

embOS

Real Time Operating System

CPU & Compiler specifics for

RENESAS R8C CPUs

and HEW workbench

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

Contents

Contents.. 2
1. About this document ... 3

1.1. How to use this manual ... 3
2. Using embOS with RENESAS HEW .. 4

2.1. Installation.. 4
2.2. First steps .. 5
2.3. The sample application Main.c .. 5

3. Using debugging tools to debug the application.. 7
3.1. Debug the application using Renesas E8 debugger.. 7
3.2. Build your own application ... 11
3.3. Required files for an embOS application .. 11
3.4. Select a start project .. 11
3.5. Add your own code .. 11
3.6. Change memory model or library mode... 11

4. R8C and NC30 specifics ... 13
4.1. Memory models ... 13
4.2. Available libraries... 13
4.3. Distributed project files .. 13
4.4. Startup file NCRT0.a30.. 13
4.5. Section and interrupt vector definition file SECT30.inc...................................... 13

5. Stacks ... 14
5.1. Task stack for R8C .. 14
5.2. System stack for R8C .. 14
5.3. Interrupt stack for R8C... 14
5.4. Reducing the stack size... 14

6. Interrupts ... 15
6.1. What happens when an interrupt occurs? ... 15
6.2. Defining interrupt handlers in "C"... 15
6.3. Interrupt vector table.. 15
6.4. Interrupt-stack.. 15
6.5. Fast interrupts with R8C .. 16
6.6. Interrupt priorities... 16

7. STOP / WAIT Mode .. 17
8. Technical data... 18

8.1. Memory requirements.. 18
9. Files shipped with embOS for NC30 compiler.. 18
10. Index ... 19

embOS for M16C/R8 CPUs and NC30 compiler 3/19

 1996- 2006 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS for R8C Real Time Operating System
for the RENESAS R8C series of microcontroller using RENESAS NC30 com-
piler version 5.40 and HEW workbench version 4.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using R8C
CPUs with NC30 compiler. Before actually using embOS, you should read or at
least glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using RENESAS High-performance Embedded Workshop HEW. If you have no
experience using embOS, you should follow this introduction, even if you do
not plan to use RENESAS HEW, because it is the easiest way to learn how to
use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the R8C
CPUs and NC30 compiler.

4/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

2. Using embOS with RENESAS HEW

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using RENESAS HEW to develop your application, no
further installation steps are required. You will find a prepared sample work-
space and sample start project for R8C CPU, which you should use and modify
to write your application. So follow the instructions of the next chapter �First
steps�.

You should do this even if you do not intend to use RENESAS HEW for your
application development in order to become familiar with embOS.

embOS does in no way rely on RENESAS HEW, it may be used without the
workbench using batch files or a make utility without any problem.

embOS for M16C/R8 CPUs and NC30 compiler 5/19

 1996- 2006 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start project for
R8C CPUs and it is a good idea to use this as a starting point of all your appli-
cations.

Your embOS distribution contains everything you need for NC30 compiler ver-
sion 5.40 and HEW version 4. If you have to use compiler version 5.3 or lower
and RENESAS Tool manager, the sample start workspace can not be used.

For NC30 compiler version 5.40 and HEW version 4 which is explained in this
manual, you should:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the folder �embOS_R8C_HEW� from

your embOS distribution into your work directory.
• Clear the read only attribute of all files in the new �Start�-folder in your work-

ing directory.
• Open the folder �Start�
• Open the start workspace �Start_R8C*.hws�. (e.g. by double clicking it)
• Build the start project

After building the start project, your screen should look like follows:

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

6/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
**
* *
* (C) 2006 SEGGER Microcontroller Systeme GmbH *
* *
* www.segger.com Support: support@segger.com *
* *
**

--
File : Main.c
Purpose : Skeleton program for embOS
-------- END-OF-HEADER ---
*/

#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for M16C/R8 CPUs and NC30 compiler 7/19

 1996- 2006 Segger Microcontroller Systeme GmbH

3. Using debugging tools to debug the application
The embOS start project is configured to produce an output file which can di-
rectly used with the E8 debugger.
The following chapter describes a sample session based on our sample appli-
cation MainLed.c.

3.1. Debug the application using Renesas E8 debugger

The easiest way to debug the start project is using the E8 debugger. Please
ensure that you have select the build session �Debug� and the debug session
�Debug_E8�.
When you choose �Debug -> Connect� from the main menu, The �Init (R8C de-
bugger)� dialog appears. Depending on other options, the debugger then auto-
matically loads the target file. If not please choose �Debug -> Download
Modules� from the main menu.

The Debugger will load the file and show the startup code:

You should open or select the MainLed.c file and set a breakpoint at main()
When you then start the CPU by �Debug -> Go� or just press F5, the debugger
stops at main. Alternatively, you may step through the startup code to get there:

8/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

You may now step through the sample application.
• OS_IncDI() Initially disables interrupts and prevents re-enabling them in
OS_InitKern().

• OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables.

• OS_InitHW() is part of RTOSInit.c and therefore part of your application.
Its primary purpose is to initialize the hardware required to generate the
timer-tick-interrupt for embOS. Step through it to see what is done.

• OS_Start() should be the last line in main, since it starts multitasking and
does not return. OS_Start() automatically enables interrupts.

When you step into OS_Start(), the next line executed is already in the high-
est priority task created. (you may also use disassembly mode to get there of
course, then stepping through the task switching process, but you must not step
over OS_Start()). In our small start program, HPTask() is the highest priority
task and is therefore active:

embOS for M16C/R8 CPUs and NC30 compiler 9/19

 1996- 2006 Segger Microcontroller Systeme GmbH

You should set a breakpoint in every task, as shown above. If you continue
stepping, you will arrive in the task with the second highest priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).
When you step into the OS_Delay(), you will arrive there:

10/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. You may open the watch window to dis-
play the embOS time variable OS_Time, which shows how much time has
expired in the target system.

Now start the target CPU by �Debug -> Go� or press F5. The HP task will con-
tinue after the given delay of 50 ms:

embOS for M16C/R8 CPUs and NC30 compiler 11/19

 1996- 2006 Segger Microcontroller Systeme GmbH

3.2. Build your own application

To build your own application, you should start with a sample start project. This
has the advantage, that all necessary files are included and all settings for the
project are already done.

3.3. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\
This header file declares all embOS API functions and data types and
has to be included in any source file using embOS functions.

• RTOSInit_*.c from subfolder CPU_*\.
It contains hardware dependent initialization code for embOS timer and
optional UART for embOSView.

• OS_Error.c from subfolder Src\.
It contains the embOS runtime error handler OS_Error()which is used
in stack check or debug builds.

• One embOS library from the Lib\ subfolder
• ncrt0.a30 from subfolder Src\.

This is the startup code which is modified to be used with embOS.
• sect30.inc from subfolder Src\.

This is the interrupt vector table file which is setup to be used with em-
bOS.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to �C� standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_incDI() are
called.

3.4. Select a start project

embOS comes with one start project for an R8C23 (R5F21237) CPU. The start
project was built and tested for standard CPUs. For various CPU variants there
may be modifications required.

3.5. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

3.6. Change memory model or library mode

For your application you may have to choose an other data- / memory-model.
For debugging and program development you should use an embOS -debug
library. For your final application you may wish to use an embOS -release li-
brary.
Therefore you have to replace the embOS library in your project or target:

• Replace the library by modifying the linker settings.

12/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

Finally check project options about target CPU data / memory model settings
and compiler settings according library mode used. Refer to chapter 4about the
library naming conventions to select the correct library.

embOS for M16C/R8 CPUs and NC30 compiler 13/19

 1996- 2006 Segger Microcontroller Systeme GmbH

4. R8C and NC30 specifics

4.1. Memory models

embOS supports all memory models that RENESAS NC30 C-Compiler sup-
ports.
For R8C there is one memory models available:

Model Code Data
Near far (20 bits always) near (16 bits)

4.2. Available libraries

The files for R8C to use are:

Library type Library define
Release RTOSR OS_LIBMODE_R
Stack-check RTOSS OS_LIBMODE_S
Stack-check + Profiling RTOSSP OS_LIBMODE_SP
Debug RTOSD OS_LIBMODE_D
Debug + Profiling RTOSDP OS_LIBMODE_DP
Trace + Debug RTOSDT OS_LIBMODE_DT

When using RENESAS HEW, please check the following points:
• The memory model is set as option for your compiler
• One embOS library is added to your project (under Project Options | Linker

settings)
• The appropriate define is set as compiler option for your project.

4.3. Distributed project files

The distribution of embOS contains one start project which is set up for the
near memory model.

4.4. Startup file NCRT0.a30

embOS. comes with a modified startup file for R8C. Minor modifications are
required; they are documented in this file.

4.5. Section and interrupt vector definition file SECT30.inc

This file was modified to export information about stack sizes. Also embOS in-
terrupts are defined in this file. All modifications are documented in this file.

14/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

5. Stacks

5.1. Task stack for R8C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the R8C CPU.
As R8C CPUs have a 16bit stack pointer only, this may be any RAM located
from 0x0000..0xFFFF.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the R8C, this minimum stack size is about 42 bytes in the near memory
model.

5.2. System stack for R8C

The system stack size required by embOS is about 40 bytes (65 bytes in.
profiling builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.
The stack used as system stack is the one defined at startup. Its size is defined
as __STACKSIZE __ in the nc_define.inc file.
A good value for the system stack is typically about 80 to 200 bytes.

5.3. Interrupt stack for R8C

The R8C CPU has been designed with multitasking in mind; it has 2 stack-
pointers, the USP and the ISP. The U-Flag selects the active stack-pointer.
During execution of a task or timer, the U-flag is set thereby selecting the user-
stack-pointer. If an interrupt occurs, the R8C clears the U-flag and switches to
the interrupt-stack-pointer automatically this way. The ISP is active during the
entire ISR (interrupt service routine). This way, the interrupt does not use the
stack of the task and the task-stack-size does not have to be increased for in-
terrupt-routines. Additional stack-switching as for other CPUs is therefore not
necessary for the R8C.
The stack used as interrupt stack is the one defined at startup. Its size is de-
fined as __ISTACKSIZE__ in the nc_define.inc file.

5.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
and interrupt stack also. Using embOSView, the total size and used size of any
stack can be examined. This may be used to analyze stack requirements and to
reduce the stack sizes, if RAM space is a problem in your application.

embOS for M16C/R8 CPUs and NC30 compiler 15/19

 1996- 2006 Segger Microcontroller Systeme GmbH

6. Interrupts

6.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor interrupt priority

level is below or equal to the interrupt priority level, the interrupt is executed
• the CPU switches to the Interrupt stack
• the CPU saves PC and flags on the stack
• the IPL is loaded with the priority of the interrupt
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute REIT command, restoring PC, Flags and switching to User

stack
• For details, please refer to the RENESAS users manual.

6.2. Defining interrupt handlers in "C"

Routines defined with the keywords #pragma INTERRUPT automatically save
& restore the registers they modify and return with REIT.
For a detailed description on how to define an interrupt routine in "C", refer to
the NC30 C-Compiler's user's guide.

Example
"Simple" interrupt-routine

#pragma INTERRUPT OS_ISR_tx
void OS_ISR_tx(void) {
 OS_EnterNestableInterrupt(); // We will enable interrupts
 OS_OnTx();
 OS_LeaveNestableInterrupt();
}

6.3. Interrupt vector table

The interrupt vectors may be defined in �C� when using RENESAS HEW 4 and
new NC30 compiler.
The distribution of embOS uses the old style of interrupt vector table definition
using an assembly include file which is included in the startup file.
embOS comes with a prepared and modified section definition file sect30.inc
which should be used and modified for your needs.

6.4. Interrupt-stack

Since the R8C CPUs have a separate stack pointer for interrupts, there is no
need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.

16/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

6.5. Fast interrupts with R8C

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 4. Therefore all interrupts with level 5 or above
can still be processed.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

6.6. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.
• Any interrupt handler using embOS API functions has to run with interrupt

priorities from 1 to 4. These embOS interrupt handlers have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and must
end with OS_LeaveInterrupt() or OS_LeaveNestableInterrupt().

• Any Fast interrupt (running at priorities from 5 to 7) must not call any embOS
API function. Even OS_EnterInterrupt() and OS_LeaveInterrupt()
must not be called.

• Interrupt handler running at low priorities (from 1 to 4) not calling any
embOS API function are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Fast interrupts is fixed to
4 and can only be changed by recompiling embOS libraries!

embOS for M16C/R8 CPUs and NC30 compiler 17/19

 1996- 2006 Segger Microcontroller Systeme GmbH

7. STOP / WAIT Mode
Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

18/19 embOS for R8C CPUs and NC30 compiler

  1996-2006 Segger Microcontroller Systeme GmbH

8. Technical data

8.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the near memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1670 27
Add. Task --- 19
Add. Semaphore --- 4
Add. Mailbox --- 11
Add. Timer --- 11
Power-management --- ---

9. Files shipped with embOS for NC30 compiler
embOS for R8C and NC30 compiler is shipped for compiler version 5.40 and
projects for HEW version 4.
This version of embOS is located in Folder �embOS_R8C_HEW� and contains
the following files:

Directory File Explanation
Start\ Start_R8C23

.hws
Start workspace for HEW 4

Start\Start_MR8
C23\

. Project files for HEW

Start\INC\ RTOS.h embOS API header file. To be included in
any file using embOS functions

Start\Lib *.lib embOS libraries
Start\Src\ main.c Frame program to serve as a start
Start\CPU_*\ RTOSInit_*.

c
Hardware dependant functions used by
embOS

Start\Src OS_Error.c The embOS error handler, used called on
runtime error occurrence in debug builds.

Start\ CPU_*\ ncrt0.a30 Startup file, modified for use with embOS
Start\ CPU_*\ sect30.inc Section definition file and interrupt vector

table, modified for use with embOS

embOSView and the manuals are found in the root directory of the distribution.

embOS for M16C/R8 CPUs and NC30 compiler 19/19

 1996- 2006 Segger Microcontroller Systeme GmbH

10. Index
F
Fast interrupt...........................16
I
Installation4
Interrupt priority16
Interrupt stack.........................14
Interrupt vector table15
Interrupt, fast16
Interrupts15
Interrupt-stack.........................15
ISTACKSIZE14

M
Memory models 13
Memory requirements 18
N
NCRT0.a30............................ 13
O
OS_Error() 11
S
SECT30.inc............................ 13
Stacks 14
Stacks, interrupt stack 14

Stacks, system stack................14
Stacks, task stacks14
STACKSIZE14
Startup file13
Stop-mode17
System stack14
T
Task stacks14
Technical data18
W
Wait-mode17

	Contents
	About this document
	How to use this manual

	Using embOS with RENESAS HEW
	Installation
	First steps
	The sample application Main.c

	Using debugging tools to debug the application
	Debug the application using Renesas E8 debugger
	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	R8C and NC30 specifics
	Memory models
	Available libraries
	Distributed project files
	Startup file NCRT0.a30
	Section and interrupt vector definition file SECT30.inc

	Stacks
	Task stack for R8C
	System stack for R8C
	Interrupt stack for R8C
	Reducing the stack size

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt vector table
	Interrupt-stack
	Fast interrupts with R8C
	Interrupt priorities

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS for NC30 compiler
	Index

