

embOS

Real Time Operating System

CPU & Compiler specifics for

RENESAS SH2A CPUs

and KPIT GNU compiler

Document Rev. 1

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for SH2A CPUs and KPIT GNU compiler 3/24

 2008 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with HEW Workbench... 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Start_2Tasks.c ... 7

3. Using debugging tools to debug the application.. 8
3.1. Using Renesas HEW simulator ... 8
3.2. Common debugging hints .. 11

4. Build your own application... 12
4.1. Required files for an embOS application .. 12
4.2. Add your own code .. 12
4.3. Change library mode.. 12

5. KPIT GNU compiler specifics .. 13
5.1. Memory models, compiler options ... 13
5.2. Available libraries... 13
5.3. Distributed project files... 14

6. SH2A CPU specifics.. 15
6.1. Clock settings for embOS timer interrupt .. 15
6.2. Clock settings for UART used for embOSView... 15
6.3. Conclusion about clock settings... 15
6.4. embOS hardware timer selection.. 16
6.5. UART for embOSView... 16

7. Stacks ... 17
7.1. Task stack for SH2A CPUs.. 17
7.2. System stack for SH2A CPUs.. 17
7.3. Interrupt stack for SH2A CPUs .. 17
7.4. Reducing the stack size ... 17

8. Interrupts with SH2A CPUs ... 18
8.1. Interrupt processing with SH2A CPUs ... 18
8.2. Fast interrupts with SH2A CPUs.. 18
8.3. Interrupt priorities with embOS for SH2A CPUs.. 18
8.4. Defining interrupt handlers for SH2A CPUs in "C" ... 19
8.5. OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts20
8.6. Interrupt vector table .. 21

9. Sleep / Standby Mode... 22
10. Technical data... 23

10.1. Memory requirements .. 23
11. Files shipped with embOSembOSembOSembOS.. 23
12. Index ... 24

4/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS for SH2A Real Time Operating Sys-
tem for the RENESAS SH2A series of microcontroller using Renesas HEW4 and
the KPIT GNU compiler.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using SH2A
CPUs with Renesas HEW4 workbench and the KPIT GNU compiler. Before ac-
tually using embOS, you should read or at least glance through this manual in
order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using the KPIT compiler and HEW. If you have no experience using embOS,
you should follow this introduction, even if you do not plan to use HEW work-
bench, because it is the easiest way to learn how to use embOS in your appli-
cation.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the SH2A
CPUs and KPIT GNU compiler.

embOS for SH2A CPUs and KPIT GNU compiler 5/24

 2008 SEGGER Microcontroller GmbH & Co. KG

2. Using embOS with HEW Workbench
The following chapter describes how to install and work with embOS for SH2A
CPUs and HEW Embedded Workbench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Renesas HEW workbench to develop your appli-
cation, no further installation steps are required. You will find a prepared sam-
ple workspace and a start project for an SH7203 CPU, which you should use
and modify to write your application. So follow the instructions of the next chap-
ter �First steps�.

You should do this even if you do not intend to use HEW Embedded Work-
bench for your application development in order to become familiar with em-
bOS.

embOS does in no way rely on the HEW Embedded Workbench, it may be
used without the workbench using batch files or a make utility without any prob-
lem.

6/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace for
an SH7203 CPU which might be used as a starting point for your applications.

Your embOS distribution contains one folder �Start� which contains the sample
start workspace and a subfolder Start_SH7203 containing the project.
All CPU specific files and sample start applications are located in the CPU_*
subfolder.
Every files used to build your embOS application are located in the Start folder
and its subfolders.

To get your application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the embOS distribution disk into your

work directory.
• Clear the read only attribute of all files in the new �Start�-folder in your

working directory.
• Open the folder �Start� in your work directory.
• Open the start workspace �Start_SH7203.hws�. (e.g. by double clicking it)
• You may select the Configuration �Debug� and the session �SimSes-

sionSH2A-FPU_Func� which allows downloading and debugging of the sam-
ple application into the simulator.

• Build the start project

After building the start project, your screen should look like follows:

embOS for SH2A CPUs and KPIT GNU compiler 7/24

 2008 SEGGER Microcontroller GmbH & Co. KG

2.3. The sample application Start_2Tasks.c

The following is a printout of the sample application Start_2Tasks.c. It is a good
starting-point for your application.

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/***
* SEGGER MICROCONTROLLER GmbH & Co KG *
* Solutions for real time microcontroller applications *
**
* *
* (c) 1995 - 2007 SEGGER Microcontroller GmbH & Co KG *
* *
* www.segger.com Support: support@segger.com *
* *
**

--
File : Start_2Tasks.c
Purpose : Skeleton program for OS
-------- END-OF-HEADER ---
*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

/****** End of file ***/
 }

/****** End of file ***/

8/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

3. Using debugging tools to debug the applica-
tion

The embOS start project contains a configuration which may be used to
download the sample application into the HEW simulator.
The following description shows a sample session.

3.1. Using Renesas HEW simulator

After building the application, download the generated output file to the debug-
ger and perform a reset command. The debug window will show the startup
code:

You may single-step through the startup code to reach main(), or you may open
the �Start_2Tasks.c� file and set a breakpoint at main:

When you then issue a �Go� command, you will reach at main().

embOS for SH2A CPUs and KPIT GNU compiler 9/24

 2008 SEGGER Microcontroller GmbH & Co. KG

OS_IncDI() disables interrupts and tells embOS, that interrupts should not be
enabled during OS_InitKern().
OS_InitKern()initializes embOS �Variables. If OS_IncDI() was not called
before, interrupts will be enabled. As this function is part of the embOS library,
you may step into it in disassembly mode only.
OS_InitHW() is part of the CPU specific RTOSINIT*.c file and therefore part
of your application. Its primary purpose is to initialize the hardware required to
generate the timer-tick-interrupt for embOS. Step through it to see what is
done.
OS_Start() is the last line executed in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set two break points in the two
tasks as shown below

As OS_Start() is part of the embOS library, you can step through it in disas-
sembly mode only. You may press GO, step over OS_Start(), or step into
OS_Start() in disassembly mode until you reach the highest priority task.

10/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend LPTask and switch to the idle-loop, which is always
executed if there is nothing else to do:

embOS for SH2A CPUs and KPIT GNU compiler 11/24

 2008 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.
The simulator unfortunately does not support periodical interrupt simulation.
You may define a trigger which stimulates interrupt 142 (H�8E) with priority 1 to
simulate the default embOS timer interrupt.
Coming from OS_Idle(), you should execute the �Go� command.
Then firing the trigger 10 times results in entering the high priority task again.

As can be seen by the value of embOS timer variable OS_Time, shown in the
watch window, the HPTask continues operation after expiration of the 10 ms
delay.

3.2. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build performs addi-
tional error checks during runtime.
When an error is detected, the debug libraries call OS_Error().
Using an emulator or simulator you should set a breakpoint there. The actual
error code is assigned to the global variable OS_Status. The program then
waits for this variable to be reset. This allows to get back to the program-code
that caused the problem: Simply reset this variable to 0 using your in circuit-
emulator or simulator, and you can step back to the program sequence causing
the problem. Most of the time, a look at this part of the program will make the
problem clear.
How to select an other library with debug code for your projects is described
later on in this manual.

12/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

4. Build your own application
To build your own application, you may start with the sample start project. This
has the advantage, that all necessary files are included and all settings for the
project are already done.
You may also add all necessary files for embOS into your own project as de-
scribed below.

4.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Start\Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• OS_Config.h from the Start\Inc\ subfolder. This file may be used to define
different options for different project configurations. Normally, this file is used
to define the library types used for debug and release builds. You may add
other options to this file.

• RTOSInit_*.c and all other files from one CPU_*\Setup subfolder.
It contains the hardware dependent initialization code for the embOS timer
and optional UART for embOSView.

• One embOS library from the Start\Lib\ subfolder. Please set the appropriate
OS_LIBMODE define according to the chosen library.
This is normally done in the file OS_Config.h

• OS_Error.c from subfolder Setup\ of the CPU specific folder. This file is
used, if any library other than Release build library is used in your project.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to �C� standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.

4.2. Add your own code

For your own code, you may add your files to the project.
You should then modify or replace the main.c source file in the subfolder src\.

4.3. Change library mode

For your application you may wish to use a different embOS library. For de-
bugging and program development you should use an embOS debug library.
For your final application you may wish to use an embOS release library.
Therefore you may have to replace the embOS library in your project or target:
• Add the appropriate library from the Lib-subdirectory to your project.
• Remove the previous library from your project or exclude it from build.
• Set the appropriate OS_LIBMODE_* define as tool chain compiler option.

Normally done in the OS_Config.h file.
Refer to chapter 5 about the library naming conventions to select the correct li-
brary.

embOS for SH2A CPUs and KPIT GNU compiler 13/24

 2008 SEGGER Microcontroller GmbH & Co. KG

5. KPIT GNU compiler specifics

5.1. Memory models, compiler options

embOS for SH2A for HEW and KPIT GNUSH compiler is delivered with librar-
ies for most default options and compiler settings.
The �RENESAS� calling convention is used with embOS libraries and the pro-
ject has to be set up accordingly.

5.2. Available libraries

embOS is shipped with libraries for SH2A CPUs with or without floating point
unit.
All Libraries are compiled with calling convention �RENESAS�

libOs <CPU> <FPU> <Endianess>_<LibMode>.lib

Parameter Meaning Values
CPU CPU variant 2A: SH2A CPU
FPU Floating point unit N: None

F: Floating-point unit
Endianess Type of endianess B: Big

XR: Release
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling

LibMode Library mode

DT: Debug + profiling + Trace

This results in 14 different libraries delivered with embOS.
For the different library versions, the following defines have to be set:

Library mode Meaning Define
XR Extreme release OS_LIBMODE_XR
R Release OS_LIBMODE_R
S Stack check OS_LIBMODE_S
SP Stack check + Profiling OS_LIBMODE_SP
D Debug + stack check OS_LIBMODE_D
DP Debug + stack check + Profiling OS_LIBMODE_DP
DT Debug + stack check + profiling + Trace OS_LIBMODE_DT

When using HEW workbench or a make file, please check the following points:
• The endianess is set as general project option
• One embOS library is part of your project (included in one group of your tar-

get). When a CPU with floating point unit is used, the library with floating
point option has to be used.

• The appropriate define according to embOS library mode is set as compiler
preprocessor option for your project. May be defined in OS_Config.h.

• The calling convention �RENESAS� is selected by compiler option -mhitachi
and -mrenesas

14/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

5.3. Distributed project files

The distribution of embOS for SH2A and HEW compiler contains a start project
for an SH7203 CPU.
The start project contains an embOS debug and profiling library which should
be used during program development.

embOS for SH2A CPUs and KPIT GNU compiler 15/24

 2008 SEGGER Microcontroller GmbH & Co. KG

6. SH2A CPU specifics
All hardware specific functions required for embOS are located in the CPU
specific RTOSInit_*.c files.
Settings for CPU clock speed and UART settings for embOSView are defined
with most common defaults. According to your specific hardware, these settings
may have to be changed to ensure proper timer tick and UART communication
with embOSView..
As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked when you update to a newer
version of embOS.
Various CPU derivates may be equipped with different peripherals. It may be
necessary to write your own initialization code for your specific CPU derivate.
You may therefore copy one RTOSInit_*.c file which is closest to your CPU
variant and modify this new created file to handle your CPU.

6.1. Clock settings for embOS timer interrupt

The OS_InitHW() routine in RTOSInit.c derives timer init values from the
constant define OS_PCLK_TIMER. Per default, the value of OS_PCLK_TIMER
equals OS_FSYS / OS_PCLK_DIVIDER / 8, which defines the CPU clock of
the target system. Wrong settings would result embOS timer ticks unequal to 1
ms.
To adapt the embOS timer tick frequency to your CPU, you may:
• Define OS_FSYS as project option. OS_FSYS should equal your CPU clock

frequency in Hertz. Note that modification of OS_FSYS may also affect the
UART initialization for embOSView.

• You may alternatively define OS_PCLK_TIMER or OS_PCLK_DIVIDER as
project option (compiler preprocessor option). These values are used to cal-
culate the timer compare value used for embOS timer.

The CPU clock generator and PLL itself is initialized during startup in the func-
tion HardwareSetup() which is implemented in the source file hwsetup.c.

6.2. Clock settings for UART used for embOSView

OS_COM_Init() routine in RTOSInit.c derives baudrate generator init val-
ues from the constant define OS_PCLK_UART. Per default, the value of
OS_PCLK_UART equals OS_FSYS / OS_PCLK_DIVIDER.

To ensure correct time base clock for baudrate generator used for embOSView,
you may:
• Define OS_FSYS as project option. OS_FSYS should equal your CPU clock

frequency in Hertz. Note that modification of OS_FSYS may also affect the
timer initialization for embOS tick timer.

• You may alternatively define OS_PCLK_UART as project option (compiler
preprocessor option). This value is used to calculate values used to initialize
UART used for communication with embOSView.

6.3. Conclusion about clock settings

• OS_FSYS has to be defined according to your CPU clock frequency. This
should be defined as compiler preprocessor option in your project.

16/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

• OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral
clock for the embOS timer. The value defaults to OS_FSYS. It should be
modified and defined as compiler preprocessor option if modification is re-
quired.

• OS_PCLK_UART has to be defined to fit the frequency used as peripheral
clock for the UART used for communication with embOSView. The value de-
faults to OS_FSYS / OS_PCLK_DIVIDER. It should be modified and defined
as compiler preprocessor option if modification is required.

6.4. embOS hardware timer selection

embOS for SH2A CPUs is prepared to use one Compare Match Timer (CMT)
channel as time base timer.
The initialization code and interrupt handler are delivered in source code and
are located in RTOSInit_*.c.
If another timer has to be used, the interrupt vector table entries in �vect.h� and
�vecttbl.c� have to be modified accordingly.

6.5. UART for embOSView

Any SCIF UART of the SH2A CPU may be used as communication channel for
embOSView which enables profiling analysis during runtime.
The initialization code and interrupt handler are delivered in source code and
are located in RTOSInit_*.c.
OS_UART i may be defined from 0 to 3 to select, initialize and enable one of the
SCIFs. When embOSView should not be used, define OS_UART to �1. This
may be done in OS_Config.h.
The UART used for embOSView requires three interrupt handler which are de-
fined in RTOSInit.c:
• OS_ISR_RxErr() is the reception error interrupt handler.
• OS_ISR_Rx() is the reception interrupt.
• OS_ISR_Tx() is the transmission interrupt which is called on Tx end condi-

tion.
The interrupt vector entries in the interrupt vector definition files �vect.h� and
�vecttbl.c� have to be set according the UART channel which is used for em-
bOSViev.

embOS for SH2A CPUs and KPIT GNU compiler 17/24

 2008 SEGGER Microcontroller GmbH & Co. KG

7. Stacks

7.1. Task stack for SH2A CPUs

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the CPU.
As SH2A CPUs have a 32 bit stack pointer, the whole memory area can be
used as task stack.
Please note, that the task stacks have to be aligned at EVEN addresses.
To ensure proper alignment, implement the task stack as array of int.
The stack-size required for tasks is the sum of the stack-size of all routines plus
basic stack size required for a task.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the SH2A CPU, the required stack size for the CPU registers is 48 bytes,
for an SH2A with FPU, the required stack size for the CPU registers is 64 bytes.
As the SH2A CPUs do not support a separate interrupt stack, all interrupts may
run on the task stacks as well. Therefore we recommend at least a minimum of
256 bytes for task stacks.

7.2. System stack for SH2A CPUs

The system stack size required by embOS is about 40 bytes (65 bytes in.
profiling builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.
Because the SH2A CPU does not support a separate interrupt stack, all inter-
rupts may also run on the system stack.
The stack used as system stack is the memory area defined in the linker set-
tings between label .stackstart and .stack.
The label .stack has to be placed in the vector table. The label .statckstart is
used by embOS to allow stack checking of the system stack.ize is defined in
the �stacksct.h� header file.
We recommend at least a minimum of 256 bytes.

7.3. Interrupt stack for SH2A CPUs

The SH2A CPUs do not support a hardware interrupt stack. All interrupts run on
the current stack.
Therefore the size of task stacks and the system stack have to be large enough
to handle all nested interrupts and subroutine calls.

7.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
stack also. Using embOSView, the total size and used size of any stack can be
examined. This may be used to reduce the stack sizes, if RAM space is a prob-
lem in your application.
If the floating point unit is not used, a CPU without floating point unit may be se-
lected under project options and the embOS libraries without floating point sup-
port may be used to reduce the interrupt stack size.

18/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

8. Interrupts with SH2A CPUs
The following chapter describes interrupt specifics of SH2A CPUs and the inter-
rupt modes used with embOS.

8.1. Interrupt processing with SH2A CPUs

SH2A CPUs support a priority controlled interrupt mode and as an option an
additional register bank switching mechanism. This mode supports the following
features:
• Interrupt priority registers to assign 16 priority levels to peripheral interrupts.
• Priority level controlled masking.
• Interrupts with higher priority are never disabled by entering an interrupt ser-

vice routine with lower priority.
• If bank switching is enabled for the interrupt priority of the current interrupt,

the CPU switches to an other register bank.

Interrupt processing is as follows:
• The CPU-core receives an interrupt request from the interrupt controller.
• If interrupts are enabled for the priority of the interrupting device, the interrupt

is accepted and executed.
• The CPU stores the PC and the status register onto the current stack.
• The interrupt mask level in the status register of the CPU is updated from the

level of the interrupting device.
• The CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• If bank switching is enabled for this interrupt, the CPU switches to an other

register bank.
• ISR: Save temporary registers.
• ISR: User-defined functionality.
• ISR: Restore temporary registers.
• ISR: Execute RTE command, restoring PC and status register from the

satck.
• For more details, refer to the RENESAS manuals.

8.2. Fast interrupts with SH2A CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to a higher user definable level. Therefore all inter-
rupts with higher levels can still be processed.
These interrupts are named Fast interrupts.
The default level limit for fast interrupts is set to 8, meaning, any interrupt with
level 9 or above is never disabled and can be accepted anytime.
You must not execute any embOS function from within a fast interrupt
function.

8.3. Interrupt priorities with embOS for SH2A CPUs

With introduction of Fast interrupts, interrupt priorities useable by the applica-
tion are divided into two groups:
• Low priority interrupts with priorities from 1 to a user definable priority limit.

These interrupts are called embOS interrupts.

embOS for SH2A CPUs and KPIT GNU compiler 19/24

 2008 SEGGER Microcontroller GmbH & Co. KG

• High priority interrupts with priorities above the user definable priority limit.
These interrupts are called Fast interrupts.

Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters.
The priority limit between embOS interrupts and fast interrupts can be set at
runtime by a call of OS_SetFastIntPriorityLimit().

8.4. Defining interrupt handlers for SH2A CPUs in "C"

Routines preceded by the keywords #pragma interrupt save & restore the
temporary registers and all registers they modify onto the stack and return with
RTE.
The interrupt function has to be declared in the interrupt vector table file
“vect.h” and the interrupt vector has to be inserted in the vector table in
“vecttbl.c” .
The interrupt handler itself may be implemented in any source file. Default
dummy interrupt handler are delivered in the source file “intprg.c” . The in-
terrupt handler used by embOS are implemented in the CPU specific
RTOSInit_*.c file.

Example of an embOS interrupt handler

embOS interrupt handler have to be used for interrupt sources running at all
priorities up to the user definable interrupt priority level limit for fast interrupts.

#pragma interrupt (OS_ISR_Tick(resbank))
void OS_ISR_Tick(void) {
 OS_CallNestableISR(_IsrTickHandler);
}

Any interrupt handler running at priorities from 1 to the selectable �Fast inter-
rupt� priority limit has to be written according the code example above, regard-
less any other embOS API function is called.
The rules for an embOS interrupt handler are as follows:
• The embOS interrupt handler must not define any local variables.
• The embOS interrupt handler has to call OS_CallISR(), when interrupts

should not be nested. It has to call OS_CallNestableISR(), when nesting
should be allowed.

• The interrupt handler must not perform any other operation, calculation
or function call. This has to be done by the local function called from
OS_CallISR() or OS_CallNestableISR().

Differences between OS_CallISR() and OS_CallNestableISR()

OS_CallISR() should be used as entry function in an embOS interrupt han-
dler, when the corresponding interrupt should not be interrupted by another
embOS interrupt. OS_CallISR() sets the interrupt priority of the CPU to the
user definable �fast� interrupt priority level, thus locking any other embOS inter-
rupt, Fast interrupts are not disabled.
OS_CallNestableISR() should be used as entry function in an embOS in-
terrupt handler, when interruption by higher prioritized embOS interrupts should
be allowed. OS_CallNestableISR() does not alter the interrupt priority of
the CPU, thus keeping all interrupts with higher priority enabled.

Example of a Fast interrupt handler

20/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

Fast interrupt handler have to be used for interrupt sources running at priorities
above the user definable interrupt priority limit.

#pragma interrupt FastUserInterrupt
void FastUserInterrupt (void) {
 unsigned long Count; // local variables are allowed
 Count = TPU_TCNT0;
 HandleCount(Count); // Any function call except embOS functions is allowed
}

The rules for a Fast interrupt handler are as follows:
• Local variables may be used.
• Other functions may be called.
• embOS functions must not be called, nor direct, neither indirect.
• The priority of the interrupt has to be above the user definable priority limit

for fast interrupts.

8.5. OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit
for fast interrupts

The interrupt priority limit for fast interrupts is set to 8 by default. This means, all
interrupts with higher priority from 9 to 15 will never be disabled by embOS.

Description
OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between
fast interrupts and lower priority embOS interrupts.

Prototype
void OS_SetFastIntPriorityLimit(unsigned int Priority)

Parameter Meaning

Priority
The highest value useable as priority for embOS interrupts.
All interrupts with higher priority are never disabled by em-
bOS. Valid range: 1 <= Priority <= 15

Return value
NONE.

Add. information
To disable fast interrupts at all, the priority limit may be set to 15 which is the
highest interrupt priority for interrupts.
To modify the default priority limit, OS_SetFastIntPriorityLimit() should
be called before embOS was started.
In the default projects, OS_SetFastIntPriorityLimit() is called from
OS_IntHW() in RTOSInit_*.c.
All interrupts running at low priority from 1 to the user definable priority limit for
fast interrupts have to call OS_CallISR() or OS_CallNestableISR() re-
gardless any other embOS function is called in the interrupt handler.
This is required, because interrupts with low priorities may be interrupted by
other interrupts calling embOS functions. The task switch from interrupt will
only work if every embOS interrupt uses the same stack layout. This can only
be guaranteed when OS_CallISR() or OS_CallNestableISR() is used.
Any interrupts running above the fast interrupt priority limit must not call any
embOS function.

embOS for SH2A CPUs and KPIT GNU compiler 21/24

 2008 SEGGER Microcontroller GmbH & Co. KG

8.6. Interrupt vector table

The sample start project uses startup code written in assembly language and
an interrupt vector table written in �C� source and header files.
For embOS, the embOS timer tick interrupt vector is defined in the vector table.
The embOS timer interrupt handler itself is located in the in the source code file
RTOSInit_*.c.

22/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

9. Sleep / Standby Mode
Usage of the Sleep instruction is one possibility to save power consumption
during idle times. If required, you may modify the OS_Idle() routine, which is
part of the hardware dependent module RtosInit.c.
The Sleep mode works without any problems, because the embOS scheduler
is activated on any timer interrupt.
The Software Standby-Mode may be used, if scheduling depends on those in-
terrupts, which may release Software Standby-Mode. The real-time operating
system is halted during the execution of the Software-Standby mode if the timer
that the scheduler uses is supplied from internal clock. With external clock, the
scheduler keeps working. embOS timer may be realized with external hard-
ware which triggers one of the interrupt inputs of the CPU.
Hardware standby mode can not be used, as this mode can not be suspended
by any interrupt.

embOS for SH2A CPUs and KPIT GNU compiler 23/24

 2008 SEGGER Microcontroller GmbH & Co. KG

10. Technical data

10.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the release build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.2000 49
Add. Task --- 40
Add. Semaphore --- 16
Add. Mailbox --- 24
Add. Timer --- 20
Power-management --- ---

11. Files shipped with embOSembOSembOSembOS
embOS for SH2A and Renesas compiler is shipped with documentation in PDF
format and release notes as html.
The start project, source files, all libraries and additional files required for linker
or emulator / simulator are located in the sub folder �Start�. The distribution of
embOS contains the following files:

Directory File Explanation
Start\ Start*.hws Start workspace for HEW Embedded

Workbench.
Start_SH*\ *.hwp CPU specific project file for embOS
Start\Inc\ RTOS.h embOS API header file. To be included in

any file using embOS functions
Start\Lib\ *.a embOS libraries
Start\CPU_SH*
\Setup

. All CPU specific files needed for an
embOS application

CPU\ *.* embOS start project sources and files to
build libraries and start projects (Source
version only)

GenOsSrc\ *.* embOS sources (Source version only)
 *.Bat Batch files to build embOS libraries from

sources (Source version only)

embOSView and the manuals are found in the root directory of the distribution.

24/24 embOS for SH2A CPUs and KPIT GNU compiler

 2008 SEGGER Microcontroller GmbH & Co. KG

12. Index

#pragma interrupt......................... 19
C
Clock settings............................... 16
Clock settings, timer interrupt...... 15
Clock settings, UART.................. 15
E
embOS interrupt........................... 18
F
Fast interrupt................................ 18
H
Hardware timer 16
I
Installation 5
Interrupt mode 18
Interrupt priorities........................ 18
Interrupt stack 17
Interrupt vector table.................... 21

Interrupt, fast................................18
Interrupts SH2A18
intprg.c ...19
M
Memory models............................13
Memory requirements23
O
OS_CallISR..................................19
OS_CallNestableISR....................19
OS_Error()11
OS_FSYS...............................15, 16
OS_ISR_Rx..................................16
OS_ISR_RxErr.............................16
OS_ISR_Tx..................................16
OS_PCLK_TIMER................15, 16
OS_PCLK_UART..................15, 16
OS_SetFastIntPriorityLimit().19, 20
OS_UART....................................16

S
SH2A CPU specifics15
Sleep-mode...................................22
Stacks ...17
Stacks, interrupt stack...................17
Stacks, system stack......................17
Stacks, task stacks17
Standby-mode...............................22
System stack17
T
Task stacks17
Technical data...............................23
U
UART for embOSView16
V
vect.h ..19
vecttbl.c ..19

	Contents
	About this document
	How to use this manual

	Using embOS with HEW Workbench
	Installation
	First steps
	The sample application Start_2Tasks.c

	Using debugging tools to debug the application
	Using Renesas HEW simulator
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Add your own code
	Change library mode

	KPIT GNU compiler specifics
	Memory models, compiler options
	Available libraries
	Distributed project files

	SH2A CPU specifics
	Clock settings for embOS timer interrupt
	Clock settings for UART used for embOSView
	Conclusion about clock settings
	embOS hardware timer selection
	UART for embOSView

	Stacks
	Task stack for SH2A CPUs
	System stack for SH2A CPUs
	Interrupt stack for SH2A CPUs
	Reducing the stack size

	Interrupts with SH2A CPUs
	Interrupt processing with SH2A CPUs
	Fast interrupts with SH2A CPUs
	Interrupt priorities with embOS for SH2A CPUs
	Defining interrupt handlers for SH2A CPUs in "C"
	OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts
	Interrupt vector table

	Sleep / Standby Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

