embOS

Real Time Operating System

CPU & Compiler specifics for
RENESAS R32C CPUs
and RENESAS HEW 4

Document Rev. 0

) E—
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/23 embOS for R32C and HEW4

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 3/23

Contents
@7 0] o1 1= o) PR 3
1. AbOUL thiS dOCUMENTottt aenennnnnnnnnnes 4
1.1. How to use this manual..............oooooiii e 4
2. Using embOS with HEW WOrKbENChcoooiiiiiiee e 5
20 R 1 1= =1 = 1T o 5
2.2, FIrSt S EPS oo 6
2.3. The sample application Start_LEDBIINK.C............uiiiiiiii e 7
3. Using debugging tools to debug the application..............cooiiiiiiiiii e 8
3.1. Using the R32C SIMUIATOT.........uuii s 8
3.2. Using E8A or other in circuit emulators. ... 12
3.3. Common debugging NINESooiiiiiiiiiiiiii e 12
4. Build your oWn appliCation...........uuuiiiieieii e 13
4.1. Required files for an embOS applicationcccccceevvvvviiiiiiiiiiiiiiieeeeeeeeeeeee 13
4.2. Select a start Project ... 13
4.3. Add YOUr OWN COOE ... 13
4.4. Change memory model or library mode.............oooiiiiiiiiiiiiiiiicce e, 13
T O V24 O] o1 o o SRR 15
5.1. MEeMOIY MOUEISoueiiiiieieieee ettt e e e e e e e e e e e eeennnnaaas 15
5.2. Available lIDraries. ..o 15
5.3. CPU specific SEHINGS ...covvieiiee e 15
LTS] = T PRSPPI 17
6.1. Task stack for R32C ... 17
6.2. System stack for R32C ... 17
6.3. Interrupt stack for R32C.........o oo 17
6.4. Stack specifics of the RENESAS R32C family ... 17
A 1] G- 4 0] o) £ TSP 18
7.1. What happens when an interrupt OCCUIS?ooooiiiiiiiiii i 18
7.2. Defining interrupt handlers in "C" ... 18
7.3, INterrUPL-StACK ... e 19
7.4. Zero latency interrupts With R32C ... 19
7.5, INterrupt PrioritiESo 19
7.6. OS_SetFastiIntPriorityLimit(): Set the interrupt priority limit for Zero Latency (fast)
1] Y U o PP 20
7.7. Fast interrupt, R32C SPECIfiC.......cuuiiiiiiiiiiiiiieic e 20
7.8. Non Maskable Interrupt, NMI ... 20
8. STOP /WAIT MOAE ... 21
S T I =Tl o 0 Toz= | e = | = PP 22
9.1. MemOry reqQUIrEMENTScooviiiiiii e e e e e e e e e e e e e e e e e eeaaa s 22
10. Files shipped with embOS for R32C and HEW ..o 22
I PR 1 o = PP 23

© 2009 SEGGER Microcontroller GmbH & Co. KG

4/23 embOS for R32C and HEW4

1. About this document

This guide describes how to use embOS for R32C Real Time Operating Sys-
tem for the RENESAS R32C series of microcontroller using RENESAS HEW
for R32C.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS R32C for the
HEW workbench and compiler. Before actually using embOS, you should read
or at least glance through this manual in order to become familiar with the soft-
ware.

Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using the HEW workbench. If you have no experience using embOS, you
should follow this introduction, the HEW Workbench, because it is the easiest
way to learn how to use embOS in your application.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
RENESAS R32C using the RENESAS compiler.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 5/23

2. Using embOS with HEW Workbench

2.1. Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using the HEW Workbench to develop your application,
no further installation steps are required. You will find a prepared sample start
project for R32C CPUs, which you should use and modify to write your applica-
tion. So follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use the HEW Embedded Work-
bench for your application development in order to become familiar with
embOS.

If for some reason you will not work with the HEW Workbench, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.

embOS does in no way rely on the HEW Embedded Workbench, it may be
used without the workbench using batch files or a make utility without any prob-
lem.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4

2.2. First steps

After installation of embOS (— Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace
and project for the R32C CPU and it is a good idea to use this as a starting
point of all your applications.

Your embOS distribution contains one folder ‘Start’ which contains the sample
start workspace and project and every additional files used to build your first
embOS application.

To get your application running, you should proceed as follows.

e Create a work directory for your application, for example c:\work

e Copy all files and subdirectories from the embOS distribution into your
work directory.

e Clear the read only attribute of all files in the new ‘Start’-folder in your work-

ing directory.

Open the folder ‘Start’.

Open the start workspace ‘RSK_R32C111.hws’. (e.g. by double clicking it)

Select a configuration, for example ‘Debug_Simulator’.

Build the start project

After building the start project your screen should look like follows:

Eﬁi Start_RSK32C - High-performance Embedded Workshop - [Start_LEDBlink.c]

<% File Edit Wiew Project Buld Debug Setup Tools Test Window Help =& =]
Dedd éali=re s HE;QI INIT_PLL e JJ & {[Debug =] | [pebug_Simuator =
iwlene s mnu|sfuEaEnees . « | |B)20 W2 E ==& |=
=
=3 RSK_R32C111
-3 Stan_RSK32C :
B : Line 5. Source |
51 zl
E| 52 int main{wvoid) {
63 05 _IneDI(): /% Initially disable incerrupts 5
64 0S_InitKerni(): /% initialize OF "
-- 05_Emorc 65 OF_InitHW(); J* initialize Hardware for O3 wf
Rtasinit_R32C.c 1 BSP_Init(): /% initialize LED ports 4
D Download modules 67 /% Create at least one task before calling OF_Starti) o
Ea Dependencies (351 03 CREATETASK(SLTCEHF, "HP Task"™, HPTask, 100, StackHP):
BSP.h [71=] O3 _CREATETASK(&TCELF, "LP Task", LPTask, 50, StackLP):;
0S_Configh 70 03_Start(): /* Start multitasking)
RTOS.h 71 return 0;
- [2] sect100inc 7z ' J
73 i
o | Q|
=N T EINIER <7 Stert_LEDBIL. o5 neit0.a30 |

A5G| = Ead |G |Heronaar 222 E=d|2
| Input: cyele _Cyﬁ Build Finished

Address | Bit R 1 0 Errors, 0 Warnings
| outvut: cvele | eyele |
I Interrupt: cyele |_Cy@ Build /i Debug # Find in Files 1 4 Find in Files 2 Macro f Test)\ Version Contral

Feady E |Defau|l1 desktop |F\ead-write B3 2

I;ILLIL

For latest information you should open the ReadMe.txt which is part of your pro-
ject.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4

7/23

2.3. The sample application Start_LEDBIink.c

The following is a printout of the sample application Start_LEDBIink.c. It is a

good starting-point for your application.

The start project may contain an other application which is very similar.

What happens is easy to see:
After initialization of embOS two tasks are created and started.

The two tasks are activated and execute until they run into the delay, then sus-

pend for the specified time and continue execution.

File : Start_LEDBIink.c
Pur pose : Sanple program for OS runni ng on EVAL-boards with LEDs
--------- END- OF- HEADER ---------mmmmm o e oo

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control -bl ocks */

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
CS_Del ay (50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
CS_Del ay (200);

}

*
* mai n
*

***/

int main(void) {

CS_IncDi(); /* Initially disable interrupts */
CS_InitKern(); /[* initialize OS */
CS InitHW); /[* initialize Hardware for OS */
BSP_Init(); /* initialize LED ports */

/* You need to create at |east one task before calling OS_Start() */
OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);

CS Start(); [* Start multitasking */
return O;

/***

© 2009 SEGGER Microcontroller GmbH & Co. KG

8/23 embOS for R32C and HEW4

3. Using debugging tools to debug the application

The embOS start project contains configurations which are already setup for
the following debugging tools:

e The R32C simulator. This configuration is named “Debug_Simulator”.

e RENESAS’s emulator E8a. This configuration is named “Debug_E8a”.

All configurations are prepared to produce the appropriate output files required
by the selected debugger or emulator debugger.

The following chapter describe a sample session based on our sample applica-
tion Start_LEDBIink, using the simulator. Using the E8a emulator, the debug-
ging session is very similar.

3.1. Using the R32C simulator

According to project settings, the simulator may start automatically after build-
ing the project. Otherwise, activate the connection and download the output
module of the project.

After download, perform a CPU reset.

You will usually see the startup function.

Open the source file Start_LEDBIlnk.c and place a break point at the main()
function:

Eﬁi Start_RSK32C - High-performance Embedded Workshop - [Start_LEDBlink.c]

<% File Edit Wiew Project Buld Debug Setup Tools Test Window Help =& =]
D ﬁ |é | & & | & HE“ IMIT_PLL 'l“l ﬁ ﬁ HJ @ [#¥ ||Debug j ||Debug_5imu|alor I~
omcneg 2 mHn HEAGEERRRD .« |BRE W B E 2R ==
=
5y RSK_RIZCTTT
-3 Stan_RSK32C :
Ea Application Line SourceAd... | 5. Source |
: Start_LE DElink.c 61 21
Setup 62 |FFF502D0 |4 [int wain(void) {
BSP.c 63 |FFFS02D0 03 IncDI(): /% Initially disable interrupts %/
ncrtd. 230 &4 FFFS0ZE7 OS:InitKern {1z J* initialize OF i
05_Emorc 65 FFFS0ZEE 03 InicHWQ) /% initialize Hardware for O3 w
Rtosinit_R32C.c 66 FFFEO0ZEF BSE_Init (s /¥ initialize LED ports L
-] Download modules 67 /% Create at least one task hefore calling 05 Starc() Lr
Ea Dependencies 63 FFF30ZF3 03 CREATETASKE (£TCEHF, "HP Task", HPTask, 100,_StackHP]:
BSP.h 63 FFFE0312 05 _CREATETASEK(&TCELF, "LP Task", LPTask, 50, 3tackLP):
05_Config.h 70 |FFFE0331 03 _Start(): /¥ Start multitasking L
-2 RTOSh 71 FFF80335 recurn 0;
zect] 0Linc 7z i J
73 =
| | il

=N T EINER 2 Start_LEDBE [nonaa0 |

A5G| = Ead |G |Heronaar 222 E=d|2

| Input: cyele _Cyﬁ Cause of break: 3/W break ;I
Address | Bit R 1 Cause of break: 5/W break
| outvut: cvele | eyele | j
| Interrupt: cyele | cyele | [+ Build } Debug 4 Findin Files 1}, Findin Files 2}, Macro 3 Test }, Wersion Control [
Feady E |Defau|l1 desktop |F\ead-write 45 2

Then start the application by “Debug -> Go”, e.g. press “F5”.
The simulator will stop at the main function.
Now you can step through the sample application program.

OS I ncDl () initially disables interrupts and prevents OS_InitKern() from re-
enabling them.

OS_I ni t Ker n() initializes embOS -Variables. As this function is part of the
embOS library, you may step into it in disassembly mode only.

OS I ni t HW) is part of RTOSINIT_R32C.c and therefore part of your applica-
tion. Its primary purpose is to initialize the hardware required to generate the
timer-tick-interrupt for embOS. Step through it to see what is done.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4

9/23

OS _Start() should be the last line in main, since it starts multitasking and

does not return.

E:ﬁ:aSlalt_HSKiiZC - High-performance Embedded workshop - [Stait_LEDBlink.c]

<+ File Edit Miew Project Build Debug Setup Tools Test Window Help _Iﬁllil
DBSHg 8|l =| # ”JE& INIT_PLL ~lt & R HJ & |[Debug = | [oebug Simuator -
tgcne z @8 (s FruRnEnred . |BE 0 R EEE |22 @ =
S
=Gy RSK_R3ZCIT |
EI@ Start_RSK32C =
223 Application Line Source Ad.. | 5. Source |
it_L 61 ZI
62 |FFFS02D0 | € |int wain(void) |
63 |FFFS02D0 0% _IneDI(): /% Initially disable interrupts */
64 |FFFSO0ZE7 O5_InitKerni): /% initialize 03 w
05_Erarc 65 |FFFE0ZEE OS_InltH[J(]: A% initialize Hardware for OIS w7
Fitosinit_R32C.c 66 |FFFS0ZEF BSP_Initi); /% initiaslize LED ports w7
+ (23 Dowrload modules &7 /% Create at least one task before calling O3 _Starti) ®/
£1-23 Dependsncies 68 |FFF802F3 0% CREATETASK (&TCBHF, "HF Task", HPTask, 100, StackHP):
BSP.h &9 |FFF30312 O3_CREATETASK [&TCELF, "LP Task"™, LPTask, 50, StackLP):
[E] 05_Configh 70 |FFFS0331 03_Start(): /7 Srart multitasking w
RTOSh 71 |FFFE0335 return 0O;
- sect] 00inc Tz H J
73 =
- | 3|
<+ Start_LEDBI. [:57 redadn |
Az e | E e @ |3 orenavan gver | 2w 2
| 4
Input: cycle Cycle Cause of break: 3/W break ;I
2ddress | Bit eI Cause of break: 5/W break
| outnut: cwele | evele | j
| Interrupt: cycle | cycle [T Buld } Debug f FindinFiles 1} FindinFiles2 } Macro i, Test i Version Contral /.
Ready T |Default! desktop |Fiead-write B2

Before you step into OS_St art (), you should set breakpoints in the two tasks:

tart_RSK32C - High-performance Embedded Workshop - [Start_LEDBlink_c]

< File Edit ‘iew Project Buld Debug Setup Tool: Test ‘window Help

M e 08 2 A

1=l

=5 RSK_R32CI 1T
S-03 Star_RSK32C
Ea Application

05_Emarc
Rtasinit_R32C.c

o =0 |
D@ 8 =i & |JJE§|¢||N|T_PLL LS HJ & 8 |[Debug = | [oebug_Simuator ~
IEEEE T N A [l =l - D= = =R R SR
B
Line Source Ad.. | 5. Souce |
4z |FFFSO0ZEO static void HPTask(wvoid) j
43 |FFFES02EO while (1) {
44 |FFFSO0ZEO BSP_TDggleLED (o)
45 |FFF202ES | ¥ OS_DElaY (507
46 |FFFSOZEC i
47 ¥
35
49 |FFFE02ZCO =ztatic vwoid LPTask(woid) {
50 |FFFS0ZCO while (1) f{ J
51 |FFFE02C0 BSP_TDgglELED (1)
5z |FFFS0zZCE | 03 _Delay (200);
53 |FFFE02CE ¥
54 H -
4 | ;I_I
"2 Start LEDEG. [norDaa |

e s F=d | &

Hoioraar|gr|o|E2d|2

| Inmput: cyele _Cyﬁ Cause of hreak: 3/W break ;I
Address | Bait LEAEAEIH Cause of break: 5/W break
| Outout: cwvcle | cyele | j
| Interrupt: cyele | cyele | A [+ Buld } Debug f Findin Files 1}, FindinFiles2 } Macro } Test }y Version Contral [
Ready ﬁ |Defau|t1 desktop |F|ead-write 45 2

When you step over OS_Start (), the next line executed is already in the
highest priority task created. (you may also step into OS_Start (), then step-
ping through the task switching process in disassembly mode). In our small
start program, HPTask() is the highest priority task and is therefore active.

© 2009 SEGGER Microcontroller GmbH & Co. KG

10/23

embOS for R32C and HEW4

E:ﬁ:i Start_RSK32C - High-performance Embedded workshop - [Start_LEDBlink.c]

< File Edit “iew Project Buld Debug Setup Tools Test “window Help _Iﬁllﬂ
D& |§ | & e | o Hﬁﬂ INIT_PLL j' T P JJ £ 2y ||Debug =l ||Debug5|mulalor =
oEcne 2 m8n|fRGREn R« B0 D R EEE |2 &M s ||=
1
=G ASE_R3ZCIN ||
£ Start_RSK3I2C :
E-E3 Application Line Source Ad... | 5. Source |
E4) Start_LEDEBlink.c 42 |FFFE02EO0 static woid HPTask(woid) | j
43 |FFFS0ZE0D while (1) {
44 |FFFS0ZEBO ESP_ToggleLED (0 ;
45 FFF80ZES |G 05_Delay [50):
46 |FFFE0ZEC H
47 i
7] Download modules 435
Ela Dependencies 49 |FFFE02C0 static wvoid LPTask(wvoid) {
B esPh 50 FFFE02CO while (1) { J
-[B) 05_Canfigh 51 FFFS0ZCO BSP ToggleLED (1)
B RTOSh 52 |FFFE02C6 | @ 0% Delay [200):
B sectlO0ine 53 |FFF30zZCE H
54 i -
0 | 3|
1= I ETED <2+ Stent_LEDBIL. [<5> nei0.e30 |
AR | = | Awd |G |2 evonarar 222 (B2 d |2
Input: cycle Cycle Cause of break: 3/W break ;I
Address | Bit iecz I Cause of break: S/W break
| Cutvut: cwvele | evele | j
| Interrupt: cyele | Cycle [# T Build }, Debug A FindinFiles 1} Findin Files 2}y Macro h Test jy Wersion Contral
Fieady FZ |Defaultl desktop |Read-wurite 45

If you continue stepping, you will arrive in the task with the lower priority:

E:ﬁ:i Start_RSK32C - High-performance Embedded workshop - [Start_LEDBlink.c]

< File Edit “iew Project Buld Debug Setup Tools Test “window Help _Iﬁllﬂ
DeHg &=« HE& INIT_PLL ~]# &R JJ & 5 |[Debug =1 |[bebua Simuizter |+
oEcne 2 m8n|fRGREn R« B0 D R EEE |2 &M s ||=
x|
=G ASE_R3ZCIN ||
5[5 Start_RSK32C :
553 Ap : Line Source Ad... | 5. Source |
4z |FFFE0ZE0 =tatic woid HPTask(wvoid) | j
43 |FFFS0ZE0D while (1) {
44 |FFFS0ZEBO ESP_ToggleLED (0 ;
45 FFFG0ZES | @ o5_Delay [50);
46 |FFFE0ZEC H
47 i
7] Download modules 435
Ela Dependencies 49 |FFFE02C0 static wvoid LPTask(wvoid) {
B esPh 50 FFFE02CO while (1) { J
-[B) 05_Canfigh 51 FFFS0ZCO BSP ToggleLED (1)
-[E] RTOSR 52 |FFFE02C6 | & 0% _Delay (200):
(2] sect! D0.ine 53 |FFFS0ZCE H
54 i -
A | 3|
=N S EINIED <2+ Stent_LEDBIL. [<5> nei0.e30 |

28 53 B @@ |2 o or avar |20 8r |2 [@ |2

| Input: cycle | cyele | cause of break: 5/W break ;I
Address | Bit iecz I Cause of break: S/W break
| Cutvut: cwvele | evele | j
| Interrupt: cycle | cyele | [# T Build }, Debug A FindinFiles 1} Findin Files 2}y Macro h Test jy Wersion Contral
Fieady FZ |Defaultl desktop |Read-wurite 52

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend LPTask and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).

OS_Idl e() is found in RTOSInit_R32C.c

You will arrive there, when you step through the task switching process in dis-
assembly mode:

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4

E:ﬁ:aSlalt_HSKiiZC - High-performance Embedded workshop - [Rtosinit_R32C.c]
<+ File Edit Miew Project Build Debug Setup Tools Test Window Help

(== ﬁ ‘é | & el | = JJ%I'N”_PLL j' iy ﬁ. ﬁ HJ @ ¥ ||Debug j ||Debugﬁ|mulator -
opcoe z m8(s|Faubkaznred « B R0 R EEE 22| &=
S
=Gy RSk_RazZCiT |
EI@ Start_RSK32C =
523 pplication Line Source Ad.. | 5. Souce |
Start_LEDBlink.c 268 * ZI
269 * Flease note:
4] BSP.c 270 * Thisz iz basically the "core®™ of the idle loop.
nertd.a30 Z71 * This core loop can be changed, hut:
05_Erarc 272 * The idle loop does not hewve & stack of its own, there:
273 * funcrtionality should be implemented that relies on th
D Dowrload modules 274 * to he preserved. However, a sSimple progrssm loop can ke
E123 Dependencies 275 * [like coggeling an OUCDpuULC OF inCreEmenting & counter)
: 276 *
277 |FFF8012C | mrwvoid ©F Idle(void) /4 Idle loop: No task is ready to exe
278 for {::)1 {4 /¢ Hothing to do ... wait for interru
279 H
280 H -
e | 3|
-:.}Slarl_LEDBI...l < notladl alE Htosinit_HS...I

248 | 3| B e @ | @ |2 o orav at 2080 2 | (2

| Input: cycle | cyele | cause of break: 5/W break ;I
2ddress | Bit eI Cause of break: $/W break
| Cutvut: cwele | cvele | j
| Interrupt: cycle | cycle | [T Buld } Debug f FindinFiles 1} FindinFiles2 } Macro i, Test i Version Contral /.
Ready T |Default! desktop |Fiead-write 7

If you set a breakpoint in one or both of our tasks, you will see that they con-

tinue execution after the given delay.

Coming from OS_I dl e(), you should execute the ‘Go’ command to arrive at
the highest priority task after its delay is expired.

The watch window shows the system variable OS_Ti ne, which shows how

much time has expired in the target system.

i3 Start_RSK32C - High-performance Embedded Workshop - [Start_LEDBIlink.c]
<+ File Edit Miew Project Build Debug Setup Tools Test Window Help

ﬂ ||Debu15|mulator

-

=l

| @ e = =]

=ztatic void HPTask(woid) {

ESP_ToggleLED (O}

static void LPTask(wvoid)

B3P_ToggleLED(1):

| o

N R N T or— Y [oebua
LA e E e e
=l
- RSK_RazCiT |
=-[F Start_RSK32C :
B Application Line Source Ad.. | 5. Souce
: Start_LEDBlink.c 4z |FFFE0ZEQ
23 Setup 43 |FFFS02ED while (1) {
: BSP.c 44 |FFFE02EQ
nertd.a30 45 |FFFS0ZES |G 05 Delay (50);
0S_Enor.c 46 |FFFE0ZEC [
27 3
D Download modules 45
E-E3 Dependencies 49 |FFFE02C0
[E) BSPh 50 |FFFS02CO whils (1) {
05_Corfigh 51 |FFFE02CO
RTOS.h 5z |FFFE02CE | 03_Delay (200):
sect]00inG 53 |FFFS02CE ¥
54 3
<+ Start_LEDBI. [:5 nen0ad0 [« RrosiniR3..

2 5 i o

AoX® |/ 62w 6D mE » e Hororarar|2igr|o (Rl

| Input: ey Watch |L0c:a| | File Local | Global | Cause of break: 5/W break 4|
2ddress | s value | o — Cause of break: §/W break

I Cutvut: e ooooogz0 j

I Interrupt _’I 4 | M|} Buld 4 Debug /4 Findin Files 1 Find ir

Ready T EE| |Default! desktop |Fiead-write 15

Note that the 1/0O simulation window has to be open, and the simple timer “em-
bOS_ Timer.stm” from the “Setup” folder has to be started to simulate the em-

bOS timer interrupts.

© 2009 SEGGER Microcontroller GmbH & Co. KG

12/23 embOS for R32C and HEW4

3.2. Using E8A or other in circuit emulators

The standard distribution of embOS for R32C and HEW contains a configura-
tion for the RENESAS emulator E8a.

This configuration is named “Debug_E8a” and it produces an output file with
debug information which may be loaded into the target CPU’s internal flash
memory. The sample start project is built for the RSK32C_111 eval kit with an
R32C111 CPU and may have to be adapted, if an other board or CPU is used.

3.3. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build contains addi-
tional error check functions which are called during runtime.

When an error is detected, the debug libraries call OS_Error (), which is de-
fined in the separate file OS Error. c.

Using an emulator you should set a breakpoint there. The actual error code is
assigned to the global variable OS_St at us. The program then waits for this
variable to be reset. This allows to get back to the program-code that caused
the problem easily: Simply reset this variable to 0 using your in circuit-emulator,
and you can step back to the program sequence causing the problem. Most of
the time, a look at this part of the program will make the problem clear.

How to select an other library with debug code for your projects is described
later on in this manual.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 13/23

4. Build your own application

To build your own application, you should start with the sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

4.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

e RTOS.h from sub folder Inc\
This header file declares all embOS API functions and data types and has
to be included in any source file using embOS functions.
¢ ncrt0.a30 from the subfolder RSK_R32C111\Setup\.
This is the startup code for the CPU. It initializes the stack poiters, the vec-
tor base register and the variables. It is almost identical to the startup files
which came with the workbench or starterkit software. For embOS, some
variables are declared global to export information about the stack ad-
dresses and sizes.
e RTOSInit_R32C.c from the subfolder RSK_R32C111\Setup\.
It contains the hardware dependent initialization code for the embOS timer
and optional code for the UART for embOSView.
e OS_Error.c from the subfolder RSK_R32C111\Setup\.
It contains the embOS runtime error handler OS_Er r or () which is used in
stack check or debug builds.
e One embOS library from the Lib\ subfolder
When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_I ni t Ker n() and
OS I nitHW) prior any other embOS functions except OS incDI () are
called.

4.2. Select a start project

embOS comes with one start project which includes different configurations for
different debug tools. The start project was built and tested with one specific
R32C CPU. For your specific CPU variant there may be modifications required.

If you have to modify the code for your specific CPU, you may copy and re-
name the whole RSK_R32C111 folder and use the new sources in your project.

4.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the source file containing the main() func-
tion.

4.4. Change memory model or library mode

For your application you may have to choose an other memory-model. For de-
bugging and program development you should use an embOS -debug library.
For your final application you may wish to use an embOS -release library.

© 2009 SEGGER Microcontroller GmbH & Co. KG

14/23 embOS for R32C and HEW4

To replace the embOS library in your project, you have to modify the linker set-
tings in the project options:

Renesas B32C/100 Standard Toolchain EE
Canfiguration : C I Assembly Link |Librarian| Lme I Taalchain 4 I ’I
IDebug j Category : IInput j

=3 All Loaded Projects Show Entries For: ILib'a'-"' file:s j
== Start_RSK32C
= @ L= . [-L -LD] Specifies directory of library and Jibrary file to be
-7 T source file .
: . referenced :
-1 Assembly source file
Path [File L add |
nc1 00lib et
$PwORKSPDIRLib) Ll
He B2 L R Bemove |
+| <]
Up Wi

[-E] Specifies start address of
abzolute madule : I

Options Link :

L "hel006E" LD "$A0RKSPDIR)ALIE" L "FHtUSFE32EI_NDF'";|
-G M5 -0 "$CONFIGDIRMPROJECTHAME] »30"

[-]
ok I Cancel |

Double-click on the embOS library name and type the name of the new library
which you want to use in the project. Don’t enter the extension.

To change the data memory model, select the “C” options, Category “Code
Modification”:

e check the “[-fFRAM] option to select the far data model

e un-check the “[-fFRAM] option to select the near data model

Ensure, the corresponding embOS library is used in the project.
Refer to chapter 5 about the library naming conventions to select the correct li-
brary.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 15/23

5. R32C specifics

5.1. Memory models

embOS supports the near and far data memory models that the RENESAS
compiler supports.

The near code model is not supported.

For the R32C, 2 data memory models are available:

Data Model |Code area (always far) Data area

Near 0x0-Ox7FFFFF; 0Ox0-Ox7FFF;
OxFF800000-OxFFFFFFFF |OxFFFF8000 — OXFFFFFFFF

Far 0x0-Ox7FFFFF; 0x0-Ox7FFFFF;
OxFF800000-OxFFFFFFFF | OxFF800000-OxFFFFFFFF

5.2. Available libraries

The files to use depend on the required data memory model and the library
type which should be used.
The library files are located in the subfolder ‘Lib’ in the start project folder.

The naming convention for the embOS library files is as follows:
Rtos<CPU>_<DATA MODEL><TYPE>.lib

<CPU> specifies the CPU family: R32C

< DATA MODEL > specifies the data model to be used:
e N for Near data model
e F for Far data model

<TYPE> specifies the type of the embOS -library:

¢ XR stands for eXtreme Release build library.

e R stands for Release build library.

e S stands for Stack check library, which performs stack checks during
runtime.

e SP stands for Stack check and Profiling library, which performs stack
checking and additional runtime (Profiling) calculations

e D stands for Debug library which performs error checking during runtime.

e DP stands for Debug and Profiling library which performs error checking
and additional Profiling during runtime.

e DT stands for Debug and Trace library which performs error checking
and additional Trace functionality during runtime.

Example:

RtosR32C_NSP.lib is the embOS library for an R32C CPU with Near memory
model, with Stack check and Profiling functionality.

5.3. CPU specific settings

embOS may be used with any R32C CPU variant. Our start projects are set up
for the R32C/111 CPU. You may have to modify the segment settings in the
sect100.inc file according to the memory layout of your specific CPU.

© 2009 SEGGER Microcontroller GmbH & Co. KG

16/23 embOS for R32C and HEW4

You may also have to verify and modify the PLL initialization code found in the
OS_I ni t HWN() function in the RTOSInit-file.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 17/23

6. Stacks
6.1. Task stack for R32C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location.

The stack-size required is the sum of the stack-size of all routines called from
the task, all local variables used in the functions, plus basic stack size.

The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.

For the R32C, this minimum stack size is about 60 bytes in the near memory
model.

6.2. System stack for R32C

The system stack size required by embOS is about 60 bytes (80 bytes in de-
bug or profiling builds) However, since the system stack is also used by the ap-
plication before the start of multitasking (the call to OS_St art ()), and because
software-timers also use the system-stack, the actual stack requirements de-
pend on the application. We recommend at least a minimum of 128 bytes.
embOS uses the user stack as system stack. The mai n() function has to be
called with the user stack selected.

The size of the stack is configured using the _ USTACKSIZE___ definition in the
Assembly settings in the project, or by the USTACKSIZE definition in the
startup code ncrt0.a30as.

6.3. Interrupt stack for R32C

The R32C has been designed with multitasking in mind; it has 2 stack-pointers,
the USP and the ISP. The U-Flag selects the active stack-pointer. During exe-
cution of a task, a software timer, or the embOS scheduler, the U-flag is set
thereby selecting the user-stack-pointer. If an interrupt occurs, the R32C clears
the U-flag and switches to the interrupt-stack-pointer automatically this way.
The ISP is active during the entire ISR (interrupt service routine). This way, the
interrupt does not use the stack of the task and the stack-size does not have to
be increased for interrupt-routines. Additional software stack-switching as for
other CPUs is therefore not necessary for the R32C.

The size of the stack is configured using the _ ISTACKSIZE __ definition in the
Assembly settings in the project, or by the ISTACKSIZE definition in the startup
code ncrt0.a30as.

We recommend at least a minimum of 256 bytes if multiple nested interrupts
are allowed.

6.4. Stack specifics of the RENESAS R32C family

Because the stack-pointer of the R32C CPUs can address the entire memory
area, stacks can be located anywhere in RAM. For performance reasons you
should try to locate stacks in fast internal RAM.

© 2009 SEGGER Microcontroller GmbH & Co. KG

18/23 embOS for R32C and HEW4

7. Interrupts

7.1. What happens when an interrupt occurs?

e The CPU-core receives an interrupt request

As soon as the interrupts are enabled and the processor interrupt priority
level is below or equal to the interrupt priority level, the interrupt is accepted
the CPU switches to the Interrupt stack

the CPU saves PC and flags on the stack

the CPU disables all further interrupts

the IPL is loaded with the priority of the interrupt

the CPU jumps to the address specified in the vector table for the interrupt
service routine (ISR)

ISR : save registers

ISR : user-defined functionality

ISR : restore registers

ISR: Execute REIT command, restoring PC, Flags and switching to User
stack

e For details, refer to the RENESAS users manual.

7.2. Defining interrupt handlers in "C"

Routines defined with the #pragma INTERRUPT automatically save & restore
the registers they modify and return with REI T.

For a detailed description on how to define an interrupt routine in "C", refer to
the C-Compiler User’s manual.

For details how to write interrupt handler using embOS functions, also refer to
the embOS generic manual.

For details about interrupt priorities, refer to chapter “Interrupt priorities”.

Example

"Simple" interrupt-routines

I
/1 Interrupt handl er NOT using enbOS functions
I
#pragma | NTERRUPT | nt Handl er Ti ner A1(vect =13);
voi d | nt Handl er Ti mer A1(voi d);
voi d | nt Handl er Ti mer A1(voi d) ({
I nt Cnt ++;
}

11
/1 Interrupt function using enbGS functions
11
#pragma | NTERRUPT OS | SR Tick (vect=12);
void OS_ ISR Tick (void);
void OS_ ISR Tick (void) {

OS_Enter Nestabl el nterrupt();

OS_Handl eTi ck();

OS_LeaveNest abl el nterrupt();

}

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 19/23

7.3. Interrupt-stack

Since the R32C CPUs have a separate stack pointer for interrupts, there is no
need for explicit software stack-switching in an interrupt routine. The routines
OS EnterintStack() and OS _Leavel nt St ack() are supplied for source
compatibility to other processors only and have no functionality.

7.4. Zero latency interrupts with R32C

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to a specific value. Initially, this value is pre-set to 4,
but may be modified during system initialization by a call of the function
OS SetFastIntPriorityLimt().

Therefore all interrupts with level 5 or above can still be processed.

These interrupts are named Zero latency interrupts. You must not execute any
embOS function from within an interrupt running on high priority.

7.5. Interrupt priorities

With introduction of Zero latency interrupts, interrupt priorities useable for inter-
rupts using embOS API functions are limited.

e Any interrupt handler using embOS API functions has to run with inter-
rupt priorities from 1 to 4. These embOS interrupt handlers have to start
with OS Enterlnterrupt() or OS_EnterNestablelnterrupt()
and must end with OS Leavelnterrupt () or
OS LeaveNestabl el nterrupt ().

e Any Zero latency interrupt (running at priorities from 5 to 7) must not call
any embOS API function. Even OS Enterlinterrupt() and
OS_Leavel nterrupt () must not be called.

e Interrupt handler running at low priorities (from 1 to 4) not calling any
embOS API function are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Zero Latency Interrupts
is initially set to 4, but can be changed at runtime by a call of the function
OS SetFastIntPriorityLimit ().

© 2009 SEGGER Microcontroller GmbH & Co. KG

20/23

embOS for R32C and HEW4

7.6. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for
Zero Latency (fast) Interrupts

The interrupt priority limit for zero latency interrupts is set to 4 by default. This
means, all interrupts with higher priority from 4 to 7 will never be disabled by
embOS.

Description

OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between
zero latency interrupts and lower priority embOS interrupts.

Prototype

void OS SetFastIintPriorityLimt(unsigned int Priority)
Parameter Meaning
The highest value useable as priority for embOS interrupts.
Priority All interrupts with higher priority are never disabled by em-
bOS. Valid range: 1 <=Priority <=7

Return value

Add.

NONE.

information

To disable zero latency interrupts at all, the priority limit may be set to 7 which
is the highest interrupt priority for interrupts.

To modify the default priority limit, OS_Set Fast I nt Pri ori tyLi m t () should
be called before embOS was started.

In the default projects, OS_Set FastIntPriorityLi mt() is not called. The
start projects use the default zero latency interrupt priority limit.

Any interrupts running above the zero latency interrupt priority limit must not call
any embOS function.

7.7. Fast interrupt, R32C specific

The R32C CPU supports a “Fast interrupt” mode which is described in the hard-
ware manual.

The fast interrupt may be used for special purposes, but must not call any
embOS function.

7.8. Non Maskable Interrupt, NMI

The R32C CPU supports a non maskable interrupt which is described in the
hardware manual.

The NMI may be used for special purposes, but must not call any embOS func-
tion.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4 21/23

8. STOP / WAIT Mode

Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_I dl e() routine, which is part
of the hardware dependent module Rtosinit_ R32C.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

© 2009 SEGGER Microcontroller GmbH & Co. KG

22/23

embOS for R32C and HEW4

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the embOS library. The
values in the table are for the far memory model and release build library.

Short description ROM RAM

[oyte] [byte]
Kernel approx.1600 37
Event-management <200 ---
Mailbox management < 550 -—-
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 --—-
Timer-management < 250 ---
Add. Task -—- 28
Add. Semaphore - 6
Add. Mailbox --- 14
Add. Timer --- 14
Power-management -—- -—-

10. Files shipped with embOS for R32C and HEW

Directory File Explanation

root *. pdf Generic API and target specific
documentation.

root Rel ease. ht m Release notes of embOS R32C.

root enmbOSVi ew. exe | Utility for runtime analysis, de-
scribed in generic documenta-
tion.

Start\ *. hws Start workspace and project for
R32C.

Start\ Readme. t xt Latest information about embOS
R32C.

Start\Inc\ RTCS. h To be included in any file using
embOS functions.

Start\Lib\ Rtos*.lib embOS libraries

Start\RSK_R32C111\ |*.* CPU specific files, start project
and sample applications.

© 2009 SEGGER Microcontroller GmbH & Co. KG

embOS for R32C and HEW4

23/23

11. Index

" ISTACKSIZE _ooooooreeee... 17
" USTACKSIZE oo 17

Fast Interrupt........ccccoevvevveeneenne. 20

Installation
Interrupt priority .. .
Interrupt stackccceceevevenennennee
Interrupts......c.ccoceeeeviinieniiniinens

Interrupt-stackcccoceeverenennennee 19

Memory models........cccceevvereeennnne. 15
Memory requirements 22

OS_Error()
OS_InitHW ()
OS_SetFastIntPriorityLimit().19, 20
S

StACKS ..evirvereieeeieeeceee
Stacks, interrupt stack
Stacks, system stack

Stacks, task stacks

Stop-mode

System stackccceevvereecieniennnens

T

Task stacks.......ccecceveeveenienienieennn. 17
Technical data..........cccoeuveuenennen. 22
U

USTACKSIZE.......cccovvrieiinne 17
w
Wait-mode........cooeevererieniinnens 21
Z

zero latency interrupt................... 19

© 2009 SEGGER Microcontroller GmbH & Co. KG

	Contents
	About this document
	How to use this manual

	Using embOS with HEW Workbench
	Installation
	First steps
	The sample application Start_LEDBlink.c

	Using debugging tools to debug the application
	Using the R32C simulator
	Using E8A or other in circuit emulators
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	R32C specifics
	Memory models
	Available libraries
	CPU specific settings

	Stacks
	Task stack for R32C
	System stack for R32C
	Interrupt stack for R32C
	Stack specifics of the RENESAS R32C family

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack
	Zero latency interrupts with R32C
	Interrupt priorities
	OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero Latency (fast) Interrupts
	Fast interrupt, R32C specific
	Non Maskable Interrupt, NMI

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS for R32C and HEW
	Index

