

embOS

Real Time Operating System

CPU & Compiler specifics for

TOSHIBA TLCS900 CPUs

and TOSHIBA compiler

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 3/19

 1996- 2003 Segger Microcontroller Systeme GmbH

Contents

Contents .. 3
1. About this document.. 4

1.1. How to use this manual.. 4
2. Using embOS with TOSHIBA Integrated Development Environment............................. 5

2.1. Installation.. 5
2.2. First steps... 6
2.3. The sample application Main.c... 7
2.4. Stepping through the sample application Main.c.. 7

3. TLCS900 processor and compiler specifics .. 11
3.1. Memory models.. 11
3.2. Available libraries ... 11

4. Stacks.. 13
4.1. Task stack for TLCS900 CPUs .. 13
4.2. System stack for TLCS900 CPUs .. 13
4.3. Interrupt stack for TLCS900 CPUs... 13
4.4. Stack specifics of TLCS900 CPUs... 13

5. Interrupts ... 14
5.1. What happens when an interrupt occurs?.. 14
5.2. Defining interrupt handlers in "C" ... 14
5.3. Defining interrupt vectors (interrupt vector table) ... 14
5.4. Interrupt priority .. 15

6. STOP / IDLE / HALT Mode.. 16
7. Using a different CPU.. 17

7.1. Modification of RTOSInit.c ... 17
7.2. Modification of startup code ... 17
7.3. Modification of init code and interrupt vector table... 17

8. Technical data ... 18
8.1. Memory requirements .. 18

9. Files shipped with embOS for TLCS900 CPUs .. 18
10. Index.. 19

4/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS T900 Real Time Operating System
for TOSHIBA TLCS900 32bit series of microcontroller using TOSHIBA CC900
compiler and TOSHIBA Integrated Development Environment.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
TLCS900 CPUs with TOSHIBA CC900 compiler. Before actually using em-
bOS, you should read or at least glance through this manual in order to be-
come familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using TOSHIBA Integrated Development Environment. If you have no experi-
ence using embOS, you should follow this introduction, even if you do not plan
to use TOSHIBA Integrated Development Environment, because it is the easi-
est way to learn how to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
TLCS900 series of CPUs using TOSHIBA CC900 compiler.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 5/19

 1996- 2003 Segger Microcontroller Systeme GmbH

2. Using embOS with TOSHIBA Integrated Develop-
ment Environment

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using TOSHIBA Integrated Development Environment to
develop your application, no further installation steps are required. You will find
a prepared sample start project workspace for TMP94FD53 CPU, which you
should use and modify to write your application. So follow the instructions of the
next chapter �First steps�.

You should do this even if you do not intend to use TOSHIBA Integrated Devel-
opment Environment for your application development in order to become fa-
miliar with embOS.

If for some reason you will not work with TOSHIBA Integrated Development
Environment, you should:
Copy either all, or only the library-file that you need, to your work-directory. Also
copy the RTOSInit.c file and RTOS.f header, which are integral parts of
embOS. This has the advantage that when you switch to an updated version of
embOS later in a project, you do not affect older projects that use embOS
also.
embOS does in no way rely on TOSHIBA Integrated Development Environ-
ment, it may be used without the workbench using batch files or a make utility
without any problem.

6/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace
with a project for TMP94FD53 CPUs and it is a good idea to use this as a start-
ing point of all your applications.

To get your new application running, you should proceed as follows.

• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start� from your embOS distribution into your work

directory.
• Clear the read only attribute of all files in the new �Start�-folder in your work-

ing directory.
• Open the folder �Start�.
• Open the start project workspace �OS_Start.tws�. (e.g. by double clicking it)
• Build the start project.

After building the start project your screen should look like follows:

For latest information you should open the ReadMe.txt which is part of your pro-
ject.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 7/19

 1996- 2003 Segger Microcontroller Systeme GmbH

2.3. The sample application Main.c
The following is a printout of the sample application main.c. It is a good starting-
point for your application.
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
while (1) {

OS_Delay (10);
}

}

void Task1(void) {
while (1) {

OS_Delay (50);
}

}

/**
*
* main
*
**/

void main(void) {
OS_InitKern(); /* initialize OS */
OS_InitHW(); /* initialize Hardware for OS */
/* You need to create at least one task here ! */
OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
OS_Start(); /* Start multitasking */

}

2.4. Stepping through the sample application Main.c
When starting the debugger, you will usually see the main function (very similar
to the screenshot below). In some debuggers, you may look at the startup code
and have to set a breakpoint at main. Now you can step through the program.
OS_InitKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-variables and enables in-
terrupts. If you do not like this behavior, you are free to change it by increment-
ing the interrupt-disable counter using OS_IncDI() before the call to
OS_InitKern().
OS_InitHW() is part of RTOSInit.c and is therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. In this case it should initialize the UART used for communication.

8/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set breakpoints in the two tasks:

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, Task0() is the highest priority task and is therefore active.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 9/19

 1996- 2003 Segger Microcontroller Systeme GmbH

If you continue stepping, you will arrive in the task with lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).
OS_Idle() is found in RTOSInit.c:

10/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay.
Coming from OS_Idle(), you should execute the �Go� command to arrive at
the highest priority task after its delay is expired.

The watch window shows the system variable OS_Time, which shows how
much time has expired in the target system.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 11/19

 1996- 2003 Segger Microcontroller Systeme GmbH

3. TLCS900 processor and compiler specifics

3.1. Memory models

embOS supports MAX mode memory model only, which means that data, pro-
gram and constants may reside in any memory location.
Both calling conventions of CC900 compiler are supported:

__cdecl is the default calling convention passing parameters via stack.
__adecl is the assembler like calling convention, passing parameters via regis-
ter.
The calling convention setting has to be used as global project setting. Different
types of embOS libraries are required according to the calling convention used.

3.2. Available libraries
The files to use depend on global calling convention and library type used.
The library files are located in the subfolder �Lib� of the start project folder.
The calling convention for your target application has to confirm to the library
used in your application.

The naming convention for library files is as follows:

RTOS<CALLING_CONVENTION><LIBRARYTYPE>.lib

<CALLING_CONVENTION> specifies the calling convention:

• A for assembler like calling convention (parameter in registers)
• C for C style calling convention (parameter passed via stack)

<LIBRARYTYPE> specifies the type of embOS -library:

• R stands for Release build library.
• S stands for Stack check library, which performs stack checks during

runtime.
• SP stands for Stack check and Profiling library, which performs stack

checking and additional runtime (Profiling) calculations
• D stands for Debug library which performs error checking during runtime.
• DP stands for Debug and Profiling library which performs error checking

and additional Profiling during runtime.
• DT stands for Debug and Trace library which performs error checking

and additional Trace functionality during runtime.

Example:
RTOSCSP.lib is the embOS library for C-like calling convention with Stack
check and Profiling functionality.
It is located in the Start\lib\ subdirectory.

12/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

For TLCS900 CPUs running in MAX mode, the following libraries are available
(located in the subfolder �Start\lib\):

Calling
convention

Library type Library #define

__adecl Release RtosAR.r48 OS_LIBMODE_R
__adecl Stack-check RtosAS.r48 OS_LIBMODE_S
__adecl Stack-check + Profiling RtosASP.r48 OS_LIBMODE_SP
__adecl Debug RtosAD.r48 OS_LIBMODE_D
__adecl Debug + Profiling RtosADP.r48 OS_LIBMODE_DP
__adecl Debug + Profiling + Trace RtosADT.r48 OS_LIBMODE_DT
__cdecl Release RtosCR.r48 OS_LIBMODE_R
__cdecl Stack-check RtosCS.r48 OS_LIBMODE_S
__cdecl Stack-check + Profiling RtosCSP.r48 OS_LIBMODE_SP
__cdecl Debug RtosCD.r48 OS_LIBMODE_D
__cdecl Debug + Profiling RtosCDP.r48 OS_LIBMODE_DP
__cdecl Debug + Profiling + Trace RtosCDT.r48 OS_LIBMODE_DT

The appropriate define has to be set as project (compiler preprocessor) option
according to the library used in your project.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 13/19

 1996- 2003 Segger Microcontroller Systeme GmbH

4. Stacks

4.1. Task stack for TLCS900 CPUs

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
As TLCS CPUs do not support a separate interrupt stack, interrupts also re-
quire additional stack space on every task stack.
For TLCS900 CPUs, the minimum task stack size is about 100 bytes.

4.2. System stack for TLCS900 CPUs

The system stack size required by embOS is 80 bytes. However, since the sys-
tem stack is also used by the application before the start of multitasking (the
call to OS_Start()), and because software-timers also use the system-stack,
the actual stack requirements depend on the application.
A good value of system stack size is around 160 bytes
To change the system stack size, you have to modify two entries in the assem-
bler startup code file. Normally the system stack is located behind the CPUs in-
ternal special function registers. Its size is indirectly given by the value
BaseXSP which is used to initialize the stack pointer during startup. The size
therfore is the difference between BaseXSP and the last address of CPUs spe-
cial function registers. When BaseXSP is changed, always also recalculate and
change C_STACK_SIZE which is used by embOS for stack checking. Please
refer to our modified startup file �stc94ml.asm�.

4.3. Interrupt stack for TLCS900 CPUs
TLCS900 CPUs unfortunately do not deliver a separate stack pointer for inter-
rupts.
Current version of embOS does not support an additional interrupt stack. Inter-
rupts run on task stacks or the system stack.

4.4. Stack specifics of TLCS900 CPUs
The TLCS900 stack-pointer can address the entire memory area, stacks can be
located anywhere in RAM. For performance reasons you should try to locate
stacks in fast RAM.

14/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

5. Interrupts

5.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor interrupt priority

level is below or equal to the interrupt priority level of the requesting interrupt
source, the interrupt is executed

• the CPU saves PC and status register on the stack
• the CPUs interrupt mask register is set to the priority of the accepted inter-

rupt + 1
• The CPU increments the interrupt nesting counter by 1
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR: save registers
• ISR: user-defined functionality
• ISR: restore registers
• ISR: Execute RETI command, restoring PC, status register and decrement

interrupt nesting counter by one.

For details, please refer to the CPUs users manual.

5.2. Defining interrupt handlers in "C"
Routines defined with the keyword __interrupt automatically save & restore
the registers they modify and return with RETI.
For a detailed description on how to define an interrupt routine in "C", refer to
the C-Compiler's user's guide.

Example

"Simple" interrupt-routine

void __interrupt OS_ISR_Tick (void) {

OS_TickHandler();
}

5.3. Defining interrupt vectors (interrupt vector table)
The interrupt vector table is part of the constant structure _IntTbl[] found in
the �ini*.c� file, which is part of your application / project.
embOS uses one timer interrupt which is initialized during OS_InitHW(). The
timer interrupt vector has to be added to the interrupt vector table.
When using embOSView, the interrupt vector for Rx and Tx interrupt of the se-
lected UART have to be defined also.
Our sample start project defines interrupt vectors in TMP94FD53\ini94ml.c

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 15/19

 1996- 2003 Segger Microcontroller Systeme GmbH

5.4. Interrupt priority
Interrupts of TLCS900 CPUs can not be disabled without changing the interrupt
priority.
embOS needs to disable interrupts during internal operations. This is done by
macro OS_DI() which sets the interrupt priority to 5. OS_DI() is defined in
RTOS.h.
OS_DI() keeps interrupts with higher priority enabled and results in very low in-
terrupt latency for those interrupts.

Important rules for interrupts:
• Interrupts with priority above 5 must not call any embOS function.
• Interrupts with priority above 5 must not re-enable interrupts with lower pri-

ority.
• Interrupts with priority below 5 may call any embOS function, when

OS_EnterInterrupt() / OS_LeaveInterrupt() or OS_EnterNestableInterrupt() /
OS_LeaveNestableInterrupt() are used as described in generic manual.

16/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

6. STOP / IDLE / HALT Mode
Usage of the HALT instruction or switching CPU in idle mode are possibilities to
save power consumption during idle times. If required, you may modify the
OS_Idle() routine, which is part of the hardware dependent module
RtosInit.c.

Stop mode deactivates internal peripheral clock and can therefore not be exited
by embOS timer interrupt. Stop mode can be released by RESET, NMI or INT0
external interrupt.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 17/19

 1996- 2003 Segger Microcontroller Systeme GmbH

7. Using a different CPU
The sample start project of embOS for TLCS900 was build for and tested with
a TMP94FD53 CPU.
To use embOS with an other CPU, you may build your own new project using
TOSHIBA Integrated Development Environment.
When the project is built, there are following steps to do:
• Copy all embOS libraries into any subfolder of your project.
• Copy RTOSInit.c and RTOS.h into any subfolder of your project.
• Modify RTOSInit.c to fit your CPU
• Modify the startup code
• Modify the ini*.c file
• Add RTOSInit.c and an embOS library to your project.
• Define OS_LIBMODE as compiler preprocessor option according to the li-

brary type used.

7.1. Modification of RTOSInit.c
To use a different CPU, RTOSInit.c may have to be adapted:
• Include the correct IO definition header file.
• Check and modify OS_InitHW() for embOS timer.
• Check and modify OS_GetTimeCycles() which relies on hardware timer.
• Check OS_ConvertCycles2us()
• Check and modify OS_COM_Init() if required
• Check and modify OS_COM_Send1() if required
• Check and modify OS_ISR_Rx() if required
• Check and modify OS_ISR_Tx() if required

7.2. Modification of startup code
The startup code generated by TOSHIBA Integrated Development Environment
needs to be modified for use with embOS.
For stack checking, embOS needs information about stack location and stack
size. Therefore the two symbols BaseXSP and C_STACK_SIZE have to be ex-
ported from startup code.
Please refer to our sample startup file �stc94ml.asm�

7.3. Modification of init code and interrupt vector table

For use with embOS the standard init code file �ini*.c� has to be modified. This
file also contains �C�-source init code and the interrupt vector table.
Following modifications should be made:
• Call of __EI() before calling main has to be removed from _Initial().
• Interrupt service routines used by embOS have to be declared.
• Interrupt vector table has to be modified to be used with embOS.
Refer to our sample �ini94ml.c� delivered with embOS.

18/19 embOS for TLCS900 32bit CPUs and TOSHIBA compiler

 1996-2003 Segger Microcontroller Systeme GmbH

8. Technical data

8.1. Memory requirements
These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the far memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1600 41
Event-management < 200 ---
Mailbox management < 550 ---
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 ---
Timer-management < 250 ---
Add. Task --- 28
Add. Semaphore --- 6
Add. Mailbox --- 14
Add. Timer --- 14
Power-management --- ---

9. Files shipped with embOS for TLCS900 CPUs

Directory File Explanation
root *.pdf Generic API and target specific

documentation
root Release.html Release notes of embOS T900
root embOSView.exe Utility for runtime analysis, described

in generic documentation
Start\ Start*.* Start workspace and project files
Start\Lib\ *.Lib embOS libraries
Start\Inc\ RTOS.h To be included in any file using em-

bOS functions
Start\Src\ main.c Frame program to serve as a start
Start\Src\ RtosInit.c To be compiled & linked with your

program, initializes the hardware,
can be modified

Start\TMP94FD53 *.* Target CPU specific files.
Start\TMP94FD53 stc94ml.asm CPU startup code, modified to be

used with embOS.
Start\TMP94FD53 ini94ml.c �C�-source init code, modified to be

used with embOS.

embOS for TLCS900 32bit CPUs and TOSHIBA compiler 19/19

 1996- 2003 Segger Microcontroller Systeme GmbH

10. Index
B
BaseXSP.................................13, 17
C
C_STACK_SIZE....................13, 17
H
Halt mode16
I
Idle mode......................................16
Init code..17
Installation......................................5

Interrupt priority 15
Interrupt stack.............................. 13
Interrupt vector table 14, 17
Interrupts 14
M
Memory models 11
Memory requirements.................. 18
R
RTOSInit 17

S
Stacks... 13
Stacks, interrupt stack 13
Stacks, system stack 13
Stacks, task stacks 13
startup codet................................. 17
Stop mode 16
System stack................................. 13
T
Task stacks 13
Technical data 18

	Contents
	About this document
	How to use this manual

	Using embOS with TOSHIBA Integrated Development Environment
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c

	TLCS900 processor and compiler specifics
	Memory models
	Available libraries

	Stacks
	Task stack for TLCS900 CPUs
	System stack for TLCS900 CPUs
	Interrupt stack for TLCS900 CPUs
	Stack specifics of TLCS900 CPUs

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Defining interrupt vectors (interrupt vector table)
	Interrupt priority

	STOP / IDLE / HALT Mode
	Using a different CPU
	Modification of RTOSInit.c
	Modification of startup code
	Modification of init code and interrupt vector table

	Technical data
	Memory requirements

	Files shipped with embOS for TLCS900 CPUs
	Index

