

embOS

Real Time Operating System

CPU & Compiler specifics for

ST7 CPUs

using Cosmic compiler

and Cosmic IdeaST7

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

embOS for ST7 CPUs and Cosmic development tools 3/20

 1996- 2002 Segger Microcontroller Systeme GmbH

Contents

Contents .. 3
1. About this document.. 4

1.1. How to use this manual.. 4
2. Using embOS with Cosmic IdeaST7 workbench .. 5

2.1. Installation.. 5
2.2. First steps... 6
2.3. The sample application Main.c... 8
2.4. Stepping through the sample application using ZAP simulator 9

3. ST7 CPU specifics... 13
3.1. Memory models.. 13
3.2. Available libraries ... 13
3.3. Distributed project files... 13

4. Stacks.. 14
4.1. Stack address range .. 14
4.2. System stack.. 14
4.3. Task stacks .. 14

5. Interrupts ... 15
5.1. What happens when an interrupt occurs?.. 15
5.2. Defining interrupt handlers in "C" ... 15
5.3. Restrictions for interrupts with embOS ST7 .. 16
5.4. Interrupt-stack .. 17

6. Power saving modes ... 18
6.1. SLOW mode .. 18
6.2. WAIT mode.. 18
6.3. HALT mode.. 18

7. Technical data ... 19
7.1. Memory requirements .. 19

8. Files shipped with embOS .. 19
9. Index.. 20

4/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS Real Time Operating System for the
STMicroelectronics ST7 series of microcontrollers using Cosmic compiler and
IdeaST7 embedded workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
STMicroelectronics ST7 based controllers with Cosmic IdeaST7 embedded
workbench. Before actually using embOS, you should read or at least glance
through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Cosmic IdeaST7 embedded workbench. If you have no experience using
embOS, you should follow this introduction, because it is the easiest way to
learn how to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
STMicroelectronics ST7 based controllers using Cosmic ST7 compiler.

embOS for ST7 CPUs and Cosmic development tools 5/20

 1996- 2002 Segger Microcontroller Systeme GmbH

2. Using embOS with Cosmic IdeaST7 workbench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

• If you received a CD, copy the entire contents to your hard-drive into any

folder of your choice. When copying, please keep all files in their respective
sub directories.

• Make sure the files are not read only after copying.
• If you received a zip-file, please extract it to any folder of your choice, pre-

serving the directory structure of the zip-file.

Assuming that you are using Cosmic IdeaST7 workbench to develop your ap-
plication, no further installation steps are required. You will find prepared sam-
ple start projects, which you should use and modify to write your application. So
follow the instructions of the next chapter �First steps�.

You should do this even if you do not intend to use Cosmic IdeaST7 workbench
for your application development in order to become familiar with embOS.

If for some reason you do not want to work with Cosmic IdeaST7 workbench,
you should:
• Copy either all or only the library-file you need to your work-directory.
• Copy the CPU specific source file RtosInit.c to your work-directory.
• Also copy the embOS header-file RTOS.h to your work-directory.

This has the advantage that when you switch to an updated version of embOS
later in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on Cosmic IdeaST7 workbench, it may be used
with batch files or a make utilities without any problem.

6/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample start projects and it is
a good idea to use one of these as a starting point of all of your applications, as
these projects contain all compiler settings needed for embOS.

To get your new application running, you should proceed as follows:

• Create a work directory for your application, for example �c:\work�
• Copy the whole folder �Start� which is part of your embOS distribution into

your work directory
• Clear the read only attribute of all files in the new �start� folder and its sub

folders.
• Start Cosmic IdeaST7
• Load one sample project from the start sub-directory in your working folder,

for example �work\start\Start_SLSP.prj�.

You may get the following error message from IdeaST7:

This occurs, because IdeaST7 projects contains an absolute path references to
the work directory.
Press OK to close the message dialog and set the project directory by selecting
the project path as shown below:

Change the working directory name to the start folders name you are actually
using. (�c:\work\start\�, if you followed our example above.)
You may alternatively set the working folder by menu �Setup | Working Direc-
tory�

embOS for ST7 CPUs and Cosmic development tools 7/20

 1996- 2002 Segger Microcontroller Systeme GmbH

Now Build the start project

Your screen should look like follows:

All outputs are placed in the �output\� sub directory of the start project folder.
This folder contains three subfolders for executables, list files and object files.
Three executables were built:
• output\exe\Start_SLSP.mot as Motorola S-record file may be used for the

target CPU.
• output\Exe\Start_SLSP.ST7 is Cosmics debug file and may be used for Cos-

mic�s ZAP debugger / simulator.
• output\Exe\Start_SLSP.695 is an additional debug file in IEEE695 format.

8/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

2.3. The sample application Main.c
The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The 2 tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
-------- END-OF-HEADER ------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[64], Stack1[64]; /* Stack-space */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
while (1) {

OS_Delay (10);
}

}

void Task1(void) {
while (1) {

OS_Delay (50);
}

}

/**
*
* main
*
**/

void main(void) {
OS_InitKern(); /* initialize OS */
OS_InitHW(); /* initialize Hardware for OS */
/* You need to create at least one task here ! */
OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
OS_Start(); /* Start multitasking */

}

embOS for ST7 CPUs and Cosmic development tools 9/20

 1996- 2002 Segger Microcontroller Systeme GmbH

2.4. Stepping through the sample application using ZAP simulator
The debug output files produced by IdeaSt7 may be used with different incircuit
emulators, debuggers or simulators.
Described here is the usage of Cosmic�s debugger ZAP used as simulator.

Before starting ZAP, the interrupt simulation of embOS timer interrupt should
be prepared:
• Copy the interrupt definition file �ST7.INT� found in �Start\ZAP\� into the your

program folder that contains the �ZAPST7.exe� executable.

After starting ZAP, proceed as follows:
• Select menu function �File | Load� to load the sample start project output file

�Start_SLSP.ST7� which is found in the �output\exe\� subdirectory of your start
project folder.

• Then set or check the search path for source files by menu �Setup | Path�
and set the source path to the source directory of your start project (for ex-
ample �c:\work\start\). Please set this path to the folder which contains the
start project, not the source files.

• Open the source window by menu �Browse | Function� and select �main�
• Start debugging by menu �Debug | Go Till� and choose �main�

Your screen should look as follows:

The simulator executed the startup code and stopped at main().
Now you can step through the program.

OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables and enables
interrupts. If you do not like interrupts to be enabled from start, you should call
OS_IncDI() before calling OS_InitKern().
OS_InitHW() is part of RtosInit.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. You may step through it to see what is done.
OS_COM_Init(), called from OS_InitHW() is optional and initializes a UART
for communication with embOSView.

10/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

OS_Start() is the last line in main, since it starts multitasking and does not
return.
When you step over OS_Start() using the �Step one high level Instruction� eg
menu �Debug | Step� command twice, the next line executed is already in the
highest priority task created. In our small start program, Task0() is the highest
priority task and is therefore active.

If you continue stepping through the program, Task0 will run into the delay and
therefore you will arrive Task1(), which is the task with the second highest prior-
ity:

Before continuing, you should set a break point in every task at the call of
OS_Delay() as shown above.
Then continuing, there is no other task ready for execution. embOS will start
the idle-loop which is part of RtosInit.c:

embOS for ST7 CPUs and Cosmic development tools 11/20

 1996- 2002 Segger Microcontroller Systeme GmbH

OS_Idle() is an endless loop which is always executed if there is nothing else
to do (no task is ready, no interrupt routine or timer executing).

Now you should enable the interrupt simulation of ZAP to simulate embOS
timer interrupt. As both of the tasks are delayed for a given time, embOS timer
interrupt is needed to wake them up.

To start the interrupt simulation, choose menu �Setup | Interrupts | Time Wise�
to open the setup dialog for simulated periodical interrupts.
• Select �PWM ART� which is the timer used by standard embOS distribution

from the drop down list.
• Set a period of 8000 cycles, which would result in 1ms timer interval in real

hardware.
• Check the �Active� checkbox.

Finally press the �Set� button and then close the dialog.

To watch the system time running, you may also monitor the embOS system
time variable OS_Time.

12/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

Choose menu function �Browse | Variables | in Global List� to open the list of all
variables. Then doubleclick on OS_Time and choose �Monitor...� from the con-
text menu.
If you set a breakpoint in one or both of our tasks, you should now execute the
�Go� command and can see that the tasks continuing execution after the given
delay.
The system variable OS_Time reflects how much time has expired in the target
system:

embOS for ST7 CPUs and Cosmic development tools 13/20

 1996- 2002 Segger Microcontroller Systeme GmbH

3. ST7 CPU specifics

3.1. Memory models

embOS as multitasking real time operating systems needs a memory model
and compiler that supports reentrant code. Therefore the only memory model
supported is the �Stack Long� memory model that Cosmic�s C-compiler offers.

3.2. Available libraries

embOS comes with different libraries. During development of your application
you may use any of the debug type libraries, as those include error checks that
are helpful during development.
Later you may change to the stack check version, which executes faster, as all
other runtime error checks are disabled.
The release library executes fastest as it does not include any error checks dur-
ing runtime. This one should be used finally for your target after debugging your
application.

The library files to use are:

Memorymodel Library type Library define
Stack long Release RtosSLR.lib OS_LIBMODE_R
Stack long Stack-check RtosSLS.lib OS_LIBMODE_S
Stack long Stack-check + Profiling RtosSLSP.lib OS_LIBMODE_SP
Stack long Debug RtosSLD.lib OS_LIBMODE_D
Stack long Debug + Profiling RtosSLDP.lib OS_LIBMODE_DP
Stack long Debug + Profiling + Trace RtosSLDT.lib OS_LIBMODE_DT

They are located in the LIB\ sub folder of your start project folder.

When using Cosmic IdeaST7 workbench or compiler, please check the follow-
ing points:
• The memory model is set as general project option
• One embOS library is part of your project (included in one group of your tar-

get)
• The appropriate define is set as compiler option for your project.

3.3. Distributed project files

The distribution of embOS contains start projects for the Stack long memory
model in the start subdirectory.
The project names reflect the memory model and target library used.
You should use these start projects to develop your application. Simply add
new subdirectories containing your own application modules to the �start� direc-
tory and then add your files to the project. This ensures, that all settings needed
for embOS are always setup correctly.

14/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

4. Stacks

4.1. Stack address range
The ST7 has an 8-bit hardware stack-pointer and a stack memory that is lo-
cated at a fixed address above zero page.
This stack is too small to be distributed among several tasks.
Therefore task stacks may be defined in any memory address range that can
be used as RAM. During task switches, embOS copies the used task stack into
the hardware stack memory area.
The zero page area of ST7 controllers is almost used for special function regis-
ters. Also the embOS internal variables are placed there.
You should chose the memory area above 0x200 as task stacks.

4.2. System stack
The system stack is the one that is used after reset. For ST7 controller this is
the physical stack memory, starting at address 0x100. It is used for the follow-
ing purposes:
• Normal stack during startup (until OS_Start() is called).
• embOS internal functions
• Software timer
• Stack for interrupt handler, when OS_EnterIntStack() is used.

Normally, the whole memory area that the stack pointer can address, should be
used as system stack. (256 bytes)
When additional RAM is used for your application and you examined, that the
whole stack area is not needed, you may reduce the system stack size.

NOTE: Current embOS version is designed for those CPUs that support 256
bytes of stack, even if this amount of stack is not used. This is because internal
calculations only work with the upper stack memory address at 0x1FF.
If you have to use a small ST7 CPU with a maximum stack address of 0x17F,
please contact us.

4.3. Task stacks
Every task uses its own stack which has to be defined when the task is created.
This stack may be located in any memory area.
A good value for a minimum task stack size is about 40 bytes.

NOTE: The maximum task stack size is limited to 254 bytes.
This is because task stacks are copied onto the real hardware stack, which is
limited to 256 bytes.

embOS for ST7 CPUs and Cosmic development tools 15/20

 1996- 2002 Segger Microcontroller Systeme GmbH

5. Interrupts

5.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor finished a complete

instruction, the interrupt is executed
• the CPU saves actual PC, X, A and CC register on the stack
• the CPU loads the specified program counter address from the interrupt vec-

tor table thus starting the interrupt service routine.
• The CPUs interrupt priority is set to the value according to the accepted in-

terrupt (defined in the according interrupt priority level register). Thus lower
priority level interrupts are automatically disabled.

• ISR: save registers
• ISR: user-defined functionality
• ISR: restore registers
• ISR: Execute RETI command, restoring CC, A, X and PC, thus returning to

the interrupted program.
• For details, please refer to the ST7 users manual.

5.2. Defining interrupt handlers in "C"
Interrupt handlers can be defined in C source code by using special prefixes.
The definition of an interrupt function using embOS calls is very much the
same as for a normal interrupt service routine (ISR).
If your ISR shall execute embOS system calls, you have to tell embOS, that an
interrupt routine is running:
• Call OS_EnterInterrupt()at the beginning of your ISR
• Call OS_LeaveInterrupt()as last function in your ISR
This disables further interrupts and prevents embOS from executing task
switches from within an ISR, as those would cause a system crash. If required,
a task switch is executed from OS_LeaveInterrupt().

When embOS functions are used in an interrupt service routine, nested inter-
rupts are not allowed.

Example

Interrupt-routine using embOS calls

@interrupt @svlreg void ART_TimerInt (void) {

OS_EnterInterrupt();
ARTCSR |= (0); // reset interrupt pending(read CSR)
OS_SignalEvent(EVENT_ART, TCBMain);
OS_LeaveInterrupt();

}

@interrupt forces the compiler to add additional code to store additional mem-
ory variables used as temporary registers onto the stack when entering the in-
terrupt routine. These memory variables are restored when leaving the routine.
The routine ends with RETI instruction instead of a normal return.
@svlreg also saves (and restores) memory variables used as additional regis-
ter for long variables. When embOS functions are called from an interrupt han-

16/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

dler, this option should be used, as embOS functions may use long variable
calculations.
For details please refer to Cosmic C Cross Compiler users guide for ST7 mi-
crocontroller.

Interrupt vector table
Every interrupt function has to be declared in the interrupt vector table. The
vector table itself may be defined in C or assembly language.
The distribution of embOS for ST7 contains a vector table definition in C
source code form in the file �Vector.c�, which should be used and modified to
add additional interrupt service routines used for your application.
Also, if you have to use an other timer for the embOS timer tick, this file has to
be modified.
The vector file has to be part of your project. The linker command file has to link
this file to a fixed address.
For details please refer to the cross compiler manual.

5.3. Restrictions for interrupts with embOS ST7

• Nested interrupts are not allowed. ST7 controller does not disable inter-
rupts when the interrupt service routine is entered. Instead of this, the inter-
rupt priority is set to the value defined for the current peripheral interrupt.
Unfortunately there is no way to enable interrupts without lowering the prior-
ity. Enabling interrupts sets the priority to lowest level.

• All Interrupts have to run on highest priority. This ensures, that nesting of
interrupts is automatically disabled by hardware. If an interrupt would run
with lower priority, higher priority interrupts could interrupt this interrupt han-
dler before the call of OS_EnterInterrupt(). This could cause a system
crash, when the interrupting interrupt causes a task switch. The priority is set
by Interrupt software priority register 0-3. The default value after reset sets all
priorities to maximum. The default values should not be changed or should
explicitly set to 3 (max value) when hardware for interrupt peripherals is ini-
tialized.

• Top level interrupt must not call any embOS function. As this interrupts
may interrupt all others, this could occur before OS_EnterInterrupt() is
executed in a lower priority interrupt service routine. If any embOS function
causes a task switch then, the system crashes.

embOS for ST7 CPUs and Cosmic development tools 17/20

 1996- 2002 Segger Microcontroller Systeme GmbH

5.4. Interrupt-stack
Since the ST7 controller has only one hardware stack pointer, every interrupt
uses additional stack space on the system stack.
When the interrupt handler causes a task switch, this task switch is performed
at the end of the interrupt handler execution during OS_LeaveInterrupt().
The additional stack used by the interrupt handler at that point of execution is
therefore also copied to the task stack of the interrupted task.

Extra stack switching during interrupts is not supported with current version of
embOS for ST7 controllers.
OS_EnterIntStack() and OS_LeaveIntStack() are dummy defines with
no functionallity.

Simple Example
@interrupt void ISR_uart_rx(void) {

OS_EnterInterrupt();
OS_EnterIntStack(); /* Have no effect with embOS ST7
SignalEvent(&Task,1); /* any functionality could be here */
OS_LeaveIntStack(); /* Have no effect with embOS ST7
OS_LeaveInterrupt();

}

18/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

6. Power saving modes
ST7 controllers support different power saving modes. These modes may be
used to save power consumption during idle times.
Therefore you may activate a power saving mode command in OS_Idle().
Interrupts or reset will wake up the CPU and operation continues.
Please refer to ST7 controller manual about which interrupts can exit from the
selected power saving mode.

6.1. SLOW mode
Slow mode may be used as power saving mode, as the ST7 controller remains
full functional at reduced clock speed. Therefore CPU may be switched to slow
mode in OS_Idle().
The disadvantage of using slow mode is that also the peripheral clock is re-
duced to the lower frequency, which affects the embOS timer. All timer de-
pendent functions and software timers are affected and the timing is non
deterministic. An other disadvantage is, that any interrupt that may end
OS_idle(). All interrupt handlers should therefore be modified to switch of slow
mode.

6.2. WAIT mode
WAIT mode places the MCU in a low power consumption mode by stopping the
CPU. All peripherals remain active. During WAIT mode, interrupts are auto-
matically enabled and all registers CPU registers remain unchanged.
This power saving mode is selected by calling the �WFI� instruction which may
be placed in OS_Idle().
As all peripherals remain active, the next timer interrupt will resume wait mode
and restart the application.

6.3. HALT mode

HALT mode stops CPU and peripherals. Therefore the embOS timer interrupt
can not be used to resume from HALT mode unless external clock is used to
drive the hardware timer.
Optionally, if the real time clock is available on the ST7 controller, this could be
used as source for embOS timer interrupt. This timer can not be initialized to
produce 1ms resolution. ACTIVE-HALT mode is the lowest power consumption
mode of the MCU that could be used in OS_Idle(). Different interrupts may be
used to resume from HALT mode. Please refer to ST7 data sheets.

embOS for ST7 CPUs and Cosmic development tools 19/20

 1996- 2002 Segger Microcontroller Systeme GmbH

7. Technical data

7.1. Memory requirements
These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The minimum memory requirement for the kernel itself is about 2000
bytes ROM and 27 bytes RAM.
The table below shows minimum RAM size for embOS resources. Please note,
that sizes depend on selected embOS library mode; table below is for a re-
lease build.

embOS resource RAM [bytes]
Task control block 17
Resource semaphore 4
Counting semaphore 2
Mailbox 11
Software timer 9

8. Files shipped with embOS

Directory File Explanation
Start\ Start_SLR.prj Start project for release library type.
Start\ Start_SLSP.pr

j
Start project for stack check library type.

Start\INC\ RTOS.H Include file for embOS, to be included in every
"C"-file using embOS functions

Start\INC\ iodefine.h CPU specific special function register definition,
used by RTOSInit.c to initialize the hardware re-
quired by embOS. This may be replaced by the
version required for your target CPU.

Start\LIB\ RTOS.H Libraries for all memory models and debug options
Start\Link\ Start*.lkf Linker command files for different targets
Start\SRC\ RtosInit.c Initializes the hardware, can be modified if re-

quired
Start\SRC\ Main.c Frame program to serve as a start.
Start\SRC\ Vector.c Interrupt vector table, may be modified.
Start\ZAP\ ST7.INT Used to setup interrupt simulation with Cosmic�s

ZAP simulator as shown in our examples.

Any additional file shipped as example.

20/20 embOS for ST7 CPUs and Cosmic development tools

 1996-2002 Segger Microcontroller Systeme GmbH

9. Index
H
Halt mode18
I
Installation......................................5
Interrupt handler...........................15
Interrupt vector table16, 19
Interrupts15
Interrupt-stack17

M
memory models 13
memory requirements 19
P
Power saving modes 18
S
SLOW mode................................ 18
Stacks... 14

System stack................................. 14
T
Task stacks................................... 14
Technical data 19
W
WAIT mode 18

	Contents
	About this document
	How to use this manual

	Using embOS with Cosmic IdeaST7 workbench
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application using ZAP simulator

	ST7 CPU specifics
	Memory models
	Available libraries
	Distributed project files

	Stacks
	Stack address range
	System stack
	Task stacks

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Restrictions for interrupts with embOS ST7
	Interrupt-stack

	Power saving modes
	SLOW mode
	WAIT mode
	HALT mode

	Technical data
	Memory requirements

	Files shipped with embOS
	Index

