NOT_AVAILABLE
Hardware unit is not implemented or en-
abled.

235 OS_ERR_NON_TIMERCYCLES_FUNC
OS_TIME_ConfigSysTimer() has not been
called. Callback function for timer counter
value has not been set.

236 OS_ERR_NON_TIMERINT-
PENDING_FUNC

OS_TIME_ConfigSysTimer() has not been
called. Callback function for timer interrupt
pending flag has not been set.

237 OS_ERR_FRACTIONAL_TICK
embOS API function called with fractional
tick to interrupt ratio.

238 OS_ERR_ZERO_TIMER_INT_FREQ
OS_TIME_ConfigSysTimer() not called or
called with zero interrupt frequency.

239 OS_ERR_COUNTER_FREQ_ZERO
OS_TIME_ConfigSysTimer() not called or
called with a counter frequency of 0.

240 OS_ERR_MPU_NOT_PRESENT MPU unit not present in the device.
241 OS_ERR_MPU_INVALID_REGION Invalid MPU region index number.
242 OS_ERR_MPU_INVALID_SIZE Invalid MPU region size.
243 OS_ERR_MPU_INVALID_PERMISSION Invalid MPU region permission.
244 OS_ERR_MPU_INVALID_ALIGNMENT Invalid MPU region alignment.

245 OS_ERR_MPU_INVALID_OBJECT
OS object is directly accessible from the
task which is not allowed.

246 OS_ERR_MPU_PRIVSTATE_INVALID Invalid call from a privileged task.
247 OS_ERR_MPU_NOINIT OS_MPU_Init() not called.
248 OS_ERR_MPU_DEVICE_INDEX Invalid device driver index.
249 OS_ERR_MPU_INV_DEVICE_LIST Invalid device driver list.

250 OS_ERR_CONFIG_OSSTOP
OS_Stop() is called without using OS_Con-
figStop() before.

251 OS_ERR_OSSTOP_BUFFER
Buffer is too small to hold a copy of the
main() stack.

253 OS_ERR_VERSION_MISMATCH
OS library and RTOS.h have different ver-
sion numbers. Please ensure both are from
the same embOS shipment.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

399 CHAPTER 21 Runtime application errors

Value enum value Explanation

254 OS_ERR_LIB_INCOMPATIBLE Incompatible OS library is used.

255 OS_ERR_INV_PARAMETER_VALUE
An invalid value was passed to the called
function (see call stack). Check the API de-
scription for valid values.

256 OS_ERR_TICKHANDLE_WITH_FRAC-
TIONAL_TICK

OS_TICK_Handle() or OS_TICK_HandleNo-
Hook() was called after OS_TICK_Config()
was used for an interrupt to tick ratio oth-
er than 1:1.

257 OS_ERR_RWLOCK_INVALID
RWLock control block invalid, not initialized
or overwritten.

258 OS_ERR_2USE_RWLOCK
RWLock has been initialized by calling a
create function twice.

260 OS_ERR_UNALIGNED_IRQ_STACK Unaligned IRQ stack.
261 OS_ERR_UNALIGNED_MAIN_STACK Unaligned main stack.

262 OS_ERR_FPU_NOT_ENABLED
FPU was not enabled before embOS is ini-
tialized.

21.1.2 Application defined error codes
The embOS error codes begin at 100. The range 1 - 99 can be used for application defined
error codes. With it you can call OS_Error() with your own defined error code from your
application.

Example

#define OS_ERR_APPL (0x02u)

void UserAppFunc(void) {
 int r;
 r = DoSomething()
 if (r == 0) {
 OS_Error(OS_ERR_APPL)
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

400 CHAPTER 21 Runtime application errors

21.1.3 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_DEBUG_GetError() Returns the system status. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

401 CHAPTER 21 Runtime application errors

21.1.3.1 OS_DEBUG_GetError()

Description

Returns the system status.

Prototype

OS_STATUS OS_DEBUG_GetError(void);

Return value

= 0 OS_OK, No application error occurred.
≠ 0 Application error occurred.

Additional information

The system status codes are described in the embOS manual in chapter List of error codes
on page 394. OS_DEBUG_GetError() always returns OS_OK when no debug or stack check
code is included.

Example

void PrintOSStatus(void) {
 OS_STATUS s;

 s = OS_DEBUG_GetError();
 printf("embOS status: %u\n", s);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

402 CHAPTER 21 Human readable object identifiers

21.2 Human readable object identifiers
embOS objects like mailbox or semaphore are handled via separate control structures. Each
OS object is identified by the address of the according control structure. For debugging
purpose this address is displayed in external tools like embOSView or IDE RTOS plugins.

Tasks always have a human readable task name (except in embOS library mode OS_LIB-
MODE_XR). The task name is set at task creation. It can be helpful to have human readable
identifiers for other OS objects, as well. With the following API functions human readable
identifiers to an unlimited amount of OS objects can easily be added. Human readable ob-
ject identifiers are not supported in embOS library mode OS_LIBMODE_XR.

Example

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int _Stack[128];
static OS_TASK _TCB;
static OS_MAILBOX _Mailbox;
static OS_OBJNAME _MailboxName;
static char _acBuffer[100];

static void _Task(void) {
 const char* s;
 s = OS_DEBUG_GetObjName(&_Mailbox);
 printf(s);
 //
 // Set another name for the mailbox
 //
 OS_DEBUG_RemoveObjName(&_MailboxName);
 OS_DEBUG_SetObjName(&_MailboxName, &_Mailbox, "My new Mailbox");
 while (1) {
 OS_TASK_Delay_ms(50);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&_TCB, "Task", 100, _Task, _Stack);
 OS_MAILBOX_Create(&_Mailbox, 10, 10, &_acBuffer);
 OS_DEBUG_SetObjName(&_MailboxName, &_Mailbox, "My Mailbox");
 OS_Start(); // Start embOS
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

403 CHAPTER 21 Human readable object identifiers

21.2.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_DEBUG_GetObjName() Returns the name of an OS object. ● ● ●
OS_DEBUG_RemoveObjName() Removes an OS object name. ● ●
OS_DEBUG_SetObjName() Sets an OS object name. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

404 CHAPTER 21 Human readable object identifiers

21.2.1.1 OS_DEBUG_GetObjName()

Description

Returns the name of an OS object.

Prototype

char *OS_DEBUG_GetObjName(OS_CONST_PTR void *pOSObj);

Parameters

Parameter Description

pOSObj Pointer to the OS object.

Return value

= NULL Name was not set for this object.
≠ NULL Pointer to the OS object name.

Additional information

OS_DEBUG_GetObjName() returns the object name which was set before with OS_DEBUG_Se-
tObjName(). The return value is valid only when using an embOS build with object name
support. When using an embOS build without object name support, OS_DEBUG_GetObj-
Name() returns “n/a” in any case. The embOS OS_LIBMODE_XR library mode does not sup-
port object names.

Example

Please find an example at Human readable object identifiers on page 402.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

405 CHAPTER 21 Human readable object identifiers

21.2.1.2 OS_DEBUG_RemoveObjName()

Description

Removes an OS object name.

Prototype

void OS_DEBUG_RemoveObjName(OS_CONST_PTR OS_OBJNAME *pObjName);

Parameters

Parameter Description

pObjName Pointer to a OS_OBJNAME control structure.

Additional information

OS_DEBUG_RemoveObjName() removes the object name which was set before with OS_DE-
BUG_SetObjName(). When using an embOS build without object name support, OS_DE-
BUG_RemoveObjName() has no effect. The embOS OS_LIBMODE_XR library mode does not
support object names.

Example

Please find an example at Human readable object identifiers on page 402.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

406 CHAPTER 21 Human readable object identifiers

21.2.1.3 OS_DEBUG_SetObjName()

Description

Sets an OS object name.

Prototype

void OS_DEBUG_SetObjName(OS_OBJNAME* pObjName,
 OS_CONST_PTR void *pOSObj,
 OS_CONST_PTR char *sName);

Parameters

Parameter Description

pObjName Pointer to a OS_OBJNAME control structure.
pOSObj Pointer to the OS object.
sName Name of the OS object.

Additional information

With OS_DEBUG_SetObjName() every OS object like mailbox can have a name. This name
can be shown in debug tools like IDE RTOS plug-ins. Every object name needs a control
structure of type OS_OBJNAME. When using an embOS build without object name support,
OS_DEBUG_SetObjName() does not set an object name. The embOS OS_LIBMODE_XR library
mode does not support object names.

Example

Please find an example at Human readable object identifiers on page 402.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

407 CHAPTER 21 embOS API trace

21.3 embOS API trace
embOS supports API trace in two different ways:
• embOS API trace with embOSView (refer to embOSView on page 428).
• embOS API trace with any other tool (e.g. SystemView).

To do so, the embOS API functions call specific routines which store trace events to a given
memory location. With embOSView, these routines are called directly inside the embOS
API functions. To enable the use of embOS API trace with other tools than embOSView,
however, a structure containing various function pointers is used to store trace events in
memory. That structure may be configured to point at specific routines for the desired tool
via OS_TRACE_SetAPI(), which are then called from the embOS API functions when API
trace is enabled. These specific routines must be provided as part of the application and
are shipped for example with the SystemView target sources.

Example

void SEGGER_SYSVIEW_Conf(void) {
 ..
 //
 // Configure embOS to use SystemView
 //
 OS_TRACE_SetAPI(&embOS_TraceAPI_SYSVIEW);
 ..
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

408 CHAPTER 21 embOS API trace

21.3.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TRACE_SetAPI()
OS_TRACE_SetAPI() sets the pointer
to the API trace function table. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

409 CHAPTER 21 embOS API trace

21.3.1.1 OS_TRACE_SetAPI()

Description

OS_TRACE_SetAPI() sets the pointer to the API trace function table.

Prototype

void OS_TRACE_SetAPI(OS_CONST_PTR OS_TRACE_API *pTraceAPI);

Parameters

Parameter Description

pTraceAPI
Pointer to API trace function table or NULL to disable API
trace.

Definition of OS_TRACE_API

typedef struct {
 //
 // OS specific Trace Events
 //
 void (*pfRecordEnterISR) (void);
 void (*pfRecordExitISR) (void);
 void (*pfRecordExitISRToScheduler)(void);
 void (*pfRecordTaskInfo) (const OS_TASK* pTask);
 void (*pfRecordTaskCreate) (OS_U32 TaskId);
 void (*pfRecordTaskStartExec) (OS_U32 TaskId);
 void (*pfRecordTaskStopExec) (void);
 void (*pfRecordTaskStartReady) (OS_U32 TaskId);
 void (*pfRecordTaskStopReady) (OS_U32 TaskId, unsigned int Reason);
 void (*pfRecordIdle) (void);
 //
 // Generic Trace Event logging (used by OS API)
 //
 void (*pfRecordVoid) (unsigned int Id);
 void (*pfRecordU32) (unsigned int Id, OS_U32 Para0);
 void (*pfRecordU32x2) (unsigned int Id, OS_U32 Para0,
 OS_U32 Para1);
 void (*pfRecordU32x3) (unsigned int Id, OS_U32 Para0,
 OS_U32 Para1, OS_U32 Para2);
 void (*pfRecordU32x4) (unsigned int Id, OS_U32 Para0,
 OS_U32 Para1, OS_U32 Para2, OS_U32 Para3);
 OS_U32(*pfPtrToId) (OS_U32 Ptr);
 //
 // Additional Trace Event logging
 //
 void (*pfRecordEnterTimer) (OS_U32 TimerID);
 void (*pfRecordExitTimer) (void);
 void (*pfRecordEndCall) (unsigned int Id);
 void (*pfRecordEndCallU32) (unsigned int Id, OS_U32 Para0);
 void (*pfRecordTaskTerminate) (OS_U32 TaskId);
 void (*pfRecordU32x5) (unsigned int Id, OS_U32 Para0,
 OS_U32 Para1, OS_U32 Para2,
 OS_U32 Para3, OS_U32 Para4);
 void (*pfRecordObjName) (OS_U32 Id, OS_CONST_PTR char* Para0);
} OS_TRACE_API;

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 22

Profiling

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

411 CHAPTER 22 Task execution

22.1 Task execution
embOS profiling counts the number of task activations and preemptions. For example the
number of task activations can be seen in embOSView and in IDE RTOS plugins but can
also be requested in the application with the following API functions.

22.1.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_STAT_GetNumActivations()
Return the number of task activa-
tions. ● ● ● ● ●

OS_STAT_GetNumPreemptions()
Return the number of task pre-
emptions. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

412 CHAPTER 22 Task execution

22.1.1.1 OS_STAT_GetNumActivations()

Description

Return the number of task activations.

Prototype

OS_U32 OS_STAT_GetNumActivations(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to task control block.

Return value

Number of task activations.

Additional information

This API function is available only when task statistic information are enabled. This is the
default in OS_LIBMODE_DT, OS_LIBMODE_DP, OS_LIBMODE_D, and OS_LIBMODE_SP. It is not
available in OS_LIBMODE_SAFE.

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void PrintActivations(OS_TASK* pTask) {
 OS_U32 NumActivations;

 NumActivations = OS_STAT_GetNumActivations();
 printf("Task has been activated %u times\n", NumActivations);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

413 CHAPTER 22 Task execution

22.1.1.2 OS_STAT_GetNumPreemptions()

Description

Return the number of task preemptions.

Prototype

OS_U32 OS_STAT_GetNumPreemptions(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to task control block.

Return value

Number of task preemptions.

Additional information

This API function is available only when task statistic information are enabled. This is the
default in OS_LIBMODE_DT, OS_LIBMODE_DP, OS_LIBMODE_D, and OS_LIBMODE_SP. It is not
available in OS_LIBMODE_SAFE.

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Example

void PrintPreemptions(OS_TASK* pTask) {
 OS_U32 NumPreemptions;

 NumPreemptions = OS_STAT_GetNumPreemptions();
 printf("Task has been preempted %u times\n", NumPreemptions);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

414 CHAPTER 22 Task specific CPU load measurement

22.2 Task specific CPU load measurement
embOS profiling measures the task execution time and calculates the task specific CPU
load. This information can be seen in embOSView in the task list CPU load column and in
the CPU load window. The application can use the following profiling API routines to receive
the same information.

Example

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int StackHP[128], StackLP[128], StackSample[128];
static OS_TASK TCBHP, TCBLP, TCBSample;

static void _DoSomethingFor(OS_I32 us) {
 OS_I32 tEnd;

 tEnd = (OS_I32)OS_TIME_Get_Cycles() + OS_TIME_Convertus2Cycles(us);
 while (tEnd - (OS_I32)OS_TIME_Get_Cycles() > 0);
}

static void HPTask(void) {
 while (1) {
 _DoSomethingFor(500); // Do something for 500 us.
 OS_TASK_Delay_us(500); // Delay for 500 us.
 }
}

static void LPTask(void) {
 while (1) {

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

415 CHAPTER 22 Task specific CPU load measurement

 _DoSomethingFor(250); // Do something for 250 us.
 OS_TASK_Delay_us(750); // Delay for 750us
 }
}

static void SampleTask(void) {
 while (1) {
 OS_STAT_Sample(); // Calculate CPU load.
 printf("CPU usage of HP Task: %d\n", OS_STAT_GetLoad(&TCBHP));
 printf("CPU usage of LP Task: %d\n\n", OS_STAT_GetLoad(&TCBLP));
 OS_TASK_Delay_ms(1000); // Wait for some time before next sampling.
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize the hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_TASK_CREATE(&TCBSample, "Sample Task", 1, SampleTask, StackSample);
 OS_Start(); // Start multitasking
 return 0;
}

Output

CPU usage of HP Task: 506
CPU usage of LP Task: 263

Note

For embOS V5.06 and later OS_TIME_ConfigSysTimer() must be called before using
profiling.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

416 CHAPTER 22 Task specific CPU load measurement

22.2.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_STAT_Disable() Disables the kernel profiling. ● ● ● ●

OS_STAT_Enable()
Enables the kernel profiling (for an
indefinite time). ● ● ● ●

OS_STAT_GetExecTime()
Returns the total task execution
time. ● ● ● ●

OS_STAT_GetLoad()
Calculates the current task’s CPU
load in permille. ● ● ● ●

OS_STAT_GetNumActivations()
Return the number of task activa-
tions. ● ● ● ● ●

OS_STAT_GetNumPreemptions()
Return the number of task pre-
emptions. ● ● ● ● ●

OS_STAT_Sample()

Starts the kernel profiling and cal-
culates the absolute task run time
for all tasks since the last call to
OS_STAT_Sample().

● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

417 CHAPTER 22 Task specific CPU load measurement

22.2.1.1 OS_STAT_Disable()

Description

Disables the kernel profiling.

Prototype

void OS_STAT_Disable(void);

Additional information

The function OS_STAT_Enable() may be used to start profiling.

Example

void StopProfiling(void) {
 OS_STAT_Disable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

418 CHAPTER 22 Task specific CPU load measurement

22.2.1.2 OS_STAT_Enable()

Description

Enables the kernel profiling (for an indefinite time).

Prototype

void OS_STAT_Enable(void);

Additional information

The function OS_STAT_Disable() may be used to stop profiling.

Example

void StartProfiling(void) {
 OS_STAT_Enable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

419 CHAPTER 22 Task specific CPU load measurement

22.2.1.3 OS_STAT_GetExecTime()

Description

Returns the total task execution time.

Prototype

OS_U32 OS_STAT_GetExecTime(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block.

Return value

The total task execution time in timer cycles.

Additional information

This function only returns valid values when profiling was enabled before by a call to OS_S-
TAT_Enable(). If NULL is passed for pTask, the currently running task is used. If this func-
tion is not called from a task context, no task might currently be running and there is no
valid task. A debug build of embOS will call OS_Error() in this case. We suggest to call this
function from a context other than the task context with a pointer to a valid task control
block only. The task execution time is counted internally as a 32-bit value. This counter
could overflow depending on the actual task execution time and timer frequency. For ex-
ample the counter overflows after ~43 seconds if the task runs at 100% CPU load and the
system tick hardware timer runs at 100 MHz.

Example

OS_U32 ExecTime;

void MyTask(void) {
 OS_STAT_Enable();
 while (1) {
 ExecTime = OS_STAT_GetExecTime(NULL);
 OS_TASK_Delay_ms(100);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

420 CHAPTER 22 Task specific CPU load measurement

22.2.1.4 OS_STAT_GetLoad()

Description

Calculates the current task’s CPU load in permille.

Prototype

int OS_STAT_GetLoad(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask Pointer to a task control block.

Return value

The current task’s CPU load in permille.

Additional information

OS_STAT_GetLoad() requires OS_STAT_Sample() to be periodically called.

OS_STAT_GetLoad() cannot be used from multiple contexts simultaneously because it uti-
lizes a global variable. It must e.g. not be called from a task and an ISR simultaneously.

Example

Please refer to the example in the introduction of chapter Profiling on page 410.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

421 CHAPTER 22 Task specific CPU load measurement

22.2.1.5 OS_STAT_Sample()

Description

Starts the kernel profiling and calculates the absolute task run time for all tasks since the
last call to OS_STAT_Sample().

Prototype

void OS_STAT_Sample(void);

Additional information

Unless profiling has been activated before by a call to OS_STAT_Enable(), OS_STAT_Sam-
ple() enables profiling for 5000 consecutive milliseconds. The next call to OS_STAT_Sam-
ple() must be performed within this period. To retrieve the calculated CPU load in permille,
use the embOS function OS_STAT_GetLoad().
OS_STAT_Sample() cannot be used from multiple contexts simultaneously because it utilizes
a global variable. It must e.g. not be called from a task and an ISR simultaneously.
The sample period is counted internally in hardware timer cycles as a 32-bit value. This
counter could overflow depending on the timer frequency. For example the counter over-
flows after ~43 seconds if the system tick hardware timer runs at 100 MHz. The next call
to OS_STAT_Sample() must be performed within this period.

Example

Please refer to the example in the introduction of chapter Profiling on page 410.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

422 CHAPTER 22 CPU load measurement

22.3 CPU load measurement
The CPU load measurement routines serve as an addition to the above profiling API. With
it the total CPU load can easily be measured by the application. This can be helpful in
situations where other profiling tools are not available.

Example

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int StackPrint[128], StackWasteCPUTime[128];
static OS_TASK TCBPrint, TCBWasteCPUTime;

static void PrintTask(void) {
 unsigned int CPULoad;

 while (1) {
 CPULoad = OS_STAT_GetLoadMeasurement();
 printf("CPU usage: %d%%\n", CPULoad);
 OS_TASK_Delay_ms(500); // Wait for next sample to print
 }
}

static void WasteCPUTimeTask(void) {
 while (1) {
 //
 // Cause ~50% CPU load
 //
 OS_TASK_Delayus(1000);
 OS_TASK_Delay_ms(1);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize the hardware
 OS_STAT_AddLoadMeasurement(500, 1, 0);
 OS_TASK_CREATE(&TCBWasteCPUTime, "Waste CPU time task", 10,
 WasteCPUTimeTask, StackWasteCPUTime);
 OS_TASK_CREATE(&TCBPrint, "Print task", 20,
 PrintTask, StackPrint);
 OS_Start(); // Start multitasking
 return 0;
}

void OS_Idle(void) {
 while (1) {
 OS_INC_IDLE_CNT();
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

423 CHAPTER 22 CPU load measurement

22.3.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_STAT_AddLoadMeasurement()
Initializes the periodic CPU load
measurement. ● ●

OS_STAT_AddLoadMeasurementEx()
Initializes the periodic CPU load
measurement. ● ●

OS_STAT_GetLoadMeasurement()
Retrieves the result of the CPU
load measurement. ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

424 CHAPTER 22 CPU load measurement

22.3.1.1 OS_STAT_AddLoadMeasurement()

Description

Initializes the periodic CPU load measurement. May be used to start the calculation of the
total CPU load of an application.

Prototype

void OS_STAT_AddLoadMeasurement(OS_U32 Period,
 OS_U8 AutoAdjust,
 OS_I32 DefaultMaxValue);

Parameters

Parameter Description

Period Measurement period in milliseconds.
AutoAdjust If not zero, the measurement is auto-adjusted once initially.

DefaultMaxValue
May be used to set a default counter value when AutoAdjust
is not used. (See additional information)

Additional information

This function is not available in OS_LIBMODE_SAFE.
The CPU load is the percentage of CPU time that was not spent in OS_Idle(). To measure
it, OS_STAT_AddLoadMeasurement() creates a task running at highest priority. This task
periodically suspends itself by calling OS_TASK_Delay_ms(Period). Each time it is resumed,
it calculates the CPU load through comparison of two counter values.

For this calculation, it is required that OS_Idle() gets executed and increments a counter
by calling OS_INC_IDLE_CNT(). Furthermore, the calculation will fail if OS_Idle() starts a
power save mode of the CPU. OS_Idle() must therefore be similar to:

void OS_Idle(void) {
 while (1) {
 OS_INC_IDLE_CNT();
 }
}

The maximum value of the idle counter is stored once at the beginning and is subsequently
used for comparison with the current value of the counter each time the measurement task
gets activated. For this comparison, it is assumed that the maximum value of the counter
represents a CPU load of 0%, whereas a value of zero represents a CPU load of 100%. The
maximum value of the counter can either be examined automatically, or may else be set
manually. When AutoAdjust is non-zero, the task will examine the maximum value of the
counter automatically. To do so, it will initially suspend all other tasks for the Period-time
and will subsequently call OS_TASK_Delay_ms(Period). This way, the entire period is spent
in OS_Idle() and the counter incremented in OS_Idle() reaches its maximum value, which
is then saved and used for comparisons. Especially when the initial suspension of all tasks
for the Period-time is not desired, the maximum counter value may also be configured
manually via the parameter DefaultMaxValue when AutoAdjust is zero.

The global variable OS_IdleCnt holds the counter value used for CPU load measurement.
It may be helpful when examining the appropriate DefaultMaxValue for the manual con-
figuration of OS_STAT_AddLoadMeasurement().

volatile OS_I32 OS_IdleCnt;

The appropriate DefaultMaxValue may, for example, be examined prior to creating any
other task, similar to the given sample below:

void MainTask(void) {

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

425 CHAPTER 22 CPU load measurement

 OS_I32 DefaultMax;
 OS_TASK_Delay_ms(100);
 DefaultMax = OS_IdleCnt; /* This value can be used as DefaultMaxValue. */
 /* Now other tasks can be created and started. */
}

Note

OS_STAT_AddLoadMeasurement() starts a CPU load task with a predefined task stack
size of 48 integers. The stack size is sufficient for most applications. However, in
some situations more task stack may be required. In that case please use OS_S-
TAT_AddLoadMeasurementEx() which allows to use an application defined stack size.

Example

Please refer to the example in the introduction of chapter CPU load measurement on
page 422.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

426 CHAPTER 22 CPU load measurement

22.3.1.2 OS_STAT_AddLoadMeasurementEx()

Description

Initializes the periodic CPU load measurement. May be used to start the calculation of the
total CPU load of an application.
OS_STAT_AddLoadMeasurementEx() allows to define the stack location and size for the CPU
load task which is started automatically by OS_STAT_AddLoadMeasurementEx()

Prototype

void OS_STAT_AddLoadMeasurementEx(OS_U32 Period,
 OS_U8 AutoAdjust,
 OS_I32 DefaultMaxValue,
 void OS_STACKPTR *pStack,
 OS_UINT StackSize);

Parameters

Parameter Description

Period Measurement period in milliseconds.
AutoAdjust If not zero, the measurement is auto-adjusted once initially.

DefaultMaxValue
May be used to set a default counter value when AutoAdjust
is not used. (See additional information)

pStack Pointer to the stack.
StackSize Size of the stack.

Additional information

Please refer to the description of OS_STAT_AddLoadMeasurement() for more details.
This function is not available in OS_LIBMODE_SAFE.

Example

static OS_STACKPTR int TaskStack[128], MeasureStack[128];

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_STAT_AddLoadMeasurementEx(1000, 1, 0, MeasureStack, 128);
 OS_TASK_CREATE(&TCB, "Task", 100, Task, TaskStack);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

427 CHAPTER 22 CPU load measurement

22.3.1.3 OS_STAT_GetLoadMeasurement()

Description

Retrieves the result of the CPU load measurement.

Prototype

int OS_STAT_GetLoadMeasurement(void);

Return value

The total CPU load in percent.

Additional information

OS_STAT_GetLoadMeasurement() delivers correct results if
• the CPU load measurement was started before by calling

OS_STAT_AddLoadMeasurement() with auto-adjustment or else with a correct default
value, and

• OS_Idle() updates the measurement by calling OS_INC_IDLE_CNT().

The global variable OS_CPU_Load holds the total CPU load as a percentage. It may prove
helpful to monitor the variable in a debugger with live-watch capability during development.

volatile OS_INT OS_CPU_Load;

This variable will not contain correct results unless the CPU load measurement was started
by a call to OS_STAT_AddLoadMeasurement(). This function is not available in OS_LIBMOD-
E_SAFE.

Example

Please refer to the example in the introduction of chapter CPU load measurement on
page 422.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 23

embOSView

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

429 CHAPTER 23 Introduction

23.1 Introduction
The embOSView utility is a helpful tool for analyzing the running target application. It is
shipped with embOS as embOSView.exe and runs on Windows.

Most often, a serial interface (UART) is used for the communication with the target hard-
ware. Alternative communication channels include Ethernet, memory read/write for Cor-
tex-M and RX CPUs, as well as DCC for ARM7/9 and Cortex-A/R CPUs. The hardware depen-
dent routines and defines available for communication with embOSView are implemented
in the source file RTOSInit.c. Details on how to modify this file are also given in chapter
Setup target for communication on page 435.

The communication API is not available in the embOS library mode OS_LIBMODE_SAFE.

Note

For embOS V5.06 and later, OS_TIME_ConfigSysTimer() must be called before using
embOSView.

Note

The embOS target communication buffer per default is set to 200 bytes which limits the
amount of displayed tasks in embOSView. If you use more than 48 tasks please modify
OS_COM_OUT_BUFFER_SIZE accordingly. There is no such limitation in embOSView.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

430 CHAPTER 23 Introduction

23.1.1 Task list window
embOSView shows the state of every task created by the target application in the Task
list window. The information shown depends on the library mode that is used in your ap-
plication.

Item Description Builds

Prio Current priority of task. All

Id
Task ID, which is the address of the task con-
trol block. All

Name Name assigned during creation. All

Status
Current state of task (ready, executing, delay,
reason for suspension). All

Data Depends on status. All

Timeout

Time in milliseconds until the task is ready
for execution again. The value in parenthesis
shows the absolute point in time at which the
timeout expires.

All

Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task. SP, DP, DT
Run Count Number of activations since reset. SP, DP, DT
Time slice Round-robin time slice All

The Task list window is helpful in analyzing the stack usage and CPU load for every
running task.

23.1.2 System variables window
embOSView shows the state of major system variables in the System variables window.
The information shown depends on the library mode that is used by your application:

Item Description Library mode

OS_VERSION Current version of embOS. All
CPU Target CPU and compiler. All
LibMode Library mode used for target application. All
OS_Time Current system time in milliseconds. All
OS_NumTasks Current number of defined tasks. All
OS_Global.Status Current error code (or O.K.). All
OS_pActiveTask Active task that should be running. SP, D, DP, DT
OS_pCurrentTask Actual currently running task. SP, D, DP, DT

SysStack
Used size/max. size/location of system
stack. SP, DP, DT

IntStack
Used size/max. size/location of interrupt
stack. SP, DP, DT

TraceBuffer
Current count/maximum size and current
state of trace buffer. DT

CPU load Current CPU total load. SP, DP, DT

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

431 CHAPTER 23 Setup embOSView for communication

23.2 Setup embOSView for communication
When the communication to embOSView is enabled in the target application, embOSView
may be used to analyze the running application. The communication channel of embOSView
must be setup according to the communication channel which was selected in the project.

23.2.1 Select a UART for communication
Start embOSView and open the Setup menu:

In the Communication tab, choose “UART” in the Type selection list box.
In the Host interface box, select the desired baud rate for communication and the COM
port of the PC that should be connected to the target board. The default baud rate of all
projects shipped with embOS is 38,400. The ComPort list box lists all currently available
COM ports for the PC that embOSView is executed on.
The serial communication will work when the target is running stand-alone, or during a
debug session when the target is connected to a debugger.
The serial connection can be used when the target board has a spare UART port and the
UART functions are included in the application.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

432 CHAPTER 23 Setup embOSView for communication

23.2.2 Select J-Link for communication
embOS supports a communication channel to embOSView which uses J-Link to communi-
cate with the running application. embOSView V3.82g or higher and a J-Link DLL is required
to use J-Link for communication.
To select this communication channel, start embOSView and open the Setup menu:

In the Communication tab, choose “J-Link Cortex-M (memory access)”, “J-Link RX (memory
access)” or “J-Link ARM7/9/11 (DCC)” in the Type selection list box.
In the Host interface box, select the USB or TCP/IP channel to be used to communicate
with your J-Link.
In the Target interface box, select the communication speed of the target interface and
the physical target connection (i.e. JTAG, SWD, or FINE).
In the Log File box, choose whether a log file should be created and define its file name
and location.
The JTAG Chain box allows the selection of any specific device in a JTAG scan chain with
multiple devices. Currently, up to eight devices in the scan chain are supported. Two values
must be configured: the position of the target device in the scan chain, and the total number
of bits in the instruction registers of all devices before the target device (IR len). Target
position is numbered in descending order, which means the target that is closest to J-Link’s
TDI is in the highest position (max. 7), while the target closest to J-Link’s TDO is in the
lowest position (always 0). Upon selecting the position, the according IR len is determined
automatically, which should succeed for most of all target devices. IR len may also be
written manually, which is mandatory in case automatic detection was not successful. For
further information, please refer to the J-Link / J-Trace User Guide (UM08001, chapter
“JTAG interface”).

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

433 CHAPTER 23 Setup embOSView for communication

23.2.3 Select Ethernet for communication
embOS supports a communication channel to embOSView which uses Ethernet to commu-
nicate with the running application. A TCP/IP stack, for example SEGGER’s emNET stack, is
required to use Ethernet for communication.
To select this communication channel, start embOSView and open the Setup menu:

In the Communication tab, choose “Ethernet” in the Type selection list box.
In the Host interface box, configure the IP address of your target and the port number
50021.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

434 CHAPTER 23 Setup embOSView for communication

23.2.4 Use J-Link for communication and debugging in paral-
lel

J-Link can be used to communicate with embOSView during a running debug session that
uses the same J-Link as debug probe. To avoid potential incompatibilities, the target inter-
face settings for J-Link should be identical in both the debugger settings and embOSView
target interface settings.
To use embOSView during a debug session, proceed as follows:
• Examine the target interface settings in the debugger settings of the project.
• Before starting the debugger, start embOSView and configure the same target interface

settings as found in the debugger settings.
• Close embOSView.
• Start the debugger.
• Restart embOSView.

J-Link will now communicate with the debugger and embOSView will simultaneously com-
municate with embOS via J-Link.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

435 CHAPTER 23 Setup target for communication

23.3 Setup target for communication
The communication to embOSView can be enabled by setting the compile time switch
OS_VIEW_IFSELECT to an interface define, e.g. inside the project settings or in the config-
uration file OS_Config.h. If OS_VIEW_IFSELECT is defined to OS_VIEW_DISABLED, the com-
munication is disabled. In the RTOSInit.c files, the OS_VIEW_IFSELECT switch is set to a
specific interface unless overwritten by project options.

By default, the OS_Config.h file sets the compile time switch OS_VIEW_IFSELECT to
OS_VIEW_DISABLED when DEBUG=1 is not defined. Therefore, in the embOS start projects,
the communication is enabled per default for Debug configurations, while it is disabled for
Release configurations.

OS_VIEW_IFSELECT Communication interface

OS_VIEW_DISABLED Disabled
OS_VIEW_IF_UART UART
OS_VIEW_IF_JLINK J-Link
OS_VIEW_IF_ETHERNET Ethernet

23.3.1 Select a UART for communication
Set the compile time switch OS_VIEW_IFSELECT to OS_VIEW_IF_UART by project option/com-
piler preprocessor or in RTOSInit.c to enable the communication via UART. This assumes
the necessary UART routines are implemented. Usually these are implemented in a file
called BSP_UART.c. If the file BSP_UART.c does not exist in your board support package,
you can create it on your own or contact the embOS support. Please have a look in the
chapter Board Support Packages on page 509 for more details.

23.3.2 Select J-Link for communication
Per default, J-Link is selected as communication device in most embOS start projects, if
available.
The compile time switch OS_VIEW_IFSELECT is predefined to OS_VIEW_IF_JLINK in the CPU
specific RTOSInit.c files, thus J-Link communication is selected per default unless over-
written by project / compiler preprocessor options.

23.3.3 Select Ethernet for communication
Set the compile time switch OS_VIEW_IFSELECT to OS_VIEW_IF_ETHERNET by project / com-
piler preprocessor options or in RTOSInit.c to switch the communication to Ethernet.
This communication mode is only available when emNET or a different TCP/IP stack is
included with the project. Also, the file UDP_Process.c must be added to your project and
the file UDPCOM.h to your Start\Inc folder. These files are not shipped with embOS by
default, but are available on request. Using a different TCP/IP stack than emNet requires
modifications to UDP_Process.c. Subsequently, the RTOSInit.c needs to be modified to
include the below section:

#elif (OS_VIEW_IFSELECT == OS_VIEW_IF_ETHERNET)
#include "UDPCOM.h"

/***
*
* OS_COM_Send1()
*
* Function description
* Sends one character via UDP
*/
void OS_COM_Send1(OS_U8 c) {
 UDP_Process_Send1(c);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

436 CHAPTER 23 Setup target for communication

/***
*
* OS_COM_Init()
*
* Function description
* Initializes UDP communication for embOSView
*/
void OS_COM_Init(void) {
 UDP_Process_Init();
}
#endif

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

437 CHAPTER 23 Setup target for communication

23.3.4 API functions

Routine Description
m

ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_COM_ClearTxActive() Resets the embOS communication variables. ● ●

OS_COM_GetNextChar()
This routine is used to retrieve the next
character to be sent. ● ●

OS_COM_OnRx()
OS_COM_OnRx() informs embOS about a re-
ceived byte from embOSView. ● ●

OS_COM_OnTx()
OS_COM_OnTx() returns whether there are
more bytes to send. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

438 CHAPTER 23 Setup target for communication

23.3.4.1 OS_COM_ClearTxActive()

Description

Resets the embOS communication variables.

Prototype

void OS_COM_ClearTxActive(void);

Additional information

OS_COM_ClearTxActive() is used to reset the embOS communication variables.
OS_COM_ClearTxActive can e.g. be called after a communication issue. OS_COM_ClearTx-
Active() is usually not called by the application but from the embOSView communication
routines which are part of the board support package.

Example

void ResetCom(void) {
 OS_COM_ClearTxActive();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

439 CHAPTER 23 Setup target for communication

23.3.4.2 OS_COM_GetNextChar()

Description

This routine is used to retrieve the next character to be sent. It may be called for com-
munication by a non interrupt driven implementation. The user should be aware, that the
function may enable interrupts and may cause a task switch.

Prototype

OS_INT OS_COM_GetNextChar(void);

Return value

≥ 0 The character to be sent.
< 0 Buffer empty, no more bytes to be sent.

Example

void OS_ISR_Tx(void) {
 if (OS_COM_GetNextChar() >= 0u) {
 SendByte(c);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

440 CHAPTER 23 Setup target for communication

23.3.4.3 OS_COM_OnRx()

Description

OS_COM_OnRx() informs embOS about a received byte from embOSView. This routine is
normally called from the rx interrupt service handler when a character was received.

Prototype

void OS_COM_OnRx(OS_U8 Data);

Parameters

Parameter Description

Data Received byte.

Example

void OS_ISR_Rx(void) {
 OS_U8 c;
 c = UART_RX_REGISTER;
 OS_COM_OnRx(c);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

441 CHAPTER 23 Setup target for communication

23.3.4.4 OS_COM_OnTx()

Description

OS_COM_OnTx() returns whether there are more bytes to send. This routine is normally
called from the transmitter buffer empty interrupt service handler. In case there are more
bytes to send, OS_COM_OnTx() calls OS_COM_Send1() to send the next byte.

Prototype

OS_U8 OS_COM_OnTx(void);

Return value

= 0 There are more bytes to be sent.
≠ 0 Buffer empty, no more bytes to be sent.

Example

void OS_ISR_Tx(void) {
 if (OS_COM_OnTx() != 0u) {
 UART_TX_INT_ENABLE_REGISTER = 0;
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

442 CHAPTER 23 Sharing the SIO for terminal I/O

23.4 Sharing the SIO for terminal I/O
The serial input/output (SIO) used by embOSView may also be used by the application at
the same time for both input and output. Terminal input is often used as keyboard input,
where terminal output may be used for outputting debug messages. Input and output is
done via the Terminal window, which can be shown by selecting View/Terminal from
the menu.

To ensure communication via the Terminal window in parallel with the viewer functions,
the application uses the function OS_COM_SendString() for sending a string to the Termi-
nal window and the function OS_COM_SetRxCallback() to hook a reception-routine that
receives one byte.

23.4.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_COM_SendString()
Sends a string to the embOSView terminal
window. ● ● ●

OS_COM_SetRxCallback()
Sets a callback hook to a routine for receiv-
ing one character from embOSView. ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

443 CHAPTER 23 Sharing the SIO for terminal I/O

23.4.1.1 OS_COM_SendString()

Description

Sends a string to the embOSView terminal window.

Prototype

void OS_COM_SendString(const char* s);

Parameters

Parameter Description

s
Pointer to a null-terminated string that should be sent to the
terminal window.

Additional information

This function utilizes the target-specific function OS_COM_Send1().

Example

void Task(void) {
 OS_COM_SendString("Task started.\n");
 while (1) {
 OS_TASK_Delay_ms(100);
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

444 CHAPTER 23 Sharing the SIO for terminal I/O

23.4.1.2 OS_COM_SetRxCallback()

Description

Sets a callback hook to a routine for receiving one character from embOSView.

Prototype

OS_ROUTINE_CHAR *OS_COM_SetRxCallback(OS_ROUTINE_CHAR* pfRXCallback);

Parameters

Parameter Description

pfRXCallback
Pointer to the application routine that should be called when
one character is received over the serial interface.

Return value

This is the pointer to the callback function that was hooked before the call.

Additional information

The user function is called from embOS. The received character is passed as parameter.
See the example below.

Example

//
// Routine to be called from Rx-interrupt
//
static void _OnRx(OS_U8 Data) {
 DisplayChar(Data);
}

int main(void) {
 ...
 OS_COM_SetRxCallback(&_OnRx);
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

445 CHAPTER 23 embOSView API trace

23.5 embOSView API trace
embOS contains a trace feature for API calls. This requires the use of the trace build libraries
in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls can be
started and stopped from embOSView via the Trace menu, or from within the application
by using the functions OS_TRACE_Enable() and OS_TRACE_Disable(). Individual filters may
be defined to determine which API calls should be traced for different tasks or from within
interrupt or timer routines. Once the trace is started, the API calls are recorded in the trace
buffer, which is periodically read by embOSView. The result is shown in the Trace window:

Every entry in the Trace list is recorded with the actual system time. In case of calls
or events from tasks, the task ID (TaskId) and task name (TaskName) (limited to 15
characters) are also recorded. Parameters of API calls are recorded if possible, and are
shown as part of the APIName column. In the example above, this can be seen with
OS_TASK_Delay(6). Once the trace buffer is full, trace is automatically stopped. The Trace
list and buffer can be cleared from embOSView.

Example

#define MY_TRACE_ID 100

void Task(void) {
 OS_TASK_Delay_ms(100);
 OS_TRACE_Void(MY_TRACE_ID);
 OS_TRACE_DisableAll();
 while (1) {
 OS_TASK_Delay_ms(100);
 }
}

int main(void) {
 OS_Init();
 OS_InitHW();
 OS_TRACE_EnableAll();
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

446 CHAPTER 23 embOSView API trace

23.5.1 Setup API trace from embOSView
Three different kinds of trace filters are defined for tracing. These filters can be set up from
embOSView via the menu Options/Setup/Trace.

Filter “Any task” is not task-specific and records all specified events regardless of the
task. As the Idle loop is not a task, calls from within the idle loop are not traced.

Filter “ISR and SW Timer” is specific for interrupt service routines, software timers and
all calls that occur outside a running task. These calls may come from the idle loop or during
startup when no task is running.

Three further Custom filters allow trace of API calls from named tasks.

To enable or disable a filter, simply check or uncheck the corresponding checkboxes. For
any of these five filters, individual API functions can be enabled or disabled by checking or
unchecking the corresponding checkboxes in the list.

Custom filters allow tracing of task-specific API calls. A task name can therefore be spec-
ified for each of these filters. In the example above, a custom filter is configured to trace
calls from the task called MainTask. After the settings are saved, the new settings are sent
to the target application.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

447 CHAPTER 23 embOSView API trace

23.5.2 Trace filter setup API
Tracing of API or user function calls can be started or stopped from embOSView. By default,
trace is initially disabled in an application program. It may be helpful to control recording
of trace events directly from the application, using the following functions.

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TRACE_Enable() Enables tracing of filtered API calls. ● ● ● ●

OS_TRACE_EnableAll()
Sets up Filter 0 (any task), enables
tracing of all API calls and then en-
ables the trace function.

● ● ● ●

OS_TRACE_EnableId()

Sets the specified ID value in Filter 0
(any task), thus enabling trace of the
specified function, but does not start
trace.

● ● ● ●

OS_TRACE_EnableFilterId()

Sets the specified ID value in the
specified trace filter, thus enabling
trace of the specified function, but
does not start trace.

● ● ● ●

OS_TRACE_Disable()
Disables tracing of filtered API and
user function calls. ● ● ● ●

OS_TRACE_DisableAll()
Sets up Filter 0 (any task), disables
tracing of all API calls and also dis-
ables trace.

● ● ● ●

OS_TRACE_DisableId()

Resets the specified ID value in Fil-
ter 0 (any task), thus disabling trace
of the specified function, but does not
stop trace.

● ● ● ●

OS_TRACE_DisableFilterId()

Resets the specified ID value in the
specified trace filter, thus disabling
trace of the specified function, but
does not stop trace.

● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

448 CHAPTER 23 embOSView API trace

23.5.2.1 OS_TRACE_Enable()

Description

Enables tracing of filtered API calls.

Prototype

void OS_TRACE_Enable(void);

Additional information

The trace filter conditions must be set up before calling this function. This functionality
is available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

Example

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_TRACE_EnableId(OS_TRACE_ID_TASK_DELAY); // Enable trace for OS_TASK_Delay()
 OS_TRACE_Enable(); // Enable tracing
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

449 CHAPTER 23 embOSView API trace

23.5.2.2 OS_TRACE_EnableAll()

Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype

void OS_TRACE_EnableAll(void);

Additional information

The trace filter conditions of all the other trace filters are not affected. This functionality
is available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

Example

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_TRACE_EnableAll(void); // Enable trace
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

450 CHAPTER 23 embOSView API trace

23.5.2.3 OS_TRACE_EnableId()

Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified func-
tion, but does not start trace.

Prototype

void OS_TRACE_EnableId(OS_U8 id);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To enable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTOS.h. This function may also enable trace of
your own functions. This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

Example

Please refer to the example of OS_TRACE_Enable().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

451 CHAPTER 23 embOSView API trace

23.5.2.4 OS_TRACE_EnableFilterId()

Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the specified
function, but does not start trace.

Prototype

void OS_TRACE_EnableFilterId(OS_U8 FilterIndex,
 OS_U8 id);

Parameters

Parameter Description

FilterIndex
Index of the filter that should be affected:
0 ≤ FilterIndex ≤ 4
0 affects Filter 0 (any task) and so on.

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To enable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTOS.h. This function may also be used for
enabling trace of your own functions. This functionality is available in trace builds only. In
non-trace builds, the API call is removed by the preprocessor.

Example

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_TRACE_EnableFilterId(1, OS_TRACE_ID_TASK_DELAY);
 OS_TRACE_Enable(); // Enable tracing
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

452 CHAPTER 23 embOSView API trace

23.5.2.5 OS_TRACE_Disable()

Description

Disables tracing of filtered API and user function calls.

Prototype

void OS_TRACE_Disable(void);

Additional information

This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

Example

void StopTracing(void) {
 OS_TRACE_Disable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

453 CHAPTER 23 embOSView API trace

23.5.2.6 OS_TRACE_DisableAll()

Description

Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype

void OS_TRACE_DisableAll(void);

Additional information

The trace filter conditions of all the other trace filters are not affected, but tracing is stopped.

This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

Example

void StopTracing(void) {
 OS_TRACE_DisableAll();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

454 CHAPTER 23 embOSView API trace

23.5.2.7 OS_TRACE_DisableId()

Description

Resets the specified ID value in Filter 0 (any task), thus disabling trace of the specified
function, but does not stop trace.

Prototype

void OS_TRACE_DisableId(OS_U8 id);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To disable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTOS.h. This function may also be used for
disabling trace of your own functions. This functionality is available in trace builds only. In
non-trace builds, the API call is removed by the preprocessor.

Example

void StopTracing(void) {
 OS_TRACE_DisableId(OS_TRACE_ID_TASK_DELAY);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

455 CHAPTER 23 embOSView API trace

23.5.2.8 OS_TRACE_DisableFilterId()

Description

Resets the specified ID value in the specified trace filter, thus disabling trace of the specified
function, but does not stop trace.

Prototype

void OS_TRACE_DisableFilterId(OS_U8 FilterIndex,
 OS_U8 id);

Parameters

Parameter Description

FilterIndex
Index of the filter that should be affected:
0 ≤ FilterIndex ≤ 4
0 affects Filter 0 (any task) and so on.

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To disable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTOS.h. This function may also be used for
disabling trace of your own functions. This functionality is available in trace builds only. In
non-trace builds, the API call is removed by the preprocessor.

Example

void StopTracing(void) {
 OS_TRACE_DisableFilterId(1, OS_TRACE_ID_TASK_DELAY);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

456 CHAPTER 23 embOSView API trace

23.5.3 Trace record API
The following functions write data into the trace buffer. As long as only embOS API calls
should be recorded, these functions are used internally by the trace build libraries. If, for
some reason, you want to trace your own functions with your own parameters, you may
call one of these routines.

All of these functions have the following points in common:
• To record data, trace must be enabled.
• An ID value in the range 100 to 127 must be used as the ID parameter. ID values from

0 to 99 and 128 to 255 are internally reserved for embOS.
• The events specified as ID must be enabled in trace filters.
• Active system time and the current task are automatically recorded together with the

specified event.

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TRACE_Data()
Writes an entry with ID and an integer as pa-
rameter into the trace buffer. ● ● ● ●

OS_TRACE_DataPtr()
Writes an entry with ID, an integer, and a
pointer as parameter into the trace buffer. ● ● ● ●

OS_TRACE_Ptr()
Writes an entry with ID and a pointer as para-
meter into the trace buffer. ● ● ● ●

OS_TRACE_PtrU32()
Writes an entry with ID, a pointer, and a 32-
bit unsigned integer as parameter into the
trace buffer.

● ● ● ●

OS_TRACE_U32Ptr()
Writes an entry with ID, a 32-bit unsigned in-
teger, and a pointer as parameter into the
trace buffer.

● ● ● ●

OS_TRACE_Void()
Writes an entry identified only by its ID into
the trace buffer. ● ● ● ●

Example

#define MY_TRACE_ID 100

void Task(void) {
 OS_TRACE_Data(MY_TRACE_ID, 42);
 OS_TRACE_DataPtr(MY_TRACE_ID, 42, OS_TASK_GetID());
 OS_TRACE_Ptr(MY_TRACE_ID, OS_TASK_GetID());
 OS_TRACE_U32Ptr(MY_TRACE_ID, 42, OS_TASK_GetID());
 OS_TRACE_Void(MY_TRACE_ID)
 while (1) {
 OS_TASK_Delay_ms(100);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 OS_TRACE_EnableId(MY_TRACE_ID); // Enable trace for MY_TRACE_ID
 OS_TRACE_Enable(); // Enable tracing
 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

457 CHAPTER 23 embOSView API trace

23.5.3.1 OS_TRACE_Data()

Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype

void OS_TRACE_Data(OS_U8 id,
 int v);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

v Any integer value that should be recorded as parameter.

Additional information

The value passed as parameter will be displayed in the trace list window of embOSView. This
functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

Example

Please refer to the example in chapter Trace record API on page 456.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

458 CHAPTER 23 embOSView API trace

23.5.3.2 OS_TRACE_DataPtr()

Description

Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype

void OS_TRACE_DataPtr(OS_U8 id,
 int v,
 volatile OS_CONST_PTR void *p);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Additional information

The values passed as parameters will be displayed in the trace list window of embOSView.
This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

Example

Please refer to the example in chapter Trace record API on page 456.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

459 CHAPTER 23 embOSView API trace

23.5.3.3 OS_TRACE_Ptr()

Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype

void OS_TRACE_Ptr(OS_U8 id,
 volatile OS_CONST_PTR void *p);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

p Any void pointer that should be recorded as parameter.

Additional information

The pointer passed as parameter will be displayed in the trace list window of embOSView.
This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

Example

Please refer to the example in chapter Trace record API on page 456.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

460 CHAPTER 23 embOSView API trace

23.5.3.4 OS_TRACE_PtrU32()

Description

Writes an entry with ID, a pointer, and a 32-bit unsigned integer as parameter into the
trace buffer.

Prototype

void OS_TRACE_PtrU32(OS_U8 id,
 volatile OS_CONST_PTR void *p0,
 OS_U32 p1);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

p0 Any void pointer that should be recorded as parameter.

p1
Any unsigned 32-bit value that should be recorded as para-
meter.

Additional information

This function may be used for recording two pointers. The values passed as parameters will
be displayed in the trace list window of embOSView. This functionality is available in trace
builds only. In non-trace builds, the API call is removed by the preprocessor.

Example

Please refer to the example in chapter Trace record API on page 456.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

461 CHAPTER 23 embOSView API trace

23.5.3.5 OS_TRACE_U32Ptr()

Description

Writes an entry with ID, a 32-bit unsigned integer, and a pointer as parameter into the
trace buffer.

Prototype

void OS_TRACE_U32Ptr(OS_U8 id,
 OS_U32 p0,
 volatile OS_CONST_PTR void *p1);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

p0
Any unsigned 32-bit value that should be recorded as para-
meter.

p1 Any void pointer that should be recorded as parameter.

Additional information

This function may be used for recording two pointers. The values passed as parameters will
be displayed in the trace list window of embOSView. This functionality is available in trace
builds only. In non-trace builds, the API call is removed by the preprocessor.

Example

Please refer to the example in chapter Trace record API on page 456.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

462 CHAPTER 23 embOSView API trace

23.5.3.6 OS_TRACE_Void()

Description

Writes an entry identified only by its ID into the trace buffer.

Prototype

void OS_TRACE_Void(OS_U8 id);

Parameters

Parameter Description

id
ID value of API call that should be enabled for trace:
0 ≤ id ≤ 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

This functionality is available in trace builds only, and the API call is not removed by the
preprocessor.

Example

Please refer to the example in chapter Trace record API on page 456.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

463 CHAPTER 23 embOSView API trace

23.5.4 Application-controlled trace example
As described in the previous section, the user application can enable and set up the trace
conditions without a connection or command from embOSView. The trace record functions
can also be called from any user function to write data into the trace buffer, using ID
numbers from 100 to 127.

Controlling trace from the application can be useful for tracing API and user functions just
after starting the application, when the communication to embOSView is not yet available
or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The func-
tion OS_TRACE_EnableID() sets trace filter 0 which affects calls from any running task.
Therefore, the first call to SetState() in the example would not be traced because there
is no task running at that moment. The additional filter setup routine OS_TRACE_Enable-
FilterId() is called with filter 1, which results in tracing calls from outside running tasks.

Example code

#include "RTOS.h"

#define APP_TRACE_ID_SETSTATE 100 // Application specific trace id

char MainState;

void SetState(char* pState, char Value) {
#if (OS_SUPPORT_TRACE != 0)
 OS_TRACE_DataPtr(APP_TRACE_ID_SETSTATE, Value, pState);
#endif
 *pState = Value;
}

int main(void) {
 OS_Init();
 OS_InitHW();
#if (OS_SUPPORT_TRACE != 0)
 OS_TRACE_DisableAll(); // Disable all API trace calls
 OS_TRACE_EnableId(APP_TRACE_ID_SETSTATE); // User trace
 OS_TRACE_EnableFilterId(0, APP_TRACE_ID_SETSTATE); // User trace
 OS_TRACE_Enable();
#endif
 SetState(&MainState, 1);
 OS_TASK_CREATE(&TCBMain, "MainTask", 100, MainTask, MainStack);
 OS_Start(); // Start multitasking
 return 0;
}

By default, embOSView lists all user function traces in the trace list window as Routine,
followed by the specified ID and two parameters as hexadecimal values. The example above
would result in the following:

Routine100(0xabcd, 0x01)

where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TRACE_DataPtr().

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

464 CHAPTER 23 embOSView API trace

23.5.5 User-defined functions
To use the built-in trace (available in trace builds of embOS) for application program user
functions, embOSView can be customized. This customization is done in the setup file em-
bOS.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not see an
error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number, the
function name and the type of two optional parameters that can be traced. The format is
explained in the following sample embOS.ini file:

Example code

File: embOS.ini
#
embOSView Setup file
#
embOSView loads this file at startup. It must reside in the same
directory as the executable itself.
#
Note: The file is not required to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.
#
Define add. API functions.
Syntax: API(<Index>, <Routinename> [parameters])
Index: Integer, between 100 and 127
Routinename: Identifier for the routine. Should be no more than 32 characters
parameters: Optional parameters. A max. of 2 parameters can be specified.
Valid parameters are:
int
ptr
Every parameter must be placed after a colon.
#
API(100, "Routine100")
API(101, "Routine101", int)
API(102, "Routine102", int, ptr)

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 24

MPU - Memory Protection

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

466 CHAPTER 24 Introduction

24.1 Introduction
This chapter describes embOS-MPU. embOS-MPU is a separate product which adds memory
protection to embOS.

Memory protection is a way to control memory access rights, and is a part of most modern
processor architectures and operating systems. The main purpose of memory protection is
to prevent a task from accessing memory that has not been allocated to it. This prevents
a bug or malware within a task from affecting other tasks, or the operating system itself.

When a task violates its MPU permissions or causes an exception by other means, it is
terminated automatically regardless of its privilege state.

embOS-MPU uses the hardware MPU and additional checks to avoid that a task affects the
remaining system. Even if a bug in one task occurs all other tasks and the OS continue
execution. The task which caused the issue is terminated automatically and the application
is informed via an optional callback function.

Since a hardware MPU is required embOS MPU support is unavailable for some embOS
ports. The MPU support is included in separate embOS ports and is not part of the general
embOS port.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

467 CHAPTER 24 Introduction

Example

#include "RTOS.h"
#include "BSP.h"

extern unsigned int __FLASH_segment_start__;
extern unsigned int __FLASH_segment_size__;
extern unsigned int __RAM_segment_start__;
extern unsigned int __RAM_segment_size__;
extern unsigned int __ostext_start__;
extern unsigned int __ostext_size__;

static OS_TASK TCBHP, TCBLP;
static OS_STACKPTR int StackHP[128];
static OS_STACKPTR int StackLP[256] __attribute__ ((aligned (1024)));

static void _HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay_ms(200);
 }
}

static void _Recursive(unsigned int i) {
 volatile int k;
 k = i + 1;
 _Recursive(k);
}

static void _LPTask(void) {
 OS_MPU_ExtendTaskContext();
 OS_MPU_SetAllowedObjects(&TCBLP, _aObjList);
 OS_MPU_SwitchToUnprivState();
 _Recursive(1u);
}

static void _ErrorCallback(OS_CONST_PTR OS_TASK* pTask, OS_MPU_ERRORCODE ErrorCode) {
 while (1) {
 }
}

int main(void) {
 OS_Init();
 OS_MPU_Init(&OS_ARMv7M_MPU_API);
 //
 // Setup memory information, must be done before first task is created
 //
 OS_MPU_ConfigMem(&__FLASH_segment_start__, (OS_U32)&__FLASH_segment_size__,
 &__RAM_segment_start__, (OS_U32)&__RAM_segment_size__,
 &__ostext_start__, (OS_U32)&__ostext_size__);
 OS_MPU_SetErrorCallback(&_ErrorCallback);
 OS_InitHW();
 BSP_Init();
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, _HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, _LPTask, StackLP);
 OS_Start();
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

468 CHAPTER 24 Introduction

24.1.1 Privilege states
Application tasks which may affect other tasks or the OS itself must not have the permission
to access the whole memory, special function registers or embOS control structures. Such
application code could be e.g. unreliable software from a third party vendor.

Therefore, those application tasks do not run on the same privileged state like the OS. The
OS runs in privileged state which means that it has full access to all memory, peripherals
and CPU features. Application tasks, on the other hand, run in unprivileged state and have
restricted access only to the memory. To access peripherals and memory from unprivileged
tasks, additional API and specific device drivers may be used.

State Description

Privileged Full access to memory, peripheral and CPU features

Unprivileged Only restricted access to memory, no direct access to pe-
ripherals, no access to some CPU features

24.1.2 Code organization
embOS-MPU assumes that the application code is divided into two parts. The first part runs
in privileged state: it initializes the MPU settings and includes the device driver. It contains
critical code and must be verified for full reliability by the responsible developers. Usually,
this code consists of only a few simple functions which may be located in one single C file.

The second part is the application itself which doesn’t need to or in some cases cannot be
verified for full reliability. As it runs in unprivileged state, it cannot affect the remaining
system. Usually, this code is organized in several C files. This can e.g. simplify a certification.

Part Description

1st part Task and MPU initialization
Device drivers

2nd part Application code from e.g. third party vendor

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

469 CHAPTER 24 Memory Access permissions

24.2 Memory Access permissions
All privileged tasks have full access to the whole memory. An unprivileged task, however,
can have access to several memory regions with different access permissions. Access per-
missions for RAM and ROM can be used combined, e.g. a ROM region could be readable
and code execution could be allowed. In that case the permission defines would be used
as OS_MPU_READONLY | OS_MPU_EXECUTION_ALLOWED.

The following memory access permissions exist:

Permission Description

OS_MPU_NOACCESS No access to a memory region
OS_MPU_READONLY Read only access to a memory region
OS_MPU_READWRITE Read and write access to a memory region

Permission Description

OS_MPU_EXECUTION_ALLOWED Code execution is allowed
OS_MPU_EXECUTION_DISALLOWED Code execution is not allowed

24.2.1 Default memory access permissions
A newly created unprivileged task has per default only access to the following memory
regions:

Region Permissions

ROM OS_MPU_READONLY, OS_MPU_EXECUTION_ALLOWED
RAM OS_MPU_READONLY, OS_MPU_EXECUTION_ALLOWED
Task stack OS_MPU_READWRITE, OS_MPU_EXECUTION_ALLOWED

An unprivileged task can read and execute the whole RAM and ROM. Write access is re-
stricted to its own task stack. More access rights can be added by embOS API calls.

24.2.2 Interrupts
Interrupts are always privileged and can access the whole memory.

24.2.3 Access to additional memory regions
An unprivileged task can have access to additional memory regions. This could be necessary
e.g when a task needs to write LCD data to a frame buffer in RAM. Using a device driver
could be too inefficient. Additional memory regions can be added with the API function
OS_MPU_AddRegion(). It is CPU specific if the region has to be aligned. Please refer to the
according CPU/ compiler specific embOS manual for more details.

24.2.4 Access to OS objects
An unprivileged task has no direct write access to embOS objects. Per default, it also has
no access via embOS API functions. Access to OS objects via embOS API functions can be
granted with OS_MPU_SetAllowedObjects(). This does not grant direct write access to the
OS object, but only via embOS API functions. Even more, there must be no MPU region for
the unprivileged task which grants write access to the memory location containing the OS
object. Ideally, the object list should be located in ROM memory so it can not be modified by
the application by mistake. The OS object must be created in the privileged part of the task.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

470 CHAPTER 24 ROM placement of embOS

24.3 ROM placement of embOS
embOS must be placed in one memory section. Usually this section is called .ostext.
embOS-MPU requires this information to e.g. check that supervisor calls are made from
embOS API functions exclusively. The address and the size of this section must be passed
to embOS with OS_MPU_ConfigMem(). __os_start__ and __os_size__ are linker symbols
which are defined in the linker file.

Example This example is for the GCC linker.

Linker file:

 .ostext :
 {
 __ostext_start__ = .;
 (.ostext)
 __ostext_end__ = .;
 } > FLASH
 __ostext_size__ = __ostext_end__ - __ostext_start__;

C Code:

extern char __ostext_start__[];
extern char __ostext_size__[];

int main(void) {
 ...
 OS_MPU_ConfigMem(0x08000000u, 0x00100000u, // ROM
 0x20000000u, 0x00020000u, // RAM
 __ostext_start__, __ostext_size__); // OS
 ...
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

471 CHAPTER 24 Allowed embOS API in unprivileged tasks

24.4 Allowed embOS API in unprivileged tasks
Not all embOS API functions are allowed to be called from an unprivileged task. If an API
function is allowed to be called from an unprivileged task a dot is placed in the column
“Unpriv Task” in the according API table.

Example

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TASK_Delay_ms()

Suspends the calling task for a
specified amount of milliseconds,
or waits actively when called from
main().

● ● ●

It is allowed to call OS_TASK_Delay_ms() from main(), privileged tasks and unprivileged
tasks.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

472 CHAPTER 24 Device driver

24.5 Device driver
An unprivileged task has no access to any peripheral. Thus a device driver is necessary to
use peripherals like UART, SPI or port pins.

A device driver consists of two parts, an unprivileged part and a privileged part. embOS
ensures there is only one explicit and safe way to switch from the unprivileged part to the
privileged part. The application must call driver functions only in the unprivileged part. The
actual peripheral access is performed in the privileged part only.

OS_MPU_CallDeviceDriver() is used to call the device driver via a global device driver
table. The first parameter is the index of the device driver routine in the table. Optional
parameters can be passed to the device driver.

OS_MPU_CallDeviceDriverEx() is used to call the device driver without a device driver
table. The first parameter is the address of device driver routine. Optional parameters can
be passed to the device driver.

Note

You must not call any embOS API from a device driver.

Example

A device driver for a LED should be developed. The LED driver can toggle a LED with a
given index number. The function BSP_Toggle_LED() is the unprivileged part of the driver.
It can be called by the unprivileged application.

typedef struct BSP_LED_PARAM_STRUCT {
 BSP_LED_DRIVER_API Action;
 OS_U32 Index;
} BSP_LED_PARAM;

void BSP_ToggleLED(int LEDIndex) {
 BSP_LED_PARAM p;
 p.Action = BSP_LED_TOGGLE;
 p.Index = LEDIndex;
 OS_MPU_CallDeviceDriver(0u, &p);
}

All device driver addresses can be stored in one list which is passed to embOS-MPU with
OS_MPU_SetDeviceDriverList().

static OS_ROUTINE_VOID_PTR* const _DeviceDriverList[] = {
 BSP_LED_DeviceDriver,
 NULL // Last item must be NULL
};

void BSP_Init(void) {
 OS_MPU_SetDeviceDriverList(_DeviceDriverList);
}

Alternatively the device driver can be called directly:

typedef struct BSP_LED_PARAM_STRUCT {
 BSP_LED_DRIVER_API Action;
 OS_U32 Index;
} BSP_LED_PARAM;

void BSP_ToggleLED(int LEDIndex) {
 BSP_LED_PARAM p;
 p.Action = BSP_LED_TOGGLE;
 p.Index = LEDIndex;
 OS_MPU_CallDeviceDriverEx(BSP_LED_DeviceDriver, &p);

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

473 CHAPTER 24 Device driver

}

The device driver itself runs in privileged state and accesses the LED port pin.

void BSP_LED_DeviceDriver(void* Param) {
 BSP_LED_PARAM* p;
 p = (BSP_LED_PARAM*)Param;
 switch (p->Action) {
 case BSP_LED_SET:
 BSP_SetLED_SVC(p->Index);
 break;
 case BSP_LED_CLR:
 BSP_ClrLED_SVC(p->Index);
 break;
 case BSP_LED_TOGGLE:
 BSP_ToggleLED_SVC(p->Index);
 break;
 default:
 break;
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

474 CHAPTER 24 API functions

24.6 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_MPU_AddRegion()
Adds an additional memory region
to which the task has access. ● ●

OS_MPU_CallDeviceDriver() Calls a device driver. ● ● ● ● ●
OS_MPU_CallDeviceDriverEx() Calls a device driver. ● ● ● ● ●

OS_MPU_ConfigMem()
Configures basic memory informa-
tion. ● ● ● ●

OS_MPU_Init()
Initializes the MPU hardware with
the specified MPU API list. ● ●

OS_MPU_ExtendTaskContext()
Extends the task context for the
MPU registers. ●

OS_MPU_GetThreadState()
Returns the current tasks privilege
state. ● ● ● ● ●

OS_MPU_SetAllowedObjects()
Sets a task specific list of objects
to which the task has access via
embOS API functions.

● ● ● ●

OS_MPU_SetDeviceDriverList() Sets the device driver list. ● ● ● ●

OS_MPU_SetErrorCallback()
Sets the MPU error callback func-
tion. ● ● ● ●

OS_MPU_SwitchToUnprivState()
Switches a task to unprivileged
state. ●

OS_MPU_SetSanityCheckBuffer()

Sets the pointer in the task con-
trol block to a buffer which holds a
copy of the MPU register for sanity
check.

● ● ● ●

OS_MPU_SanityCheck()
Performs an MPU sanity check
which checks if the MPU register
still have the correct value.

●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

475 CHAPTER 24 API functions

24.6.1 OS_MPU_AddRegion()

Description

Adds an additional memory region to which the task has access.

Prototype

void OS_MPU_AddRegion(OS_TASK* pTask,
 void* BaseAddr,
 OS_U32 Size,
 OS_U32 Permissions,
 OS_U32 Attributes);

Parameters

Parameter Description

pTask Pointer to a task control block.
BaseAddr Region base address.
Size Region size.
Permissions Access permissions.
Attributes Additional core specific memory attributes.

Additional information

This function can be used if a task needs access to additional RAM regions. This RAM region
can be e.g. a LCD frame buffer or a queue data buffer. The amount of MPU regions and
whether the region has to be aligned is CPU specific. Please refer to the according CPU/
compiler specific embOS manual for more details.

Note

OS_MPU_AddRegion() expected until embOS V5.8.2 BaseAddr as a OS_U32 value. From
embOS V5.10.0 this parameter is a void pointer. Existing applications which call OS_M-
PU_AddRegion() needs to be updated accordingly.

A memory region can have the following access permissions:

Permission Description

OS_MPU_NOACCESS No access to memory region
OS_MPU_READONLY Read only access to memory region
OS_MPU_READWRITE Read and write access to memory region
OS_MPU_EXECUTION_ALLOWED Code execution is allowed
OS_MPU_EXECUTION_DISALLOWED Code execution is not allowed

Access permissions for data and code execution can be jointly set for one region. A region
can for example be set to read only and code execution can be disabled (OS_MPU_READONLY
| OS_MPU_EXECUTION_DISALLOWED). Per default an unprivileged task has only access to the
following memory regions:

Region Permission

ROM Read and execution access for complete ROM

RAM
Read only and and execution access for complete
RAM

Task stack
Read and write and execution access to the task
stack

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

476 CHAPTER 24 API functions

Note

OS_MPU_AddRegion() does take affect only when it is called before OS_MPU_Switch-
ToUnprivState().

Example

static void HPTask(void) {
 OS_MPU_AddRegion(&TCBHP, (OS_U32)MyQBuffer, 512, OS_MPU_READWRITE, 0u);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

477 CHAPTER 24 API functions

24.6.2 OS_MPU_CallDeviceDriver()

Description

Calls a device driver.

Prototype

void OS_MPU_CallDeviceDriver(OS_U32 Index,
 void* Param);

Parameters

Parameter Description

Index Index of device driver function.
Param Parameter to device driver.

Additional information

Unprivileged tasks have no direct access to any peripherals. A device driver is instead
necessary. OS_MPU_CallDeviceDriver() is used to let embOS call the device driver which
then runs in privileged state. Optional parameter can be passed to the driver function. The
device driver is called e.g. for Cortex-M via SVC call.

Example

typedef struct BSP_LED_PARAM_STRUCT {
 BSP_LED_DRIVER_API Action;
 OS_U32 Index;
} BSP_LED_PARAM;

static OS_ROUTINE_VOID_PTR* const _DeviceDriverList[] = {
 BSP_LED_DeviceDriver,
 NULL // Last item must be NULL
};

void BSP_LED_DeviceDriver(void* Param) {
 BSP_LED_PARAM* p;

 p = (BSP_LED_PARAM*)Param;
 switch (p->Action) {
 case BSP_LED_SET:
 BSP_SetLED_SVC(p->Index);
 break;
 case BSP_LED_CLR:
 BSP_ClrLED_SVC(p->Index);
 break;
 case BSP_LED_TOGGLE:
 BSP_ToggleLED_SVC(p->Index);
 break;
 default:
 break;
 }
}

void BSP_ToggleLED(int Index) {
 BSP_LED_PARAM p;

 p.Action = BSP_LED_TOGGLE;
 p.Index = Index;
 OS_MPU_CallDeviceDriver(0u, &p);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

478 CHAPTER 24 API functions

24.6.3 OS_MPU_CallDeviceDriverEx()

Description

Calls a device driver.

Prototype

void OS_MPU_CallDeviceDriverEx(OS_ROUTINE_VOID_PTR* pfRoutine,
 void* Param);

Parameters

Parameter Description

pfRoutine Function pointer to the device driver function.
Param Parameter to device driver.

Additional information

Unprivileged tasks have no direct access to any peripherals. A device driver is instead nec-
essary. OS_MPU_CallDeviceDriverEx() is used to let embOS call the device driver which
then runs in privileged state. Optional parameter can be passed to the driver function. The
device driver is called e.g. for Cortex-M via SVC call.

Example

typedef struct BSP_LED_PARAM_STRUCT {
 BSP_LED_DRIVER_API Action;
 OS_U32 Index;
} BSP_LED_PARAM;

void BSP_LED_DeviceDriver(void* Param) {
 BSP_LED_PARAM* p;

 p = (BSP_LED_PARAM*)Param;
 switch (p->Action) {
 case BSP_LED_SET:
 BSP_SetLED_SVC(p->Index);
 break;
 case BSP_LED_CLR:
 BSP_ClrLED_SVC(p->Index);
 break;
 case BSP_LED_TOGGLE:
 BSP_ToggleLED_SVC(p->Index);
 break;
 default:
 break;
 }
}

void BSP_ToggleLED(int Index) {
 BSP_LED_PARAM p;

 p.Action = BSP_LED_TOGGLE;
 p.Index = Index;
 OS_MPU_CallDeviceDriver(BSP_LED_DeviceDriver, &p);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

479 CHAPTER 24 API functions

24.6.4 OS_MPU_ConfigMem()

Description

Configures basic memory information.

Prototype

void OS_MPU_ConfigMem(void* ROM_BaseAddr,
 OS_U32 ROM_Size,
 void* RAM_BaseAddr,
 OS_U32 RAM_Size,
 void* OS_BaseAddr,
 OS_U32 OS_Size);

Parameters

Parameter Description

ROM_BaseAddr ROM base address
ROM_Size ROM size.
RAM_BaseAddr RAM base address
RAM_Size RAM size.
OS_BaseAddr embOS ROM region base address.
OS_Size embOS ROM region size.

Additional information

OS_MPU_ConfigMem() tells embOS where ROM, RAM and the embOS code is located in
memory. This information is used to setup the default task regions at task creation.

Note

With embOS-MPU OS_MPU_ConfigMem() must be called before creating any task.

Note

OS_MPU_ConfigMem() expected until embOS V5.8.2 ROM_BaseAddr, RAM_BaseAddr
and OS_BaseAddr as a OS_U32 value. From embOS V5.10.0 these parameters are void
pointer. Existing applications which call OS_MPU_ConfigMem() needs to be updated
accordingly.

Example

Please refer to the example in the introduction of chapter MPU - Memory Protection on
page 465.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

480 CHAPTER 24 API functions

24.6.5 OS_MPU_Init()

Description

Initializes the MPU hardware with the specified MPU API list.

Prototype

void OS_MPU_Init(OS_CONST_PTR OS_MPU_API_LIST *pAPIList);

Parameters

Parameter Description

pAPIList Pointer to core specific MPU API list.

Additional information

This function must be called before any embOS-MPU related function is used or any task
is created.

Example

void main(void) {
 ...
 OS_MPU_Init(&OS_ARMv7M_MPU_API);
 ...
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

481 CHAPTER 24 API functions

24.6.6 OS_MPU_ExtendTaskContext()

Description

Extends the task context for the MPU registers.

Prototype

void OS_MPU_ExtendTaskContext(void);

Additional information

It is device dependent how many MPU regions are available. This function makes it possible
to use all MPU regions for every single task. Otherwise the tasks would have to share the
MPU regions. To do so the MPU register must be saved and restored with every context
switch.

This function allows the user to extend the task context for the MPU registers. A major
advantage is that the task extension is task-specific. This means that the additional MPU
register needs to be saved only by tasks that actually use these registers. The advantage is
that the task switching time of other tasks is not affected. The same is true for the required
stack space: Additional stack space is required only for the tasks which actually save the
additional MPU registers. The task context can be extended only once per task. The function
must not be called multiple times for one task.

OS_MPU_ExtendTaskContext() is not available when no task context extension is available.
The embOS OS_LIBMODE_XR library mode does not support task context extension.

OS_SetDefaultContextExtension(&OS_MPU_ContextExtension) can be used to automat-
ically add MPU register to the task context of every newly created task.

The task context can also be extended using OS_TASK_AddContextExten-
sion(&OS_MPU_ContextExtension) or OS_TASK_SetContextExtension(&OS_MPU_Contex-
tExtension).

Note

If you run more than one unprivileged task you must use OS_MPU_ExtendTaskCon-
text() in order to save and restore the MPU register for each unprivileged task. With
specific MPUs it might be necessary to use OS_MPU_ExtendTaskContext() even with
one unprivileged task. Please refer to the CPU and compiler specific embOS manual
for more details.

Example

Please refer to the example in the introduction of chapter MPU - Memory Protection on
page 465.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

482 CHAPTER 24 API functions

24.6.7 OS_MPU_GetThreadState()

Description

Returns the current tasks privilege state.

Prototype

OS_MPU_THREAD_STATE OS_MPU_GetThreadState(void);

Return value

= 0 Privileged state (OS_MPU_THREAD_STATE_PRIVILEGED).
≠ 0 Unprivileged state (OS_MPU_THREAD_STATE_UNPRIVILEGED).

Additional information

A new created task has the task state OS_MPU_THREAD_STATE_PRIVILEGED. It can be
set to OS_MPU_THREAD_STATE_UNPRIVILEGED with the API function OS_MPU_SwitchToUn-
privState(). A task can never set itself back to the privileged state OS_MPU_THREAD_S-
TATE_PRIVILEGED.
OS_MPU_GetThreadState() always returns OS_MPU_THREAD_STATE_PRIVILEGED when there
is no current task.

Example

void PrintMPUState(void) {
 if (OS_MPU_GetThreadState() == OS_MPU_THREAD_STATE_PRIVILEGED) {
 printf("Task is in privileged state");
 } else {
 printf("Task is in unprivileged state");
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

483 CHAPTER 24 API functions

24.6.8 OS_MPU_SetAllowedObjects()

Description

Sets a task specific list of objects to which the task has access via embOS API functions.

Prototype

void OS_MPU_SetAllowedObjects(OS_TASK* pTask,
 OS_CONST_PTR OS_MPU_OBJ *pObjList);

Parameters

Parameter Description

pTask Pointer to a task control block.
pObjList Pointer to a list of allowed objects.

Additional information

Per default a task has neither direct nor indirect write access via embOS API functions to
any embOS object like a task control block. Even if the object is in the list of allowed objects
a direct write access to an OS object is still not possible. But if an object is in the list,
the task can access the OS object via embOS API functions. Even more an embOS debug
build will check within OS_MPU_SetAllowedObjects(), if there is a MPU region which grants
write access to the memory location containing the OS object and call OS_Error() with
an according error code. This ensures, that the unprivileged task is unable to modify the
OS object by mistake.

The OS object can be e.g. the own task control block, a mailbox control structure which is
mutual used by different task or even the task control block of another task. It is the devel-
oper responsibility to only add objects which are necessary for the unprivileged task. The
list is null-terminated, which means the last entry must always be: {NULL, OS_MPU_OBJ-
TYPE_INVALID}.

The following object types exist:

OS_MPU_OBJTYPE_TASK
OS_MPU_OBJTYPE_MUTEX
OS_MPU_OBJTYPE_SEMA
OS_MPU_OBJTYPE_EVENT
OS_MPU_OBJTYPE_QUEUE
OS_MPU_OBJTYPE_MAILBOX
OS_MPU_OBJTYPE_SWTIMER
OS_MPU_OBJTYPE_MEMPOOL
OS_MPU_OBJTYPE_WATCHDOG

embOS task events are handled in the task control block. When task events should be used
from an unprivileged task the according task control block needs be added to this object list.

Note

Up to embOS V5.8.2, OS_MPU_SetAllowedObjects() expected the first value in pOb-
jList as a OS_U32 value. Starting from embOS V5.10.0, this parameter is a void
pointer. Existing applications which call OS_MPU_SetAllowedObjects() need to be up-
dated accordingly.

Example

static const OS_MPU_OBJ _ObjList[] = {{&TCBHP, OS_MPU_OBJTYPE_TASK},
 {NULL, OS_MPU_OBJTYPE_INVALID}};

static void _Unpriv(void) {

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

484 CHAPTER 24 API functions

 OS_TASK_SetName(&TCBHP, "Segger");
 while (1) {
 OS_TASK_Delay_ms(10);
 }
}

static void HPTask(void) {
 OS_MPU_ExtendTaskContext();
 OS_MPU_SetAllowedObjects(&TCBHP, _ObjList);
 OS_MPU_SwitchToUnprivState();
 _Unpriv();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

485 CHAPTER 24 API functions

24.6.9 OS_MPU_SetDeviceDriverList()

Description

Sets the device driver list.

Prototype

void OS_MPU_SetDeviceDriverList(OS_ROUTINE_VOID_PTR* OS_CONST_PTR *pList);

Parameters

Parameter Description

pList Pointer to device driver function address list.

Additional information

All device driver function addresses are stored in one list. The last item must be NULL. A
device driver is called with the according index to this list.

Example

static OS_ROUTINE_VOID_PTR* const _DeviceDriverList[] = {
 BSP_LED_DeviceDriver,
 NULL // Last item must be NULL
};

void BSP_Init(void) {
 OS_MPU_SetDeviceDriverList(_DeviceDriverList);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

486 CHAPTER 24 API functions

24.6.10 OS_MPU_SetErrorCallback()

Description

Sets the MPU error callback function. This function is called when a task is suspended due
to an MPU fault.

Prototype

void OS_MPU_SetErrorCallback(OS_ROUTINE_TASK_PTR_ERRORCODE* pfRoutine);

Parameters

Parameter Description

pfRoutine Pointer to callback function.

Additional information

embOS terminates any task that violates its MPU permissions or causes an exception by
other means. embOS calls the user callback function in order to inform the application. The
application can e.g. turn on an error LED or write the fault into a log file.

Note

The error callback function must not call any embOS API function.

The callback function is called with the following parameter:

Parameter type Description

OS_TASK*
Pointer to task control block of the unprivileged task which
caused the MPU error.

OS_MPU_ERRORCODE Error code which describes the cause for the MPU error.

embOS-MPU error codes

Define Explanation

OS_MPU_ERROR_INVALID_REGION
The OS object address is within an allowed task re-
gion. This is not allowed. This can for example hap-
pen when the object was placed on the task stack.

OS_MPU_ERROR_INVALID_OBJECT
The unprivileged task is not allowed to access this
OS object.

OS_MPU_ERROR_INVALID_API

The unprivileged task tried to call an embOS API
function which is not valid for an unprivileged
task. For example, unprivileged tasks must not call
OS_TASK_EnterRegion().

OS_MPU_ERROR_HARDFAULT Indicates that the task caused a hard fault.

OS_MPU_ERROR_MEMFAULT
An illegal memory access was performed. An un-
privileged task tried to write memory without hav-
ing access permissions.

OS_MPU_ERROR_BUSFAULT Indicates that the task caused a bus fault.
OS_MPU_ERROR_USAGEFAULT Indicates that the task caused a usage fault.

OS_MPU_ERROR_SVC
A supervisor call was made outside an embOS API
function. This is not allowed.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

487 CHAPTER 24 API functions

Example

Please refer to the example in the introduction of chapter MPU - Memory Protection on
page 465.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

488 CHAPTER 24 API functions

24.6.11 OS_MPU_SwitchToUnprivState()

Description

Switches a task to unprivileged state.

Prototype

void OS_MPU_SwitchToUnprivState(void);

Additional information

The task code must be split into two parts. The first part runs in privileged state and ini-
tializes the embOS MPU settings. The second part runs in unprivileged state and is called
after the privileged part switched to the unprivileged state with OS_MPU_SwitchToUnprivS-
tate().

If this function is called from an invalid context, debug builds of embOS will call OS_Error().

Note

If you run more than one unprivileged task you must use OS_MPU_ExtendTaskCon-
text() in order to save and restore the MPU register for each unprivileged task.

Example

Please refer to the example in the introduction of chapter MPU - Memory Protection on
page 465.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

489 CHAPTER 24 API functions

24.6.12 OS_MPU_SetSanityCheckBuffer()

Description

Sets the pointer in the task control block to a buffer which holds a copy of the MPU register
for sanity check. The buffer size needs to be the size of all MPU register.

Prototype

void OS_MPU_SetSanityCheckBuffer(OS_TASK* pTask,
 void* p);

Parameters

Parameter Description

pTask Pointer to the task control block.
p Pointer to the MPU register buffer.

Additional information

OS_MPU_SetSanityCheckBuffer() is only available in OS_LIBMODE_SAFE which is used in
the certified embOS-MPU. Due to e.g. a hardware failure, a MPU register content could
change. A copy of all relevant MPU register is held in the buffer. OS_MPU_SanityCheck()
compares this copy to the actual MPU register and returns whether the register still have
the same value.
OS_MPU_SetSanityCheckBuffer() must be used prior to calling OS_MPU_SwitchToUn-
privState() only.
It must be called before OS_MPU_SanityCheck() is used for the first time. The size of
the buffer depends on the used hardware MPU. Appropriate defines are provided, e.g.
OS_ARM_V7M_MPU_REGS_SIZE.

Example

static OS_U8 HPBuffer[OS_ARM_V7M_MPU_REGS_SIZE];

static void HPTask(void) {
 OS_BOOL r;

 OS_MPU_SetSanityCheckBuffer(&TCBHP, HPBuffer);
 OS_MPU_ExtendTaskContext();
 OS_MPU_SwitchToUnprivState();
 while (1) {
 r = OS_MPU_SanityCheck();
 if (r == 0) {
 while (1) { // MPU register value invalid
 }
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

490 CHAPTER 24 API functions

24.6.13 OS_MPU_SanityCheck()

Description

Performs an MPU sanity check which checks if the MPU register still have the correct value.

Prototype

OS_BOOL OS_MPU_SanityCheck(void);

Return value

= 0 Failure, at least one register has not the correct value.
≠ 0 Success, all registers have the correct value.

Additional information

OS_MPU_SanityCheck() is only available in OS_LIBMODE_SAFE which is used in the certified
embOS-MPU. Due to e.g. a hardware failure, an MPU register content could change. A copy
of all relevant MPU register is held in a buffer and a pointer to this buffer is stored in the
according task control block. OS_MPU_SanityCheck() compares this copy to the actual MPU
register and returns whether the register still have the same value.

OS_MPU_SanityCheck() must be used in unprivileged tasks after the call to OS_M-
PU_SwitchToUnprivState() only.

OS_MPU_SetSanityCheckBuffer() must be called before OS_MPU_SanityCheck() is used
for the first time. If the buffer is not set, OS_MPU_SanityCheck() will return 0.

Example

static OS_U8 HPBuffer[OS_ARM_V7M_MPU_REGS_SIZE];

static void HPTask(void) {
 OS_BOOL r;

 OS_MPU_SetSanityCheckBuffer(&TCBHP, HPBuffer);
 OS_MPU_ExtendTaskContext();
 OS_MPU_SwitchToUnprivState();
 while (1) {
 r = OS_MPU_SanityCheck();
 if (r == 0) {
 while (1) { // MPU register value invalid
 }
 }
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 25

Stacks

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

492 CHAPTER 25 Introduction

25.1 Introduction
The stack is the memory area used for storing the return address of function calls, para-
meters, and local variables, as well as for temporary storage. Interrupt routines also use
the stack to save the return address and flag registers, except in cases where the CPU has
a separate stack for interrupt functions. Refer to the CPU & Compiler Specifics manual of
embOS documentation for details on your processor’s stack.

With most CPUs the stacks grow from high-memory to low-memory. A stack pointer points
to the current stack position. Depending on the CPU you can have more than one stack
pointer, for example separate stack pointers for the system and interrupt stack. The embOS
scheduler programs the stack pointer where necessary, for instance to point to the task
stack of the next running task.

System stack

Before embOS takes control (before the call to OS_Start()), a program uses the so called
system stack. This is the same stack that a non-embOS program for this CPU would use.
After transferring control to the embOS scheduler by calling OS_Start(), the system stack
is used for the following (when no task is executing):
• embOS scheduler
• embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler specific
embOS manual.

Interrupt stack

To reduce stack size in a multitasking environment, some processors use a specific stack
area for interrupt service routines (called a hardware interrupt stack). If there is no interrupt
stack, you will need to add stack requirements of your interrupt service routines to each
task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may support a separate
stack for interrupts by calling the function OS_INT_EnterIntStack() at beginning of an
interrupt service routine and OS_INT_LeaveIntStack() at its very end. In case the CPU
already supports hardware interrupt stacks or if a separate interrupt stack is not supported
at all, these function calls are implemented as empty macros.

We recommend using OS_INT_EnterIntStack() and OS_INT_LeaveIntStack() even if
there is currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embOS with support for an
interrupt stack for your CPU. For details about interrupt stacks, see the CPU & Compiler
specific embOS manual.

Task stack

In a multitasking system, every task must have its own stack. The location and size of
this stack are defined when creating the task. The size of a task stack depends on the
CPU, compiler and the task routine. For example if you use more local variables in the task
routine, you will need more task stack. For details, refer to the CPU & Compiler specific
manual.

It is possible to calculate the task stack size but this assumes the exact path of the code
is known at all times and you know the stack consumption of all called routine. This might
be very difficult. It is good practice to initially start with a large task stack space, run the
application, and use a tool like embOSView to monitor the actual stack usage. The task
stack size can then be adjusted accordingly. A stack that has been defined larger than
necessary does no harm; even though it is a waste of memory.

You can define the task stack for example as an array of integers. This automatically ensures
the stack is integer aligned, if necessary.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

493 CHAPTER 25 Introduction

static OS_STACKPTR int Stack[128],

void Task(void) {
 int array[16]; // Will be located on the task stack

 while (1) {
 OS_TASK_Delay_ms(100);
 }
}

int main(void) {
 OS_Init(); // Initialize embOS

 OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);

 OS_Start();
 return 0;
}

Stack overflow

The stack needs to have a minimum size, which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of the
memory that is not reserved for the stack will be overwritten, and a serious program failure
is most likely to occur. With most CPUs the stacks grow from high-memory to low-memory,
meaning data, which is located before this stack in memory, will be overwritten. This could
e.g. be another task stack, a task control block or even application data.

Stack-check

The stack-check builds of embOS monitor the stack end of the system stack, all task stacks
and interrupt stack (if available) and call OS_Error() if they detect stack overflows.

To detect a stack overflow, the stack is filled with pattern bytes, thereby allowing for a check
on these characters every time a task is deactivated. This pattern byte is 0xCD. However,
embOS can not guarantee to reliably detect all stack overflows. The task routine could have
stored data on the task stack which has overwritten bytes on the task stack before and
after the last byte, but not the last byte itself. In this case, embOS is unable to detect the
stack overflow. This can be done by hardware only, e.g. with a memory protection unit.

Stack size calculation

embOS includes stack size calculation routines. embOS fills the task stacks and also the
system stack and the interrupt stack with a pattern byte. If requested by according API
functions or embOSView, embOS checks how many bytes at the end of the stack still
include the pattern byte. With this information, the amount of used and unused stack can
be estimated. However, accuracy is not guaranteed at all times, since the task routine could
have stored data on the task stack which has overwritten bytes on the task stack before
and after the last byte(s), but not the last byte(s) themselves.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

494 CHAPTER 25 API functions

25.2 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_STACK_GetIntStackBase()
Returns the base address of the in-
terrupt stack. ● ● ● ● ●

OS_STACK_GetIntStackSize()
Returns the size of the interrupt
stack. ● ● ● ● ●

OS_STACK_GetIntStackSpace()
Returns the amount of interrupt
stack which was never used (Free in-
terrupt stack space).

● ● ● ● ●

OS_STACK_GetIntStackUsed()
Returns the maximal amount of in-
terrupt stack which has been used. ● ● ● ● ●

OS_STACK_GetTaskStackBase()
Returns a pointer to the base of a
task stack. ● ● ● ● ●

OS_STACK_GetTaskStackSize() Returns the total size of a task stack. ● ● ● ● ●

OS_STACK_GetTaskStackSpace()
Returns the amount of task stack
which was never used by the task
(Free task stack space).

● ● ● ● ●

OS_STACK_GetTaskStackUsed()
Returns the maximal amount of task
stack which has been used. ● ● ● ● ●

OS_STACK_GetSysStackBase()
Returns the base address of the sys-
tem stack. ● ● ● ● ●

OS_STACK_GetSysStackSize() Returns the size of the system stack. ● ● ● ● ●

OS_STACK_GetSysStackSpace()
Returns the amount of system stack
which was never used (Free system
stack space).

● ● ● ● ●

OS_STACK_GetSysStackUsed()
Returns the maximal amount of sys-
tem stack which has been used. ● ● ● ● ●

OS_STACK_GetCheckLimit()
Returns the stack check limit in per-
cent. ● ● ●

OS_STACK_SetCheckLimit()
Sets the stack check limit to a per-
centaged value of the stack size. ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

495 CHAPTER 25 API functions

25.2.1 OS_STACK_GetIntStackBase()

Description

Returns a pointer to the base of the interrupt stack.

Prototype

void* OS_STACK_GetIntStackBase(void);

Return value

The pointer to the base address of the interrupt stack.

Additional information

The return value of this function is valid only when an interrupt stack exists. In all other
builds it will be 0.

Example

void CheckIntStackBase(void) {
 printf("Addr Interrupt Stack %p", OS_STACK_GetIntStackBase());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

496 CHAPTER 25 API functions

25.2.2 OS_STACK_GetIntStackSize()

Description

Returns the size of the interrupt stack.

Prototype

unsigned int OS_STACK_GetIntStackSize(void);

Return value

The size of the interrupt stack in bytes.

Additional information

The return value of this function is valid only when an interrupt stack exists. In all other
builds it will be 0.

Example

void CheckIntStackSize(void) {
 printf("Size Interrupt Stack %u", OS_STACK_GetIntStackSize());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

497 CHAPTER 25 API functions

25.2.3 OS_STACK_GetIntStackSpace()

Description

Returns the amount of interrupt stack which was never used (Free interrupt stack space).

Prototype

unsigned int OS_STACK_GetIntStackSpace(void);

Return value

Amount of interrupt stack which was never used in bytes.

Additional information

The return value of this function is valid only in embOS stack check builds and when an
interrupt stack exists. In all other builds it will be 0.

Note

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

void CheckIntStackSpace(void) {
 printf("Unused Interrupt Stack %u", OS_STACK_GetIntStackSpace());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

498 CHAPTER 25 API functions

25.2.4 OS_STACK_GetIntStackUsed()

Description

Returns the maximal amount of interrupt stack which has been used.

Prototype

unsigned int OS_STACK_GetIntStackUsed(void);

Return value

Amount of interrupt stack which has been used in bytes.

Additional information

The return value of this function is valid only in embOS stack check builds and when an
interrupt stack exists. In all other builds it will be 0.

Note

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

void CheckIntStackUsed(void) {
 printf("Used Interrupt Stack %u", OS_STACK_GetIntStackUsed());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

499 CHAPTER 25 API functions

25.2.5 OS_STACK_GetTaskStackBase()

Description

Returns a pointer to the base of a task stack. If pTask is NULL, the currently executed task
is checked.

Prototype

void OS_STACKPTR *OS_STACK_GetTaskStackBase(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask
The task whose stack base should be returned. NULL denotes
the current task.

Return value

Pointer to the base address of the task stack.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

The return value of this function is valid only in embOS stack check builds. In all other
builds it will be 0.

Example

void CheckStackBase(void) {
 printf("Addr Stack[0] %p", OS_STACK_GetTaskStackBase(&TCB[0]);
 OS_TASK_Delay_ms(1000);
 printf("Addr Stack[1] %p", OS_STACK_GetTaskStackBase(&TCB[1]);
 OS_TASK_Delay_ms(1000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

500 CHAPTER 25 API functions

25.2.6 OS_STACK_GetTaskStackSize()

Description

Returns the total size of a task stack.

Prototype

unsigned int OS_STACK_GetTaskStackSize(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask
The task whose stack size should be checked. NULL means
current task.

Return value

Total size of the task stack in bytes.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

The return value of this function is valid only in embOS stack check builds. In all other
builds it will be 0.

Example

void CheckStackSize(void) {
 printf("Size Stack[0] %u", OS_STACK_GetTaskStackSize(&TCB[0]);
 OS_TASK_Delay_ms(1000);
 printf("Size Stack[1] %u", OS_STACK_GetTaskStackSize(&TCB[1]);
 OS_TASK_Delay_ms(1000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

501 CHAPTER 25 API functions

25.2.7 OS_STACK_GetTaskStackSpace()

Description

Returns the amount of task stack which was never used by the task (Free task stack space).

Prototype

unsigned int OS_STACK_GetTaskStackSpace(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask
The task whose stack space should be checked. NULL de-
notes the current task.

Return value

Amount of task stack which was never used by the task in bytes.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

In most cases, the stack size required by a task cannot be easily calculated because it takes
quite some time to calculate the worst-case nesting and the calculation itself is difficult.

However, the required stack size can be calculated using the function OS_STACK_GetTaskS-
tackSpace(), which returns the number of unused bytes on the stack. If there is a lot of
space left, you can reduce the size of this stack. The return value of this function is valid
only in embOS stack check builds. In all other builds it will be 0.

Note

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

void CheckStackSpace(void) {
 printf("Unused Stack[0] %u", OS_STACK_GetTaskStackSpace(&TCB[0]);
 OS_TASK_Delay_ms(1000);
 printf("Unused Stack[1] %u", OS_STACK_GetTaskStackSpace(&TCB[1]);
 OS_TASK_Delay_ms(1000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

502 CHAPTER 25 API functions

25.2.8 OS_STACK_GetTaskStackUsed()

Description

Returns the maximal amount of task stack which has been used.

Prototype

unsigned int OS_STACK_GetTaskStackUsed(OS_CONST_PTR OS_TASK *pTask);

Parameters

Parameter Description

pTask
The task whose stack usage should be checked. NULL de-
notes the current task.

Return value

Amount of task stack which has been used by the task in bytes.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS_Error() in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

In most cases, the stack size required by a task cannot be easily calculated, because it takes
quite some time to calculate the worst-case nesting and the calculation itself is difficult.

However, the required stack size can be calculated using the function OS_STACK_GetTaskS-
tackUsed(), which returns the number of used bytes on the stack. If there is a lot of space
left, you can reduce the size of this stack. The return value of this function is valid only in
embOS stack check builds. In all other builds it will be 0.

Note

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

void CheckStackUsed(void) {
 printf("Used Stack[0] %u", OS_STACK_GetTaskStackUsed(&TCB[0]);
 OS_TASK_Delay_ms(1000);
 printf("Used Stack[1] %u", OS_STACK_GetTaskStackUsed(&TCB[1]);
 OS_TASK_Delay_ms(1000);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

503 CHAPTER 25 API functions

25.2.9 OS_STACK_GetSysStackBase()

Description

Returns a pointer to the base of the system stack.

Prototype

void* OS_STACK_GetSysStackBase(void);

Return value

The pointer to the base address of the system stack. The return value of this function is
valid only when an system stack exists. In all other builds it will be 0.

Example

void CheckSysStackBase(void) {
 printf("Addr System Stack %p", OS_STACK_GetSysStackBase());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

504 CHAPTER 25 API functions

25.2.10 OS_STACK_GetSysStackSize()

Description

Returns the size of the system stack.

Prototype

unsigned int OS_STACK_GetSysStackSize(void);

Return value

The size of the system stack in bytes. The return value of this function is valid only when
an system stack exists. In all other builds it will be 0.

Example

void CheckSysStackSize(void) {
 printf("Size System Stack %u", OS_STACK_GetSysStackSize());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

505 CHAPTER 25 API functions

25.2.11 OS_STACK_GetSysStackSpace()

Description

Returns the amount of system stack which was never used (Free system stack space).

Prototype

unsigned int OS_STACK_GetSysStackSpace(void);

Return value

Amount of unused system stack, in bytes.

Additional information

The return value of this function is valid only in embOS stack check builds and when an
system stack exists. In all other builds it will be 0.

Note

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSysStackSpace(void) {
 printf("Unused System Stack %u", OS_STACK_GetSysStackSpace());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

506 CHAPTER 25 API functions

25.2.12 OS_STACK_GetSysStackUsed()

Description

Returns the maximal amount of system stack which has been used.

Prototype

unsigned int OS_STACK_GetSysStackUsed(void);

Return value

Amount of used system stack, in bytes.

Additional information

The return value of this function is valid only in embOS stack check builds and when an
system stack exists. In all other builds it will be 0.

Note

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

void CheckSysStackUsed(void) {
 printf("Used System Stack %u", OS_STACK_GetSysStackUsed());
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

507 CHAPTER 25 API functions

25.2.13 OS_STACK_GetCheckLimit()

Description

Returns the stack check limit in percent.

Prototype

OS_U8 OS_STACK_GetCheckLimit(void);

Return value

The stack check limit as a percentaged value of the stack size.

Additional information

This function is only available when the embOS compile time switch OS_SUPPORT_S-
TACKCHECK is set to 2. This is e.g. the default in safety builds of embOS (OS_LIBMODE_SAFE).
In all other embOS builds the stack check limit is fixed at 100%.

Note

This setting is jointly used for the system stack, the interrupt stack and all task stacks.

Example

void Task(void) {
 OS_U8 Limit;

 Limit = OS_STACK_GetCheckLimit()
 printf("Limit: %u\n", Limit);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

508 CHAPTER 25 API functions

25.2.14 OS_STACK_SetCheckLimit()

Description

Sets the stack check limit to a percentaged value of the stack size.

Prototype

void OS_STACK_SetCheckLimit(OS_U8 Limit);

Parameters

Parameter Description

Limit
Stack check limit in percent. Valid values are 0..100%.
Values above 100% are trimmed to 100%.

Additional information

This function is only available when the embOS compile time switch OS_SUPPORT_S-
TACKCHECK is set to 2. This is e.g. the default in safety builds of embOS (OS_LIBMODE_SAFE).
In all other embOS builds the stack check limit is fixed at 100%. It can be used to set
the stack check limit to a value which triggers the error condition before the stack is filled
completely. With the safety build of embOS the application can react before the stack ac-
tually overflows.

Note

This routine must only be called from main() or privileged tasks. This setting is jointly
used for the system stack, the interrupt stack and all task stacks. The best practice
is to call it in main() before OS_Start().

Example

int main(void) {
 OS_Init();
 OS_InitHW();
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_STACK_SetCheckLimit(70); // Set the stack check limit to 70%
 OS_Start();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 26

Board Support Packages

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

510 CHAPTER 26 Introduction

26.1 Introduction
This chapter explains the target system specific parts of embOS, called BSP (board support
package).

In general, no modifications to the board support package are required to get started with
embOS. The board support packages supplied with your embOS shipment will execute
out of the box on the dedicated board. Small modifications to the configuration might be
necessary at a later point, for example to use a different hardware timer for the system
tick or in order to enable a UART for the optional communication with embOSView.

All mandatory hardware-specific routines that may require modifications are located in the
file RTOSInit.c. The file RTOSInit.c is provided in source code in every board support
package. Furthermore, the BSP.c as well as optional BSP_*.c files are provided in source
code. The BSP.c contains routines to initialize and control LEDs. Hence, it is not vital for em-
bOS but may be used in some embOS sample applications. The BSP_*.c files contain initial-
ization for other hardware like UARTs for embOSView communication or external memory.

Some board support packages include additional files for e.g. clock and PLL initialization.
Further details on these are available with the CPU & Compiler specifics manual of the
embOS documentation.

26.2 How to create a new board support package
If none of the shipped board support packages matches your target hardware it might
be necessary to create a new board support package. This can be done on your own or
can be requested to be done by SEGGER. Please contact us for further information on the
latter. Good practice is to make a copy of an existing board support package and modify
it according to the target hardware. The following chapters explain which routines need
to be updated.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

511 CHAPTER 26 Example

26.3 Example
This RTOSInit.c serves as a template and shows the basic structure.

#include "RTOS.h"

/***
*
* Global functions
*
**
*/

/***
*
* BSP_OS_GetCycles()
*/
OS_U64 BSP_OS_GetCycles(void) {
 OS_U64 CycleCnt64;

 //
 // Calculate elapsed counter cycles since reset.
 //
 ...
 return CycleCnt64;
}

/***
*
* BSP_OS_StartTimer()
*/
void BSP_OS_StartTimer(OS_U32 Cycles) {
 //
 // Start hardware timer for the specified amount of cycles
 // The used hardware timer must generate an interrupt before the used counter completes a full loop
 //
 ...
}

/***
*
* SysTick_Handler()
*/
void SysTick_Handler(void) {
 OS_INT_EnterNestable();
 OS_TICK_Handle();
 OS_INT_LeaveNestable();
}

/***
*
* OS_InitHW()
*/
void OS_InitHW(void) {
 OS_INT_IncDI();
 //
 // Inform embOS about the frequency of the counter
 //
 {
 OS_SYSTIMER_CONFIG SysTimerConfig = { OS_COUNTER_FREQ };
 OS_TIME_ConfigSysTimer(&SysTimerConfig);
 }
 //
 // Start the counter
 //
 ...
 //

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

512 CHAPTER 26 Example

 // Start the hardware timer
 //
 ...

 OS_INT_DecRI();
}

/***
*
* OS_Idle()
*/
void OS_Idle(void) { // Idle loop: No task is ready to execute
 while (1) { // Nothing to do ... wait for interrupt
 }
}

/***
*
* Optional communication with embOSView
*
**
*/

/***
*
* OS_COM_Send1()
*/
void OS_COM_Send1(OS_U8 c) {
 OS_USE_PARA(c); // Avoid compiler warning
 OS_COM_ClearTxActive(); // Let embOS know that Tx is not busy
}

/*************************** End of file ****************************/

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

513 CHAPTER 26 Mandatory routines

26.4 Mandatory routines
The following routines are not exposed as user API, but are instead required by embOS
for internal usage. They are shipped as source code to allow for modifications to match
your actual target hardware. However, unless explicitly stated otherwise, these functions
must not be called from your application. Usually they are implemented in a file named
RTOSInit.c.

Routine Description

Mandatory for embOS-Ultra

BSP_OS_GetCycles()
Calculates the current time in counter cycles since
reset.

BSP_OS_StartTimer()
Programs the hardware timer required for embOS’
time base.

OS_Idle()
The idle loop is executed whenever no task, soft-
ware timer, and interrupt is ready for execution.

Mandatory for embOSView

OS_COM_Send1() Sends one character towards embOSView.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

514 CHAPTER 26 Mandatory routines

26.4.1 BSP_OS_GetCycles()

Description

Calculates the current time in counter cycles since reset.

Prototype

OS_U64 BSP_OS_GetCycles(void);

Return value

Current time in counter cycles since reset.

Additional information

If the free running counter’s width is 64 bit, the counter value can directly be returned by
this function. Else, the current time in counter cycles since reset of the counter needs to
be calculated.

In the following exemplary calculation, the function OS_TIME_GetTimestamp() is used to
retrieve the previously calculated 64-bit timestamp. This 64-bit timestamp is then split into
two parts: a lower part whose width matches the width of the used hardware counter (and
simply holds a copy of the counter value), and an upper part that contains all remaining bits
(which count the number of overflows of the hardware counter). When the new cycle value
is calculated, the newly read value of the hardware counter can be simply copied into the
lower part. Afterwards, the upper part may need to be incremented by one if the previous
lower part was greater or equal than the new lower part (thus indicating an overflow of
the hardware counter).

BSP_OS_GetCycles() may be called by embOS (or by an application using
OS_TIME_Get_Cycles()) both with enabled and disabled embOS interrupts. In case embOS
interrupts need to be disabled during this caluclation (for example to atomically read a
64-bit counter), the interrupt enable state must be preserved e.g. by using OS_INT_Pre-
serveAndDisable() and OS_INT_Restore(). Typically, however, disabling interrupts can
be avoided during this calculation. An example on this is given below: it repeats the calcu-
lation until both the previously calculated 64-bit timestamp and the current counter value
were read “simultaneously”.

Example

OS_U64 BSP_OS_GetCycles(void) {
 OS_U32 CounterCycles;
 OS_U32 CycleCntLow;
 OS_U32 CycleCntHigh;
 OS_U32 CycleCntCompare;
 OS_U64 CycleCnt64;

 do {
 CycleCnt64 = OS_TIME_GetTimestamp(); // Read the previous timestamp
 CycleCntLow = (OS_U32)CycleCnt64; // Extract timestamp's lower word
 CycleCntHigh = (OS_U32)(CycleCnt64 >> 32); // Extract timestamp's upper word
 CounterCycles = CYCLE_CNT; // Read hardware cycle counter
 //
 // CycleCnt64 and CounterCycles need to be retrieved "simultaneously" for the
 // below calculation to work:
 // If the above code is interrupted after retrieving timestamp, but before
 // reading the hardware cycle counter, it may happen that the hardware
 // counter overflows multiple times before returning here. We could then no
 // longer accurately compare (CounterCycles < CycleCntLow) below.
 //
 // Hence, we check if the upper word of the timestamp still matches the value
 // we retrieved earlier and repeat the process if it doesn't. This works
 // because timestamp is updated once per timer interrupt, and the timer
 // interrupt must be more frequent than the hardware counter overflow, so any

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

515 CHAPTER 26 Mandatory routines

 // overflow has necessarily incremented the upper word.
 //
 CycleCntCompare = (OS_U32)(OS_TIME_GetTimestamp() >> 32);
 } while (CycleCntHigh != CycleCntCompare);
 //
 // Calculate the current time in timer cycles since reset.
 // This is done by simply copying the 32 bit hardware counter timestamp into
 // the lower 32 bits of the timestamp, while the upper 32 bits of the timestamp
 // count the number of overflows of the hardware counter. Therefore, we compare
 // the lower 32 bits of timestamp to the newly retrieved hardware timestamp:
 //
 if (CounterCycles < CycleCntLow) {
 //
 // The hardware counter has overflown and we must increment the upper 32 bits
 // of timestamp.
 //
 CycleCnt64 = ((OS_U64)(CycleCntHigh + 1u) << 32) + CounterCycles;
 } else {
 //
 // The hardware counter has not overflown and we do not perform any
 // additional action.
 //
 CycleCnt64 = ((OS_U64)CycleCntHigh << 32) + CounterCycles;
 }
 return CycleCnt64;
}

26.4.1.1 OS_TIME_GetTimestamp()

Function description

Returns the timestamp stored in OS_Global.Time.

Prototype

OS_U64 OS_TIME_GetTimestamp(void);

Return value

The unsigned 64-bit timestamp in cycles stored in OS_Global.Time.

Additional information

The returned timestamp does not reflect the current system time, but can be used together
with the free running counter to calculate the current system time.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

516 CHAPTER 26 Mandatory routines

26.4.2 BSP_OS_StartTimer()

Description

Starts the hardware timer for the amount of cycles passed to this function.

Prototype

void BSP_OS_StartTimer(OS_U32 Cycles);

Parameters

Parameter Description

Cycles The amount of cycles after which the timer has to generate
the system tick interrupt.

Additional information

BSP_OS_StartTimer() can be called by embOS with disabled embOS interrupts. If inter-
rupts need to be disabled in the implementation (for example to atomically read a 64-bit
counter), the interrupt enable state must be preserved e.g. by using OS_INT_Preserve-
AndDisable() and OS_INT_Restore().

The passed Cycles relate to the cycles of free running counter and its frequency. If the
hardware timer runs with a frequency other than that of the free running counter, then the
Cycles need to be converted before the timer is configured.

If the time specified by the Cycles variable is longer than the period the hardware timer
can count, then the timer needs to be configured for its maximum possible period. If the
time specified by the Cycles variable is longer than the maximum period of the free running
counter, then the timer must use a period shorter than the maximum period of the counter.
This means that in both cases a fixed amount of cycles needs to be deducted from the value
that is used to configure the timer. The value in cycles to deduct should be long enough so
that the system tick interrupt has enough time to be executed and to retrieve the hardware
counter cycles. This implies that the value to deduct needs to be longer than any period
of time during which interrupts are disabled.

The following is a short example setup:
• 32-bit free running counter running with 16 MHz
• 32-bit hardware timer whose counter is running with 8 MHz

The maximum time after which the hardware timer can be configured to generate the
system tick is ~536 seconds. But the free running counter overflows after ~268 seconds.
This means that the system tick has to occur at least once each 268 seconds so that
BSP_OS_GetCycles() can detect an overflow of the free running counter. Now, we also
want to deduct one second and use 267 seconds as the maximum time after which the
hardware timer has to generate the system tick interrupt. This allows the application to
disable interrupts for almost one second without being at risk to miss an overflow.

Example

void BSP_OS_StartTimer(OS_U32 Cycles) {
 // Disable SysTick
 SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk
 | SysTick_CTRL_TICKINT_Msk;
 // Check if HW timer is able to count that far...
 if (Cycles > ((OS_TIMER_MAX_VALUE - OS_TIMER_DEDUCTION) / OS_TIMER_FACTOR)) {
 // ...if not, count as far as possible.
 Cycles = OS_TIMER_MAX_VALUE - OS_TIMER_DEDUCTION;
 } else {
 // ...else, count to the given value.
 Cycles *= OS_TIMER_FACTOR;
 }
 // Set reload register

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

517 CHAPTER 26 Mandatory routines

 SysTick->LOAD = Cycles;
 // Load the SysTick Counter Value
 SysTick->VAL = 0u;
 // Enable SysTick
 SysTick->CTRL = SysTick_CTRL_ENABLE_Msk
 | SysTick_CTRL_CLKSOURCE_Msk
 | SysTick_CTRL_TICKINT_Msk;
 // Make sure to receive 1 interrupt only by clearing the reload value
 SysTick->LOAD = 0u;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

518 CHAPTER 26 Mandatory routines

26.4.3 OS_Idle()

Description

The function OS_Idle() is called when no task, software timer or ISR is ready for execution.

Usually, OS_Idle() is implemented as an endless loop without any content. However, it
may be used e.g. to activate a power save mode of the target CPU.

Prototype

void OS_Idle(void);

Additional information

OS_Idle() is not a task: it neither has a task context nor a dedicated stack. Instead, it
runs on the system’s C stack, which is used by the kernel as well. Exceptions and interrupts
occurring during OS_Idle() will return to OS_Idle() unless they trigger a task switch.
When returning to OS_Idle(), execution continues from where it was interrupted. Howev-
er, in case a task switch occurs during execution of OS_Idle(), the function is abandoned
and execution will start from the beginning when it is activated again. Hence, no function-
ality should be implemented that relies on the stack contents to be preserved. If this is
required, please consider implementing a custom idle task (Creating a custom Idle task
on page 519).

Peripheral power control and Tickless support API functions may be called from OS_Idle()
to save power consumption.

Calling OS_TASK_EnterRegion() and OS_TASK_LeaveRegion() from OS_Idle() allows to
inhibit task switches during the execution of OS_Idle(). Running in a critical region does
not block interrupts, but disables task switches until OS_TASK_LeaveRegion() is called.
Using a critical region during OS_Idle() will therefore affect task activation time, but will
not affect interrupt latency.

Calling interrupt enable and disable functions like OS_INT_Enable() and OS_INT_Disable()
from OS_Idle() allows to inhibit interrupts during the execution of OS_Idle(). Disabling
interrupts during OS_Idle() will therefore affect interrupt latency and task activation time.

You must not call any other embOS API from within OS_Idle().

Example

void OS_Idle(void) { // Idle loop: No task is ready to execute
 while (1) {
 }
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

519 CHAPTER 26 Mandatory routines

26.4.3.1 Creating a custom Idle task
As an alternative to OS_Idle(), it is also possible to create a custom “idle task”. This task
must run as an endless loop at the lowest task priority within the system. If no blocking
function is called from that task, the system will effectively never enter OS_Idle(), but
will execute this task instead whenever no other task, software timer or ISR is ready for
execution.

Example

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128], StackIdle[128];
static OS_TASK TCBHP, TCBLP, TCBIdle;

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay_ms(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay_ms(200);
 }
}

static void IdleTask(void) {
 while (1) {
 //
 // Perform idle duty, e.g.
 // - Switch off clocks for unused peripherals.
 // - Free resources that are no longer used by any task.
 // - Enter power save mode.
 //
 }
}

int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_TASK_CREATE(&TCBIdle, "Idle Task", 1, IdleTask, StackIdle);
 OS_Start(); // Start multitasking
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

520 CHAPTER 26 Mandatory routines

26.4.4 OS_COM_Send1()

Description

Sends one character towards embOSView via the configured interface.

Prototype

void OS_COM_Send1(OS_U8 c);

Parameters

Parameter Description

c The character to send towards embOSView.

Additional information

This function is required for OS_COM_SendString() and the embOSView communication.

You must modify this routine according to your communication interface. To select a
communications interface other than UART, refer to Setup target for communication on
page 435.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

521 CHAPTER 26 Optional routines

26.5 Optional routines
The following routines are not called internally from embOS but usually included in the board
support package. They are shipped as source code to allow for modifications to match your
actual target hardware. The routine names are not vital and just an example although we
suggest to use the name OS_InitHW() since this routine is called from all embOS example
applications.

Routine Description

SysTick_Handler() The embOS system tick timer interrupt handler.
OS_InitHW() Initializes the hardware required for embOS to run.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

522 CHAPTER 26 Optional routines

26.5.1 SysTick_Handler()

Description

The embOS system timer tick interrupt handler.

Prototype

void SysTick_Handler(void);

Additional information

With specific embOS start projects, this handler may be implemented using a device specific
interrupt name. When using a different timer, always check the specified interrupt vector.

Example

void SysTick_Handler(void) {
 OS_INT_EnterNestable();
 OS_TICK_Handle();
 OS_INT_LeaveNestable();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

523 CHAPTER 26 Optional routines

26.5.2 OS_InitHW()

Description

Initializes the hardware required for embOS to run. embOS needs a timer interrupt and
free running counter to determine when to activate tasks that wait for the expiration of a
delay, when to call a software timer, and to keep the time variable up-to-date.

This function must be called once during main().

Prototype

void OS_InitHW(void);

Additional information

You must modify this routine when a different hardware timer or counter should be used.

With most embOS start projects, this routine may also call further, optional configuration
functions, e.g. for
• Configuration of the embOS system time parameters (see OS_TIME_ConfigSysTimer())
• Initialization of the communication interface to be used with embOSView.

Example

void OS_InitHW(void) {
 OS_INT_IncDI();
 //
 // Inform embOS about the timer settings
 //
 {
 OS_SYSTIMER_CONFIG SysTimerConfig = { OS_COUNTER_FREQ };
 OS_TIME_ConfigSysTimer(&SysTimerConfig);
 }
 //
 // Start the free running counter
 //

 //
 // Initialize the system timer
 //

 OS_INT_DecRI();
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

524 CHAPTER 26 Settings

26.6 Settings
The following defines are used in the RTOSInit.c.

OS_VIEW_IFSELECT

embOSView communication interface selection.

Possible values are:

OS_VIEW_DISABLED Disable embOSView communication

OS_VIEW_IF_UART embOSView communication via UART

OS_VIEW_IF_JLINK
embOSView communication for ARM and RX devices
via J-Link

OS_VIEW_IF_ETHERNET embOSView communication via Ethernet (emNet)

26.6.1 System tick setting
The actual CPU frequency depends on the hardware and clock/PLL initialization. embOS
does not need to know the actual CPU frequency but the frequency of the free running
counter.

26.6.2 Using a different hardware timer and counter
Relevant routines
• OS_InitHW()
• BSP_OS_StartTimer()
• BSP_OS_GetCycles()

If you want to use a different timer for your application, you must modify OS_InitHW() to
initialize the appropriate timer. Furthermore, BSP_OS_StartTimer() needs to be modified,
so that the new timer is used to generate system tick interrupts. If a different free running
counter is used, the function BSP_OS_GetCycles() needs to calculate the current system
time using that counter, and OS_InitHW() needs to be modified to initialize it.

26.6.3 Using a different UART or baud rate for embOSView
Relevant defines
• OS_UART (Selection of UART to be used with embOSView)
• OS_BAUDRATE (Selection of baud rate for communication with embOSView)

Relevant routines:
• OS_COM_Send1()

In some cases, this may be done by simply changing the define OS_UART or OS_BAUDRATE.
Refer to the contents of the BSP_UART.c file for more information about which UARTs are
supported on your target hardware.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

525 CHAPTER 26 UART routines for embOSView

26.7 UART routines for embOSView
If the board support package does not come with the necessary UART routines for em-
bOSView you can easily implement them by yourself. The UART communication is handled
via the UART interrupt. With some devices there are separate interrupt handler for Rx and
Tx but the following example code assumes there is one UART interrupt handler only. You
will need to initialize the UART to the same settings as configured in embOSView. Per de-
fault this is 38400 baud and 8N1.

void UART_IRQHandler(void) {
 OS_U8 c;
 //
 // If this is a Rx interrupt read character
 // from receive register and call OS_COM_OnRx().
 //
 if (UART_STATUS_REGISTER & UART_RX) {
 c = UART_RX_REGISTER
 OS_COM_OnRx(c);
 }
 //
 // If this is a Tx interrupt call OS_COM_OnTx()
 // and disable further Tx interrupts.
 //
 if (UART_STATUS_REGISTER & UART_TX) {
 OS_COM_OnTx();
 UART_CONTROL_REGISTER &= ~UART_TX_INT_ENABLE;
 }
}

void OS_COM_Send1(OS_U8 c) {
 //
 // Write character to UART transmit register
 // and enable Tx interrupt
 //
 UART_TX_REGISTER = c;
}

void UART_Init(void) {
 //
 // Initialize UART register for 38400 baud and 8N1.
 // Enable UART Rx interrupt (but not Tx interrupt).
 //
 UART_CONTROL_REGISTER = UART_RX_INT_ENABLE;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 27

System Variables

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

527 CHAPTER 27 Introduction

27.1 Introduction
The system variables are described here for a deeper understanding of how embOS works
and to make debugging easier.

Not all embOS internal variables are explained here as they are not required to use embOS.
Your application should not rely on any of the internal variables. Only the documented API
functions are guaranteed to remain unchanged in future versions of embOS.

These variables are accessible, for instance using an IDE’s watch feature, but they should
only be altered by embOS. However, some of these variables can be very useful.

Note

Do not alter any system variables or OS object structures!

Example

static OS_MUTEX Mutex;
static int c;
static OS_TIME t;

void foo(void) {
 Mutex.UseCnt = 0; // Invalid
 c = Mutex.UseCnt; // Ok, but not recommended
 c = OS_MUTEX_GetValue(&Mutex); // Ok

 OS_Global.Time = 1; // Invalid
 t = OS_Global.Time; // Ok, but not recommended
 t = OS_TIME_Get_Cycles(); // Ok
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

528 CHAPTER 27 OS_Global

27.2 OS_Global
OS_Global is a structure which includes embOS internal variables. It contains information
about the current state of the embOS and its tasks and software timers. The members of
OS_Global may vary depending on the embOS port and used library mode.

27.2.1 OS_Global.pCurrentTask
A pointer to the currently scheduled task.

OS_Global.pCurrentTask can be retrieved using the embOS API OS_TASK_GetID().

27.2.2 OS_Global.pTask
This is a pointer to the first object in a linked list of all existing tasks, ordered by their
priority. Each task control block contains a member OS_TASK.pNext which points to the
next task in the list.

OS_Global.pTask can be retrieved by passing the value 0 to the embOS API OS_TASK_In-
dex2Ptr().

27.2.3 OS_Global.pTimer
This is a pointer to the first object in a linked list of all running software timers, ordered by
their expiration time. Each software timer control block contains a member OS_TIMER.pNext
which points to the next software timer in the list.

27.2.4 OS_Global.Time
This is the time variable which contains a timestamp of the system time in cycles. It does not
represent the current system time in cycles, but contains the timestamp that was calculated
the last time the scheduler was executed.

The current system time in cycles can be retrieved using the embOS API OS_TIME_Get_Cy-
cles().

27.2.5 OS_Global.TimeDex
For internal use only. Contains the earliest time stamp (in cycles) at which the scheduler
needs to perform any upcoming time-based action (i.e. the activation of a task or the
execution of a software timer). After performing the respective action, the scheduler assigns
a time stamp to OS_Global.TimeDex that indicates when the next time-based action is due.
When no time-based action is pending, a token value is assigned to OS_Global.TimeDex,
which therefore should not be used by the application.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

529 CHAPTER 27 OS information routines

27.3 OS information routines

27.3.1 API functions

Routine Description
m

ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_INFO_GetCPU() Returns the CPU name. ● ● ● ● ●
OS_INFO_GetLibMode() Returns the library mode. ● ● ● ● ●
OS_INFO_GetLibName() Returns the library name. ● ● ● ● ●
OS_INFO_GetModel() Returns the memory model name. ● ● ● ● ●

OS_INFO_GetTimerFreq()
Returns the hardware counter frequency
in hertz. ● ● ● ● ●

OS_INFO_GetVersion() Returns the embOS version number. ● ● ● ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

530 CHAPTER 27 OS information routines

27.3.1.1 OS_INFO_GetCPU()

Description

Returns the CPU name.

Prototype

char *OS_INFO_GetCPU(void);

Return value

Char pointer to a null-terminated string containing the CPU name.

Example

void PrintCPUName(void) {
 char* Name;

 Name = OS_INFO_GetCPU();
 printf("CPU: %s\n", Name);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

531 CHAPTER 27 OS information routines

27.3.1.2 OS_INFO_GetLibMode()

Description

Returns the library mode.

Prototype

char *OS_INFO_GetLibMode(void);

Return value

Char pointer to a null-terminated string containing the embOS library mode, e.g. “DP”, “R”
or “SP”.

Example

void PrintLibMode(void) {
 char* Mode;

 Mode = OS_INFO_GetLibMode();
 printf("Library Mode: %s\n", Mode);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

532 CHAPTER 27 OS information routines

27.3.1.3 OS_INFO_GetLibName()

Description

Returns the library name.

Prototype

char *OS_INFO_GetLibName(void);

Return value

Char pointer to a null-terminated string containing the complete embOS library name,
memory model and library mode, e.g. “v7vLDP”.

Example

void PrintLibName(void) {
 char* LibName;

 LibName = OS_INFO_GetLibName();
 printf("Full Library Name: %s\n", LibName);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

533 CHAPTER 27 OS information routines

27.3.1.4 OS_INFO_GetModel()

Description

Returns the memory model name.

Prototype

char *OS_INFO_GetModel(void);

Return value

Char pointer to a null-terminated string containing the embOS memory model string, e.g.
“v7vL”.

Example

void PrintMemModel(void) {
 char* Model;

 Model = OS_INFO_GetModel();
 printf("Memory Model: %s\n", Model);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

534 CHAPTER 27 OS information routines

27.3.1.5 OS_INFO_GetTimerFreq()

Description

Returns the hardware counter frequency in hertz.

Prototype

OS_U32 OS_INFO_GetTimerFreq(void);

Return value

The hardware counter timer frequency in hertz as a 32-bit value.

Additional information

OS_INFO_GetTimerFreq() returns the timer frequency that was set with OS_TIME_Con-
figSysTimer(). This value is the frequency at which the hardware counter counts, the
amount of cycles per second. It can be used to convert counter cycles into e.g. seconds
or microseconds.

Example

void Task(void) {
 OS_U64 t, t0;
 OS_U32 TimerFreq;
 OS_U64 Result;

 TimerFreq = OS_INFO_GetTimerFreq();
 t0 = OS_TIME_Get_Cycles();
 DoSomething();
 t = OS_TIME_Get_Cycles() - t0;
 // Result in nanoseconds
 Result = (t * 1000000000) / TimerFreq;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

535 CHAPTER 27 OS information routines

27.3.1.6 OS_INFO_GetVersion()

Description

Returns the embOS version number.

Prototype

OS_UINT OS_INFO_GetVersion(void);

Return value

Returns the embOS version number, e.g. “50801” for embOS version 5.8.1. The version
number is defined as: Version = (Major * 10000) + (Minor * 100) + Patch + (Revision * 25)

Example

void PrintOSVersion(void) {
 OS_U16 Version;
 OS_U8 Major;
 OS_U8 Minor;
 OS_U8 Patch;
 OS_U8 Revision;

 Version = OS_INFO_GetVersion();
 Major = Version / 10000u;
 Minor = (Version / 100u) % 100u;
 Patch = (Version % 100u) % 25u;
 Revision = (Version % 100u) / 25u;

 printf("embOS V%u.%u.%u.%u\n", Major, Minor, Patch, Revision);
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 28

Source Code

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

537 CHAPTER 28 Introduction

28.1 Introduction
embOS-Ultra is available in two versions:
• Object code package: embOS object code libraries.
• Source code package: embOS object code libraries + embOS source code.

Both packages come with board support packages including hardware initialization as
source code.

The object code package offers the full functionality of embOS including all supported mem-
ory models of the compiler. However, the object code package does not allow source-level
debugging of the library routines and the kernel.

The full source code package gives you complete flexibility:
• All embOS features can be individually enabled and disabled.
• Different compile options give you full control, e.g. to use the most suitable optimization

settings for a specific application.
• Use potential optimizations across C files which cannot be done with object code

libraries.
• Debug the entire system by using the embOS source code in your project which gives

the ability to step through all embOS API functions and kernel code.

The source code distribution of embOS contains the following additional files:
• The CPU folder contains all CPU and compiler-specific source code and header files used

for building the embOS libraries. Generally, you should not modify any of the files in
the CPU folder.

• The GenOSSrc folder contains all generic embOS sources.
• The embOS libraries can be rebuild with the additional batch files in the root folder. All

of them are described in the following section.

Note

You must not modify the embOS sources as we guarantee faultless operation with
unmodified embOS sources only. If source modifications are necessary please contact
the embOS support first.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

538 CHAPTER 28 Building embOS libraries

28.2 Building embOS libraries
The embOS libraries can only be built if you have licensed a source code package of embOS.

In the root path of embOS, you will find a DOS batch file Prep.bat, which needs to be
modified to match the installation directory of your C compiler. Once this is done, you can
call the batch file M.bat to build all embOS libraries and RTOS.h for your CPU.

The build process should run without any error or warning message. If the build process
reports any problem, check the following:
• Are you using the same compiler version as mentioned in the file Release.html?
• Can you compile a simple test file after running Prep.bat and does it really use the

compiler version you have specified?
• Is there anything mentioned about possible compiler warnings in the Release.html?

If you still have a problem, let us know.

The whole build process is controlled with a small number of batch files which are located
in the root directory of your source code package:
• ASM.bat: This batch file calls the assembler and is used for assembling the assembly

part of embOS which contains the task switch functionality. This file is called from the
embOS internal batch file CC_OS.bat and cannot be called directly.

• ASM_CPU.bat: This batch file is used to compile additional assembler files in the CPU/
OSSrcCPU folder. ASM_CPU.bat cannot be called directly.

• CC.bat: This batch file calls the compiler and is used for compiling one embOS source
file without debug information output. Most compiler options are defined in this file and
generally should not be modified. For your purposes, you might activate debug output
and may also modify the optimization level. All modifications should be done with care.
This file is called from the embOS internal batch file CC_OS.bat and cannot be called
directly.

• CC_CPU.bat: This batch file is used to compile additional C files in the CPU/OSSrcCPU
folder. CC_CPU.bat cannot be called directly.

• CCD.bat: This batch file calls the compiler and is used for compiling OS_Global.c which
contains all global variables. All compiler settings are identical to those used in CC.bat,
except debug output is activated to enable debugging of global variables when using
embOS libraries. This file is called from the embOS internal batch file CC_OS.bat and
cannot be called directly.

• Clean.bat: Deletes the entire output of the embOS library build process. It is called
during the build process, before new libraries are generated. It deletes the Start folder.
Therefore, be careful not to call this batch file accidentally. This file is called initially by
M.bat during the build process of all libraries.

• M.bat: This batch file must be called to rebuild all embOS libraries and RTOS.h. It
initially calls Clean.bat and therefore deletes the previous libraries and RTOS.h.

• M1.bat: This batch file is called from M.bat and is used for building one specific embOS
library, it cannot be called directly.

• MakeH.bat: Builds the embOS header file RTOS.h which is composed from the CPU/
compiler-specific part OS_Chip.h and the generic part OS_RAW.h. RTOS.h is output in
the subdirectory Start\Inc.

• Prep.bat: Sets up the environment for the compiler, assembler, and linker. Ensure
that this file sets the path and additional include directories which are needed for your
compiler. This batch file is the only one which might require modifications to build the
embOS libraries. This file is called from M.bat during the build process of all libraries.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

539 CHAPTER 28 Compile time switches

28.3 Compile time switches
Many features of embOS may be modified using compile-time switches. With each embOS
distribution, these switches are preset to appropriate values for each embOS library mode.
In case a configuration set is desired that was not covered by the shipped embOS libraries,
the compile-time switches may be modified accordingly to create customized configurations
on your own authority. The embOS source code is necessary in order to do so.

Note

You must not use these compile time switches with the embOS object code package.

According modifications must not be done to OS_RAW.h or RTOS.h, instead compile-time
switches must be added to OS_Config.h or configured as preprocessor definitions. Subse-
quently, the embOS sources must be recompiled to reflect the modified switches. In case
of doubt, please contact the embOS support for assistance. The default values depend on
the used library mode and are given in the following table for library mode OS_LIBMODE_DP.

Compile time switch Description
Permitted

values
Default

OS_DEBUG
Enables runtime debug
checks

0: Disabled
1: Enabled 1

OS_SUPPORT_STACKCHECK Support for stack checks

0: Disabled
1: Enabled
2: Stack
check with
config-
urable
stack check
limit

1

OS_STACKCHECK_LIMIT
Percentage of stack us-
age that will be detected
as a stack overflow error

1-100 100

OS_SUPPORT_PROFILE
Support for profiling in-
formation

0: Disabled
1: Enabled 1

OS_SUPPORT_TICKSTEP
Support for embOSView
tick step

0: Disabled
1: Enabled 1

OS_SUPPORT_TRACE
Support for embOSView
trace

0: Disabled
1: Enabled 0

OS_SUPPORT_TRACE_API
Support for API trace
tools like SystemView

0: Disabled
1: Enabled 0

OS_SUPPORT_TRACE_API_END
Generates additional
Trace API-End events

0: Disabled
1: Enabled 1

OS_SUPPORT_RR
Support for Round-Robin
scheduling

0: Disabled
1: Enabled 1

OS_SUPPORT_TRACKNAME
Support for task and OS
object names

0: Disabled
1: Enabled 1

OS_SUPPORT_SAVE_RESTORE_HOOK
Support for task context
extensions

0: Disabled
1: Enabled 1

OS_SUPPORT_STAT
Support for task statistic
information

0: Disabled
1: Enabled 1

OS_INIT_EXPLICITLY
Explicitly initialization of
internal embOS variables

0: Disabled
1: Enabled 0

OS_SUPPORT_TIMER
Support for embOS soft-
ware timers

0: Disabled
1: Enabled 1

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

540 CHAPTER 28 Compile time switches

Compile time switch Description
Permitted

values
Default

OS_SUPPORT_ISRENTRY_CALLBACK

Support for ISR entry
callback. This switch
might also be needed to
be set in port specific as-
sembler files.

0: Disabled
1: Enabled 1

OS_SUPPORT_PERIPHERAL_POWER_CTRL
Support for peripheral
power control

0: Disabled
1: Enabled 1

OS_POWER_NUM_COUNTERS
Number of peripherals
which can be used > 0 5

OS_SPINLOCK_MAX_CORES
Number of cores that
should access a spinlock > 0 4

OS_COM_OUT_BUFFER_SIZE
embOSView communica-
tion buffer size

200 -
65535 200

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

541 CHAPTER 28 Source code project

28.4 Source code project
All embOS start projects use the embOS libraries instead of the embOS source code. Even
the embOS source shipment does not include a project which uses embOS sources.

It can be useful to have the embOS sources instead of the embOS library in a project, e.g.
for easier debugging. To do so you just have to exclude or delete the embOS library from
your project and add the embOS sources as described below.

The embOS sources consists of the files in the folder GenOSSrc, CPU and CPU\OSSrcCPU.
These files can be found in the embOS source shipment.

Folder Description

GenOSSrc embOS generic sources
CPU RTOS assembler file
CPU\OSSrcCPU CPU and compiler-specific files

Please add all C and assembler files from these folders to your project and add include
paths to these folders to your project settings. For some embOS ports it might be necessary
to add additional defines to your preprocessor settings. If necessary you will find more
information about it in the CPU and compiler-specific embOS manual.

28.4.1 Compiler options
While the embOS libraries are built with specific compiler options it is possible to build a
source code project with modified or additional compiler options. Some compiler options
could require changes in the embOS source code. In case of doubt please contact the
embOS support.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 29

Shipment

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

543 CHAPTER 29 Introduction

29.1 Introduction
embOS can be commercially licensed as object code package or source code package. The
source code package extends the object code package by including the embOS source code
in addition. The object code package is also available under SEGGER’s Friendly License
(SFL). This means embOS evaluation and non-commercial use is technically unrestricted.

The following table lists the included features with each package:

Features Object code package Source code package

embOS object code ● ●
embOS source code ●
embOSView - Profiling PC tool ● ●
embOS manual ● ●
CPU/Compiler specific manual ● ●
Release notes ● ●
embOS IDE plug-ins ● ●
SystemView instrumentation ● ●
Board support packages ● ●
Feature & maintenance updates ● ●
Technical support ● ●

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

https://www.segger.com/purchase/licensing/license-sfl/
https://www.segger.com/purchase/licensing/license-sfl/

544 CHAPTER 29 Object code package

29.2 Object code package

Directory File Description

embOSView
embOSView.exe and em-
bOSView related files

PC utility for runtime analysis
(Windows x64 version)

Start\BoardSupport
Board support packages in ven-
dor specific subdirectories

Start\Inc RTOS.h, BSP.h, OS_Config.h Include files for embOS
Start\Lib embOS libraries

Release_embOS.html embOS release history
Release_embOS_CPU_Compil-
er.html

embOS CPU and compiler-specif-
ic release history

SYSVIEW_embOS.txt SytemView ID description file
UM010xx_embOS_CPU_Compil-
er.pdf

embOS CPU and compiler-specif-
ic manual

UM01001_embOS.pdf embOS manual

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

545 CHAPTER 29 Source code package

29.3 Source code package
The source code package is identical to the object code package, but in addition also con-
tains the embOS source files and a set of batch files that can be used to rebuild the embOS
libraries.

Directory File Description

embOSView
embOSView.exe and em-
bOSView related files

PC utility for runtime analysis
(Windows x64 version)

CPU
OSCHIP.h, OS_Priv.h,
RTOS.asm

CPU- and compiler-specific files

CPU\OSSrcCPU
Additional CPU- and compil-
er-specific source files

GenOSSrc Generic source files

Start\BoardSupport
Board support packages in ven-
dor specific subdirectories

Start\Inc RTOS.h, BSP.h, OS_Config.h Include files for embOS
Start\Lib embOS libraries

Start\Src
Only used with embOS-Safe,
contains additional source files

Release_embOS.html embOS release history
Release_embOS_CPU_Compil-
er.html

embOS CPU and compiler-specif-
ic release history

SYSVIEW_embOS.txt SytemView ID description file
UM010xx_embOS_CPU_Compil-
er.pdf

embOS CPU and compiler-specif-
ic manual

UM01001_embOS.pdf embOS manual

*.bat
Batch files to rebuild the embOS
libraries

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 30

Update

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

547 CHAPTER 30 Introduction

30.1 Introduction
This chapter describes how to update an existing project with a newer embOS version.
embOS ports are available for different CPUs and compiler. Each embOS port has its own
version number.

SEGGER updates embOS ports to a newer software version for different reasons. This is
done to fix problems or to include the newest embOS features.

Customers which have a valid support and update agreement will be automatically informed
about a new software version via email and may subsequently download the updated soft-
ware from myaccount.segger.com. The version information and release history is also avail-
able at www.segger.com.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

https://myaccount.segger.com
https://www.segger.com

548 CHAPTER 30 How to update an existing project

30.2 How to update an existing project
If an existing project should be updated to a later embOS version, only files have to be
replaced.

Note

Do not use embOS files from different embOS versions in your project!

You should have received the embOS update as a zip file. Unzip this file to the location of
your choice and replace all embOS files in your project with the newer files from the embOS
update shipment. To do so it is good practice to remove all embOS files from the project
and to add then the embOS files from the most recent embOS shipment. embOS files in
the most recent embOS shipment could be removed, renamed or new files could be added.

For an easier update procedure, we recommend to not modify the files shipped with embOS.
In case these need to be updated, you will have to merge your modifications into the most
recent shipment version of that file, or else your modifications will be lost.

In general, the following files have to be updated:

File Location Description

embOS libraries Start\Lib embOS object code libraries
RTOS.h Start\Inc embOS header file
OS_Config.h Start\Inc embOS configuration header file
BSP.h Start\Inc Board support header file
RTOSInit.c Start\BoardSupport\…\Setup BSP related routines
OS_Error.c Start\BoardSupport\…\Setup embOS error routine
Additional files Start\BoardSupport\…\Setup BSP specific files

If the embOS sources are used in a project the following files needs to be updated as well:

Location Description

GenOSSrc embOS generic sources
CPU
CPU\OSSrcCPU

embOS CPU and compiler specific sources

30.2.1 My project does not work anymore. What did I do
wrong?

One common mistake is to only update the embOS library but not RTOS.h. You should
always ensure the embOS library and RTOS.h belong to the same embOS port version. Also,
please ensure further embOS files like OS_Error.c and RTOSInit.c have been updated to
the same version. If you are still experiencing problems, please do not hesitate to contact
the embOS support (see Contacting support on page 558).

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

549 CHAPTER 30 embOS API migration guide

30.3 embOS API migration guide
Most embOS API names and some object type names have changed between embOS V4
and V5. The legacy embOS API names can still be used and there is no need to update
the user application. embOS is still 100% API compatible. However, for new projects the
V5 API should be used.

If you want to replace the V4 with the V5 API in an existing application you can easily replace
all API calls. SEGGER provides a CSV file on request which can be used to automatically
replace all API calls.

Please be aware with some API the parameter order has changed. This needs to be adapted
manually.
OS_TASK_CREATE()/ OS_TASK_CREATEEX(): The order of the parameters Priority and
pRoutine has changed.
OS_TASKEVENT_Set(): The order of the parameters pTask and Event has changed.
OS_MEMPOOL_Alloc()/ OS_MEMPOOL_AllocBlocked()/ OS_MEMPOOL_AllocTimed(): The
parameter Purpose does not longer exist.

V4 V5

OS_Config_Stop() OS_ConfigStop()

OS_InitKern() OS_Init()

OS_AddExtendTaskContext() OS_TASK_AddContextExtension()

OS_AddTerminateHook() OS_TASK_AddTerminateHook()

OS_CREATETASK() OS_TASK_CREATE()

OS_CreateTask() OS_TASK_Create()

OS_CREATETASK_EX() OS_TASK_CREATEEX()

OS_CreateTaskEx() OS_TASK_CreateEx()

OS_Delay() OS_TASK_Delay()

OS_DelayUntil() OS_TASK_DelayUntil()

OS_Delayus() OS_TASK_Delay_us()

OS_GetTaskName() OS_TASK_GetName()

OS_GetNumTasks() OS_TASK_GetNumTasks()

OS_GetPriority() OS_TASK_GetPriority()

OS_GetSuspendCnt() OS_TASK_GetSuspendCnt()

OS_GetTaskID() OS_TASK_GetID()

OS_GetTimeSliceRem() OS_TASK_GetTimeSliceRem()

OS_IsTask() OS_TASK_IsTask()

OS_TaskIndex2Ptr() OS_TASK_Index2Ptr()

OS_RemoveAllTerminateHooks() OS_TASK_RemoveAllTerminateHooks()

OS_RemoveTerminateHook() OS_TASK_RemoveTerminateHook()

OS_Resume() OS_TASK_Resume()

OS_ResumeAllTasks() OS_TASK_ResumeAll()

OS_ExtendTaskContext() OS_TASK_SetContextExtension()

OS_SetDefaultTaskContextExtension() OS_TASK_SetDefaultContextExtension()

OS_SetDefaultTaskStartHook() OS_TASK_SetDefaultStartHook()

OS_SetInitialSuspendCnt() OS_TASK_SetInitialSuspendCnt()

OS_SetTaskName() OS_TASK_SetName()

OS_SetPriority() OS_TASK_SetPriority()

OS_SetTimeSlice() OS_TASK_SetTimeSlice()

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

550 CHAPTER 30 embOS API migration guide

V4 V5

OS_Suspend() OS_TASK_Suspend()

OS_SuspendAllTasks() OS_TASK_SuspendAll()

OS_TerminateTask() OS_TASK_Terminate()

OS_WakeTask() OS_TASK_Wake()

OS_Yield() OS_TASK_Yield()

OS_CREATETIMER() OS_TIMER_CREATE()

OS_CreateTimer() OS_TIMER_Create()

OS_CREATETIMER_EX() OS_TIMER_CREATEEX()

OS_CreateTimerEx() OS_TIMER_CreateEx()

OS_DeleteTimer() OS_TIMER_Delete()

OS_DeleteTimerEx() OS_TIMER_DeleteEx()

OS_GetpCurrentTimer() OS_TIMER_GetCurrent()

OS_GetpCurrentTimerEx() OS_TIMER_GetCurrentEx()

OS_GetTimerPeriod() OS_TIMER_GetPeriod()

OS_GetTimerPeriodEx() OS_TIMER_GetPeriodEx()

OS_GetTimerValue() OS_TIMER_GetRemainingPeriod()

OS_GetTimerValueEx() OS_TIMER_GetRemainingPeriodEx()

OS_GetTimerStatus() OS_TIMER_GetStatus()

OS_GetTimerStatusEx() OS_TIMER_GetStatusEx()

OS_RetriggerTimer() OS_TIMER_Restart()

OS_RetriggerTimerEx() OS_TIMER_RestartEx()

OS_SetTimerPeriod() OS_TIMER_SetPeriod()

OS_SetTimerPeriodEx() OS_TIMER_SetPeriodEx()

OS_StartTimer() OS_TIMER_Start()

OS_StartTimerEx() OS_TIMER_StartEx()

OS_StopTimer() OS_TIMER_Stop()

OS_StopTimerEx() OS_TIMER_StopEx()

OS_TriggerTimer() OS_TIMER_Trigger()

OS_TriggerTimerEx() OS_TIMER_TriggerEx()

OS_ClearEvents() OS_TASKEVENT_Clear()

OS_ClearEventsEx() OS_TASKEVENT_ClearEx()

OS_GetEventsOccurred() OS_TASKEVENT_Get()

OS_WaitEvent() OS_TASKEVENT_GetBlocked()

OS_WaitSingleEvent() OS_TASKEVENT_GetSingleBlocked()

OS_WaitSingleEventTimed() OS_TASKEVENT_GetSingleTimed()

OS_WaitEventTimed() OS_TASKEVENT_GetTimed()

OS_SignalEvent() OS_TASKEVENT_Set()

OS_EVENT_Wait() OS_EVENT_GetBlocked()

OS_EVENT_WaitMask() OS_EVENT_GetMaskBlocked()

OS_EVENT_WaitMaskTimed() OS_EVENT_GetMaskTimed()

OS_EVENT_WaitTimed() OS_EVENT_GetTimed()

OS_CreateRSema() OS_MUTEX_Create()

OS_CREATERSEMA() OS_MUTEX_Create()

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

551 CHAPTER 30 embOS API migration guide

V4 V5

OS_DeleteRSema() OS_MUTEX_Delete()

OS_GetResourceOwner() OS_MUTEX_GetOwner()

OS_GetSemaValue() OS_MUTEX_GetValue()

OS_Request() OS_MUTEX_Lock()

OS_Use() OS_MUTEX_LockBlocked()

OS_UseTimed() OS_MUTEX_LockTimed()

OS_Unuse() OS_MUTEX_Unlock()

OS_CREATECSEMA() OS_SEMAPHORE_CREATE()

OS_CreateCSema() OS_SEMAPHORE_Create()

OS_DeleteCSema() OS_SEMAPHORE_Delete()

OS_GetCSemaValue() OS_SEMAPHORE_GetValue()

OS_SignalCSema() OS_SEMAPHORE_Give()

OS_SignalCSemaMax) OS_SEMAPHORE_GiveMax()

OS_SetCSemaValue() OS_SEMAPHORE_SetValue()

OS_CSemaRequest() OS_SEMAPHORE_Take()

OS_WaitCSema() OS_SEMAPHORE_TakeBlocked()

OS_WaitCSemaTimed() OS_SEMAPHORE_TakeTimed()

OS_ClearMB() OS_MAILBOX_Clear()

OS_CreateMB() OS_MAILBOX_Create()

OS_DeleteMB() OS_MAILBOX_Delete()

OS_GetMailCond() OS_MAILBOX_Get()

OS_GetMailCond1() OS_MAILBOX_Get1()

OS_GetMail() OS_MAILBOX_GetBlocked()

OS_GetMail1() OS_MAILBOX_GetBlocked1()

OS_GetMessageCnt() OS_MAILBOX_GetMessageCnt()

OS_GetMailTimed() OS_MAILBOX_GetTimed()

OS_GetMailTimed1() OS_MAILBOX_GetTimed1()

OS_Mail_GetPtrCond() OS_MAILBOX_GetPtr()

OS_Mail_GetPtr() OS_MAILBOX_GetPtrBlocked()

OS_PeekMail() OS_MAILBOX_Peek()

OS_Mail_Purge() OS_MAILBOX_Purge()

OS_PutMailCond() OS_MAILBOX_Put()

OS_PutMailCond1() OS_MAILBOX_Put1()

OS_PutMail() OS_MAILBOX_PutBlocked()

OS_PutMail1() OS_MAILBOX_PutBlocked1()

OS_PutMailFrontCond() OS_MAILBOX_PutFront()

OS_PutMailFrontCond1() OS_MAILBOX_PutFront1()

OS_PutMailFront() OS_MAILBOX_PutFrontBlocked()

OS_PutMailFront1() OS_MAILBOX_PutFrontBlocked1()

OS_PutMailTimed() OS_MAILBOX_PutTimed()

OS_PutMailTimed1() OS_MAILBOX_PutTimed1()

OS_WaitMail() OS_MAILBOX_WaitBlocked()

OS_WaitMailTimed() OS_MAILBOX_WaitTimed()

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

552 CHAPTER 30 embOS API migration guide

V4 V5

OS_Q_Clear() OS_QUEUE_Clear()

OS_Q_Create() OS_QUEUE_Create()

OS_Q_Delete() OS_QUEUE_Delete()

OS_Q_GetMessageCnt() OS_QUEUE_GetMessageCnt()

OS_Q_GetMessageSize() OS_QUEUE_GetMessageSize()

OS_Q_GetPtrCond() OS_QUEUE_GetPtr()

OS_Q_GetPtr() OS_QUEUE_GetPtrBlocked()

OS_Q_GetPtrTimed() OS_QUEUE_GetPtrTimed()

OS_Q_IsInUse() OS_QUEUE_IsInUse()

OS_Q_PeekPtr() OS_QUEUE_PeekPtr()

OS_Q_Purge() OS_QUEUE_Purge()

OS_Q_Put() OS_QUEUE_Put()

OS_Q_PutEx() OS_QUEUE_PutEx()

OS_Q_PutBlocked() OS_QUEUE_PutBlocked()

OS_Q_PutBlockedEx() OS_QUEUE_PutBlockedEx()

OS_Q_PutTimed() OS_QUEUE_PutTimed()

OS_Q_PutTimedEx() OS_QUEUE_PutTimedEx()

OS_CallISR() OS_INT_Call()

OS_CallNestableISR() OS_INT_CallNestable()

OS_EnterInterrupt() OS_INT_Enter()

OS_EnterIntStack() OS_INT_EnterIntStack()

OS_EnterNestableInterrupt() OS_INT_EnterNestable()

OS_InInterrupt() OS_INT_InInterrupt()

OS_LeaveInterrupt() OS_INT_Leave()

OS_LeaveIntStack() OS_INT_LeaveIntStack()

OS_LeaveNestableInterrupt() OS_INT_LeaveNestable()

OS_DecRI() OS_INT_DecRI()

OS_DI() OS_INT_Disable()

OS_INTERRUPT_MaskGlobal() OS_INT_DisableAll()

OS_EI() OS_INT_Enable()

OS_INTERRUPT_UnmaskGlobal() OS_INT_EnableAll()

OS_RestoreI() OS_INT_EnableConditional()

OS_IncDI() OS_INT_IncDI()

OS_INT_PRIO_PRESERVE() OS_INT_Preserve()

OS_INTERRUPT_PreserveGlobal() OS_INT_PreserveAll()

OS_INTERRUPT_PreserveAndMaskGlobal() OS_INT_PreserveAndDisableAll()

OS_INT_PRIO_RESTORE() OS_INT_Restore()

OS_INTERRUPT_RestoreGlobal() OS_INT_RestoreAll()

OS_EnterRegion() OS_TASK_EnterRegion()

OS_LeaveRegion() OS_TASK_LeaveRegion()

OS_GetTime() OS_TIME_GetTicks()

OS_GetTime32() OS_TIME_GetTicks32()

OS_Config_SysTimer() OS_TIME_ConfigSysTimer()

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

553 CHAPTER 30 embOS API migration guide

V4 V5

OS_Timing_GetCycles() OS_TIME_GetResult()

OS_Timing_Getus() OS_TIME_GetResultus()

OS_GetTime_us() OS_TIME_Getus()

OS_GetTime_us64() OS_TIME_Getus64()

OS_Timing_Start() OS_TIME_StartMeasurement()

OS_Timing_End() OS_TIME_StopMeasurement()

OS_AdjustTime() OS_TICKLESS_AdjustTime()

OS_GetNumIdleTicks() OS_TICKLESS_GetNumIdleTicks()

OS_StartTicklessMode() OS_TICKLESS_Start()

OS_StopTicklessMode() OS_TICKLESS_Stop()

OS_free() OS_HEAP_free()

OS_malloc() OS_HEAP_malloc()

OS_realloc() OS_HEAP_realloc()

OS_MEMF_Request() OS_MEMPOOL_Alloc()

OS_MEMF_Alloc() OS_MEMPOOL_AllocBlocked()

OS_MEMF_AllocTimed() OS_MEMPOOL_AllocTimed()

OS_MEMF_Create() OS_MEMPOOL_Create()

OS_MEMF_Delete() OS_MEMPOOL_Delete()

OS_MEMF_FreeBlock() OS_MEMPOOL_Free()

OS_MEMF_Release() OS_MEMPOOL_FreeEx()

OS_MEMF_GetBlockSize() OS_MEMPOOL_GetBlockSize()

OS_MEMF_GetMaxUsed() OS_MEMPOOL_GetMaxUsed()

OS_MEMF_GetNumBlocks() OS_MEMPOOL_GetNumBlocks()

OS_MEMF_GetNumFreeBlocks() OS_MEMPOOL_GetNumFreeBlocks()

OS_MEMF_IsInPool() OS_MEMPOOL_IsInPool()

OS_GetObjName() OS_DEBUG_GetObjName()

OS_SetObjName() OS_DEBUG_SetObjName()

OS_AddLoadMeasurement() OS_STAT_AddLoadMeasurement()

OS_STAT_GetTaskExecTime() OS_STAT_GetExecTime()

OS_GetLoadMeasurement() OS_STAT_GetLoadMeasurement()

OS_ClearTxActive() OS_COM_ClearTxActive()

OS_GetNextChar() OS_COM_GetNextChar()

OS_OnRx() OS_COM_OnRx()

OS_OnTx() OS_COM_OnTx()

OS_SendString() OS_COM_SendString()

OS_SetRxCallback() OS_COM_SetRxCallback()

OS_TraceEnable() OS_TRACE_Enable()

OS_TraceEnableAll() OS_TRACE_EnableAll()

OS_TraceEnableId() OS_TRACE_EnableId()

OS_TraceEnableFilterId() OS_TRACE_EnableFilterId()

OS_TraceDisable() OS_TRACE_Disable()

OS_TraceDisableAll() OS_TRACE_DisableAll()

OS_TraceDisableId() OS_TRACE_DisableId()

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

554 CHAPTER 30 embOS API migration guide

V4 V5

OS_TraceDisableFilterId() OS_TRACE_DisableFilterId()

OS_TraceData() OS_TRACE_Data()

OS_TraceDataPtr() OS_TRACE_DataPtr()

OS_TracePtr() OS_TRACE_Ptr()

OS_SetTraceAPI() OS_TRACE_SetAPI()

OS_TraceU32Ptr() OS_TRACE_U32Ptr()

OS_TraceVoid() OS_TRACE_Void()

OS_MPU_AddSanityCheckBuffer() OS_MPU_SetSanityCheckBuffer()

OS_GetIntStackBase() OS_STACK_GetIntStackBase()

OS_GetIntStackSize() OS_STACK_GetIntStackSize()

OS_GetIntStackSpace() OS_STACK_GetIntStackSpace()

OS_GetIntStackUsed() OS_STACK_GetIntStackUsed()

OS_GetStackBase() OS_STACK_GetTaskStackBase()

OS_GetStackSize() OS_STACK_GetTaskStackSize()

OS_GetStackSpace() OS_STACK_GetTaskStackSpace()

OS_GetStackUsed() OS_STACK_GetTaskStackUsed()

OS_GetSysStackBase() OS_STACK_GetSysStackBase()

OS_GetSysStackSize() OS_STACK_GetSysStackSize()

OS_GetSysStackSpace() OS_STACK_GetSysStackSpace()

OS_GetSysStackUsed() OS_STACK_GetSysStackUsed()

OS_SetStackCheckLimit() OS_STACK_SetCheckLimit()

OS_GetStackCheckLimit() OS_STACK_GetCheckLimit()

OS_GetCPU() OS_INFO_GetCPU()

OS_GetLibMode() OS_INFO_GetLibMode()

OS_GetLibName() OS_INFO_GetLibName()

OS_GetModel() OS_INFO_GetModel()

OS_GetVersion() OS_INFO_GetVersion()

Changed object types:

V4 V5

OS_RSEMA OS_MUTEX

OS_CSEMA OS_SEMAPHORE

OS_Q OS_QUEUE

OS_Q_SRCLIST OS_QUEUE_SRCLIST

OS_MEMF OS_MEMPOOL

OS_TASK_EVENT OS_TASKEVENT

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

555 CHAPTER 30 embOS-Ultra migration guide

30.4 embOS-Ultra migration guide
This chapter discusses changes in embOS-Ultra that should be considered when migrating
an application from embOS to embOS-Ultra. The embOS-Ultra API is fully compatible with
embOS, but does not include the tickless API of embOS. Furthermore, some API functions
might differ slightly from their embOS counterparts. The following paragraph describes
these differences in detail.

30.4.1 Modifications to RTOSInit.c
When migrating an application from embOS to embOS-Ultra, the file RTOSInit.c file needs
to be modified as follows:
• Calling OS_TIME_ConfigSysTimer(), which was optional with embOS since the passed

settings were required for specific functionality only, became mandatory with embOS-
Ultra, for these settings are now required regardless of the specific functionality in use.

• The OS_SYSTIMER_CONFIG structure that is used to pass settings to
OS_TIME_ConfigSysTimer() requires one member only with embOS-Ultra. That
member holds the frequency of the hardware counter. The callbacks that
were passed to OS_TIME_ConfigSysTimer() (e.g. _OS_GetHWTimerCycles() and
_OS_GetHWTimer_IntPending()) are not used with embOS-Ultra and therefore should
be removed.

• The functions BSP_OS_GetCycles() and BSP_OS_StartTimer() need to be
implemented. See Board Support Packages on page 509.

• OS_InitHW() needs to initialize and start the hardware timer for its maximum period
and start the hardware counter.

• For communication with embOSView via J-Link, embOS periodically calls
JLINKMEM_Process() or JLINKDCC_Process() from the system tick handler. Since the
system tick tick handler does not occur periodically with embOS-Ultra, a software timer
should be used instead to call either of these functions.

30.4.2 Critical regions
Both with embOS and embOS-Ultra, the system tick interrupt is executed even in critical
regions. It can not cause a task switch or the execution of a software timer during that
region’s lifetime, but with embOS, the system time is still incremented with each system
tick interrupt. With embOS-Ultra, on the other hand, critical regions prevent updates of the
current system time, too. To still be able to accurately detect timeouts, applications need
to ensure that any critical region entered by them is shorter than the maximum duration
of the used hardware counter.

30.4.3 Delays and Timeouts
With embOS, the expiration of timeouts and delays is strictly aligned to the periodic system
tick. The system may only detect the expiration of timeouts and delays and schedule the
related tasks or software timers when a system tick interrupt occurs. This means that if, for
example, two tasks call OS_TASK_Delay(10) between the same two system tick interrupts,
these delays will expire simultaneously at the 10th consecutive system tick interrupt.

embOS-Ultra, on the other hand, can handle cycle accurate timeouts and delays: If a task’s
or software timer’s timeout or delay expires at a specific point in time, the OS sets a hard-
ware timer to generate an ISR at that time, ensuring the scheduler will be executed when
needed. This means that if two tasks call e.g. OS_TASK_Delay_ms(10) between two system
tick interrupts, both of these delays start at different system times (in cycles) and thus will
expire at different system times, too. Consequently, to resume these two tasks, two distinct
system tick interrupts are required (except in cases where the the execution of the first
interrupt handler takes longer than the remaining delay period of the second task, in which
case both delays’ expirations are detected at once by the operating system). If this should
be avoided by the application, consider using OS_TASK_Delay(), which aligns the expira-
tion time to full milliseconds, instead of OS_TASK_Delay_ms(). For software timers, using

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

556 CHAPTER 30 embOS-Ultra migration guide

OS_TIMER_Create() instead of OS_TIMER_Create_ms() will analogously align the software
timers’ expiration time to full milliseconds.

30.4.4 Deprecated API functions
Although embOS-Ultra is API-compatible to the regular embOS, some embOS API functions
do no longer serve a specific purpose with embOS-Ultra and therefore should not be used
when writing new applications. These API functions are listed below:

OS_TICK_AddHook() and OS_TICK_RemoveHook()

Due to the lack of a periodic system tick, the embOS system tick hook API is deprecated
with embOS-Ultra. To still ensure compatibility with embOS applications, embOS-Ultra em-
ulates tick hooks by creating a software timer that executes all registered tick hooks at a
millisecond periodicity. For new applications, we suggest to use software timers directly.

OS_TICK_Config(), OS_TICK_HandleEx() and OS_TICK_HandleNoHook()

Since embOS-Ultra does not have a periodic system tick, OS_TICK_Config() will do noth-
ing and the functions OS_TICK_HandleEx() and OS_TICK_HandleNoHook() will just call
OS_TICK_Handle().

OS_TIME_Convertms2Ticks() and OS_TIME_ConvertTicks2ms()

Since embOS-Ultra does not have a periodic system tick, these functions will simply assume
a 1:1 ratio between milliseconds and system tick interrupts. Consequently, they just return
the argument that was passed to them.

OS_TIME_GetInts(), OS_TIME_GetTicks() and OS_TIME_GetTicks32()

Since embOS-Ultra does not have a periodic system tick, requesting the count of system
ticks or system tick interrupts does not have a meaningful result. To still provide compat-
ibility with embOS applications, these functions will simply assume a 1:1 ratio between
milliseconds, system ticks, and system tick interrupts and thus return the current time in
milliseconds.

OS_TIME_Getus() and OS_TIME_Getus64()

With embOS-Ultra, the function OS_TIME_Get_us() replaces both OS_TIME_Getus() and
OS_TIME_Getus64(). The latter simply is mapped to OS_TIME_Get_us(), while the former
casts the return value of OS_TIME_Get_us() into a 32-bit value for compatibility with pre-
vious versions embOS.

30.4.5 Obsolete API functions

Tickless support

The tickless support API is not available with embOS-Ultra, since embOS-Ultra does not
have any periodical system tick, but perpetually executes a “tickless mode” anyways. Any
calls to the tickless API must be deleted when migrating from embOS to embOS-Ultra. If
the device needs to be reconfigured after low-power modes, OS_POWER_SetISREntryCall-
back() can be used for that purpose.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 31

Support

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

558 CHAPTER 31 Contacting support

31.1 Contacting support
If you need help or if any problem occurs the following describes how to contact the embOS
support.

If you are a registered embOS user there are different ways to contact the embOS support:
1. You can create a support ticket via email to ticket_embos@segger.com.*
2. You can create a support ticket at segger.com/ticket.*
3. You can send an email to support_embos@segger.com.*

Please include the following information in the email or ticket:
• Which embOS do you use? (Core, compiler).
• The embOS version.
• Your embOS license number.
• If you are unsure about the above information you can also use the name of the embOS

zip file (which contains the above information).
• A detailed description of the problem.
• Optionally a project with which we can reproduce the problem.

Note

Even without a valid license, feel free to contact our support e.g. in case of questions
during your evaluation of embOS or for hobbyist purposes.

Please also take a few moments to help us improve our services by providing a short
feedback once your support case has been solved.

31.1.1 Where can I find the license number?
The license number is part of the shipped zip file name. For example embOS_CortexM_GC-
C_SRC_V5.10.2.0_OS-01234_C1010320_200305.zip where OS-01234 is the license num-
ber.
The license number is also part of every *.c- and *.h-file header. For example, if you open
RTOS.h you should find the license number as with the example below:

--
Licensing information
Licensor: SEGGER Microcontroller GmbH
Licensed to: Customer name
Licensed SEGGER software: embOS
License number: OS-01234
License model: SSL
Licensed product: -
Licensed platform: Cortex-M, GCC
Licensed number of seats: 1
--
Support and Update Agreement (SUA)
SUA period: 2020-03-05 - 2021-03-05
Contact to extend SUA: sales@segger.com
-------------------------- END-OF-HEADER -----------------------------
File : RTOS.h
Purpose : Include file for the OS,
 to be included in every C-module accessing OS-routines

*By sending us an email your (personal) data will automatically be processed. For further information
please refer to our privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

mailto:ticket_embos@segger.com
https://segger.com/ticket
mailto:support_embos@segger.com

Chapter 32

Performance and Resource
Usage

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

560 CHAPTER 32 Introduction

32.1 Introduction
This chapter covers the performance and resource usage of embOS. It explains how to
benchmark embOS and contains information about the memory requirements in typical
systems which can be used to obtain sufficient estimates for most target systems.

High performance combined with low resource usage has always been a major design con-
sideration. embOS runs on 8/16/32/64-bit CPUs. Depending on which features are being
used, even single-chip systems with less than 4096 bytes ROM and 1024 bytes RAM can
be supported by embOS.

32.2 Resource Usage
The memory requirements of embOS-Ultra (RAM and ROM) differs depending on the used
features, CPU, compiler, and library model. The following values are typical values for a
32-bit CPU and are taken from embOS-Ultra Cortex-M ES V5.14.0.0 using embOS library
mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~2100 bytes
embOS kernel RAM ~110 bytes
Task control block RAM 48 bytes
Software timer RAM 32 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLocks RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 24 bytes
Fixed Block Size Memory Pool RAM 32 bytes

RAM resource measurement of embOS objects:

int main(void) {
 unsigned int TCB_size = sizeof(OS_TASK);
 unsigned int TIMER_size = sizeof(OS_TIMER);
 unsigned int TASKEVENT_size = 0u;
 unsigned int EVENT_size = sizeof(OS_EVENT);
 unsigned int MUTEX_size = sizeof(OS_MUTEX);
 unsigned int SEMAPHORE_size = sizeof(OS_SEMAPHORE);
 unsigned int RWLOCK_size = sizeof(OS_RWLOCK);
 unsigned int MAILBOX_size = sizeof(OS_MAILBOX);
 unsigned int QUEUE_size = sizeof(OS_QUEUE);
 unsigned int WD_size = sizeof(OS_WD);
 unsigned int MEMPOOL_size = sizeof(OS_MEMPOOL);
 return 0;
}

RAM and ROM resource measurement of embOS kernel:

With the embOS source code and the following defines it is possible to place all embOS
kernel and API code and data in specific memory sections.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

561 CHAPTER 32 Performance

Define GCC Example

OS_TEXT_SECTION_ATTRIBUTE __attribute__ ((section (“.ostext.”#name)))

OS_RODATA_SECTION_ATTRIBUTE __attribute__ ((section (“.osrodata.”#name)))

OS_DATA_SECTION_ATTRIBUTE __attribute__ ((section (“.osdata.”#name)))

OS_BSS_SECTION_ATTRIBUTE __attribute__ ((section (“.osbss.”#name)))

The memory map file tells the size of each section and with it the embOS kernel RAM and
ROM resource usage. For more details please contact the embOS support.

32.3 Performance
embOS is designed to perform fast context switches. This section describes two different
methods to calculate the execution time of a context switch from a task with lower priority
to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method uses the
embOS time measurement functions. Example programs for both methods are supplied in
the \Application directory of the embOS BSPs.

SEGGER uses these programs to benchmark embOS performance. You can use these ex-
amples to evaluate the benchmark results. Note that the actual performance depends on
many factors (CPU, clock speed, tool chain, memory model, optimization, etc.).

Please be aware that the number of cycles are not equal to the number of instructions.
Many instructions on ARM need two or three cycles even at zero wait-states, e.g. LDR needs
3 cycles.

The following table shows the context switch time for different CPUs. The applications for
measurement were compiled using embOS library mode OS_LIBMODE_XR.

Target embOS
CPU

Frequency
Time

CPU
Cycles

Renesas RZ embOS ARM ES V5.14.0.0 400 MHz 0.48 us 192
Xilinx XZ7Z007S embOS-Ultra ARM ES V5.14.0.0 600 MHz 0.43 us 258
ST STM32F769 embOS-Ultra Cortex-M ES V5.14.0.0 200 MHz 1.41 us 282

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

562 CHAPTER 32 Performance

32.3.1 Measurement with Port Pins and Oscilloscope
The example file OS_MeasureCST_Scope.c uses the BSP.c module to set and clear a port
pin. This allows measuring the context switch time with an oscilloscope. The following source
code is an excerpt from OS_MeasureCST_Scope.c:

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

/***
*
* HPTask
*/
static void HPTask(void) {
 while (1) {
 OS_TASK_Suspend(NULL); // Suspend high priority task
 BSP_ClrLED(0); // Stop measurement
 }
}

/***
*
* LPTask
*/
static void LPTask(void) {
 while (1) {
 OS_TASK_Delay(100);
 //
 // Display measurement overhead
 //
 BSP_SetLED(0);
 BSP_ClrLED(0);
 //
 // Perform measurement
 //
 BSP_SetLED(0); // Start measurement
 OS_TASK_Resume(&TCBHP); // Resume high priority task to force task switch
 }
}

/***
*
* main
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize hardware for embOS
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start multitasking
 return 0;
}

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

563 CHAPTER 32 Performance

32.3.1.1 Oscilloscope analysis
The context switch time is the time between switching the LED on and off. If the LED is
switched on with an active high signal, the context switch time is the time between the
rising and the falling edge of the signal. If the LED is switched on with an active low signal,
the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead of
switching the LED on and off. The time of this overhead is also displayed on the oscilloscope
as a small peak right before the task switch time display and must be subtracted from
the displayed context switch time. The picture below shows a simplified oscilloscope signal
with an active-low LED signal (low means LED is illuminated). There are switching points
to determine:
• A = LED is switched on for overhead measurement
• B = LED is switched off for overhead measurement
• C = LED is switched on right before context switch in low-prio task
• D = LED is switched off right after context switch in high-prio task

The time needed to switch the LED on and off in subroutines is marked as time tAB. The
time needed for a complete context switch including the time needed to switch the LED on
and off in subroutines is marked as time tCD.

The context switching time tCS is calculated as follows:

tCS = tCD - tAB

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

564 CHAPTER 32 Performance

32.3.1.2 Example measurements Renesas RZA1, Thumb2 code in RAM

Configuration

embOS Version: V5.14.0.0
Application: OS_MeasureCST_Scope.c
Hardware: Renesas RZA1
Executed in: internal RAM
CPU Mode: Thumb2
Compiler: SEGGER Embedded Studio V5.50d (SEGGER Compiler)
CPU frequency (fCPU): 400MHz
CPU clock cycle (tCycle): 1 / fCPU => 1 / 400MHz = 2.5ns

Measuring tAB and tCD

tAB is measured as 540ns.
The number of cycles calculates as follows:
CyclesAB = tAB / tCycle
= 540ns / 2.5ns
= 216 Cycles

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

565 CHAPTER 32 Performance

tCD is measured as 1020ns.
The number of cycles calculates as follows:
CyclesCD = tCD / tCycle
= 1020ns / 2.5ns
= 408 Cycles

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tCS = tCD - tAB = 408 Cycles - 216 Cycles = 192 Cycles
=> 192 Cycles (0.48us @400 MHz).

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

566 CHAPTER 32 Performance

32.3.2 Measurement with time measurement API
The context switch time may be measured with embOS’ time measurement functions. Refer
to section Time Measurement on page 344 for detailed information about the embOS time
measurement API.

The example OS_MeasureCST_HRTimer_embOSView.c uses hardware counter to measure
the context switch time from a low priority task to a high priority task and displays the
results on embOSView.

#include "RTOS.h"
#include <stdio.h>

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks
static OS_U64 Time;
static char acBuffer[100]; // Output buffer

/***
*
* HPTask()
*/
static void HPTask(void) {
 while (1) {
 OS_TASK_Suspend(NULL); // Suspend high priority task
 Time = OS_TIME_Get_Cycles() - Time; // Stop measurement
 }
}

/***
*
* LPTask()
*/
static void LPTask(void) {
 OS_U64 MeasureOverhead; // Time for Measure Overhead
 OS_U32 v; // Real context switching time

 while (1) {
 OS_TASK_Delay_ms(100);
 //
 // Measure overhead for time measurement so we can take this into account by
 // subtracting it. This is done inside the while()-loop to mitigate possible
 // effects of an instruction cache.
 //
 MeasureOverhead = OS_TIME_Get_Cycles();
 MeasureOverhead = OS_TIME_Get_Cycles() - MeasureOverhead;
 //
 // Perform actual measurements
 //
 Time = OS_TIME_Get_Cycles(); // Start measurement
 // Resume high priority task to force task switch
 OS_TASK_Resume(&TCBHP);
 // Calculate real context switching time (w/o overhead measurement)
 Time -= MeasureOverhead;
 // Convert cycles to nanoseconds
 v = (OS_U32)OS_TIME_ConvertCycles2ns(Time);
 sprintf(acBuffer, "Context switch time: %lu.%.3lu microseconds\r",
 (v / 1000uL), (v % 1000uL)); // Create result text
 OS_COM_SendString(acBuffer); // Print out result
 }
}

/***
*
* main()
*/
int main(void) {

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

567 CHAPTER 32 Performance

 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

The example program calculates and subtracts the measurement overhead. The results will
be transmitted to embOSView, so the example runs on every target that supports UART
communication to embOSView.

The example program OS_MeasureCST_HRTimer_Printf.c is identical to the example pro-
gram OS_MeasureCST_HRTimer_embOSView.c but displays the results with the printf()
function for those debuggers which support terminal output emulation.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 33

Supported Development Tools

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

569 CHAPTER 33 Reentrance

33.1 Reentrance
Overview

All routines that can be used from different tasks at the same time must be fully reentrant.
A routine is in use from the moment it is called until it returns or the task that has called it is
terminated. All routines supplied with your real-time operating system are fully reentrant. If
for some reason you need to have non-reentrant routines in your program that can be used
from more than one task, it is recommended to use a mutex to avoid this kind of problem.

C routines and reentrance

Normally, the C compiler accurately translates code that is fully reentrant. However, the
compiler may have options that force it to generate non-reentrant code. It is recommended
not to use these options, although it is possible to do so in certain circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are fully
reentrant. Everything else needs to be thought about carefully.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

570 CHAPTER 33 Compiler version

33.2 Compiler version
A specific embOS port has been developed with and for a specific C compiler and compiler
version for the selected target processor. Please refer to the CPU and compiler specific
release notes for details. embOS might work with the specified C compiler version only
because other compiler versions might use a different calling conventions (incompatible
object file formats) and therefore might be incompatible. However, if you prefer to use a
different C compiler version, please contact us and we will run our quality tests again with
the requested compiler version and confirm the compatibility.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

571 CHAPTER 33 C/C++ standard

33.3 C/C++ standard
embOS was developed in the C programming language. The embOS sources can be built
with every existing C standard.
The following table shows which C standards are supported:

C Standard Description

C90 Supported but // comments are not allowed in C90 and OS_Global.c
uses C99 designator for embOS RL78/RX IAR.

C99 Supported
C11 Supported
C17 Supported

The embOS sources are not designed to be built with a C++ compiler but a C++ application
can be used with embOS. To do so the embOS sources must be built with a C compiler and
the application with a C++ compiler. You can also simply use an embOS library in your
C++ project.
The following table shows which C++ standards are supported:

C++ Standard Description

C++98 Supported
C++03 Supported
C++11 Supported
C++14 Supported
C++17 Supported
C++20 Supported

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

Chapter 34

Glossary

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

573 CHAPTER 34

Term Definition

Cooperative multitasking

A scheduling system in which each task is allowed to
run until it gives up the CPU; an ISR can make a higher
priority task ready, but the interrupted task will be re-
turned to and finished first.

Counting semaphore
A type of semaphore that keeps track of multiple re-
sources. Used when a task must wait for something that
can be signaled more than once.

CPU Central Processing Unit. The “brain” of a microcontroller;
the part of a processor that carries out instructions.

Critical region A section of code which must be executed without inter-
ruption.

Event A message sent to a single, specified task that some-
thing has occurred. The task then becomes ready.

Interrupt Handler

Interrupt Service Routine. The routine is called by the
processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all regis-
ters).

ISR

Interrupt Service Routine. The routine is called by the
processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all regis-
ters).

Mailbox A data buffer managed by an RTOS, used for sending
messages to a task or interrupt handler.

Message An item of data (sent to a mailbox, queue, or other con-
tainer for data).

Multitasking

The execution of multiple software routines indepen-
dently of one another. The OS divides the processor’s
time so that the different routines (tasks) appear to be
happening simultaneously.

Mutex
A data structure used for managing resources by en-
suring that only one task has access to a resource at a
time.

NMI
Non-Maskable Interrupt. An interrupt that cannot be
masked (disabled) by software. Example: Watchdog
timer interrupt.

Preemptive multitasking

A scheduling system in which the highest priority task
that is ready will always be executed. If an ISR makes a
higher priority task ready, that task will be executed be-
fore the interrupted task is returned to.

Process

Processes are tasks with their own memory layout. Two
processes cannot normally access the same memory lo-
cations. Different processes typically have different ac-
cess rights and (in case of MMUs) different translation
tables.

Processor Short for microprocessor. The CPU core of a controller.

Priority The relative importance of one task to another. Every
task in an RTOS has a priority.

Priority inversion

A situation in which a high priority task is delayed while
it waits for access to a shared resource which is in use
by a lower priority task. A task with medium priority
in the ready state may run, instead of the high priori-
ty task. embOS avoids this situation by priority inheri-
tance.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

574 CHAPTER 34

Term Definition

Queue
Like a mailbox, but used for sending larger messages,
or messages of individual size, to a task or an interrupt
handler.

Ready Any task that is in “ready state” will be activated when
no other task with higher priority is in “ready state”.

Resource
Anything in the computer system with limited availabili-
ty (for example memory, timers, computation time). Es-
sentially, anything used by a task.

RTOS Real-time Operating System.

Running task Only one task can execute at any given time. The task
that is currently executing is called the running task.

Scheduler
The program section of an RTOS that selects the active
task, based on which tasks are ready to run, their rela-
tive priorities, and the scheduling system being used.

Semaphore A data structure used for synchronizing tasks.

Software timer A data structure which calls a user-specified routine af-
ter a specified delay.

Stack

An area of memory with LIFO storage of parameters,
automatic variables, return addresses, and other in-
formation that needs to be maintained across function
calls. In multitasking systems, each task normally has
its own stack.

Superloop
A program that runs in an infinite loop and uses no re-
al-time kernel. ISRs are used for real-time parts of the
software.

Task
A program running on a processor. A multitasking sys-
tem allows multiple tasks to execute independently from
one another.

Thread

Threads are tasks which share the same memory layout.
Two threads can access the same memory locations.
If virtual memory is used, the same virtual to physi-
cal translation and access rights are used(c.f. Thread,
Process)

Tick The OS hardware timer interrupt.

Time slice The time (in milliseconds) for which a task will be exe-
cuted until a round-robin task switch may occur.

UM01076 User Guide & Reference Manual for embOS-Ultra © 1995-2023 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Introduction and Basic Concepts
	What is embOS?
	Differences between embOS and embOS-Ultra
	embOS with periodic system tick
	embOS-Ultra with flexible system tick
	Hardware timer

	embOS ports
	Additional documentation
	Naming convention
	Version number convention

	Singletasking systems (superloop)
	Advantages & disadvantages
	Using embOS in superloop applications
	Migrating from superloop to multi-tasking

	Multitasking systems
	Task switches
	Cooperative multitasking
	Preemptive multitasking

	Threads vs. Processes
	Scheduling
	Priority-controlled scheduling algorithm
	Round-robin scheduling algorithm
	Priority inversion / priority inheritance
	Change of task status
	How task switching works
	Switching stacks

	Polling vs. Event based programming
	Synchronization and communication primitives
	Synchronization primitives
	Event driven primitives
	Communication primitives

	How the OS gains control
	Valid context for embOS API
	Blocking and Non blocking embOS API
	embOS API with timeout
	Usage
	Implementation details

	Static vs. Dynamic Memory Allocation
	Callback / Hook routines
	embOS library modes
	Available library modes
	OS_Config.h

	Kernel
	Introduction
	API functions
	OS_ConfigStop()
	OS_DeInit()
	OS_Init()
	OS_IsRunning()
	OS_Start()
	OS_Stop()

	Tasks
	Introduction
	Example of a task routine as an endless loop
	Example of a task routine that terminates itself

	Cooperative vs. preemptive task switches
	Disabling preemptive task switches for tasks of equal priority
	Completely disabling preemptions for a task

	Extending the task context
	Passing one parameter to a task during task creation
	Extending the task context individually at runtime
	Extending the task context by using own task structures

	API functions
	OS_TASK_AddContextExtension()
	OS_TASK_AddTerminateHook()
	OS_TASK_Create()
	OS_TASK_CreateEx()
	OS_TASK_Delay()
	OS_TASK_Delay_Cycles()
	OS_TASK_Delay_ms()
	OS_TASK_Delay_us()
	OS_TASK_DelayUntil()
	OS_TASK_DelayUntil_Cycles()
	OS_TASK_DelayUntil_ms()
	OS_TASK_DelayUntil_us()
	OS_TASK_GetID()
	OS_TASK_GetName()
	OS_TASK_GetNumTasks()
	OS_TASK_GetPriority()
	OS_TASK_GetStatus()
	OS_TASK_GetSuspendCnt()
	OS_TASK_GetTimeSliceRem()
	OS_TASK_IsTask()
	OS_TASK_Index2Ptr()
	OS_TASK_RemoveAllTerminateHooks()
	OS_TASK_RemoveTerminateHook()
	OS_TASK_Resume()
	OS_TASK_ResumeAll()
	OS_TASK_SetContextExtension()
	OS_TASK_SetDefaultContextExtension()
	OS_TASK_SetDefaultStartHook()
	OS_TASK_SetInitialSuspendCnt()
	OS_TASK_SetName()
	OS_TASK_SetPriority()
	OS_TASK_SetTimeSlice()
	OS_TASK_Suspend()
	OS_TASK_SuspendAll()
	OS_TASK_Terminate()
	OS_TASK_Wake()
	OS_TASK_Yield()

	Software Timers
	Introduction
	API functions
	OS_TIMER_Create()
	OS_TIMER_Create_Cycles()
	OS_TIMER_Create_ms()
	OS_TIMER_Create_us()
	OS_TIMER_CreateEx()
	OS_TIMER_CreateEx_Cycles()
	OS_TIMER_CreateEx_ms()
	OS_TIMER_CreateEx_us()
	OS_TIMER_Delete()
	OS_TIMER_DeleteEx()
	OS_TIMER_GetCurrent()
	OS_TIMER_GetCurrentEx()
	OS_TIMER_GetPeriod_Cycles()
	OS_TIMER_GetPeriod_ms()
	OS_TIMER_GetPeriod_us()
	OS_TIMER_GetPeriodEx_Cycles()
	OS_TIMER_GetPeriodEx_ms()
	OS_TIMER_GetPeriodEx_us()
	OS_TIMER_GetRemainingPeriod_Cycles()
	OS_TIMER_GetRemainingPeriod_ms()
	OS_TIMER_GetRemainingPeriod_us()
	OS_TIMER_GetRemainingPeriodEx_Cycles()
	OS_TIMER_GetRemainingPeriodEx_ms()
	OS_TIMER_GetRemainingPeriodEx_us()
	OS_TIMER_GetStatus()
	OS_TIMER_GetStatusEx()
	OS_TIMER_Restart()
	OS_TIMER_RestartEx()
	OS_TIMER_SetPeriod()
	OS_TIMER_SetPeriod_Cycles()
	OS_TIMER_SetPeriod_ms()
	OS_TIMER_SetPeriod_us()
	OS_TIMER_SetPeriodEx()
	OS_TIMER_SetPeriodEx_Cycles()
	OS_TIMER_SetPeriodEx_ms()
	OS_TIMER_SetPeriodEx_us()
	OS_TIMER_Start()
	OS_TIMER_StartEx()
	OS_TIMER_Stop()
	OS_TIMER_StopEx()
	OS_TIMER_Trigger()
	OS_TIMER_TriggerEx()

	Task Events
	Introduction
	API functions
	OS_TASKEVENT_Clear()
	OS_TASKEVENT_ClearEx()
	OS_TASKEVENT_Get()
	OS_TASKEVENT_GetBlocked()
	OS_TASKEVENT_GetSingleBlocked()
	OS_TASKEVENT_GetSingleTimed()
	OS_TASKEVENT_GetTimed()
	OS_TASKEVENT_Set()

	Event Objects
	Introduction
	Examples

	API functions
	OS_EVENT_Create()
	OS_EVENT_CreateEx()
	OS_EVENT_Delete()
	OS_EVENT_Get()
	OS_EVENT_GetBlocked()
	OS_EVENT_GetMask()
	OS_EVENT_GetMaskBlocked()
	OS_EVENT_GetMaskMode()
	OS_EVENT_GetMaskTimed()
	OS_EVENT_GetResetMode()
	OS_EVENT_GetTimed()
	OS_EVENT_Pulse()
	OS_EVENT_Reset()
	OS_EVENT_ResetMask()
	OS_EVENT_Set()
	OS_EVENT_SetMask()
	OS_EVENT_SetMaskMode()
	OS_EVENT_SetResetMode()

	Mutexes
	Introduction
	API functions
	OS_MUTEX_Create()
	OS_MUTEX_Delete()
	OS_MUTEX_GetOwner()
	OS_MUTEX_GetValue()
	OS_MUTEX_IsMutex()
	OS_MUTEX_Lock()
	OS_MUTEX_LockBlocked()
	OS_MUTEX_LockTimed()
	OS_MUTEX_Unlock()

	Semaphores
	Introduction
	API functions
	OS_SEMAPHORE_Create()
	OS_SEMAPHORE_Delete()
	OS_SEMAPHORE_GetValue()
	OS_SEMAPHORE_SetValue()
	OS_SEMAPHORE_Give()
	OS_SEMAPHORE_GiveMax()
	OS_SEMAPHORE_Take()
	OS_SEMAPHORE_TakeBlocked()
	OS_SEMAPHORE_TakeTimed()

	Readers-Writer Lock
	Introduction
	API functions
	OS_RWLOCK_Create()
	OS_RWLOCK_Delete()
	OS_RWLOCK_RdLock()
	OS_RWLOCK_RdLockBlocked()
	OS_RWLOCK_RdLockTimed()
	OS_RWLOCK_RdUnlock()
	OS_RWLOCK_WrLock()
	OS_RWLOCK_WrLockBlocked()
	OS_RWLOCK_WrLockTimed()
	OS_RWLOCK_WrUnlock()

	Mailboxes
	Introduction
	Single-byte mailbox functions

	API functions
	OS_MAILBOX_Clear()
	OS_MAILBOX_Create()
	OS_MAILBOX_Delete()
	OS_MAILBOX_Get()
	OS_MAILBOX_Get1()
	OS_MAILBOX_GetBlocked()
	OS_MAILBOX_GetBlocked1()
	OS_MAILBOX_GetMessageCnt()
	OS_MAILBOX_GetTimed()
	OS_MAILBOX_GetTimed1()
	OS_MAILBOX_GetPtr()
	OS_MAILBOX_GetPtrBlocked()
	OS_MAILBOX_IsInUse()
	OS_MAILBOX_Peek()
	OS_MAILBOX_Purge()
	OS_MAILBOX_Put()
	OS_MAILBOX_Put1()
	OS_MAILBOX_PutBlocked()
	OS_MAILBOX_PutBlocked1()
	OS_MAILBOX_PutFront()
	OS_MAILBOX_PutFront1()
	OS_MAILBOX_PutFrontBlocked()
	OS_MAILBOX_PutFrontBlocked1()
	OS_MAILBOX_PutTimed()
	OS_MAILBOX_PutTimed1()
	OS_MAILBOX_WaitBlocked()
	OS_MAILBOX_WaitTimed()

	Queues
	Introduction
	API functions
	OS_QUEUE_Clear()
	OS_QUEUE_Create()
	OS_QUEUE_Delete()
	OS_QUEUE_GetMessageCnt()
	OS_QUEUE_GetMessageSize()
	OS_QUEUE_GetPtr()
	OS_QUEUE_GetPtrBlocked()
	OS_QUEUE_GetPtrTimed()
	OS_QUEUE_IsInUse()
	OS_QUEUE_PeekPtr()
	OS_QUEUE_Purge()
	OS_QUEUE_Put()
	OS_QUEUE_PutEx()
	The OS_QUEUE_SRCLIST structure

	OS_QUEUE_PutBlocked()
	OS_QUEUE_PutBlockedEx()
	OS_QUEUE_PutTimed()
	OS_QUEUE_PutTimedEx()

	Watchdog
	Introduction
	API functions
	OS_WD_Add()
	OS_WD_Check()
	OS_WD_Config()
	OS_WD_Remove()
	OS_WD_Trigger()

	Multi-core Support
	Introduction
	API functions
	OS_SPINLOCK_Create()
	OS_SPINLOCK_Lock()
	OS_SPINLOCK_Unlock
	OS_SPINLOCK_SW_Create()
	OS_SPINLOCK_SW_Lock()
	OS_SPINLOCK_SW_Unlock()

	Interrupts
	What are interrupts?
	Interrupt latency
	Causes of interrupt latencies
	Additional causes for interrupt latencies
	How to measure latency and detect its cause
	Zero interrupt latency
	High / low priority interrupts
	Using embOS API from zero latency interrupts

	Rules for interrupt handlers
	General rules
	Additional rules for preemptive multitasking
	Nesting interrupt routines
	API functions
	OS_INT_Call()
	OS_INT_CallNestable()
	OS_INT_Enter()
	OS_INT_EnterIntStack()
	OS_INT_EnterNestable()
	OS_INT_InInterrupt()
	OS_INT_Leave()
	OS_INT_LeaveIntStack()
	OS_INT_LeaveNestable()

	Interrupt control
	Enabling / disabling interrupts
	Nested interrupt disable and enable calls
	Zero latency interrupt disable / enable
	Non-maskable interrupts (NMIs)
	API functions
	OS_INT_DecRI()
	OS_INT_Disable()
	OS_INT_DisableAll()
	OS_INT_Enable()
	OS_INT_EnableAll()
	OS_INT_EnableConditional()
	OS_INT_IncDI()
	OS_INT_Preserve()
	OS_INT_PreserveAll()
	OS_INT_PreserveAndDisable()
	OS_INT_PreserveAndDisableAll()
	OS_INT_Restore()
	OS_INT_RestoreAll()

	Critical Regions
	Introduction
	API functions
	OS_TASK_EnterRegion()
	OS_TASK_LeaveRegion()

	Disabling context transitions

	Time Measurement
	Introduction
	API functions
	OS_TIME_ConfigSysTimer()
	OS_TIME_ConvertCycles2ms()
	OS_TIME_ConvertCycles2ns()
	OS_TIME_ConvertCycles2us()
	OS_TIME_Convertms2Cycles()
	OS_TIME_Convertns2Cycles()
	OS_TIME_Convertus2Cycles()
	OS_TIME_Get_ms()
	OS_TIME_Get_us()
	OS_TIME_Get_Cycles()

	Low Power Support
	Introduction
	Starting power save modes in OS_Idle()
	Peripheral power control
	Introduction

	API functions
	OS_POWER_GetMask()
	OS_POWER_SetISREntryCallback()
	OS_POWER_UsageDec()
	OS_POWER_UsageInc()

	Heap Type Memory Management
	Introduction
	API functions
	OS_HEAP_free()
	OS_HEAP_malloc()
	OS_HEAP_realloc()

	Fixed Block Size Memory Pools
	Introduction
	API functions
	OS_MEMPOOL_Alloc()
	OS_MEMPOOL_AllocBlocked()
	OS_MEMPOOL_AllocTimed()
	OS_MEMPOOL_Create()
	OS_MEMPOOL_Delete()
	OS_MEMPOOL_Free()
	OS_MEMPOOL_FreeEx()
	OS_MEMPOOL_GetBlockSize()
	OS_MEMPOOL_GetMaxUsed()
	OS_MEMPOOL_GetNumBlocks()
	OS_MEMPOOL_GetNumFreeBlocks()
	OS_MEMPOOL_IsInPool()

	System Tick
	Introduction
	API functions
	OS_TICK_Handle()

	Debugging
	Runtime application errors
	List of error codes
	Application defined error codes
	API functions
	OS_DEBUG_GetError()

	Human readable object identifiers
	API functions
	OS_DEBUG_GetObjName()
	OS_DEBUG_RemoveObjName()
	OS_DEBUG_SetObjName()

	embOS API trace
	API functions
	OS_TRACE_SetAPI()

	Profiling
	Task execution
	API functions
	OS_STAT_GetNumActivations()
	OS_STAT_GetNumPreemptions()

	Task specific CPU load measurement
	API functions
	OS_STAT_Disable()
	OS_STAT_Enable()
	OS_STAT_GetExecTime()
	OS_STAT_GetLoad()
	OS_STAT_Sample()

	CPU load measurement
	API functions
	OS_STAT_AddLoadMeasurement()
	OS_STAT_AddLoadMeasurementEx()
	OS_STAT_GetLoadMeasurement()

	embOSView
	Introduction
	Task list window
	System variables window

	Setup embOSView for communication
	Select a UART for communication
	Select J-Link for communication
	Select Ethernet for communication
	Use J-Link for communication and debugging in parallel

	Setup target for communication
	Select a UART for communication
	Select J-Link for communication
	Select Ethernet for communication
	API functions
	OS_COM_ClearTxActive()
	OS_COM_GetNextChar()
	OS_COM_OnRx()
	OS_COM_OnTx()

	Sharing the SIO for terminal I/O
	API functions
	OS_COM_SendString()
	OS_COM_SetRxCallback()

	embOSView API trace
	Setup API trace from embOSView
	Trace filter setup API
	OS_TRACE_Enable()
	OS_TRACE_EnableAll()
	OS_TRACE_EnableId()
	OS_TRACE_EnableFilterId()
	OS_TRACE_Disable()
	OS_TRACE_DisableAll()
	OS_TRACE_DisableId()
	OS_TRACE_DisableFilterId()

	Trace record API
	OS_TRACE_Data()
	OS_TRACE_DataPtr()
	OS_TRACE_Ptr()
	OS_TRACE_PtrU32()
	OS_TRACE_U32Ptr()
	OS_TRACE_Void()

	Application-controlled trace example
	User-defined functions

	MPU - Memory Protection
	Introduction
	Privilege states
	Code organization

	Memory Access permissions
	Default memory access permissions
	Interrupts
	Access to additional memory regions
	Access to OS objects

	ROM placement of embOS
	Allowed embOS API in unprivileged tasks
	Device driver
	API functions
	OS_MPU_AddRegion()
	OS_MPU_CallDeviceDriver()
	OS_MPU_CallDeviceDriverEx()
	OS_MPU_ConfigMem()
	OS_MPU_Init()
	OS_MPU_ExtendTaskContext()
	OS_MPU_GetThreadState()
	OS_MPU_SetAllowedObjects()
	OS_MPU_SetDeviceDriverList()
	OS_MPU_SetErrorCallback()
	OS_MPU_SwitchToUnprivState()
	OS_MPU_SetSanityCheckBuffer()
	OS_MPU_SanityCheck()

	Stacks
	Introduction
	API functions
	OS_STACK_GetIntStackBase()
	OS_STACK_GetIntStackSize()
	OS_STACK_GetIntStackSpace()
	OS_STACK_GetIntStackUsed()
	OS_STACK_GetTaskStackBase()
	OS_STACK_GetTaskStackSize()
	OS_STACK_GetTaskStackSpace()
	OS_STACK_GetTaskStackUsed()
	OS_STACK_GetSysStackBase()
	OS_STACK_GetSysStackSize()
	OS_STACK_GetSysStackSpace()
	OS_STACK_GetSysStackUsed()
	OS_STACK_GetCheckLimit()
	OS_STACK_SetCheckLimit()

	Board Support Packages
	Introduction
	How to create a new board support package
	Example
	Mandatory routines
	BSP_OS_GetCycles()
	OS_TIME_GetTimestamp()

	BSP_OS_StartTimer()
	OS_Idle()
	Creating a custom Idle task

	OS_COM_Send1()

	Optional routines
	SysTick_Handler()
	OS_InitHW()

	Settings
	System tick setting
	Using a different hardware timer and counter
	Using a different UART or baud rate for embOSView

	UART routines for embOSView

	System Variables
	Introduction
	OS_Global
	OS_Global.pCurrentTask
	OS_Global.pTask
	OS_Global.pTimer
	OS_Global.Time
	OS_Global.TimeDex

	OS information routines
	API functions
	OS_INFO_GetCPU()
	OS_INFO_GetLibMode()
	OS_INFO_GetLibName()
	OS_INFO_GetModel()
	OS_INFO_GetTimerFreq()
	OS_INFO_GetVersion()

	Source Code
	Introduction
	Building embOS libraries
	Compile time switches
	Source code project
	Compiler options

	Shipment
	Introduction
	Object code package
	Source code package

	Update
	Introduction
	How to update an existing project
	My project does not work anymore. What did I do wrong?

	embOS API migration guide
	embOS-Ultra migration guide
	Modifications to RTOSInit.c
	Critical regions
	Delays and Timeouts
	Deprecated API functions
	Obsolete API functions

	Support
	Contacting support
	Where can I find the license number?

	Performance and Resource Usage
	Introduction
	Resource Usage
	Performance
	Measurement with Port Pins and Oscilloscope
	Oscilloscope analysis
	Example measurements Renesas RZA1, Thumb2 code in RAM

	Measurement with time measurement API

	Supported Development Tools
	Reentrance
	Compiler version
	C/C++ standard

	Glossary

