

embOS

Real Time Operating System

CPU & Compiler specifics for

Texas Instruments MSP430 CPUs

and Rowley compiler for MSP430

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

embOS for MSP430 and Rowley compiler for MSP430 3/19

 1996- 2004 Segger Microcontroller Systeme GmbH

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with Rowley’s CrossStudio .. 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Main.c .. 7
2.4. Stepping through the sample application Main.c using Debugger 7

3. Build your own application... 11
3.1. Required files for an embOS application .. 11
3.2. Select a start project .. 11
3.3. Add your own code .. 11
3.4. Change library mode.. 11

4. Project and compiler specifics... 12
4.1. Available libraries... 12

5. Stacks ... 13
5.1. Task stack for MSP430.. 13
5.2. System stack for MSP430.. 13
5.3. Interrupt stack for MSP430 .. 13
5.4. Stack specifics of the MSP430 family.. 13

6. MSP430 clock specifics... 14
6.1. embOS timer clock source.. 14
6.2. Clock for UART.. 14

7. Interrupts ... 15
7.1. What happens when an interrupt occurs? ... 15
7.2. Defining interrupt handlers in "C"... 15
7.3. Interrupt-stack.. 16

8. Low-Power Modes... 17
9. Technical data... 18

9.1. Memory requirements .. 18
10. Files shipped with embOS MSP430 Rowley .. 18
11. Index ... 19

4/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS for MSP430 Real Time Operating
System for the Texas Instruments MSP430 series of microcontroller using Row-
ley compiler for MSP430 and Rowley’s Cross Studio 1.2.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS MSP430 for
Rowley compiler. Before actually using embOS, you should read or at least
glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Rowley CrossStudio. If you have no experience using embOS, you
should follow this introduction, even if you do not plan to use Rowley’s CrossS-
tudio debugger, because it is the easiest way to learn how to use embOS in
your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for MSP430
CPUs using Rowley compiler.

embOS for MSP430 and Rowley compiler for MSP430 5/19

 1996- 2004 Segger Microcontroller Systeme GmbH

2. Using embOS with Rowley’s CrossStudio

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Rowley’s CrossStudio to develop your application,
no further installation steps are required. You will find a prepared sample work-
space including one start project, which you should use and modify to write
your application. So follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use Rowley’s CrossStudio for
your application development in order to become familiar with embOS.

If for some reason you will not work with Rowley’s CrossStudio, you should:
Copy either all or only the library-file that you need to your work-directory. Also
copy the hardware initialization file RTOSInitxxx.c and the embOS header file
RTOS.h. This has the advantage that when you switch to an updated version of
embOS later in a project, you do not affect older projects that use embOS
also.
embOS does in no way rely on Rowley’s CrossStudio, it may be used without
the IDE using batch files or a make utility without any problem.

6/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample workspace and
start project for MSP430 CPUs and it is a good idea to use this as a starting
point of all your applications.

To get your new application running, you should proceed as follows.
• Create a work directory for your application, for example c:\work
• Copy the whole folder ‘Start’ from your embOS distribution into your work

directory.
• Clear the read only attribute of all files in the new ‘Start’-folder in your work-

ing directory.
• Open the folder ‘Start’.
• Open the sample workspace ‘Start.hzp.’. (e.g. by double clicking it)
• Build the start project

Further examples in this manual show the configuration for the built-in Debug-
ger using FET Target for debugging in CrossStudio. Other targets are sup-
ported by selecting another “Target” and is similar and looks the same.

After building the start project your screen should look like follows:

For latest information you should open the ReadMe.txt which is part of your
embOS distribution

embOS for MSP430 and Rowley compiler for MSP430 7/19

 1996- 2004 Segger Microcontroller Systeme GmbH

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 OS_Delay (10);
 }
}

void Task1(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_Start(); /* Start multitasking */
}

2.4. Stepping through the sample application Main.c using De-
bugger

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). If you may look at the startup code, you have to set a
breakpoint at main, which is set by default. Now you can step through the pro-
gram.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-Variables. Because of the
previous call of OS_IncDI(), interrupts are not enabled during execution of
OS_InitKern().

8/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. In this case it should initialize the UART used for communication.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set breakpoints in the two tasks:

embOS for MSP430 and Rowley compiler for MSP430 9/19

 1996- 2004 Segger Microcontroller Systeme GmbH

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, Task0() is the highest priority task and is therefore active.

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).

10/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

OS_Idle() is found in RTOSInit.c:

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. Coming from OS_Idle(), you should
execute the ‘Go’ command to arrive at the highest priority task after its delay is
expired. This can be seen at the system variable OS_Time:

embOS for MSP430 and Rowley compiler for MSP430 11/19

 1996- 2004 Segger Microcontroller Systeme GmbH

3. Build your own application
To build your own application, you should start with the sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:
• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c from CPU specific subfolder CPU_*\.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• One embOS library from the Lib\ subfolder
• OS_Error.c from subfolder Src\

The error handler is used if any library other than Release build library is
used in your project.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.

3.2. Select a start project

embOS comes with one start project which includes different configurations for
different output formats or debug tools. The start project was built and tested
with MSP430F149 CPU. For various CPU variants there may be modifications
required in RTOSInit.c.

3.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

3.4. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library.
Therefore you have to select or replace the embOS library in your project or
target:
• in the Lib group, exclude all libraries from build, except the one which should

be used for your application.
Finally check project options about library mode setting according library mode
used. Refer to chapter 4 about the library naming conventions to select the cor-
rect library and library mode specific define.

12/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

4. Project and compiler specifics

4.1. Available libraries

The embOS library files are located in the subfolder ‘Lib’ of the start project
folder.
To use embOS, one library has to be included to your project. The files to use
depend on additional error check possibilities wished to be used.

The naming convention for library files is as follows:

rtos<LIBRARYTYPE>.hza

<LIBRARYTYPE> specifies the type of embOS -library:
• R stands for Release build library.
• S stands for Stack check library, which performs stack checks during run-

time.
• SP stands for Stack check and Profiling library, which performs stack check-

ing and additional runtime (Profiling) calculations
• D stands for Debug library which performs error checking during runtime.
• DP stands for Debug and Profiling library which performs error checking and

additional Profiling during runtime.
• DT stands for Debug and Trace library which performs error checking and

additional Trace functionality during runtime.
All libraries were built with standard settings also used in our start project.

Example:

rtosSP.hza is the embOS library with Stack check and Profiling functionality.
It is located in the Start\lib\ subdirectory.

For MSP430, the following libraries are available:

Library type Library #define
Release rtosR.hza OS_LIBMODE_R
Stack-check rtosS.hza OS_LIBMODE_S
Stack-check + Profiling rtosSP.hza OS_LIBMODE_SP
Debug rtosD.hza OS_LIBMODE_D
Debug + Profiling rtosDP.hza OS_LIBMODE_DP
Debug + Profiling + Trace rtosDT.hza OS_LIBMODE_DT

Ensure that the define, according to the library type used, is set as compiler
option in your project.
Please check “Project | Properties | Preprocessor | Preprocessor Definitions”.

embOS for MSP430 and Rowley compiler for MSP430 13/19

 1996- 2004 Segger Microcontroller Systeme GmbH

5. Stacks

5.1. Task stack for MSP430

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the MSP430, the minimum stack size is about 30 bytes.
As MSP430 does not support its own interrupt stack, please note, that inter-
rupts also run on task stacks. We recommend at least a minimum task stack
size of 70 bytes. You may use embOSView to analyze the total amount of task
stack used in your application.

5.2. System stack for MSP430

The system stack size required by embOS is about 30 bytes (60 bytes in.
profiling builds) However, since the system stack is also used by the application
before the start of multitasking (main(), before the call to OS_Start()), and
because software-timers and embOS internal scheduling functions also use
the system-stack, the actual stack requirements depend on the application.
The system stack ends at the end of the RAM. This way, all available RAM can
be used as system stack.
For builds with stack checking, the amount of memory filled with the control
byte is set in RTOSInit_*.c, (OS_GetSysStackSize()).

5.3. Interrupt stack for MSP430

Unfortunately MSP430 CPUs do not support a separate interrupt stack pointer.
Interrupts use the stack of the running application. Therefore interrupts occupy
additional stack space on every task and on the system stack. Current version
of embOS does not support a separate interrupt stack.

5.4. Stack specifics of the MSP430 family

MSP430 family of microcontroller can address up to 64KB of memory. Because
the stack-pointer can address the entire memory area, stacks can be located
anywhere in RAM.

14/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

6. MSP430 clock specifics
MSP 430 CPUs offer various options for CPU and peripheral clock generation.
You may have to modify the embOS timer initialization function OS_InitHW()
in RtosInit_*.c to fit your application.
The sample OS_InitHW() routine in RTOSInit_430F149.c uses internal RC
oscillator and DCO as CPU clock and selects this clock as source for embOS
timer.

6.1. embOS timer clock source

embOS timer may be driven from different clock sources. Per default, MCLK is
used as clock source for timer. OS_IntHW() initializes RC oscillator and DCO.

Using RC oscillator:
Usage of RC oscillator and DCO has the advantage that no additional hardware
is required. The disadvantage is, that exact frequency is nor guaranteed neither
precise.
The frequency of MCLK has to be examined and OS_FSYS has to be adjusted
to fit your application.

Using external crystal:
Usage of an external Main clock generator crystal has the advantage, that fre-
quency is stable and precise. OS_InitHW() has to be modified to initialize crys-
tal oscillator. Check OS_FSYS and set a value that corresponds to your crystal
frequency.

6.2. Clock for UART

When using embOSView to analyze target system, a USART has to be initial-
ized for serial communication. Per default, communication to embOSView is
enabled and uses USART0.
Different clock sources for baudrate generation may be used. Per default,
OS_COM_Init() initializes auxiliary clock oscillator as clock source for
USART. This ensures accurate baudrate up to 9600 baud.

Using ACLK for UART:
ACLK as source for UART has the advantage, that baudrate is accurate up to
9600 BAUD.

Using MCLK for UART:
MCLK may be used as clock source for baudrate generator. Higher baudrates
are possible. When RC oscillator is used for MCLK generation, baudrate may
be instable. When crystal is used for MCLK generation, baudrate is accurate
and stable. To use MCLK as source for baudrate generator, define
OS_BAUDSRC_MCLK=1 as project option. Baudrate generator settings will then
be calculated derived from OS_BAUDRATE and OS_FSYS.

embOS for MSP430 and Rowley compiler for MSP430 15/19

 1996- 2004 Segger Microcontroller Systeme GmbH

7. Interrupts

7.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled, the interrupt is accepted.
• the CPU saves PC and flags on the stack
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute RETI command, restoring PC, Flags and continue interrupted

program
• For details, please refer to Texas Instruments users manual.

7.2. Defining interrupt handlers in "C"

Routines defined with the keyword __interrupt[] automatically save & re-
store the registers they modify and return with RETI.
The interrupt vector number has to be given inside the brackets.
For a detailed description on how to define an interrupt routine in "C", refer to
the Rowley’s C-Compiler reference guide.

Example

"Simple" interrupt-routine

void IntHandlerTimer(void) __interrupt[12] {
 IntCnt++;
}

Interrupt-routine calling embOS functions

void IntHandlerTimer(void) __interrupt[12] {
 OS_EnterInterrupt(); /* Inform embOS that interrupt function is running */
 IntCnt++;
 OS_PutMailCond(&MB_Data, &IntCnt);
 OS_LeaveInterrupt();
}

OS_EnterInterrupt() has to be the first function called in an interrupt han-
dler using embOS functions, when nestable interrupts are not required.
OS_LeaveInterrupt() has to be called at the end the interrupt handler then.
If interrupts should be nested, use OS_EnterNestableInterrupt() /
OS_LeaveNestableInterrupt() instead.

16/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

7.3. Interrupt-stack

Since MSP430 CPUs do not provide a separate stack pointer for interrupts,
every interrupt occupies additional stack space on the current stack. This may
be the system stack, or a task stack of a running task that is interrupted. The
additional amount of necessary stack for all interrupts has to be reserved on all
task stacks.
Current version of embOS for MSP430 does not support extra interrupt stack-
switching in an interrupt routine.
The routines OS_EnterIntStack() and OS_LeaveIntStack() are sup-
plied for source compatibility to other processors only and have no functionality.

embOS for MSP430 and Rowley compiler for MSP430 17/19

 1996- 2004 Segger Microcontroller Systeme GmbH

8. Low-Power Modes
Usage of Low-Power modes is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit_*.c to enter a Low-Power mode.
Please do not enter a Low-Power mode which stops the embOS timer, as this
would stop time scheduled task activations.
If embOS timer is driven from main clock, LPM0 or LPM1 may be selected dur-
ing OS_Idle(). When ACLK is used for embOS timer, LPM2 or LPM3 may
also be used.

18/19 embOS for MSP430 and Rowley compiler for MSP430

  1996-2004 Segger Microcontroller Systeme GmbH

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the far memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1208 28
Event-management < 200 ---
Mailbox management < 550 ---
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 ---
Timer-management < 250 ---
Add. Task --- 18
Add. Semaphore --- 4
Add. Mailbox --- 12
Add. Timer --- 10
Power-management --- ---

10. Files shipped with embOS MSP430 Rowley

Directory File Explanation
root *.pdf Generic API and target specific docu-

mentation
root Release.html Release notes of embOS MSP430
root embOSView.exe Utility for runtime analysis, described in

generic documentation
Start\ Start.hzp Sample Project for Rowley CrossStudio
Start\ Start.hzs Sample Solution (workspace) for

MSP430 CPUs
Start\Inc\ RTOS.h To be included in any file using embOS

functions
Start\lib\ rtos*.hza embOS libraries
Start\Src\ main.c Frame program to serve as a start
Start\Src\ OS_Error.c embOS error handler used in stack

check and debug builds
Start\CPU_*\ RtosInit_*.c Target CPU specific hardware initializa-

tion; can be modified

embOS for MSP430 and Rowley compiler for MSP430 19/19

 1996- 2004 Segger Microcontroller Systeme GmbH

11. Index
C
Clock for embOS timer 14
Clock for UART........................... 14
Clock specifics 14
I
Installation 5
Interrupt stack 13, 16
Interrupts...................................... 15
L
Low-Power modes 17

M
Memory requirements18
O
OS_COM_Init14
OS_EnterInterrupt15
OS_EnterIntStack.........................16
OS_EnterNestableInterrupt15
OS_FSYS.....................................14
OS_IntHW().................................14
OS_LeaveInterrupt15
OS_LeaveIntStack........................16
OS_LeaveNestableInterrupt15

S
Stacks .. 13
Stacks, interrupt stack.................. 13
Stacks, system stack..................... 13
Stacks, task stacks........................ 13
System stack 13
T
Task stacks................................... 13
Technical data.............................. 18
Timer clock.................................. 14
U
UART clock................................. 14

	Contents
	About this document
	How to use this manual

	Using embOS with Rowley’s CrossStudio
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c using Debugger

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change library mode

	Project and compiler specifics
	Available libraries

	Stacks
	Task stack for MSP430
	System stack for MSP430
	Interrupt stack for MSP430
	Stack specifics of the MSP430 family

	MSP430 clock specifics
	embOS timer clock source
	Clock for UART

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack

	Low-Power Modes
	Technical data
	Memory requirements

	Files shipped with embOS MSP430 Rowley
	Index

