

embOS

Real Time Operating System

Software Version 3.20

CPU independent

User�s & reference manual

Document revision 5

A product of SEGGER Microcontroller Systeme GmbH

2/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Disclaimer
The information in this document is subject to change without notice. While the
information herein is assumed to be accurate, SEGGER MICROCONTROLLER
SYSTEME GmbH (the manufacturer) assumes no responsibility for any errors
or omissions.
The author makes and you receive no warranties or conditions, express, im-
plied, statutory or in any communications with you. The manufacturer specifi-
cally disclaims any implied warranty of merchantability or fitness for a particular
purpose.

Copyright notice
No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the manufac-
turer. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license. If
you have received this product as a trial version for evaluation, you are entitled
to evaluate it, but you may under no circumstances use it in a product. If you
want to do so, you must obtain a fully licensed version from the manufacturer.

 1996 - 2004 Segger Microcontroller Systeme GmbH

Trademarks
Names mentioned in this manual may be trademarks of their respective com-
panies. Brand and product names are trademarks or registered trademarks of
their respective holders.

Registration
Please register the software via email. This way we can make sure you will re-
ceive updates or notifications of updates as soon as they become available. For
registration please provide the following information:

• Company name and address
• Your name
• Your job title
• Your email address and telephone number
• Name and version of the product

Please send this information to: register@segger.com.

Contact address
SEGGER Microcontroller Systeme GmbH
Heinrich-Hertz-Strasse 5
D-40721 Hilden
Germany
Tel.: +49-2103-2878-0
Fax: +49-2103-2878-28
Email : support@segger.com
Internet: http://www.segger.com/

mailto:register@segger.com
mailto:support@segger.com
http://www.segger.com/

User's & reference manual for embOS real time OS 3/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Software and manual versions
This manual describes the software version 3.20. If any error occurs, please in-
form us and we will try to assist you as soon as possible.
For further information on topics or routines not yet specified, please contact
us.

Print date: 04-06-24

Software Manual Date By Explanation
3.20 5 040621 RS

AW
Software timers: Maximum timeout values and OS_TIMER_MAX_TIME de-
scribed.
Chapter 14: Description of rules for interrupt handlers revised.
OS_LeaveNestableInterruptNoSwitch() added which was not described before.

3.20 4 040329 AW OS_CreateCSema() prototype declaration corrected. Return type is void.
OS_Q_GetMessageCnt() prototype declaration corrected.
OS_Q_Clear() function description added.
OS_MEMF_FreeBlock() prototype declaration corrected.

3.20 3 040204 AW OS_CREATEMB() Range for parameter MaxnofMsg corrected. Upper limit is
65535, but was declared 65536 in previous manuals.

3.20 2 031128 AW Code samples modified: Task stacks defined as array of int, because most
CPUs require alignment of stack on integer aligned addresses.

3.20 1 031016 AW Chapter 4: Type of task priority parameter corrected to unsigned char.
Chapter 4: OS_DelayUntil(): Sample program modified.
Chapter 4: OS_Suspend() added.
Chapter 4: OS_Resume() added.
Chapter 5: OS_GetTimerValue(): Range of return value corrected.
Chapter 6: Sample program for usage of resource semaphores modified.
Chapter 6: OS_GetResourceOwner(): Type of return value corrected.
Chapter 8: OS_CREATEMB(): Types and valid range of parameter corrected.
Chapter 8: OS_WaitMail() added
Chapter 10: OS_WaitEventTimed(): Range of timeout value specified.

3.12 1 021015 AW Chapter 8: OS_GetMailTimed() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

3.10 3 020926
020924
020910

KG
KG
KG

Index and glossary revised.
Section 16.3 (Example) added to Chapter 16 (Time-related routines).
Revised for language/grammar.
Version control table added.
Screenshots added: superloop, cooperative/preemptive multitasking, nested
interrupts, low-res and hi-res measurement.
Section 1.3 (Typographic conventions) changed to table.
Section 3.2 added (Single-task system).
Section 3.8 merged with section 3.9 (How the OS gains control).
Chapter 4 (Configuration for your target system) moved to after Chapter 15
(System variables).
Chapter 16 (Time-related routines) added.

4/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Contents
Disclaimer ... 2
Copyright notice .. 2
Trademarks ... 2
Registration ... 2
Contact address .. 2
Software and manual versions.. 3
Contents.. 4
1. About this document ... 8

1.1. Assumptions .. 8
1.2. How to use this manual ... 8
1.3. Typographic conventions for syntax .. 8

2. Introduction to embOS ... 9
2.1. What is embOS? .. 9
2.2. Features... 9

3. Basic concepts .. 11
3.1. Tasks ... 11
3.2. Single-task system (superloop).. 11
3.3. Multitasking systems.. 12
3.4. Scheduling... 13
3.5. Communication between tasks.. 15
3.6. How task-switching works.. 16
3.7. Switching stacks .. 17
3.8. Change of task status .. 18
3.9. How the OS gains control .. 19
3.10. Different builds of embOS... 20

4. Task routines... 22
4.1. OS_CREATETASK(): Create a task.. 23
4.2. OS_CreateTask(): Create a task ... 25
4.3. OS_Delay(): Suspend for fixed time .. 27
4.4. OS_DelayUntil(): Suspend until ... 28
4.5. OS_SetPriority(): Change priority of a task.. 29
4.6. OS_GetPriority(): Retrieve priority of a task... 30
4.7. OS_SetTimeSlice(): Change timeslice of a task.. 31
4.8. OS_Suspend(): Suspend a task .. 32
4.9. OS_Resume(): Restarts a suspended task ... 33
4.10. OS_Terminate(): Terminate a task .. 34
4.11. OS_WakeTask(): Resume a time suspended task.. 35
4.12. OS_IsTask(): Check whether a task is valid .. 36
4.13. OS_GetTaskID(): Retrieve ID of current task .. 37
4.14. OS_GetpCurrentTask(): Retrieve TCB of current task 38

5. Software timers ... 39
5.1. OS_CREATETIMER(): Create a software timer .. 40
5.2. OS_CreateTimer(): Create a software timer .. 41
5.3. OS_StartTimer(): Start a timer... 42
5.4. OS_StopTimer(): Stop a timer ... 43
5.5. OS_RetriggerTimer(): Restart a timer.. 44
5.6. OS_SetTimerPeriod(): Set restart value .. 45
5.7. OS_DeleteTimer(): Delete a timer ... 46
5.8. OS_GetTimerPeriod(): Retrieve restart value.. 47
5.9. OS_GetTimerValue(): Retrieve remaining time ... 48
5.10. OS_GetTimerStatus(): Retrieve timer status ... 49
5.11. OS_GetpCurrentTimer(): Retrieve current timer.. 50

6. Resource semaphores .. 51

User's & reference manual for embOS real time OS 5/160

 1996- 2004 Segger Microcontroller Systeme GmbH

6.1. OS_CREATERSEMA(): Create resource semaphore 54
6.2. OS_Use(): Use a resource... 55
6.3. OS_Unuse(): Release a resource.. 57
6.4. OS_Request(): Request a resource... 58
6.5. OS_GetSemaValue(): Retrieve usage counter value .. 59
6.6. OS_GetResourceOwner(): Retrieve blocking task... 60

7. Counting Semaphores... 61
7.1. OS_CREATECSEMA(): Create counting semaphore.. 62
7.2. OS_CreateCSema(): Create counting semaphore .. 63
7.3. OS_SignalCSema(): Increment counter .. 64
7.4. OS_WaitCSema(): Decrement counter ... 65
7.5. OS_WaitCSemaTimed(): Decrement counter with timeout 66
7.6. OS_GetCSemaValue(): Retrieve counter value... 67
7.7. OS_DeleteCSema(): Delete a counting semaphore .. 68

8. Mailboxes .. 69
8.1. Why mailboxes? .. 69
8.2. Basics .. 69
8.3. Typical applications.. 70
8.4. OS_CREATEMB(): Create a mailbox .. 71
8.5. Single-byte mailbox functions .. 72
8.6. OS_PutMail() / OS_PutMail1(): Store a message.. 73
8.7. OS_PutMailCond() / OS_PutMailCond1(): Store a message if possible............ 74
8.8. OS_GetMail() / OS_GetMail1(): Retrieve a message .. 75
8.9. OS_GetMailCond() / OS_GetMailCond1(): Retrieve a message if possible 76
8.10. OS_GetMailTimed(): Retrieve a message within a given time......................... 77
8.11. OS_WaitMail(): Wait until a mail is available ... 78
8.12. OS_ClearMB(): Empty a mailbox... 79
8.13. OS_GetMessageCnt(): Get number of messages in mailbox.......................... 80
8.14. OS_DeleteMB(): Delete a mailbox... 81

9. Queues.. 82
9.1. Why queues?... 82
9.2. Basics .. 82
9.3. OS_Q_Create(): Create a message queue ... 83
9.4. OS_Q_Put(): Store message... 84
9.5. OS_Q_GetPtr(): Retrieve message ... 85
9.6. OS_Q_GetPtrCond(): Retrieve message if possible.. 86
9.7. OS_Q_Purge(): Delete one message in queue ... 87
9.8. OS_Q_Clear(): Delete all messages in queue... 88
9.9. OS_Q_GetMessageCnt(): Get number of messages in queue.......................... 89

10. Events ... 90
10.1. OS_WaitEvent(): Wait for event, then clear all events..................................... 91
10.2. OS_WaitSingleEvent(): Wait for event, then clear masked events only 92
10.3. OS_WaitEventTimed():Wait for event with timeout ... 93
10.4. OS_WaitSingleEventTimed(): Wait for event, then clear masked events, with
timeout .. 94
10.5. OS_SignalEvent(): Signal a task that an event has occured 95
10.6. OS_GetEventsOccured(): Get a list of events ... 97
10.7. OS_ClearEvents(): Clear list of events .. 98

11. Heap type memory management .. 99
11.1. API reference... 99

12. Fixed block size memory pools ... 100
12.1. API reference... 100
12.2. OS_MEMF_Create(): Create a fixed size memory pool................................. 100
12.3. OS_MEMF_Delete(): Delete a fixed size memory pool 101
12.4. OS_MEMF_Alloc(): Retrieve one block from memory pool 102
12.5. OS_MEMF_AllocTimed(): Retrieve block with timeout 102

6/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

12.6. OS_MEMF_Request(): Retrieve memory block if available........................... 103
12.7. OS_MEMF_Release(): Free a memory block in pool 103
12.8. OS_MEMF_FreeBlock(): Free a memory block... 104
12.9. OS_MEMF_GetNumBlocks(): Returns number of blocks in pool 104
12.10. OS_MEMF_GetBlockSize(): Returns size of one memory block 105
12.11. OS_MEMF_GetNumFreeBlocks(): Returns number of free blocks in pool.. 105
12.12. OS_MEMF_GetMaxUsed(): Returns max. number of used blocks in pool.. 105
12.13. OS_MEMF_IsInPool(): Check if block belongs to pool 106

13. Stacks ... 107
13.1. System stack ... 108
13.2. Task stack.. 108
13.3. Interrupt stack .. 108
13.4. OS_GetStackSpace() .. 109

14. Interrupts ... 110
14.1. Rules for interrupt handlers ... 111
14.2. Calling embOS routines from within an ISR.. 112
14.3. Enabling / disabling interrupts from "C" ... 114
14.4. Definitions of interrupt control macros (in RTOS.h) 115
14.5. Nesting interrupt routines... 116
14.6. Non-maskable interrupts (NMIs) .. 119

15. Critical regions .. 120
15.1. OS_EnterRegion(): Enter critical region... 121
15.2. OS_LeaveRegion(): Leave critical region .. 122

16. System variables... 123
16.1. Time Variables... 123
16.2. OS internal variables and data-structures.. 123

17. Configuration for your target system (RTOSINIT.c) .. 124
17.1. Hardware-specific routines .. 124
17.2. Configuration defines... 124
17.3. How to change settings ... 125
17.4. OS_CONFIG() ... 126

18. Time-related routines .. 127
18.1. Low-resolution measurement .. 127
18.2. High-resolution measurement.. 129
18.3. Example... 132

19. STOP / HALT / IDLE modes ... 134
20. embOSView: profiling and analyzing... 135

20.1. Overview.. 135
20.2. Task list window... 136
20.3. System variables window... 136
20.4. Sharing the SIO for terminal I/O .. 136
20.5. Using the API trace.. 138
20.6. Trace filter setup functions... 140
20.7. Trace record functions ... 143
20.8. Application-controlled trace example... 146
20.9. User-defined functions... 147

21. Debugging... 148
21.1. Run time errors .. 148
21.2. List of error codes .. 149

22. Supported development tools ... 151
23. Limitations ... 152
24. Source code of kernel and library ... 153
25. Additional modules.. 154

25.1. Keyboard manager: KEYMAN.C.. 154
25.2. Additional libraries and modules.. 155

26. FAQ (frequently asked questions)... 156

User's & reference manual for embOS real time OS 7/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Glossary .. 157
Index ... 159

8/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes the functionality and user API of embOS Real Time Op-
erating System.

1.1. Assumptions

This document assumes that you already have a solid knowledge of the follow-
ing:

• The software tools used to build your application (assembler, linker, "C"
compiler)

• The �C� programming language
• The target processor
• DOS command line

If you feel that your knowledge of �C� is not sufficient, we recommend The C
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which
describes the standard in C-programming and, in newer editions, also covers
the ANSI �C� standard.

1.2. How to use this manual

This manual explains all the functions and macros that embOS offers. How-
ever, it does cover the entire subject of real time programming. It assumes you
have a working knowledge of the �C� language. Knowledge of assembly pro-
gramming is not required.

The intention of this manual is to give you a CPU- and compiler-independent in-
troduction to embOS and to be a reference for all embOS API functions.
For a quick and easy startup with embOS, please refer to Chapter 2 in the
CPU & Compiler Specifics manual of embOS documentation, which includes a
step-by-step introduction to using embOS.

1.3. Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.

Keyword Text that you enter at the command-prompt or that appears on
the display (i.e. system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Emphasis Very important sections.
Term Important terms.

User's & reference manual for embOS real time OS 9/160

 1996- 2004 Segger Microcontroller Systeme GmbH

2. Introduction to embOS

2.1. What is embOS?

embOS is a priority-controlled multitasking system, designed to be used as an
embedded operating system for the development of real time applications for a
variety of microcontrollers.

embOS is a high-performance tool that has been optimized for minimum mem-
ory consumption in both RAM and ROM, as well as high speed and versatility.

2.2. Features

Throughout the development process of embOS, the limited resources of mi-
crocontrollers have always been kept in mind. The internal structure of the real
time operating system (RTOS) has been optimized in a variety of applications
with different customers, over a period of more than 5 years, to fit the needs of
the industry. Fully source-compatible RTOS are available for a variety of micro-
controllers, making it well worth the time and effort to learn how to structure real
time programs with real time-operating systems.

embOS is highly modular. This means that only those functions that are
needed are linked, keeping the ROM size very small. The minimum memory
consumption is little more than 1 kb of ROM and about 30 bytes of RAM (plus
memory for stacks). A couple of files are supplied in source code form to make
sure that you do not lose any flexibility by using embOS and that you can cus-
tomize the system to fully fit your needs.

The tasks that are created by the programmer can easily and safely communi-
cate with each other using a complete palette of communication mechanisms
such as semaphores, mailboxes and events.

10/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Some features of embOS include:

• Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest pri-
ority executes, except for situations where priority inversion applies.

• Round-robin scheduling for tasks with identical priorities.
• Preemptions can be disabled for entire tasks or for sections of a pro-

gram.
• Up to 255 priorities:

Every task can have an individual priority ⇒ the response of tasks can
be precisely defined according to the requirements of the application.

• Unlimited number of tasks
(limited only by the amount of available memory).

• Unlimited number of semaphores
(limited only by the amount of available memory).

• 2 types of semaphores: resource and counting.
• Unlimited number of mailboxes

(limited only by the amount of available memory).
• Size and number of messages can be freely defined when initializing

mailboxes.
• Unlimited number of software timers

(limited only by the amount of available memory).
• 8-bit events for every task.
• Time resolution can be freely selected (default is 1ms).
• Easily accessible time variable.
• Power management:
• Unused calculation time can automatically be spent in halt mode ⇒

power-consumption is minimized.
• Full interrupt support:

Interrupts can call any function except those that require waiting for data,
as well as create, delete or change the priority of a task.
Interrupts can wake up or suspend tasks and directly communicate with
tasks using all available communication instances (mailboxes, sema-
phores, events).

• Very short interrupt disable-time ⇒ short interrupt latency time.
• Nested interrupts are permitted.
• embOS has its own interrupt stack (usage optional).
• Frame application for an easy start.
• Debug version performs run time checks, simplifying development.
• Profiling and stack check may be implemented by choosing specified li-

braries.
• Monitoring during run time via UART available (embOSView).
• Very fast, efficient yet small code.
• Minimum RAM usage.
• Core written in assembly language.
• Interfaces "C" and/or assembly.
• Initialization of microcontroller hardware as sources.

User's & reference manual for embOS real time OS 11/160

 1996- 2004 Segger Microcontroller Systeme GmbH

3. Basic concepts

3.1. Tasks

In this context, a task is a program running on the CPU core of a microcontrol-
ler. Without a multitasking kernel (an RTOS), only one task can be executed by
the CPU at a time. This is called a single-task system. A real time operating
system allows the execution of multiple tasks on a single CPU. All tasks exe-
cute as if they completely "owned" the entire CPU. The tasks are scheduled,
meaning that the RTOS can activate and deactivate every task.

3.2. Single-task system (superloop)

A superloop application is basically a program that runs in an endless loop, call-
ing OS functions to execute the appropriate operations (task level). No real time
kernel is used, so interrupt service routines (ISRs) must be used for real time
parts of the software or critical operations (interrupt level). This type of system
is typically used in small, uncomplex systems or if real time behavior is not criti-
cal.

Time

Superloop

ISR

ISR (nested)

Task level Interrupt level

ISR

Of course, there are fewer preemption and synchronization problems with a su-
perloop application. Also, since no real time kernel is used, only one stack ex-
ists in ROM, meaning that ROM size is smaller and less RAM is used up for
stacks. However, superloops can become difficult to maintain if the program
becomes too large. Since one software component cannot be interrupted by
another component (only by ISRs), the reaction time of one component de-
pends on the execution time of all other components in the system. Real time
behavior is therefore poor.

12/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

3.3. Multitasking systems

There are different scheduling systems in which the calculation power of the
CPU can be distributed among tasks.

3.3.1. Cooperative multitasking
Cooperative multitasking expects cooperation of all tasks. Tasks can only be
suspended if they call a function of the operating system. If they do not, the
system "hangs", which means that other tasks have no chance of being exe-
cuted by the CPU while the first task is being carried out. This is illustrated in
the diagram below. Even if an ISR makes a higher priority task ready to run, the
interrupted task will be returned to and finished before the task switch is made.

Time

ISR

Low priority task

High priority task

ISR puts high priority
task in READY state

Executing task is interrupted

Interrupted task
is completed

Higher priority task
Is executed

3.3.2. Preemptive multitasking

Real time systems like embOS operate with preemptive multitasking only. A
real time operating system needs a regular timer-interrupt in order to be able to
interrupt tasks at defined times and to perform task-switches if necessary. The
highest-priority task in the READY state is therefore always executed, whether
it is an interrupted task or not. If an ISR makes a higher priority task ready, a
task switch will occur and the task will be executed before the interrupted task
is returned to.

User's & reference manual for embOS real time OS 13/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Time

ISR

Low priority task

High priority taskISR puts high priority
task in READY state;
task switch occurs

Executing task is interrupted

Interrupted task
is completed

Higher priority task
Is executed

3.4. Scheduling

There are different algorithms that determine which task to execute, called
schedulers. All schedulers have one thing in common: they distinguish between
tasks that are ready to be executed (in the READY state) and the other tasks
that are suspended for a reason (delay, waiting for mailbox, waiting for sema-
phore, waiting for event, etc.). The scheduler selects one of the tasks in the
READY state and activates it (executes the program of this task). The task
which is currently executing is referred to as the active task. The main differ-
ence between schedulers is in how they distribute the computation time be-
tween the tasks in READY state.

3.4.1. Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deac-
tivating the active task, activates the next task that is in the READY state.
Round-robin can be used with either preemptive or cooperative multitasking. It
works well if you do not need to guarantee response time, if the response time
is not an issue of importance, or if all tasks have the same priority. Round-robin
scheduling can be illustrated as follows:

All tasks are on the same level; the possession of the CPU changes periodically
after a predefined execution time. This time is called timeslice, and may be de-
fined individually for every task.

14/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

3.4.2. Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For
example, in an application that controls a motor, a keyboard and a display, the
motor usually requires faster reaction time than the keyboard and display.
While the display is being updated, the motor needs to be controlled. This
makes preemptive multitasking a must. Round-robin might work, but since it
cannot guarantee a specific reaction time, an improved algorithm should be
used.

In priority-controlled scheduling, every task is assigned a priority. The order of
execution depends on this priority. The rule is very simple:
The scheduler activates the task that has the highest priority of all tasks
in the READY state.

This means that every time a task with higher priority than the active task gets
ready, it immediately becomes the active task. However, the scheduler can be
switched off in sections of a program where task switches are prohibited, known
as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin be-
tween tasks of identical priority. One hint at this point: round-robin scheduling is
a nice feature because you do not have to think about whether one task is more
important than another. Tasks with identical priority cannot block each other for
longer than their timeslices. But round-robin scheduling also costs time if two or
more tasks of identical priority are ready and no task of higher priority is ready,
because it will constantly switch between the identical-priority tasks. It is more
efficient to assign a different priority to each task, which will avoid unnecessary
task switches.

3.4.3. Priority inversion
The rule to go by for the scheduler is:
Activate the task that has the highest priority of all tasks in the READY
state.

But what happens if the highest-priority task is blocked because it is waiting for
a resource owned by a lower-priority task? According to the above rule, it would
wait until the low-priority-task becomes active again and releases the resource.

The other rule is: No rule without exception.

In order to avoid this kind of situation, the low-priority task that is blocking the
highest-priority task gets assigned the highest priority until it releases the re-
source, unblocking the task which originally had highest priority. This is known
as priority inversion.

User's & reference manual for embOS real time OS 15/160

 1996- 2004 Segger Microcontroller Systeme GmbH

 3.5. Communication between tasks

In a multitasking (multithreaded) program, multiple tasks work completely sepa-
rately. But since they all work in the same application, it will sometimes be nec-
essary for them to communicate information to one another.

3.5.1. Global variables
The easiest way to do this is by using global variables. In certain situations, it
can make sense for tasks to communicate via global variables, but most of the
time this method has various disadvantages.

For example, if you want synchronize a task to start when the value of a global
variable changes, you have to poll this variable, wasting precious calculation
time and power, and the reaction time depends on how often you poll.

3.5.2. Communication mechanisms
When multiple tasks work with one another, they often have to:

• exchange data,
• synchronize with another task, or
• make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and
events.

Mailboxes and queues
A mailbox is basically a data buffer managed by the RTOS and is used to send
a message to a task. It works without conflicts even if multiple tasks and inter-
rupts try to access it simultaneously. embOS also automatically activates any
task that is waiting for a message in a mailbox the moment it receives new data
and, if necessary, automatically switches to this task.

A queue works in a similar manner, but is used to send one or more messages
to a task. Queues can handle larger messages than mailboxes, and those
messages can be different sizes.
For more information, see Chapter 8: �Mailboxes� and Chapter 9: �Queues�.

Semaphores

Two types of semaphores are used to synchronize tasks and to manage re-
sources. The most common are resource semaphores, although counting
semaphores are also used. For details and samples, please refer to Chapter 6:
�Resource Semaphores� and Chapter 7: �Counting Semaphores�. Samples can
also be found on our website at www.segger.com.

Events
A task can wait for a particular event without using any calculation time. The
idea is as simple as it is convincing; there is no sense in polling if we can simply
activate a task the moment the event that it is waiting for occurs. This saves a
great deal of calculation power and ensures that the task can respond to the
event without delay. Typical applications for events are those where a task
waits for data, a pressed key, a received command or character, or the pulse of
an external real time clock.
For further details, refer to the Chapter 10: �Events�.

http://www.segger.com/

16/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

3.6. How task-switching works

A real time multitasking system lets multiple tasks run like multiple single-task
programs, quasi-simultaneously, on a single CPU. A task consists of three parts
in the multitasking world:

• The program code, which usually resides in ROM (though it does not
have to!)

• A stack, residing in a RAM area that can be accessed by the stack
pointer

• A task control block, residing in RAM

The stack has the same function as in a single-task system: storage of return
addresses of function calls, parameters and local variables, and temporary
storage of intermediate calculation results and register values. Each task can
have a different stack size. More information can be found in Chapter 11:
�Stacks�.

The task control block (TCB) is a data structure assigned to a task when it is
created. It contains status information of the task, including the stack pointer,
task priority, current task status (ready, waiting, reason for suspension, etc.)
and other management data. This information allows an interrupted task to con-
tinue execution exactly where it left off. TCBs are only accessed by the RTOS.

User's & reference manual for embOS real time OS 17/160

 1996- 2004 Segger Microcontroller Systeme GmbH

3.7. Switching stacks

The following diagram demonstrates the process of switching from one stack to
another.

The scheduler deactivates the task to be suspended (Task 0) by saving the
processor registers on its stack. It then activates the higher-priority task (Task
n) by loading the stack pointer (SP) and the processor registers from the values
stored on Task n�s stack.

Scheduler

CPU

Task 0
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage
ret. addresses

SP

Task n
StackTask Control

block

CPU
registers

Free Stack
area

variables
temp. storage
ret. addresses

SP

18/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

3.8. Change of task status

A task may be in one of several states at any given time. When a task is cre-
ated, it is automatically put into the READY state (TS_READY).

A task in the READY state is activated as soon as there is no other READY
task with higher priority. Only one task may be active at a time. If the task is de-
activated or a task with higher priority becomes READY, the active task is sim-
ply placed back into the READY state.

The active task may be delayed for or until a specified time; in this case it is put
into the DELAY state (TS_DELAY) and the next highest priority task in the
READY state is activated.

The active task may also have to wait for an event (or semaphore, mailbox, or
queue). If the event has not yet occurred, the task is put into the waiting state
and the next highest priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it has either not
been created yet or it has been terminated.

The following illustration shows all possible task states and transitions between
them.

TS_READY

TS_DELAYWait for Event, mailbox
or semaphore

Not existing

CREATETASK()

Delay()

Terminate()

Scheduler Active
Task

User's & reference manual for embOS real time OS 19/160

 1996- 2004 Segger Microcontroller Systeme GmbH

3.9. How the OS gains control

When the CPU is reset, the special-function registers are set to their respective
values. After reset, program execution begins. The PC register is set to the start
address defined by the start vector or start address (depending on the CPU).
This start address is usually in a startup module shipped with the �C� compiler,
and is sometimes part of the standard library.

The startup code does the following:

• Loads the stack pointers(s)) with the default values, which is for most
CPUs the end of the defined stack segment(s)

• Initialize all data segments to their respective values
• Calls the main() routine

In a single-task-program, the main() routine is part of the user program which
takes control immediately after the �C� startup. Normally, embOS works with
the standard �C� startup module without any modification. If there are any
changes required, they are documented in the startup file which is shipped with
embOS.

main() is still part of your application program. Basically, main() creates one
or more tasks and then starts multitasking by calling OS_Start(). From then
on, the scheduler controls which task is executed.

main() will not be interrupted by any of the created tasks, because those tasks
are executed only after the call to OS_Start(). It is therefore usually recom-
mended to create all or most of your tasks here, as well as your control struc-
tures such as mailboxes and semaphores. A good practice is to write software
in the form of modules which are (up to a point) reusable. These modules usu-
ally have an initialization routine, which creates the required task(s) and/or con-
trol structures. A typical main() looks similar to the following example:

/***
*
* main
*
**
*/

void main(void) {
 OS_InitKern(); /* initialize OS (should be first !) */
 OS_InitHW(); /* initialize Hardware for OS (in RtosInit.c) */
 /* Call Init routines of all program modules which in turn will create
 the tasks they need ... (Order of creation may be important) */
 MODULE1_Init();
 MODULE2_Init();
 MODULE3_Init();
 MODULE4_Init();
 MODULE5_Init();
 OS_Start(); /* Start multitasking */
}

With the call to OS_Start(), the scheduler starts the highest-priority task that
has been created in main().

Please note that OS_Start() is called only once during the startup process
and does not return.

20/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

The flowchart below illustrates the starting procedure:

Task

embOS
Scheduler

Task

Reset of
CPU

Task

Load SP

Init
memory

main()

Init
Hardware
Create Tasks,
Semaphor

3.10. Different builds of embOS

embOS comes in different builds, or versions of the libraries. The reason for
different builds is that requirements vary during development. While developing
software, the performance (and resource usage) is not as important as in the fi-
nal version which usually goes as release version into the product. But during
development, even small programming errors should be caught by use of as-
sertions. These assertions are compiled into the debug version of the embOS
libraries and make the code a bit bigger (about 50%) and also slightly slower
than the release or stack check version used for the final product.

This concept gives you the best of both worlds: a compact and very efficient
build for your final product (release or stack check versions of the libraries), and
a safer (though bigger and slower) version for development which will catch
most of the common application programming errors. Of course, you may also
use the release version of embOS during development, but it will not catch
these errors.

User's & reference manual for embOS real time OS 21/160

 1996- 2004 Segger Microcontroller Systeme GmbH

3.10.1. Profiling

embOS supports profiling in profiling builds. Profiling makes precise informa-
tion available about the execution time of individual tasks. You may always use
the profiling libraries, but they induce certain overhead such as bigger task con-
trol blocks, additional ROM (app. 200 bytes) and additional run time overhead.
This overhead is usually acceptable, but for best performance you may want to
use non-profiling builds of embOS if you do not use this feature.

3.10.2. List of libraries

In your application program, you need to let the compiler know which build of
embOS you are using. This is done by defining a single identifier prior to
including RTOS.h.

Build Define Explanation
R: Release OS_LIBMODE_R Smallest, fastest build
S: Stack check OS_LIBMODE_S Same as release, plus stack

checking
SP: Stack check plus

Profiling
OS_LIBMODE_SP Same as stack check, plus profil-

ing
D: Debug OS_LIBMODE_D Maximum run time checking
DP: Debug plus pro-

filing
OS_LIBMODE_DP Maximum run time checking, plus

profiling
DT: Debug including

trace, profiling
OS_LIBMODE_DT Maximum run time checking, plus

tracing API calls and profiling

22/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4. Task routines
A task that should run under embOS needs a task control block (TCB), a stack
and a normal routine, written in �C�. The following rules apply to task routines:

• The task routine cannot take parameters.
• The task routine must never be called directly from your application.
• The task routine must not return.
• The task routine should be implemented as an endless loop, or it must

terminate itself (see examples below).
• The task routine needs to be started from the scheduler, after the task is

created and OS_Start() is called.

Example of task routine as an endless loop
/* Example of a task routine as endless loop */
void Task1(void) {
 while(1) {
 DoSomething() /* Do something */
 OS_Delay(1); /* Give other tasks a chance */
 }
}

Example of task routine that terminates itself

/* Example of a task routine that terminates */
void Task2(void) {
 char DoSomeMore;
 do {
 DoSomeMore = DoSomethingElse() /* Do something */
 OS_Delay(1); /* Give other tasks a chance */
 } while(DoSomeMore);
 OS_Terminate(0); /* Terminate yourself */
}

There are different ways to create a task; embOS offers a simple macro that
makes it easy to do so and is fully sufficient in most cases. However, if you are
dynamically creating and deleting tasks, a routine is available allowing "fine-
tuning" of all parameters. For most applications, at least initially, using the
macro as in the sample start project works fine.

User's & reference manual for embOS real time OS 23/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.1. OS_CREATETASK(): Create a task

Description
Creates a task.

Prototype
void OS_CREATETASK(OS_TASK* pTask,
 char* pName,
 void* pRoutine,
 unsigned char Priority,
 void* pStack);

Parameter Meaning

pTask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.

pName Pointer to the name of the task. Can be NULL (or 0) if not
used.

pRoutine Pointer to a routine that should run as task

Priority
Priority of the task. Must be within the following range:
0< Priority <=255
Higher values indicate higher priorities.

pStack
Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack area.

Return value
Void.

Add. information
OS_CREATETASK() is a macro calling an OS library function. It creates a task
and makes it ready for execution by putting it in the READY state. The newly
created task will be activated by the scheduler as soon as there is no other task
with higher priority in the READY state. If there is another task with the same
priority, the new task will be placed right before it.
This macro is normally used to create a task instead of the function call
OS_CreateTask(), because it has fewer parameters and is therefore easier
to use.
OS_CREATETASK can be called at any time, either from main() during initiali-
zation or from any other task. The recommended strategy is to create all tasks
during initialization in main() in order to keep the structure of your tasks easy
to understand.
The absolute value of Priority is of no importance, only the value in com-
parison to the priorities of other tasks.
OS_CREATETASK() determines the size of the stack automatically using
sizeof. This is possible only if the memory area has been defined at compile
time.

Important

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack. Most CPUs cannot use the entire memory area as stack.

24/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Most CPUs require alignment of stack in multiples of bytes. This is auto-
matically done, when task stack is defined as array of int.

Example
OS_STACKPTR int UserStack[150]; /* Stack-space */
OS_TASK UserTCB; /* Task-control-blocks */

void UserTask(void) {
 while (1) {
 Delay (100);
 }
}

void InitTask(void) {
 OS_CREATETASK(&UserTCB, "UserTask", UserTask, 100, UserStack); /* Create
Task0 */
}

User's & reference manual for embOS real time OS 25/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.2. OS_CreateTask(): Create a task

Description
Creates a task.

Prototype
void OS_CreateTask (OS_TASK* pTask,
 char* pName,
 unsigned char Priority,
 voidRoutine* pRoutine,
 void* pStack,
 unsigned StackSize,
 unsigned TimeSlice);

Parameter Meaning

Ptask Pointer to a data structure of type OS_TASK which will be
used as task control block (and reference) for this task.

Pname Pointer to the name of the task. Can be NULL (or 0) if not
used.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <=255
Higher values indicate higher priorities.

pRoutine Pointer to a routine that should run as task

pStack
Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack area.

StackSize Size of the stack

TimeSlice

Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority.
TimeSlice denotes the time in ticks that the task will run
until it suspends; thus enabling another task with the same
priority.
This parameter has no effect on some ports of embOS for
efficiency reasons.

Return value
Void.

Add. information
This function works the same way as OS_CREATETASK(), except that all pa-
rameters of the task can be specified.
The task can be dynamically created because the stack size is not calculated
automatically as it is with the macro.

Important

The stack that you define has to reside in an area that the CPU can actu-
ally use as stack. Most CPUs cannot use the entire memory area as stack.

Most CPUs require alignment of stack in multiples of bytes. This is auto-
matically done, when task stack is defined as array of int.

26/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Example
/*
* demo-program to illustrate the use of OS_CreateTask
*/
OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void Clock(void) {
 while(1) {
 /* code to update the clock */
 }
}

void Main(void) {
 while (1) {
 /* your code */
 }
}

void InitTask(void) {
 OS_CreateTask(&TaskMain, NULL, 50, Main, StackMain, sizeof(StackMain), 2);
 OS_CreateTask(&TaskClock, NULL, 100, Clock,StackClock,sizeof(StackClock),2);
}

User's & reference manual for embOS real time OS 27/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.3. OS_Delay(): Suspend for fixed time

Description
Suspends the calling task for a specified period of time.

Prototype
void OS_Delay(int ms);

Parameter Meaning

ms
Time interval to delay. Must be within the following range:
0 < ms < 215-1 = 0x7FFF = 32767 for 8/16-bit CPUs
0 < ms < 231-1 = 0x7FFFFFFF for 32-bit CPUs

Return value
Void.

Add. information
The calling task will be put into the TS_DELAY state for the period of time
specified.
The task will stay in the delayed state until the time specified has expired.
ms specifies the precise interval during which the task has to be suspended
given in basic time intervals (usually 1/1000 sec). The actual delay (in basic
time intervals) will be in the following range:
ms - 1 <= delay <= ms
depending on when the interrupt for the scheduler will occur.
After the expiration of a delay, the task is made ready again and activated ac-
cording to the rules of the scheduler.
A delay can be ended prematurely by another task or by an interrupt handler
calling OS_WakeTask().

Example
void Hello() {
 printf("Hello");
 printf("The next line will be executed in 5 seconds");
 OS_Delay (5000);
 printf("Delay is over");
}

28/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4.4. OS_DelayUntil(): Suspend until

Description
Suspends the calling task until a specified time.

Prototype
void OS_DelayUntil(int t);

Parameter Meaning

T

Time to delay until. Must be within the following range:
0 < (t - OS_Time) < 215-1 = 0x7FFF = 32767 for 8/16-bit
CPUs
0 < (t - OS_Time) < 231-1 = 0x7FFFFFFF for 32-bit CPUs

Return value
Void.

Add. information
The calling task will be put into the TS_DELAY state until the time specified.
OS_DelayUntil() delays until the value of the time-variable OS_Time has
reached a certain value. It is very useful if you have to avoid accumulating de-
lays.

Example
int sec,min;

void TaskShowTime() {
 int t0 = OS_GetTime();
 while (1) {
 ShowTime(); /* Routine to display time */
 OS_DelayUntil (t0+=1000);
 if (sec<59) sec++;
 else {
 sec=0;
 min++;
 }
 }
}

In the example above, the use of OS_Delay() could lead to accumulating de-
lays and would cause the simple "clock" to be slow.

User's & reference manual for embOS real time OS 29/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.5. OS_SetPriority(): Change priority of a task

Description
Assigns a specified priority to a specified task.

Prototype
void OS_SetPriority(OS_TASK * pt, unsigned char Priority);

Parameter Meaning
pt Pointer to a data structure of type OS_TASK.

Priority
Priority of the task. Must be within the following range:
1 <= Priority <= 255
Higher values indicate higher priorities.

Return value
Void.

Add. information
Can be called at any time from any task or software timer. Calling this function
might lead to an immediate task switch.

Important

This function may not be called from within an interrupt handler.

30/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4.6. OS_GetPriority(): Retrieve priority of a task

Description
Returns the priority of a specified task.

Prototype
unsigned char OS_GetPriority(OS_TASK* pt);

Parameter Meaning
pt Pointer to a data structure of type OS_TASK.

Return value
Priority of the specified task as unsigned char (range 1 to 255).

Add. information
If pt is the NULL pointer, the function returns the priority of the currently run-
ning task.
If pt does not specify a valid task, the debug version of embOS calls
OS_Error().
The release version of embOS cannot check the validity of pt and may there-
fore return invalid values if pt does not specify a valid task.

User's & reference manual for embOS real time OS 31/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.7. OS_SetTimeSlice(): Change timeslice of a task

Description
Assigns a specified timeslice value to a specified task.

Prototype
unsigned char OS_SetTimeSlice(OS_TASK * pt,
 unsigned char TimeSlice);

Parameter Meaning
pt Pointer to a data structure of type OS_TASK

TimeSlice
New timeslice value for the task. Must be within the following
range:
1 <= TimeSlice <= 255.

Return value
Previous timeslice value of the task as unsigned char.

Add. information
Can be called at any time from any task or software timer. Setting the timeslice
value only affects the tasks running in round-robin mode. This means another
task with the same priority must exist.
The new timeslice value is interpreted as reload value. It is used after the next
activation of the task. It does not affect the remaining timeslice of a running
task.

32/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4.8. OS_Suspend(): Suspend a task

Description
Suspends the specified task.

Prototype
void OS_Suspend(OS_TASK* pTask);

Parameter Meaning

pTask
Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for the task that
should be suspended.

Return value
Void.

Add. information
If the function succeeds, execution of the specified task is suspended and the
task�s suspend count is incremented.
The specified task will be suspended immediately. It can only be restarted by a
call of OS_Resume().
Every task has a suspend count with a maximum value of
OS_MAX_SUSPEND_CNT. If the suspend count is greater than zero, the task is
suspended.
Calling OS_Suspend() more often than OS_MAX_SUSPEND_CNT times without
calling OS_Resume(), the task�s internal suspend count is not incremented and
OS_Error() is called with error OS_ERR_SUSPEND_TOO_OFTEN in debug
builds.

User's & reference manual for embOS real time OS 33/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.9. OS_Resume(): Restarts a suspended task

Description
Decrements the suspend count of specified task and resumes the task, if the
suspend count reaches zero.

Prototype
void OS_Resume(OS_TASK* pTask);

Parameter Meaning

pTask
Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for the task that
should be resumed.

Return value
Void.

Add. information
The specified task�s suspend count is decremented. If the resulting value is 0,
the execution of the specified task is resumed.
If the task is not blocked by other task blocking mechanisms, the task will be set
back in ready state and continues operation according to the rules of the
scheduler.
In debug versions of embOS, the OS_Resume() function checks the suspend
count of the specified task. If the suspend count is 0 when OS_Resume() is
called, the specified task is not currently suspended and OS_Error() is called
with error OS_ERR_RESUME_BEFORE_SUSPEND.

34/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4.10. OS_Terminate(): Terminate a task

Description
Ends (terminates) a task.

Prototype
void OS_Terminate(OS_TASK* pTask);

Parameter Meaning

pTask Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for this task.

Return value
Void.

Add. information
If pTask is the NULL pointer, the current task terminates.
It should be made sure that the task does not use any resources at the point of
termination.
The specified task will terminate immediately. The memory used for stack and
task control block can be reassigned.

Important:

This function may not be called from within an interrupt handler.

User's & reference manual for embOS real time OS 35/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.11. OS_WakeTask(): Resume a time suspended task

Description
Ends delay of a task immediately.

Prototype
void OS_WakeTask(OS_TASK* pTask);

Parameter Meaning

pTask Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for this task.

Return value
Void.

Add. information
Puts the specified task (already suspended for a certain amount of time with
OS_Delay() or OS_DelayUntil() back to the state TS_READY (ready for
execution).
The specified task will be activated immediately if it has a higher priority than
the priority of the task that had the highest priority before.
If the specified task is not in the state TS_DELAY (because it has already been
activated or the delay has already expired or for some other reason), this com-
mand is ignored.

36/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4.12. OS_IsTask(): Check whether a task is valid

Description
Determines whether a task control block actually belongs to a valid task.

Prototype
char OS_IsTask(OS_TASK* pTask);

Parameter Meaning

pTask Pointer to a data structure of type OS_TASK which is used
as task control block (and reference) for this task.

Return value
Character value:
0: TCB is not used by any task
1: TCB is used by a task

Add. information
This function checks to see if the specified task is still in the internal task list. If
the task was terminated, it is removed from the internal task list.
This function may be useful to determine whether the task control block and
stack for the task may be reused for another task in applications that create and
terminate tasks dynamically.

User's & reference manual for embOS real time OS 37/160

 1996- 2004 Segger Microcontroller Systeme GmbH

4.13. OS_GetTaskID(): Retrieve ID of current task

Description
Returns the ID of the currently running task.

Prototype
OS_TASKID OS_GetTaskID(void);

Return value
OS_TASKID: A pointer to the task control block. A value of 0 (NULL) indicates
that no task is executing.

Add. information
This function may be used to determine which task is executing. This may be
helpful if the reaction of any function depends on the currently running task.

38/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

4.14. OS_GetpCurrentTask(): Retrieve TCB of current task

Description
Returns a pointer to the task control block structure of the currently running
task.

Prototype
OS_TASK* OS_GetpCurrentTask(void);

Return value
OS_TASK*: A pointer to the task control block structure.

Add. information
This function may be used to determine which task is executing. This may be
helpful if the reaction of any function depends on the currently running task.

User's & reference manual for embOS real time OS 39/160

 1996- 2004 Segger Microcontroller Systeme GmbH

5. Software timers

A software timer is an object that calls a user-specified routine after a specified
delay. A basically unlimited number of software timers can be defined with the
macro OS_CREATETIMER().

Timers can be stopped, started and retriggered much like hardware timers.
When defining a timer, you specify any routine that is to be called after the expi-
ration of the delay. Timer routines are similar to interrupt routines; they have a
priority higher than the priority of all tasks. For that reason they should be kept
short just like interrupt routines.

Software timers are called by embOS with interrupts enabled, so they can be
interrupted by any hardware interrupt. Generally, timers run in single-shot
mode, which means they expire only once and call their callback routine only
once. By calling OS_RetriggerTimer() from within the callback routine, the
timer is restarted with its initial delay time and therefore works just as a free-
running timer.

The state of timers can be checked by the functions OS_GetTimerStatus(),
OS_GetTimerValue(), and OS_GetTimerPeriod().

Maximum timeout / period
The timeout value is stored as integer, thus a 16-bit value on 8/16-bit CPUs, a
32-bit value on 32 bit CPUs. The comparisons are done as signed compari-
sons, (since expired time-outs are permitted). This means that only 15-bits can
be used on 8/16 bit CPUs, 31 bits on 32-bit CPUs. An other factor to take into
account is the maximum time spent in critical regions. Since during critical re-
gions timer may expire, but the timer routine can not be called (timers are �put
on hold�), the maximum time that the system spends at once in a critical region
needs to be deducted. In most systems, this is no more than a single tick.
However, to be safe, we have assumed that your system spends no more than
up to 255 ticks in a row in a critical region and defined a macro which defines
the maximum timeout value. It is normally 0x7F00 for 8/16-bit systems or
7FFFFF00 for 32-bit Systems and defined in RTOS.h as
OS_TIMER_MAX_TIME. If your system does spend more than 255 ticks with-
out break in a critical section (effectively disabling the scheduler during this time
... not recommended), you have to make sure your application uses shorter
timeouts.

40/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

5.1. OS_CREATETIMER(): Create a software timer

Description
Macro that creates and starts a software-timer.

Prototype
void OS_CREATETIMER(OS_TIMER* pTimer,
 OS_TIMERROUTINE* Callback,
 unsigned int Timeout);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Callback Pointer to the callback routine to be called from RTOS after
expiration of the delay.

Timeout
Initial timeout in basic embOS time units (nominal ms):
Minimum 1
Maximum 32767.

Return value
Void.

Add. information
The timers are kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).
This macro uses the functions OS_CreateTimer() and OS_StartTimer().
It is supplied for backward compatibility; In newer programs these routines
should be called directly instead.

OS_TIMERROUTINE is defined in Rtos.h as follows:
typedef void OS_TIMERROUTINE(void);

Source of the macro (in RTOS.h)
#define OS_CREATETIMER(pTimer,c,d) \
 OS_CreateTimer(pTimer,c,d); \
 OS_StartTimer(pTimer);

Example
OS_TIMER TIMER100;

void Timer100(void) {
 LED = LED ? 0 : 1; /* toggle LED */
 OS_RetriggerTimer(&TIMER100); /* make timer periodical */
}

void InitTask(void) {
 /* Create and start Timer100 */
 OS_CREATETIMER(&TIMER100, Timer100, 100);
}

User's & reference manual for embOS real time OS 41/160

 1996- 2004 Segger Microcontroller Systeme GmbH

5.2. OS_CreateTimer(): Create a software timer

Description
Creates a software timer (but does not start it).

Prototype
void OS_CreateTimer(OS_TIMER* pTimer,
 OS_TIMERROUTINE* Callback,
 unsigned int Timeout);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Callback Pointer to the callback routine to be called from RTOS after
expiration of the delay.

Timeout
Initial timeout in basic embOS time units (nominal ms):
Minimum 1
Maximum 32767.

Return value
Void.

Add. information
The timers are kept track of in the form of a linked list that is managed by
embOS. Once the timeout is expired, the callback routine will be called imme-
diately (unless the task is in a critical region or has interrupts disabled!).
The timer is not automatically started. This has to be done explicitly by a call of
OS_StartTimer() or OS_RetriggerTimer().

OS_TIMERROUTINE is defined in Rtos.h as follows:
typedef void OS_TIMERROUTINE(void);

Example
OS_TIMER TIMER100;

void Timer100(void) {
 LED = LED ? 0 : 1; /* toggle LED */
 OS_RetriggerTimer(&TIMER100); /* make timer periodical */
}

void InitTask(void) {
 /* Create Timer100, start it elsewhere */
 OS_CreateTimer(&TIMER100, Timer100, 100);
}

42/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

5.3. OS_StartTimer(): Start a timer

Description
Starts a specified timer.

Prototype
void OS_StartTimer(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return value
Void.

Add. information
OS_StartTimer() is used for the following reasons:
Start a timer which was created by OS_CreateTimer(). The timer will start with
its initial timer value.
Restart a timer which was stopped by calling OS_StopTimer(). In this case, the
timer will continue with the remaining time value which was preserved by stop-
ping the timer.

Important

This function has no effect on running timers.
It also has no effect on timers that are not running, but are expired. Use
OS_RetriggerTimer() to restart those timers.

User's & reference manual for embOS real time OS 43/160

 1996- 2004 Segger Microcontroller Systeme GmbH

5.4. OS_StopTimer(): Stop a timer

Description
Stops a specified timer.

Prototype :
void OS_StopTimer(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return Value
Void

Add. information
The actual value of the timer (the time until expiration) is kept until
OS_StartTimer() lets the timer continue.

44/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

5.5. OS_RetriggerTimer(): Restart a timer

Description
Restarts a specified timer with its initial time value.

Prototype
void OS_RetriggerTimer(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return value
Void.

Add. information
OS_RetriggerTimer() restarts the timer using the initial time value pro-
grammed at creation of the timer or with the function OS_SetTimerPeriod().

Example

OS_TIMER TIMERCursor;
BOOL CursorOn;

void TimerCursor(void) {
 if (CursorOn) ToggleCursor(); /* invert character at cursor-position */
 OS_RetriggerTimer(&TIMERCursor); /* make timer periodical */
}

void InitTask(void) {
 /* Create and start TimerCursor */
 OS_CREATETIMER(&TIMERCursor, TimerCursor, 500);
}

User's & reference manual for embOS real time OS 45/160

 1996- 2004 Segger Microcontroller Systeme GmbH

5.6. OS_SetTimerPeriod(): Set restart value

Description
Sets a new timer reload value for a specified timer.

Prototype
void OS_SetTimerPeriod(OS_TIMER* pTimer,
 unsigned int Period);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Period
Timer period in basic embOS time units (nominal ms):
Minimum 1
Maximum 32767.

Return value
Void.

Add. information
OS_SetTimerPeriod() sets the initial time value of the specified timer. Pe-
riod is the reload value of the timer to be used as initial value when the timer
is retriggered by OS_RetriggerTimer().

Example

OS_TIMER TIMERPulse;
BOOL CursorOn;

void TimerPulse(void) {
 if TogglePulseOutput(); /* Toggle output */
 OS_RetriggerTimer(&TIMERCursor); /* make timer periodical */
}

void InitTask(void) {
 /* Create and start Pulse Timer with first pulse = 500ms */
 OS_CREATETIMER(&TIMERPulse, TimerPulse, 500);
 /* Set timer period to 200 ms for further pulses */
 OS_SetTimerPeriod(&TIMERPulse, 200);
}

46/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

5.7. OS_DeleteTimer(): Delete a timer

Description
Stops and deletes a specified timer.

Prototype :
void OS_DeleteTimer(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return Value
Void

Add. information
The timer is stopped and therefore removed out of the linked list of running tim-
ers. In debug builds of embOS, the timer is also marked as invalid.

User's & reference manual for embOS real time OS 47/160

 1996- 2004 Segger Microcontroller Systeme GmbH

5.8. OS_GetTimerPeriod(): Retrieve restart value

Description
Returns the current reload value of a specified timer.

Prototype
unsigned int OS_GetTimerPeriod(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return value
Unsigned integer between 1 and 32767, which is the permitted range of timer
values.

Add. information
The period returned is the reload value of the timer set as initial value when the
timer is retriggered by OS_RetriggerTimer().

48/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

5.9. OS_GetTimerValue(): Retrieve remaining time

Description
Returns the remaining timer value of a specified timer.

Prototype
unsigned int OS_GetTimerValue(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return value
Unsigned integer between 0 and 32767, which is the permitted range of timer
values.

Add. information
The timer value is the remaining time until the timer expires and calls its call-
back function.

User's & reference manual for embOS real time OS 49/160

 1996- 2004 Segger Microcontroller Systeme GmbH

5.10. OS_GetTimerStatus(): Retrieve timer status

Description
Returns the current timer status of a specified timer.

Prototype
unsigned char OS_GetTimerStatus(OS_TIMER* pTimer);

Parameter Meaning

pTimer Pointer to the OS_TIMER data structure containing the data of
the timer.

Return value
Unsigned char, denoting whether the specified timer is running or not:
0: timer is stopped
! = 0: timer is running.

Add. information
None.

50/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

5.11. OS_GetpCurrentTimer(): Retrieve current timer

Description
Returns a pointer to the data structure of the timer that just expired.

Prototype
OS_TIMER* OS_GetpCurrentTimer(void);

Return value
OS_TIMER*: A pointer to the control structure of a timer.

Add. information
The return value of OS_GetpCurrentTimer() is valid during execution of a
timer callback function; otherwise it is undetermined.
If only one callback function should be used for multiple timers, this function
can be used to examine the timer that expired.

#include "RTOS.H"

/**
*
* Types
*/

typedef struct { Timer object with own user data
 OS_TIMER Timer;
 void* pUser;
} TIMER_EX;

/**
*
* Variables
*/

TIMER_EX Timer_User;
int a;

/**
*
* Local Functions
*/

void CreateTimer(TIMER_EX* timer, OS_TIMERROUTINE* Callback, OS_UINT Timeout,
 void* pUser) {
 timer->pUser = pUser;
 OS_CreateTimer((OS_TIMER*) timer, Callback, Timeout);
}

void cb(void) { /* timer callback function for multiple timers */
 TIMER_EX* p = (TIMER_EX*)OS_GetpCurrentTimer();
 void* pUser = p->pUser; /* Examine user data */

 OS_RetriggerTimer(&p->Timer); /* retrigger timer */
}

/**
*
* main
*/

int main(void) {
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 CreateTimer(&Timer_User, cb, 100, &a);
 OS_Start(); /* Start multitasking */
 return 0;

User's & reference manual for embOS real time OS 51/160

 1996- 2004 Segger Microcontroller Systeme GmbH

6. Resource semaphores
Resource semaphores are used to manage resources by avoiding conflicts
caused by simultaneous use of a resource. The resource managed can be of
any kind: a part of the program that is not reentrant, a piece of hardware like
the display, a flash prom that can only be written to by a single task at a time, a
motor in a CNC control that can only be controlled by one task at a time, and a
lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_Use() or
OS_Request() routines of embOS. If the resource is available, the program
execution of the task continues, but the resource is blocked for other tasks. If a
second task now tries to use the same resource while it is in use by the first
task, this second task is suspended until the first task releases the resource.
However, if the first task that uses the resource calls OS_Use() again for that
resource, it is not suspended because the resource is blocked only for other
tasks.

The following little diagram illustrates the process of using a resource:

OS_Use()

Access resource

OS_Unuse()

A resource semaphore contains a counter that keeps track of how many times
the resource has been claimed by calling OS_Request() or OS_Use() by a
particular task. It is released when that counter reaches 0, which means the
OS_Unuse() routine has to be called exactly the same number of times as
OS_Use() or OS_Request(). If it is not, the resource remains blocked for
other tasks.

On the other hand, a task cannot release a resource that it does not own by
calling OS_Unuse(). In the debug version of embOS, a call of OS_Unuse()
for a semaphore that is not owned by this task will result in a call to the error
handler OS_Error().

52/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Example for use of resource semaphore
Here, two tasks access an LC display completely independently from each
other. The LCD is a resource that needs to be protected with a resource sema-
phore. One task may not interrupt another task which is writing to the LCD, be-
cause otherwise the following might occur:

• Task A positions the cursor.
• Task B interrupts Task A and repositions the cursor.
• Task A writes to the wrong place in the LCD' s memory.

To avoid this type of situation, every the LCD must be accessed by a task, it is
first claimed by a call to OS_Use() (and is automatically waited for if the re-
source is blocked). After the LCD has been written to, it is released by a call to
OS_Unuse().

/*
* demo program to illustrate the use of resource semaphores
*/
OS_STACKPTR int StackMain[100], StackClock[50];
OS_TASK TaskMain,TaskClock;
OS_SEMA SemaLCD;

void TaskClock(void) {
 char t=-1;
 char s[] = "00:00";
 while(1) {
 while (TimeSec==t) Delay(10);
 t= TimeSec;
 s[4] = TimeSec%10+'0';
 s[3] = TimeSec/10+'0';
 s[1] = TimeMin%10+'0';
 s[0] = TimeMin/10+'0';
 OS_Use(&SemaLCD); /* make sure nobody else uses LCD */
 LCD_Write(10,0,s);
 OS_Unuse(&SemaLCD); /* release LCD */
 }
}

void TaskMain(void) {
 signed char pos ;
 LCD_Write(0,0,"Software tools by Segger ! ") ;
 OS_Delay(2000);
 while (1) {
 for (pos=14 ; pos >=0 ; pos--) {
 OS_Use(&SemaLCD); /* make sure nobody else uses LCD */
 LCD_Write(pos,1,"train "); /* draw train */
 OS_Unuse(&SemaLCD); /* release LCD */
 OS_Delay(500);
 }
 OS_Use(&SemaLCD); /* make sure nobody else uses LCD */
 LCD_Write(0,1," ") ;
 OS_Unuse(&SemaLCD); /* release LCD */
 }
}

void InitTask(void) {
 OS_CREATERSEMA(&SemaLCD); /* Creates resource semaphore */
 OS_CREATETASK(&TaskMain, 0, Main, 50, StackMain);
 OS_CREATETASK(&TaskClock, 0, Clock, 100, StackClock);
}

User's & reference manual for embOS real time OS 53/160

 1996- 2004 Segger Microcontroller Systeme GmbH

In most applications, the routines that access a resource should automatically
call OS_Use() and OS_Unuse() so that when using the resource you do not
have to worry about it and can use it just as you would in a single-task system.
The following is an example of how to implement a resource into the routines
that actually access the display:

/*
* simple example when accessing single line dot matrix LCD
*/

OS_RSEMA RDisp; /* define resource semaphore */

void UseDisp() { /* simple routine to be called before using display */
 OS_Use(&RDisp);
}

void UnuseDisp() { /* simple routine to be called after using display */
 OS_Unuse(&RDisp);
}

void DispCharAt(char c, char x) {
 UseDisp();
 LCDGoto(x, y);
 LCDWrite1(ASCII2LCD(c));
 UnuseDisp();
}

void DISPInit(void) {
 OS_CREATERSEMA(&RDisp);
}

54/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

6.1. OS_CREATERSEMA(): Create resource semaphore

Description
Macro that creates a resource semaphore.

Prototype
void OS_CREATERSEMA(OS_RSEMA* pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore.

Return value
Void

Add. information
After creation, the resource is not blocked; the value of the counter is 0.

User's & reference manual for embOS real time OS 55/160

 1996- 2004 Segger Microcontroller Systeme GmbH

6.2. OS_Use(): Use a resource

Description
Claims a resource and blocks it for other tasks.

Prototype
int OS_Use(OS_RSEMA* pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore.

Return value
The counter value of the semaphore.
A value larger than 1 means the resource was already locked by the calling
task.

Add. information
The following situations are possible:

• Case A: The resource is not in use.
If the resource is not used by a task, which means the counter of the
semaphore is 0, the resource will be blocked for other tasks by incre-
menting the counter and writing a unique code for the task that uses it
into the semaphore.

• Case B: The resource is used by this task.

The counter of the semaphore is simply incremented. The program con-
tinues without a break.

• Case C: The resource is being used by another task.

The execution of this task is suspended until the resource semaphore is
released. In the meantime if the task blocked by the resource sema-
phore has a higher priority than the task blocking the semaphore, the
blocking task is assigned the priority of the task requesting the resource
semaphore. This is called priority inversion. Priority inversion can only
temporarily increase the priority of a task, never reduce it.

An unlimited number of tasks can wait for a resource semaphore. According to
the rules of the scheduler, of all the tasks waiting for the resource, the task with
the highest priority will get access to the resource and can continue program
execution.

Important:

This function may not be called from within an interrupt handler.

56/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

The following diagram illustrates the function of the OS_Use() routine

Resource
 in use?

Wait for resource
to be released

Mark current task
as owner

Usage counter = 1

return

Increase Usage
counter

Yes, by
other task

Yes, by this task
No

OS_Use(...)

return

User's & reference manual for embOS real time OS 57/160

 1996- 2004 Segger Microcontroller Systeme GmbH

6.3. OS_Unuse(): Release a resource

Description
Releases a semaphore currently in use by a task.

Prototype
void OS_Unuse(OS_RSEMA * pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore.

Return value
Void.

Add, information
OS_Unuse() may be used on a resource semaphore only after that sema-
phore has been used by calling OS_Use() or OS_Request().
OS_Unuse() decrements the usage counter of the semaphore which may
never become negative. If this counter becomes negative, the debug version
will call the embOS error handler.

Important:

This function may not be called from within an interrupt handler.

58/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

6.4. OS_Request(): Request a resource

Description
Requests a specified semaphore, blocks it for other tasks if it is available. Con-
tinues execution in any case.

Prototype
char OS_Request(OS_RSEMA* pRSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore.

Return value
1: Resource was available, in use now by calling task
0: Resource was not available.

Add. Information
The following diagram illustrates how OS_Request() works:

OS_Request (RSEMA*ps)

return 0Resource in use by other task ?

In use by this task ?

Inc Usage counter

Mark current task
as owner

Usage counter = 1

return 1return 1

Yes

No

No

Yes

Example
if (!OS_Request(&RSEMA_LCD)) {
 LED_LCDBUSY = 1; /* indicate that task is waiting for */
 /* resource */
 OS_Use(&RSEMA_LCD); /* wait for resource */
 LED_LCDBUSY = 0; /* indicate task is no longer waiting */
}
 DispTime(); /* Access the resource LCD */
 OS_Unuse(&RSEMA_LCD); /* resource LCD is no longer needed */

User's & reference manual for embOS real time OS 59/160

 1996- 2004 Segger Microcontroller Systeme GmbH

6.5. OS_GetSemaValue(): Retrieve usage counter value

Description
Returns the value of the usage counter of a specified resource semaphore.

Prototype
int OS_GetSemaValue(OS_SEMA* pSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore.

Return value
The counter of the semaphore.
A value of 0 means the resource is available.

Add. information
None.

60/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

6.6. OS_GetResourceOwner(): Retrieve blocking task

Description
Returns a pointer to the task that is currently using (blocking) a resource.

Prototype
OS_TASK* OS_GetResourceOwner(OS_RSEMA* pSema);

Parameter Meaning
pRSema Pointer to the data structure for a resource semaphore.

Return value
Pointer to the task that is blocking the resource.
A value of 0 means the resource is available.

Add. information
None.

User's & reference manual for embOS real time OS 61/160

 1996- 2004 Segger Microcontroller Systeme GmbH

7. Counting Semaphores
Counting semaphores are counters that are managed by embOS. They are not
as widely used as resource semaphores, events or mailboxes, but they can be
very useful sometimes. They are used in situations where a task needs to wait
for something that can be signaled one or more times. The semaphores can be
accessed from any point, any task, or any interrupt in any way.

Example for use of counting semaphore
OS_STACKPTR int Stack0[96], Stack1[64]; /* stack-space */
OS_TASK TCB0, TCB1; /* Data-area for tasks (task-control-blocks) */
OS_CSEMA SEMALCD;

void Task0(void) {
Loop:
 Disp("Task0 will wait for task 1 to signal");
 OS_WaitCSema(&SEMALCD);
 Disp("Task1 has signaled !!");
 OS_Delay(100);
 goto Loop;
}

void Task1(void) {
Loop:
 OS_Delay(5000);
 OS_SignalCSema(&SEMALCD);
 goto Loop;
}

void InitTask(void) {
 OS_CREATECSEMA(&SEMALCD); /* Create Semaphore */
 OS_CREATETASK(&TCB0, NullTask0, 100, Stack0); /* Create Task0 */
 OS_CREATETASK(&TCB1, NullTask1, 50, Stack1); /* Create Task1 */
}

62/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

7.1. OS_CREATECSEMA(): Create counting semaphore

Description
Macro that creates a counting semaphore with an initial count value of zero.

Prototype
void OS_CREATECSEMA (OS_CSEMA* pCSema);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.

Return value
Void.

Add. information
In order to create a counting semaphore, a data structure of the type
OS_CSEMA needs to be defined in memory and initialized using
OS_CREATECSEMA().
The value of a semaphore after creation using this macro is always zero.
If for any reason you have to create a semaphore with an initial counting value
above zero, use the function OS_CreateCSema().

User's & reference manual for embOS real time OS 63/160

 1996- 2004 Segger Microcontroller Systeme GmbH

7.2. OS_CreateCSema(): Create counting semaphore

Description
Creates a counting semaphore with a specified initial count value.

Prototype
void OS_CreateCSema(OS_CSEMA* pCSema,
 unsigned char InitValue);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.

InitValue Initial count value of the semaphore:
0 <= InitValue <= 255.

Return value
Void.

Add. information
In order to create a counting semaphore, a data structure of the type
OS_CSEMA needs to be defined in memory and initialized using
OS_CreateCSema().
If the value of the semaphore after creation should be zero, the macro
OS_CREATECSEMA() should be used.

64/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

7.3. OS_SignalCSema(): Increment counter

Description
Increments the counter of a semaphore

Prototype
void OS_SignalCSema(OS_CSEMA * pCSema);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.

Return value
Void.

Add. information
OS_SignalCSema() signals an event to a semaphore by incrementing its
counter. If one or more tasks are waiting for an event to be signaled to this
semaphore, the task that has the highest priority will become the active task.
The counter can have a maximum value of 255. The application should make
sure that this limit will not be exceeded.

User's & reference manual for embOS real time OS 65/160

 1996- 2004 Segger Microcontroller Systeme GmbH

7.4. OS_WaitCSema(): Decrement counter

Description
Decrements the counter of a semaphore.

Prototype
void OS_WaitCSema(OS_CSEMA* pCSema);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.

Return value
Void.

Add. information
If the counter of the semaphore is not 0, the counter is decremented and
program execution continues.
If the counter is 0, WaitCSema() waits until the counter is incremented by
another task, a timer or an interrupt handler via a call to OS_SignalCSema().
The counter is then decremented and program execution continues.
An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program execution.

Important:

This function may not be called from within an interrupt handler.

66/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

7.5. OS_WaitCSemaTimed(): Decrement counter with timeout

Description
Decrements a semaphore counter if the semaphore is available within a
specified time.

Prototype
int OS_WaitCSemaTimed(OS_CSEMA* pCSema,
 int TimeOut);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.
TimeOut Maximum time until semaphore should be available

Return value
Integer value:
0: Failed, semaphore not available within timeout time
1: OK, semaphore was available and counter decremented.

Add. information
If the counter of the semaphore is not 0, the counter is decremented and
program execution continues.
If the counter is 0, WaitCSemaTimed() waits until the semaphore is signaled
by another task, a timer or an interrupt handler via a call to
OS_SignalCSema(). The counter is then decremented and program
execution continues.
If the semaphore was not signaled within the specified time, the program
execution continues but returns a value of 0.
An unlimited number of tasks can wait for a semaphore. According to the rules
of the scheduler, of all the tasks waiting for the semaphore, the task with the
highest priority will continue program execution.

Important:

This function may not be called from within an interrupt handler.

User's & reference manual for embOS real time OS 67/160

 1996- 2004 Segger Microcontroller Systeme GmbH

7.6. OS_GetCSemaValue(): Retrieve counter value

Description
Returns the counter value of a specified semaphore.

Prototype
int OS_GetCSemaValue(OS_SEMA* pCSema);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.

Return value
The counter value of the semaphore.

Add. information
None.

68/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

7.7. OS_DeleteCSema(): Delete a counting semaphore

Description
Deletes a specified semaphore. The memory of that semaphore may be reused
for other purposes.

Prototype
void OS_DeleteCSema(OS_CSEMA* pCSema);

Parameter Meaning
pCSema Pointer to a data structure of type OS_CSEMA.

Return value
Void.

Add. information
Before deleting a semaphore, make sure that no task is waiting for it and that
no task will signal that semaphore at a later point.
The debug version will reflect an error if a deleted semaphore is signaled.

User's & reference manual for embOS real time OS 69/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8. Mailboxes

8.1. Why mailboxes?

In the preceding chapters, task synchronization by the use of semaphores was
described. Unfortunately, semaphores cannot transfer data from one task to
another. If we needed to transfer data between tasks via a buffer for example,
we could use a resource semaphore every time we accessed the buffer. But
doing so would make the program less efficient. Another major disadvantage
would be that we could not access the buffer from an interrupt handler since the
interrupt handler is not allowed to wait for the resource semaphore.

One way out would be the usage of global variables. In this case we would
have to disable interrupts every time and in every place that we accessed these
variables. This is possible, but it is a path full of pitfalls. It is also not easy for a
task to wait for a character to be placed in a buffer without polling the global
variable that contains the number of characters in the buffer. Again, there is a
way out � the task could be notified by an event signaled to the task every time
a character is placed in the buffer.
Complicated, you think ?

That is why there is an easier way to do this with a real time OS:
The use of mailboxes.

8.2. Basics

A mailbox is a buffer that is managed by the real time operating system. The
buffer behaves like a normal buffer; you can put something (called a message)
in and retrieve it later. Mailboxes usually work as FIFO: first in, first out. So a
message that is put in first will usually be retrieved first. �Message� might sound
abstract, but very simply just means "item of data". It will become clearer in the
following typical applications explained in the following section.

The number of mailboxes is limited only by the amount of available memory.

Message size: 1 <= x <= 127 bytes.
Number of messages: 1 <= x <= 32767.

These limitations have been placed on mailboxes in order to guarantee efficient
coding and also to ensure efficient management. The limitations are normally
not a problem.

For handling messages larger than 127 bytes, you may use queues. For more
information, please refer to Chapter 9: �Queues�.

70/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

8.3. Typical applications

A keyboard buffer
In most programs, you use either a task, a software timer or an interrupt
handler to check the keyboard. When a key is detected as having been
pressed, that key is put into a mailbox that is used as a keyboard buffer. The
message is then retrieved by the task that handles keyboard input. The
message in this case is typically a single byte that holds the key code; the
message size is therefore 1 byte.

The advantage of a keyboard buffer is that management is very efficient; you
do not have to worry about it since it is reliable, proven code and you have a
type-ahead buffer at no extra cost. On top of that, a task can easily wait for a
key to be pressed without having to poll the buffer. It simply calls the
OS_GetMail() routine for that particular mailbox. The number of keys that can
be stored in the type-ahead buffer depends only on the size of the mailbox
buffer, which you define when creating the mailbox.

A buffer for serial I/O
In most cases, serial I/O is done with the help of interrupt handlers. The
communication to these interrupt handlers is very easy with mailboxes. Both
your task programs and your interrupt handlers store or retrieve data to/from
the same mailboxes. As with a keyboard buffer, the message size is 1
character.

For interrupt-driven sending, the task places the character(s) in the mailbox
using OS_PutMail() or OS_PutMailCond(); the interrupt handler that is
activated when a new character can be sent retrieves this character with
OS_GetMailCond().

For interrupt-driven receiving, the interrupt handler that is activated when a new
character is received puts it in the mailbox using OS_PutMailCond(); the task
receives it using OS_GetMail() or OS_GetMailCond().

A buffer for commands sent to a task
Assume you have one task controlling a motor as you might have in
applications that control a machine. A simple way to give commands to this task
for controlling the motor would be to define a structure for commands. The
message size would then be the size of this structure.

User's & reference manual for embOS real time OS 71/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8.4. OS_CREATEMB(): Create a mailbox

Description
Macro that creates a new mailbox.

Prototype
void OS_CREATEMB(OS_MAILBOX* pMB,
 unsigned char sizeofMsg,
 unsigned int maxnofMsg,
 void* pMsg);

Parameter Meaning

pMB Pointer to a data structure of type OS_MAILBOX reserved for
the management of the mailbox.

sizeofMsg Size of a message in bytes. (1 <= sizeofMsg <= 127)
MaxnofMsg Maximum no. of messages. (1 <= MaxnofMsg <= 65535)

pMsg
Pointer to a memory area used as buffer. The buffer has to be
big enough to hold the given number of messages of the speci-
fied size: sizeofMsg * maxnofMsg bytes.

Return value
Void.

Examples
Mailbox used as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void InitKeyMan(void) {
 /* create mailbox functioning as type ahead buffer */
 OS_CREATEMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

Mailbox used to transfer complex commands from one task to another:

/*
* example for mailbox used to transfer commands to a task
* that controls 2 motors
*/

typedef struct {
 char Cmd;
 int Speed[2];
 int Position[2];
} MOTORCMD ;

OS_MAILBOX MBMotor;

#define MOTORCMD_SIZE 4
char BufferMotor[sizeof(MOTORCMD)*MOTORCMD_SIZE];

void MOTOR_Init(void) {
 /* create mailbox that holds commands messages */
 OS_CREATEMB(&MBMotor, sizeof(MOTORCMD), MOTORCMD_SIZE, &BufferMotor);
}

72/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

8.5. Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and
transfer single-byte messages. This is the case, for example, with a mailbox
that takes the character received or sent via serial interface, or normally with a
mailbox used as keyboard buffer. In some of these cases, time is very critical,
especially if a lot of data is transferred in short periods of time.

In order to minimize the overhead caused by the mailbox management of
embOS, variations on some mailbox functions are available for single-byte
mailboxes. The general functions OS_PutMail(), OS_PutMailCond(),
OS_GetMail(), and OS_GetMailCond() can transfer messages of sizes
between 1 and 127 bytes each. Their single-byte equivalents OS_PutMail1(),
OS_PutMailCond1(), OS_GetMail1(), and OS_GetMailCond1() function
the same way with the exception that they execute much faster since
management is simpler. It is recommended to use the single-byte versions if
you transfer a lot of single byte-data via mailboxes.

The routines OS_PutMail1(), OS_PutMailCond1(), OS_GetMail1(), and
OS_GetMailCond1() function exactly the same way as their more universal
equivalents and are therefore not described separately. The only difference is
that they can only be used for single-byte mailboxes.

User's & reference manual for embOS real time OS 73/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8.6. OS_PutMail() / OS_PutMail1(): Store a message

Description
Stores a new message of a predefined size in a mailbox.

Prototype
void OS_PutMail (OS_MAILBOX * pMB, void* pMail);
void OS_PutMail1 (OS_MAILBOX * pMB, const char* pMail);

Parameter Meaning
pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Return value
Void.

Add. information
If the mailbox is full, the calling task is suspended.
Since this routine might require a suspension, it must not be called from an
interrupt routine. Use OS_PutMailCond()/OS_PutMailCond1() instead if
you have to store data in a mailbox from within an ISR.

Important:

This function may not be called from within an interrupt handler.

Example
Single-byte mailbox as keyboard buffer:

OS_MAILBOX MBKey;
char MBKeyBuffer[6];

void KEYMAN_StoreKey(char k) {
 OS_PutMail1(&MBKey, &k); /* store key, wait if no space in buffer */
}

void KEYMAN_Init(void) {
 /* create mailbox functioning as type ahead buffer */
 OS_CREATEMB(&MBKey, 1, sizeof(MBKeyBuffer), &MBKeyBuffer);
}

74/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

8.7. OS_PutMailCond() / OS_PutMailCond1(): Store a message if
possible

Description
Stores a new message of a predefined size in a mailbox, if the mailbox is able
to accept one more message.

Prototype
char OS_PutMailCond (OS_MAILBOX * pMB, void* pMail);
char OS_PutMailCond1 (OS_MAILBOX * pMB, const char* pMail);

Parameter Meaning
pMB Pointer to the mailbox.
pMail Pointer to the message to store.

Return value
0: Success; message stored.
1: Message could not be stored (mailbox is full).

Add. information
If the mailbox is full, the message is not stored.
This function never suspends the calling task. It may therefore be called from
an interrupt routine.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char KEYMAN_StoreCond(char k) {
 return OS_PutMailCond1(&MBKey, &k); /* store key if space in buffer */
}

This example can be used with the sample program shown earlier to create a
mailbox as keyboard buffer.

User's & reference manual for embOS real time OS 75/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8.8. OS_GetMail() / OS_GetMail1(): Retrieve a message

Description
Retrieves a new message of a predefined size from a mailbox.

Prototype
void OS_GetMail (OS_MAILBOX * pMB, void* pDest);
void OS_GetMail1(OS_MAILBOX * pMB, char* pDest);

Parameter Meaning
pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be stored
at. Make sure that it points to a valid memory area and that
there is sufficient space for an entire message. The message
size (in bytes) has been defined upon creation of the mailbox

Return value
Void.

Add. information
If the mailbox is empty, the task is suspended until the mailbox receives a new
message.
Since this routine might require a suspension, it may not be called from an
interrupt routine. Use OS_GetMailCond/OS_GetMailCond1 instead if you
have to retrieve data from a mailbox from within an ISR.

Important:

This function may not be called from within an interrupt handler.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

char WaitKey(void) {
 char c;
 OS_GetMail1(&MBKey, &c);
 return c;
}

76/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

8.9. OS_GetMailCond() / OS_GetMailCond1(): Retrieve a message
if possible

Description
Retrieves a new message of a predefined size from a mailbox, if a message is
available.

Prototype
char OS_GetMailCond (OS_MAILBOX * pMB, void* pDest);
char OS_GetMailCond1(OS_MAILBOX * pMB, char* pDest);

Parameter Meaning
pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area and
that there is sufficient space for an entire message. The mes-
sage size (in bytes) has been defined upon creation of the
mailbox

Retrun value
0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination

remains unchanged.

Add. information
If the mailbox is empty, no message is retrieved, but the program execution
continues.
This function never suspends the calling task. It may therefore also be called
from an interrupt routine.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {
 char c =0;
 OS_GetMailCond1(&MBKey, &c)
 return c;
}

User's & reference manual for embOS real time OS 77/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8.10. OS_GetMailTimed(): Retrieve a message within a given time

Description
Retrieves a new message of a predefined size from a mailbox, if a message is
available within a given time.

Prototype
char OS_GetMailTimed(OS_MAILBOX * pMB,
 void* pDest,
 int Timeout);

Parameter Meaning
pMB Pointer to the mailbox.

pDest

Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area and
that there is sufficient space for an entire message. The mes-
sage size (in bytes) has been defined upon creation of the
mailbox

Timeout Maximum time in timer ticks until the requested mail has to be
available.

Retrun value
0: Success; message retrieved.
1: Message could not be retrieved (mailbox is empty); destination

remains unchanged.

Add. information
If the mailbox is empty, no message is retrieved, the task is suspended for the
given timeout.
The task continues execution, according to the rules of the scheduler, as soon
as a mail is available within the given timeout, or after the timeout value has
expired.

Important:

This function may not be called from within an interrupt handler.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* If a key has been pressed, it is taken out of the mailbox and returned to
* caller.
* Otherwise, 0 is returned.
*/
char GetKey(void) {
 char c =0;
 OS_GetMailTimed(&MBKey, &c, 10) /* Wait for 10 timer ticks */
 return c;
}

78/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

8.11. OS_WaitMail(): Wait until a mail is available

Description
Waits until a mail is available, but does not retrieve the message from the
mailbox.

Prototype
void OS_WaitMail(OS_MAILBOX* pMB)

Parameter Meaning
pMB Pointer to the mailbox.

Return value
Void.

Add. information
If the mailbox is empty, the task is suspended until a mail is available, otherwise
the task continues.
The task continues execution, according to the rules of the scheduler, as soon
as a mail is available, but the mail is not retrieved from the mailbox.

Important:

This function may not be called from within an interrupt handler.

User's & reference manual for embOS real time OS 79/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8.12. OS_ClearMB(): Empty a mailbox

Description
Clears all messages in a specified mailbox.

Prototype
void OS_ClearMB(OS_MAILBOX * pMB);

Parameter Meaning
pMB Pointer to the mailbox.

Return value
Void.

Add. information
None.

Example
OS_MAILBOX MBKey;
char MBKeyBuffer[6];

/*
* Clear keyboard type ahead buffer
*/
void ClearKeyBuffer(void) {
 OS_ClearMB(&MBKey);
}

80/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

8.13. OS_GetMessageCnt(): Get number of messages in mailbox

Description
Returns number of messages currently in a specified mailbox.

Prototype
char OS_GetMessageCnt(OS_MAILBOX * pMB);

Parameter Meaning
pMB Pointer to the mailbox.

Return value
The number of messages in the mailbox.

Add. information
None.

Example
char GetKey(void) {
 if (OS_GetMessageCnt(&MBKey)) return WaitKey();
 return 0;
}

User's & reference manual for embOS real time OS 81/160

 1996- 2004 Segger Microcontroller Systeme GmbH

8.14. OS_DeleteMB(): Delete a mailbox

Description
Deletes a specified mailbox.

Prototype
void OS_DeleteMB(OS_MAILBOX * pMB);

Parameter Meaning
pMB Pointer to the mailbox.

Return value
Void.

Add. information
In order to keep the system fully dynamic, it is essential that mailboxes can be
created dynamically. This also means there has to be a way to delete a mailbox
when it is no longer needed. The memory that has been used by the mailbox
for the control structure and the buffer can then be reused or reallocated.
It is the programmer�s responsibility to:

• make sure that the program no longer uses the mailbox to be deleted
• make sure that the mailbox to be deleted actually exists (i.e. has been

created first).

Example
OS_MAILBOX MBSerIn;
char MBSerInBuffer[6];

void Cleanup(void) {
 OS_DeleteMB(MBSerIn);
 return 0;
}

82/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

9. Queues

9.1. Why queues?

In the preceding chapter, intertask communication using mailboxes was
described. Mailboxes can handle small messages with fixed data size only.
Queues enable intertask communication with larger messages or with
messages of various sizes.

9.2. Basics

A queue consists of a data buffer and a control structure that is managed by the
real time operating system. The queue behaves like a normal buffer; you can
put something (called a message) in and retrieve it later. Queues work as FIFO:
first in, first out. So a message that is put in first will be retrieved first.

There are three major differences between queues and mailboxes:

1. Queues accept messages of various size. When putting a message into
a queue, the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but
returns a pointer to the message and its size. This enhances
performance because the data is copied only once, when the message
is written into the queue.

3. The retrieving function has to delete every message after processing it.

Both the number and size of queues is limited only by the amount of available
memory.

Any data structure can be written into a queue. The message size is not fixed.

User's & reference manual for embOS real time OS 83/160

 1996- 2004 Segger Microcontroller Systeme GmbH

9.3. OS_Q_Create(): Create a message queue

Description
Creates and initializes a message queue.

Prototype
void OS_Q_Create(OS_Q* pQ,
 void*pData,
 OS_UINT Size);

Parameter Meaning

pQ Pointer to a data structure of type OS_Q reserved for the man-
agement of the message queue.

pData Pointer to a memory area used as data buffer for the queue.
Size Size of the data buffer in bytes.

Return value
Void.

Examples
Queue used to transfer data to memory:

#define MEMORY_QSIZE 10000;
static OS_Q _MemoryQ;
static char _acMemQBuffer[MEMORY_QSIZE];

void MEMORY_Init(void) {
 OS_Q_Create(&_MemoryQ, &_acMemQBuffer, sizeof(_acMemQBuffer));
}

84/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

9.4. OS_Q_Put(): Store message

Description
Stores a new message of given size in a queue.

Prototype
int OS_Q_Put(OS_Q* pQ, const void* pSrc, OS_UINT Size);

Parameter Meaning
pQ Pointer to the queue.
pSrc Pointer to the message to store
Size Size of the message to store

Return value
0: Success; message stored.
1: Message could not be stored (queue is full).

Add. information
If the queue is full, the function returns a value unequal to 0.
This routine never suspends the calling task. It may therefore also be called
from an interrupt routine.

Example
char MEMORY_Write(char* pData, int Len) {
 return OS_Q_Put(&_MemoryQ, pData, Len));
}

User's & reference manual for embOS real time OS 85/160

 1996- 2004 Segger Microcontroller Systeme GmbH

9.5. OS_Q_GetPtr(): Retrieve message

Description
Retrieves a message from a queue.

Prototype
int OS_Q_GetPtr(OS_Q* pQ, void**ppData);

Parameter Meaning
pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Return value
The message size of the retrieved message.
Sets the pointer to the message that should be retrieved.

Add. information
If the queue is empty, the calling task is suspended until the queue receives a
new message.
Since this routine might require a suspension, it must not be called from an
interrupt routine. Use OS_GetPtrCond() instead.
The retrieved message is not removed from the queue. This has to be done by
a call of OS_Q_Purge()after the message was processed.

Example
static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 }
}

86/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

9.6. OS_Q_GetPtrCond(): Retrieve message if possible

Description
Retrieves a message from a queue, if one message is available.

Prototype
int OS_Q_GetPtrCond(OS_Q* pQ, void**ppData);

Parameter Meaning
pQ Pointer to the queue.
ppData Address of pointer to the message to be retrieved from queue.

Return value
0: No message available in queue.
>0: Size of message that was retrieved from queue.

Add. information
If the queue is empty, the function returns 0. The value of ppData is undefined.
This function never suspends the calling task. It may therefore also be called
from an interrupt routine.
If a message could be retrieved, it is not removed from the queue. This has to
be done by a call of OS_Q_Purge()after the message was processed.

Example
static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtrCond(&_MemoryQ, &pData); /* Check message */
 if (Len > 0) {
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 } else {
 DoSomethingElse();
 }
 }
}

User's & reference manual for embOS real time OS 87/160

 1996- 2004 Segger Microcontroller Systeme GmbH

9.7. OS_Q_Purge(): Delete one message in queue

Description
Deletes the last retrieved message in a queue.

Prototype
void OS_Q_Purge(OS_Q* pQ);

Parameter Meaning
pQ Pointer to the queue.

Return value
Void.

Add. information
This routine should be called by the task that retrieved the last message from
the queue, after the message is processed.

Example
static void MemoryTask(void) {
 char MemoryEvent;
 int Len;
 char* pData;
 while (1) {
 Len = OS_Q_GetPtr(&_MemoryQ, &pData); /* Get message */
 Memory_WritePacket(*(U32*)pData, pData+4, Len); /* Process message */
 OS_Q_Purge(&_MemoryQ); /* Delete message */
 }
}

88/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

9.8. OS_Q_Clear(): Delete all messages in queue

Description
Deletes all message in a queue.

Prototype
void OS_Q_Clear(OS_Q* pQ);

Parameter Meaning
pQ Pointer to the queue.

Return value
Void.

Add. information
None.

User's & reference manual for embOS real time OS 89/160

 1996- 2004 Segger Microcontroller Systeme GmbH

9.9. OS_Q_GetMessageCnt(): Get number of messages in queue

Description
Returns the number of messages currently in a queue.

Prototype
int OS_Q_GetMessageCnt(OS_Q* pQ);

Parameter Meaning
pQ Pointer to the queue.

Return value
The number of messages in the queue.

Add. information
None.

90/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

10. Events
Events are another means of communication between tasks. In contrast to
semaphores and mailboxes, events are messages to a single, specified
recipient. In other words, an event is sent to a specified task.

The purpose of an event is to enable a task to wait for a particular event (or for
one of several events) to occur. This task can be kept inactive until the event is
signaled by another task, a S/W timer or an interrupt handler. The event can be
anything that the software is made aware of in any way. Examples include the
change of an input signal, the expiration of a timer, a key press, the reception of
a character or a complete command.

Every task has a 1-byte (8-bit) mask, which means that 8 different events can
be signaled to and distinguished by every task. By calling OS_WaitEvent(),
a task waits for one of the events specified as bitmask. As soon as one of the
events occurs, it has to be signaled to this task by calling OS_SignalEvent().
The waiting task will then be put in the READY state immediately. It will be acti-
vated according to the rules of the scheduler as soon as it becomes the task
with the highest priority of all the tasks in the READY state.

User's & reference manual for embOS real time OS 91/160

 1996- 2004 Segger Microcontroller Systeme GmbH

10.1. OS_WaitEvent(): Wait for event, then clear all events

Description
Waits for one of the events specified in the bitmask and clears the event
memory after an event occurs.

Prototype
char OS_WaitEvent(char EventMask);

Parameter Meaning
EventMask The events that the task will be waiting for.

Return value
All events that have actually occurred.

Add. information
If none of the specified events are signaled, the task is suspended. The first of
the specified events will wake the task. These events are signaled by another
task, a S/W timer or an interrupt handler.
Any bit in the 8-bit event mask may enable the according event.

Example
OS_WaitEvent(3); /* Wait for event 1 or 2 to be signaled */

For a further example, see OS_SignalEvent().

92/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

10.2. OS_WaitSingleEvent(): Wait for event, then clear masked
events only

Description
Waits for one of the events specified as bitmask and clears only that event after
it occurs.

Prototype
char OS_WaitSingleEvent(char EventMask);

Parameter Meaning
EventMask The events that the task will be waiting for.

Return value
All masked events that have actually occurred.

Add. information
If none of the specified events are signaled, the task is suspended. The first of
the specified events will wake the task. These events are signaled by another
task, a S/W timer or an interrupt handler.
Any bit in the 8-bit event mask may enable the according event.
All unmasked events remain unchanged.

Example
OS_WaitSingleEvent(3); /* Wait for event 1 or 2 to be signaled */

User's & reference manual for embOS real time OS 93/160

 1996- 2004 Segger Microcontroller Systeme GmbH

10.3. OS_WaitEventTimed():Wait for event with timeout

Description
Waits for the specified events for a given time, and clears the event memory
after an event occurs.

Prototype
char OS_WaitEventTimed(char EventMask, int TimeOut);

Parameter Meaning
EventMask The events that the task will be waiting for.

TimeOut Maximum time in timer ticks until the events have to be
signaled. (1 <= TimeOut <= 32767)

Return value
The events that have actually occurred within the specified time.
0 if no events were signaled in time.

Add. information
If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled
by another task, a S/W timer or an interrupt handler within the specified
TimeOut time.
If no event is signaled, the task is activated after the specified timeout and all
actual events are returned and then cleared.
Any bit in the 8-bit event mask may enable the according event.

Example
OS_WaitEventTimed(3, 10); /* Wait for event 1/2 to be signaled within 10 ms */

94/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

10.4. OS_WaitSingleEventTimed(): Wait for event, then clear
masked events, with timeout

Description
Waits for the specified events for a given time; after an event occurs, only that
event is cleared.

Prototype
char OS_WaitSingleEventTimed(char EventMask, int TimeOut);

Parameter Meaning
EventMask The events that the task will be waiting for.

TimeOut Maximum time in timer ticks until the events have to be
signaled. (1 <= TimeOut <= 32767)

Return value
The masked events that have actually occurred within the specified time.
0 if no masked events were signaled in time.

Add. information
If none of the specified events are available, the task is suspended for the given
time. The first of the specified events will wake the task if the event is signaled
by another task, a S/W timer or an interrupt handler within the specified
TimeOut time.
If no event is signaled, the task is activated after the specified timeout and the
function returns zero.
Any bit in the 8-bit event mask may enable the according event.
All unmasked events remain unchanged.

Example
OS_WaitSingleEventTimed(3, 10); /* Wait for event 1/2 to be signaled within 10
ms */

User's & reference manual for embOS real time OS 95/160

 1996- 2004 Segger Microcontroller Systeme GmbH

10.5. OS_SignalEvent(): Signal a task that an event has occured

Description
Signals event(s) to a specified task.

Prototype
void OS_SignalEvent(char Event, OS_TASK* pTask);

Parameter Meaning

Event

The event(s) to signal:
1 means event 1
2 means event 2
4 means event 3
...
128 means event 8.
Multiple events can be signaled as the sum of the single
events (e.g. 6 will signal events 2 & 3).

pTask Task that the events are sent to.

Return value
Void.

Add. information
If the specified task is waiting for one of these events, it will be put in the
READY state and activated according to the rules of the scheduler.

96/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Example
The task that handles the serial input and the keyboard waits for a character to
be received either via the keyboard (EVENT_KEYPRESSED) or serial interface
(EVENT_SERIN):

/*
* just a small demo for events
*/

#define EVENT_KEYPRESSED (1)
#define EVENT_SERIN (2)

OS_STACKPTR int Stack0[96], Stack1[64]; /* stack space */
OS_TASK TCB0, TCB1; /* Data area for tasks (task control blocks) */

void Task0(void) {
 OS_U8 MyEvent;
 while(1)
 MyEvent = OS_WaitEvent(EVENT_KEYPRESSED | EVENT_SERIN)
 if (MyEvent & EVENT_KEYPRESSED) {
 /* handle key press */
 }
 if (MyEvent & EVENT_SERIN) {
 /* handle serial reception */
 }
 }
}

void TimerKey(void) {
 /* more code to find out if key has been pressed */
 OS_SignalEvent(EVENT_SERIN, &TCB0); /* notify Task that key was pressed */
}

void InitTask(void) {
 OS_CREATETASK(&TCB0, 0, Task0, 100, Stack0); /* Create Task0 */
}

If the task were only waiting for a key to be pressed, OS_GetMail() could
simply be called. The task would then be deactivated until a key is pressed. If
the task has to handle multiple mailboxes, as in this case, events are a good
option.

User's & reference manual for embOS real time OS 97/160

 1996- 2004 Segger Microcontroller Systeme GmbH

10.6. OS_GetEventsOccured(): Get a list of events

Description
Returns a list of events that have occurred for a specified task.

Prototype
char OS_GetEventsOccured(OS_TASK* pTask);

Parameter Meaning

pTask The task who's event mask is to be returned,
NULL means current task.

Return value
The event mask of the events that have actually occurred.

Add. information
By calling this function, the actual events remain signaled. The event memory is
not cleared.
This is one way for a task to find out which events have been signaled. The
task is not suspended if no events are available.

98/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

10.7. OS_ClearEvents(): Clear list of events

Description
Returns the actual state of events and then clears the events of a specified
task.

Prototype
char OS_ClearEvents(OS_TASK* pTask);

Parameter Meaning

pTask The task who's events are to be returned and cleared,
NULL means current task.

Return value
The events that were actually signaled before clearing.

User's & reference manual for embOS real time OS 99/160

 1996- 2004 Segger Microcontroller Systeme GmbH

11. Heap type memory management
ANSI �C� offers some basic dynamic memory management functions. These
are malloc, free, and realloc.

Unfortunately, these routines are not thread-safe; they can only be used from
one task or by multiple tasks if they are called sequentially. Therefore, embOS
offers task-safe variants of these routines. These variants have the same
names as their ANSI counterparts, but are prefixed OS_; they are called
OS_malloc(), OS_free(), OS_realloc(). The thread-safe variants that embOS
offers use the standard ANSI routines, but make sure that the calls are
serialized using a resource semaphore.
If heap memory management is not supported by the standard C-libraries for a
specific CPU, embOS heap memory management is not implemented.
Heap type memory management is part of the embOS libraries. It does not use
any resources if it is not referenced by the application (i.e. if the application
does not use any memory management API function).

Note that another aspect of these routines may still be a problem: the memory
used for the functions (known as heap) may fragment. This can lead to a
situation where the total amount of memory is sufficient, but there is not enough
memory available in a single block to satisfy an allocation request.

11.1. API reference

API routine Short explanation
OS_malloc Allocates a block of memory on the heap.
OS_free Frees a block of memory previously allocated.
OS_realloc Changes allocation size.

100/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

12. Fixed block size memory pools
Fixed block memory pools contain a specific number of fixed-size blocks of
memory. The location in memory of the pool, the size of each block and the
number of blocks are set at run time by the application via a call to the create
function. The advantage of fixed memory pools is that a block of memory can
be allocated from within any task in a very short, determined period of time.

12.1. API reference

All API functions for fixed block size memory pools are prefixed OS_MEMF_.

API routine Short explanation
Create / Delete
OS_MEMF_Create Create fixed block memory pool.
OS_MEMF_Delete Delete fixed block memory pool.
Allocation

OS_MEMF_Alloc
Allocate memory block from a given mem-
ory pool. Wait indefinitely if no block is
available.

OS_MEMF_AllocTimed
Allocate memory block from a given mem-
ory pool. Wait no longer than given timeout
if no block is available.

OS_MEMF_Request Allocate block from a given memory pool, if
available. Non-blocking.

Release
OS_MEMF_Release Release memory block from a given mem-

ory pool.
OS_MEMF_FreeBlock Release memory block from any pool.
Info
OS_MEMF_GetNumFreeBlocks Returns the number of available blocks in a

pool.
OS_MEMF_IsInPool Returns !=0 if block is in memory pool.

OS_MEMF_GetMaxUsed Returns the maximum number of blocks in
a pool which have been used at a time.

OS_MEMF_GetNumBlocks Returns the number of blocks in a pool.
OS_MEMF_GetBlockSize Returns the size of one block of given pool.

12.2. OS_MEMF_Create(): Create a fixed size memory pool

Description
Creates and initializes a fixed block size memory pool.

Prototype
void OS_MEMF_Create(OS_MEMF* pMEMF,
 void* pPool,
 OS_U16 NumBlocks,
 OS_U16 BlockSize);

User's & reference manual for embOS real time OS 101/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

pPool

Pointer to memory to be used for the memory pool. Required
size is:
NumBlocks * (BlockSize +
OS_MEMF_SIZEOF_BLOCKCONTROL).

NumBlocks Number of blocks in the memory pool.
BlockSize Size of one block in bytes.

Return value
Void.

Add. information
OS_MEMF_SIZEOF_BLOCKCONTROL gives the number of bytes used for
control and debug purposes. It is guaranteed to be 0 in release or stack check
builds.
Before using any memory pool, it has to be created.
The debug version of libraries keeps track of created and deleted memory
pools. The release and stack check versions do not.

12.3. OS_MEMF_Delete(): Delete a fixed size memory pool

Description
Deletes a fixed block size memory pool. After deletion, the memory pool and
memory blocks inside this pool may no longer be used.

Prototype
void OS_MEMF_Delete(OS_MEMF* pMEMF);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value
Void.

Add. information
This routine is provided for completeness. It is not used in the majority of
applications because there is no need to dynamically create/delete memory
pools.
Most applications prefer to have a static memory pool design; memory pools
are created at startup (before calling OS_Start()) and will never be deleted.
The debug version of libraries mark the memory pool as deleted.

102/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

12.4. OS_MEMF_Alloc(): Retrieve one block from memory pool

Description
Requests allocation of a memory block.
Waits until a block of memory is available.

Prototype
void* OS_MEMF_Alloc(OS_MEMF* pMEMF, int Purpose);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.
Purpose This is a parameter which is used for debugging only. Its value

has no effect on program execution, but may be remembered in
debug builds to allow run time analysis of memory allocation
problems.

Return value
Pointer to the allocated block.

Add. Information
If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available.
The retrieved pointer must be delivered to OS_MEMF_Release() as parameter
to free the memory block. The pointer must not be modified.

12.5. OS_MEMF_AllocTimed(): Retrieve block with timeout

Description
Requests allocation of a memory block.
Waits until a block of memory is available or the timeout has expired.

Prototype
void* OS_MEMF_AllocTimed(OS_MEMF* pMEMF,
 int Timeout,
 int Purpose);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.
Timeout Timeout, given in ticks. 0 or negative values are permitted.
Purpose This is a parameter which is used for debugging only. Its value

has no effect on program execution, but may be remembered in
debug builds to allow run time analysis of memory allocation
problems.

Return value
!=NULL pointer to the allocated block
NULL if no block has been allocated.

Add. Information

User's & reference manual for embOS real time OS 103/160

 1996- 2004 Segger Microcontroller Systeme GmbH

If there is no free memory block in the pool, the calling task is suspended until a
memory block becomes available or the timeout has expired.
The retrieved pointer must be delivered to OS_MEMF_Release() as parameter
to free the memory block. The pointer must not be modified.

12.6. OS_MEMF_Request(): Retrieve memory block if available

Description
Requests allocation of a memory block.
Continues execution in any case.

Prototype
void* OS_MEMF_Request(OS_MEMF* pMEMF, int Purpose);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Purpose

This is a parameter which is used for debugging only. Its value
has no effect on program execution, but may be remembered in
debug builds to allow run time analysis of memory allocation
problems.

Return value
!=NULL pointer to the allocated block
NULL if no block has been allocated.

Add. Information
The calling task is never suspended by calling OS_MEMF_Request().
The retrieved pointer must be delivered to OS_MEMF_Release() as parameter
to free the memory block. The pointer must not be modified.

12.7. OS_MEMF_Release(): Free a memory block in pool

Description
Releases a memory block that was previously allocated.

Prototype
void OS_MEMF_Release(OS_MEMF* pMEMF, void* pMemBlock);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to the memory block to free.

Return value
Void.

Add. Information
The pMemblock pointer has to be the one that was delivered form any retrival
function described above. The pointer must not be modified between allocation
and release.
The memory block becomes available for other tasks waiting for a memory
block from the pool.

104/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

If any task is waiting for a fixed memory block, it is activated according to the
rules of the scheduler.

12.8. OS_MEMF_FreeBlock(): Free a memory block

Description
Releases a memory block that was previously allocated. The memory pool
does not need to be denoted.

Prototype
void OS_MEMF_FreeBlock(void* pMemBlock);

Parameter Meaning
pMemBlock Pointer to the memory block to free.

Return value
Void.

Add. Information
The pMemblock pointer has to be the one that was delivered form any retrieval
function described above. The pointer must not be modified between allocation
and release.
This function may be used instead of OS_MEMF_Release(). It has the
advantage that only one parameter is needed. embOS itself will find the
associated memory pool.
The memory block becomes available for other tasks waiting for a memory
block from the pool.
If any task is waiting for a fixed memory block, it is activated according to the
rules of the scheduler.

12.9. OS_MEMF_GetNumBlocks(): Returns number of blocks in
pool

Description
Info routine to examine the total number of all memory blocks in the pool.

Prototype
int OS_MEMF_GetNumFreeBlocks(OS_MEMF* pMEMF);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value
returns the number of blocks in the specified memory pool. This is the value
that was given as parameter during creation of the memory pool.

User's & reference manual for embOS real time OS 105/160

 1996- 2004 Segger Microcontroller Systeme GmbH

12.10. OS_MEMF_GetBlockSize(): Returns size of one memory
block

Description
Info routine to examine the size of one memory block in the pool.

Prototype
int OS_MEMF_GetBlockSize(OS_MEMF* pMEMF);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value
returns the size in bytes of one memory block in the specified memory pool.
This is the value that was given as parameter during creation of the memory
pool.

12.11. OS_MEMF_GetNumFreeBlocks(): Returns number of free
blocks in pool

Description
Info routine to examine the number of free memory blocks in the pool.

Prototype
int OS_MEMF_GetNumFreeBlocks(OS_MEMF* pMEMF);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value
The number of free blocks actually available in the specified memory pool.

12.12. OS_MEMF_GetMaxUsed(): Returns max. number of used
blocks in pool

Description
Info routine to examine the amount of memory blocks in the pool that were
used concurrently since creation of the pool.

Prototype
int OS_MEMF_GetMaxUsed(OS_MEMF* pMEMF);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.

Return value

106/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

returns the maximum number of blocks in the specified memory pool that were
used concurrently since creation of the pool.

12.13. OS_MEMF_IsInPool(): Check if block belongs to pool

Description
Info routine to examine whether a memory block reference pointer belongs to
the specified memory pool.

Prototype
char OS_MEMF_IsInPool(OS_MEMF* pMEMF, void* pMemBlock);

Parameter Meaning
pMEMF Pointer to the control data structure of memory pool.
pMemBlock Pointer to a memory block which should be checked

Return value
0: Pointer does not belong to memory pool.
1: Pointer belongs to the pool.

User's & reference manual for embOS real time OS 107/160

 1996- 2004 Segger Microcontroller Systeme GmbH

13. Stacks
The stack is the memory area used to store the return address of function calls,
parameters, and local variables, as well as for temporary storage. Interrupt
routines also use the stack to save the return address and flag register, except
in cases where the CPU has a separate stack for interrupt functions. Take a
look at the CPU & Compiler Specifics manual of embOS documentation for
details on your processor�s stack. A "normal" single-task program needs exactly
one stack. In a multitasking system, every task has to have its own stack.

The stack needs to have a minimum size which is determined by the sum of the
stack usage of the routines in the worst-case nesting. If the stack is too small, a
section of the memory that is not reserved for the stack will be overwritten, and
a serious program failure is most likely to occur. embOS monitors the stack
size (and, if available, also interrupt stack size in the debug version), calling the
failure routine OS_Error() if it detects a stack overflow. However, embOS
cannot reliably detect a stack overflow.

A stack that has been defined larger than necessary does not hurt; it is only a
waist of memory. The debug and stack check builds of embOS fill the stack
with control characters when it is created and check these characters every
time the task is deactivated in order to detect a stack overflow. If an overflow is
detected, OS_Error() will be called.

108/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

13.1. System stack

Before embOS takes over control (before call to OS_Start()), a program
does use the so-called system stack. This is the same stack that a non-
embOS program for this CPU would use. After transferring control to the
embOS scheduler by calling OS_Start(), system stack is used only when no
task is executed for the following:

• embOS scheduler
• embOS software timers (and the callback)

For details regarding required size of your system stack, please refer to the
CPU & Compiler Specifics manual of embOS documentation.

13.2. Task stack

Each embOS task has a separate stack. The location and size of this stack is
defined when creating the task. The minimum size of a task stack pretty much
depends on the CPU and compiler. For details, please see the CPU & Compiler
Specifics manual of embOS documentation.

13.3. Interrupt stack

To reduce stack size in a multitasking environment, some processors use a
specific stack area for interrupt service routines (called a hardware interrupt
stack). If there is no interrupt stack, you will have to add stack requirements of
your interrupt service routines to each task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may
support a separate stack for interrupts by calling the function
OS_EnterIntStack() at beginning of an interrupt service routine and
OS_LeaveIntStack() at its very end. In case the CPU already supports
hardware interrupt stacks or if a separate interrupt stack is not supported at all,
these function calls are implemented as empty macros.

We recommend using OS_EnterIntStack() and OS_LeaveIntStack()
even if there is currently no additional benefit for your specific CPU, because
code that uses them might reduce stack size on another CPU or a new version
of embOS with support for an interrupt stack for your CPU. For details about in-
terrupt stacks, please see the CPU & Compiler Specifics manual of embOS
documentation.

User's & reference manual for embOS real time OS 109/160

 1996- 2004 Segger Microcontroller Systeme GmbH

13.4. OS_GetStackSpace()

Description
Returns the unused portion of a task stack.

Prototype
int OS_GetStackSpace(OS_TCB* pTask);

Parameter Meaning

pTask The task who's stack space is to be checked.
NULL means current task.

Return value
The unused portion of the task stack in bytes.

Add. information
In most cases, the stack size required by a task cannot be easily calculated,
since it takes quite some time to calculate the worst-case nesting and the
calculation itself is difficult.
However, the required stack size can be figured out using the function
OS_GetStackSpace(), which returns the number of unused bytes on the
stack. If there is a lot of space left, you can reduce the size of this stack and
vice versa.
This function is only available in the debug and stack check builds of
embOS , since only these builds initialize the stack space used for the
tasks.

Important

This routine does not reliably detect the amount of stack space left,
because it can only detect modified bytes on the stack. Unfortunately,
space used for register storage or local variables is not always modified.
In most cases, this routine will detect the correct amount of stack bytes,
but in case of doubt, be generous with your stack space or use other
means to verify that the allocated stack space is sufficient.

Example
void CheckSpace(void) {
 printf("Unused Stack[0] %d", OS_GetStackSpace(&TCB[0]);
 OS_Delay(1000);
 printf("Unused Stack[1] %d", OS_GetStackSpace(&TCB[1]);
 OS_Delay(1000);
}

110/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

14. Interrupts
In this chapter, you will find a very basic description about using interrupt
service routines (ISRs) in cooperation with embOS. Specific details for your
CPU and compiler may be found in the CPU & Compiler Specifics manual of
embOS documentation.

Interrupts are interruptions of a program caused by hardware. When an
interrupt occurs, the CPU saves its registers and executes a subroutine called
an interrupt service routine, or ISR. After the ISR is completed, the program
returns to the highest-priority task in the READY state. Normal interrupts are
maskable; they can occur at any time unless they are disabled with the CPU's
�disable interrupt� instruction. ISRs are also nestable � they can be recognized
and executed within other ISRs.

There are several good reasons for using interrupt routines. They can respond
very quickly to external events such as the status change on an input, the expi-
ration of a hardware timer, reception or completion of transmission of a charac-
ter via serial interface, or other events. Interrupts effectively allow events to be
processed as they occur.

User's & reference manual for embOS real time OS 111/160

 1996- 2004 Segger Microcontroller Systeme GmbH

14.1. Rules for interrupt handlers

14.1.1. General rules
There are some general rules for interrupt handlers. These rules apply to both
single-task programming as well as to multitask programming using embOS.

• Interrupt handlers preserve all registers.

Interrupt handlers must restore the environment of a task completely. This
environment normally consists of the registers only, so the ISR has to make
sure that all registers modified during interrupt execution are saved at the
beginning and restored at the end of the interrupt routine.

• Interrupt handlers have to be finished quickly.

Calculations of intensive parts of the program should be kept out of interrupt
handlers. An interrupt handler should only be used to store a received value
or to trigger an operation in the regular program (task). It should not wait in
any form or perform a polling operation.

14.1.2. Additional rules for preemptive multitasking
A preemptive multitasking system like embOS needs to know if the program
that is executing is part of the current task or an interrupt handler. This is
because embOS cannot perform a task switch during the execution of an
interrupt handler; it can only do so at the end of an interrupt handler.

If a task switch were to occur during the execution of an ISR, the ISR would
continue as soon as the interrupted task became the current task again. This is
not a problem for interrupt handlers that do not allow further interruptions
(which do not enable interrupts) and that do not call any embOS functions.

This leads us to the following rule:

• Interrupt functions that re-enable interrupts or use any embOS function need

to call OS_EnterInterrupt() at the beginning, before executing any other
command and, before they return, call either OS_LeaveInterrupt() or
OS_LeaveInterruptNoSwitch() as last command.

If a higher priority task is made ready by the ISR, the task switch then occurs in
the routine OS_LeaveInterrupt(). The end of the ISR is executed at a later
point, when the interrupted task is made ready again. If you debug an interrupt
routine, do not be confused. This has proven to be the most efficient way of
initiating a task switch from within an interrupt service routine.

If fast task-activation at the end of an interrupt service routine is not required,
OS_LeaveInterruptNoSwitch() can be used instead.

112/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

14.2. Calling embOS routines from within an ISR

Before calling any embOS function from within an ISR, embOS has to be in-
formed that an interrupt service routine is running.

14.2.1. OS_EnterInterrupt()

Description

Informs embOS that interrupt code is executing.

Prototype
void OS_EnterInterrupt(void);

Return value
Void.

Add. information
If OS_EnterInterrupt() is used, it should be the first function to be called in
the interrupt handler. It must be used with either OS_LeaveInterrupt() or
OS_LeaveInterruptNoSwitch() as the last function called.
The use of this function has the following effects:
disables task switches
keeps interrupts in internal routines disabled

14.2.2. OS_LeaveInterrupt(),

Description

Informs embOS that the end of the interrupt routine has been reached;
executes task switching within ISR.

Prototype
void OS_LeaveInterrupt(void);

Return value
Void.

Add. information
If OS_LeaveInterrupt() is used, it should be the last function to be called in
the interrupt handler.
If the interrupt has caused a task switch, it is executed now (unless the program
which was interrupted was in a critical region).

User's & reference manual for embOS real time OS 113/160

 1996- 2004 Segger Microcontroller Systeme GmbH

14.2.3. OS_LeaveInterruptNoSwitch(),

Description

Informs embOS that the end of the interrupt routine has been reached but
does not execute task switching within ISR.

Prototype
void OS_LeaveInterruptNoSwitch(void);

Return value
Void.

Add. information
If OS_LeaveInterruptNoSwitch() is used, it should be the last function to
be called in the interrupt handler. If the interrupt has caused a task switch, it is
not executed from within the ISR, but at the next possible occasion. This will be
the next call of an embOS function or the scheduler interrupt if the program is
not in a critical region.

14.2.4. Example
Interrupt routine using OS_EnterInterrupt()/OS_LeaveInterrupt():

__interrupt void ISR_Timer(void) {
 OS_EnterInterrupt();
 OS_SignalEvent(1,&Task); /* any functionality could be here */
 OS_LeaveInterrupt();
}

114/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

14.3. Enabling / disabling interrupts from "C"

During the execution of a task, maskable interrupts are normally enabled. In
certain sections of the program, however, it can be necessary to disable
interrupts for short periods of time to make a section of the program an atomic
operation that cannot be interrupted. An example would be the access to a
global volatile variable of type long on an 8/16-bit CPU. In order to make sure
that the value does not change between the two or more accesses that are
needed, the interrupts have to be temporarily disabled:

Bad example
volatile long lvar;

void routine (void) {
 lvar ++;
}

The problem with disabling and re-enabling interrupts is that functions that
disable/enable the interrupt cannot be nested.

Your �C� compiler offers two intrinsic functions for enabling and disabling
interrupts. These functions can still be used, but it is recommended to use the
functions that embOS offers (to be precise, they only look like functions, but
are macros in reality). If you do not use these recommended embOS functions,
you may run into a problem if routines which require a portion of the code to run
with disabled interrupts are nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible.
Also, you should not call routines when interrupts are disabled, because this
could lead to long interrupt latency times (the longer interrupts are disabled, the
higher the interrupt latency). As long as you only call embOS functions with
interrupts enabled, you may also safely use the compiler-provided intrinsics to
disable interrupts.

14.3.1. OS_IncDI() / OS_DecRI()
The following functions are actually macros defined in RTOS.h, so they execute
very quickly and are very efficient. It is important that they are used as a pair:
OS_IncDI() first, then OS_DecRI().

OS_IncDI()

Short for Increment and Disable Interrupts
Increments the interrupt disable counter (OS_DICnt) and disables interrupts.

OS_DecRI()

Short for Decrement and Restore Interrupts
Decrements the counter and enables interrupts if the counter reaches 0.

Example
volatile long lvar;

void routine (void) {
 OS_IncDI();
 lvar ++;
 OS_DecRI();
}

User's & reference manual for embOS real time OS 115/160

 1996- 2004 Segger Microcontroller Systeme GmbH

OS_IncDI() increments the interrupt disable counter which is used for the en-
tire OS and is therefore consistent with the rest of the program in that any
routine can be called and the interrupts will not be switched on before the
matching OS_DecRI() has been executed.

If you need to disable interrupts for a short moment only where no routine is
called, as in the example above, you could also use the pair OS_DI() and
OS_RestoreI(). These are a bit more efficient because the interrupt disable
counter OS_DICnt is not modified twice, but only checked once. They have the
disadvantage that they do not work with routines because the status of
OS_DICnt is not actually changed, and they should therefore be used with
great care. In case of doubt, use OS_IncDI() and OS_DecRI().

14.3.2. OS_DI() / OS_EI() / OS_RestoreI()

OS_DI()

Short for Disable Interrupts
Disables interrupts. Does not change the interrupt disable counter.

OS_EI()

Short for Enable Interrupts
Please refrain from using this function directly unless you are sure that the
interrupt enable count has the value zero, because it does not take the interrupt
disable counter into account.

OS_RestoreI()

Short for Restore Interrupts
Restores the status of the interrupt flag, based on the interrupt disable counter.

Example
volatile long lvar;

void routine (void) {
 OS_DI();
 lvar ++;
 OS_RestoreI();
}

14.4. Definitions of interrupt control macros (in RTOS.h)
#define OS_IncDI() { OS_ASSERT_DICnt(); OS_DI(); OS_DICnt++; }
#define OS_DecRI() { OS_ASSERT_DICnt(); if (--OS_DICnt==0) OS_EI(); }
#define OS_RestoreI() { OS_ASSERT_DICnt(); if (OS_DICnt==0) OS_EI(); }

116/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

14.5. Nesting interrupt routines

Per default, interrupts are disabled in an ISR because the CPU disables
interrupts with the execution of the interrupt handler. Re-enabling interrupts in
an interrupt handler allows the execution of further interrupts with equal or
higher priority than that of the current interrupt. These are known as nested
interrupts, illustrated in the diagram below:

Time

Task ISR 1 ISR 3ISR 2

Interrupt 1

Interrupt 2

Interrupt 3

For applications requiring short interrupt latency, you may re-enable interrupts
inside an ISR by using OS_EnterNestableInterrupt() and
OS_LeaveNestableInterrupt() within the interrupt handler.

Nested interrupts can lead to problems that are difficult to track; therefore it is
not really recommended to enable the execution of interrupts form within an
interrupt handler. As it is important that embOS keeps track of the status of
the interrupt enable/disable flag, the enabling and disabling of interrupts from
within an ISR has to be done using the functions that embOS offers for this
purpose.

The routine OS_EnterNestableInterrupt() enables interrupts within an
ISR and prevents further task switches; OS_LeaveNestableInterrupt()
disables interrupts right before ending the interrupt routine again in order to re-
store the default condition. Re-enabling interrupts will make it possible for an
embOS scheduler interrupt to shortly interrupt this ISR. In this case, embOS
needs to know that an other ISR is still active and that it may not perform a task
switch.

User's & reference manual for embOS real time OS 117/160

 1996- 2004 Segger Microcontroller Systeme GmbH

14.5.1. OS_EnterNestableInterrupt()

Description

Re-enables interrupts and increments the embOS internal critical region
counter, thus disabling further task switches.

Prototype
void OS_EnterNestableInterrupt(void);

Return value
Void.

Add. information
This function should be the first call inside an interrupt handler when nested
interrupts are required.
The function OS_EnterNestableInterrupt() is implemented as a macro
and offers the same functionality as OS_EnterInterrupt() in combination
with OS_DecRI(), but is more efficient, resulting in smaller and faster code.

Example
Refer to the example for OS_LeaveNestableInterrupt().

14.5.2. OS_LeaveNestableInterrupt()

Description

Disables further interrupts, then decrements the embOS internal critical region
count, thus re-enabling task switches if the counter has reached zero again.

Prototype
void OS_LeaveNestableInterrupt(void);

Return value
Void.

Add. information
This function is the counterpart of OS_EnterNestableInterrupt(), and
has to be the last function call inside an interrupt handler when nested
interrupts have been enabled before with OS_EnterNestableInterrupt().
The function OS_LeaveNestableInterrupt() is implemented as a macro
and offers the same functionality as OS_LeaveInterrupt()in combination
with OS_IncDI(), but is more efficient, resulting in smaller and faster code.

14.5.3. OS_LeaveNestableInterruptNoSwitch()

Description

Disables further interrupts, informs embOS that the end of ISR is reached, but
does not perform a task switch.

Prototype
void OS_LeaveNestableInterruptNoSwitch(void);

118/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Return value
Void.

Add. information
If OS_LeaveNestableInterruptNoSwitch() is used, it should be the last
function to be called in the interrupt handler. If the interrupt has caused a task
switch, it is not executed from within the ISR, but at the next possible occasion.
This will be the next call of an embOS function or the scheduler interrupt if the
program is not in a critical region.

Example of nestable interrupt handler
 __interrupt void ISR_Timer(void) {
 OS_EnterNestableInterrupt(); /* Enable interrupts, but disable task switch*/
 /*
 * any code legal for interrupt-routines can be placed here
 */
 IntHandler();
 OS_LeaveNestableInterrupt(); /* Disable interrupts, allow task switch */
}

User's & reference manual for embOS real time OS 119/160

 1996- 2004 Segger Microcontroller Systeme GmbH

14.6. Non-maskable interrupts (NMIs)

embOS performs atomic operations by disabling interrupts. However, a non-
maskable interrupt (NIM) cannot be disabled, meaning it can interrupt these
atomic operations. Therefore, NMIs should be used with great care and may
under no circumstances call any embOS routines.

120/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

15. Critical regions
Critical regions are program sections during which the scheduler is switched off,
meaning that no task switch and no execution of software timers are allowed
except in situations where the active task has to wait. Effectively, preemptions
are switched off.

A typical example for a critical region would be the execution of a program
section that handles a time-critical hardware access (e.g. writing multiple bytes
into a EEPROM where the bytes have to be written in a certain amount of time),
or a section that writes data into global variables used by a different task and
therefore needs to make sure the data is consistent.

A critical region can be defined anywhere during the execution of a task. Critical
regions can be nested; the scheduler will be switched on again after the
outermost loop is left. Interrupts are still legal in a critical region. Software
timers and interrupts are executed as critical regions anyhow, so it does not
hurt but does not do any good either to declare them as such. If a task switch
becomes due during the execution of a critical region, it will be performed right
after the region is left.

User's & reference manual for embOS real time OS 121/160

 1996- 2004 Segger Microcontroller Systeme GmbH

15.1. OS_EnterRegion(): Enter critical region

Description
Indicates to the OS the beginning of a critical region.

Prototype
void OS_EnterRegion(void);

Return value
Void.

Add. information
OS_EnterRegion() is not actually a function but a macro. However, it
behaves very much like a function with the difference that it is much more
efficient.
Usage of the macro indicates to embOS the beginning of a critical region. A
critical region counter (OS_RegionCnt), which is 0 by default, is incremented so
that the routine can be nested.
The counter will be decremented by a call to the routine OS_LeaveRegion().
If this counter reaches 0 again, the critical region ends.
Interrupts are not disabled using OS_EnterRegion(); however, disabling
interrupts will disable preemptive task switches.

Example
void SubRoutine(void) {
 OS_EnterRegion();
 /* this code will not be interrupted by the OS */
 OS_LeaveRegion();
}

122/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

15.2. OS_LeaveRegion(): Leave critical region

Description
Indicates to the OS the end of a critical region.

Prototype:
void OS_LeaveRegion(void);

Return value
Void.

Add. information
OS_LeaveRegion() is not actually a function but a macro. However, it
behaves very much like a function with the difference that it is much more
efficient.
Usage of the macro indicates to embOS the end of a critical region. A critical
region counter (OS_RegionCnt), which is 0 by default, is decremented.
If this counter reaches 0 again, the critical region ends.

Example
Refer to the example for OS_EnterRegion().

User's & reference manual for embOS real time OS 123/160

 1996- 2004 Segger Microcontroller Systeme GmbH

16. System variables

The system variables are described here for a deeper understanding of how the
OS works and to make debugging easier.
Please, do not change the value of any system variables.

These variables are accessible and are not declared constant, but they should
only be altered by functions of embOS. However, some of these variables can
be very useful, especially the time variables.

16.1. Time Variables

16.1.1. OS_Time

Description
This is the time variable which contains the current system time in ticks (usually
equivalent to ms).

Prototype
extern volatile OS_U32 OS_Time;

Add. information
The time variable has a resolution of one time unit, which is normally 1/1000
sec (1 ms) and is normally the time between two successive calls to the
embOS interrupt handler.
Instead of accessing this variable directly, you should do so by using
OS_GetTime() or OS_GetTime32() as explained in Chapter 16: �Time-
related routines�.

16.1.2. OS_TimeDex

Basically for internal use only. Contains the time at which the next task switch
or timer activation is due. If ((int)(OS_Time - OS_TimeDex)) >=0, the task list
and timer list will be checked for a task or timer to activate. After activation,
OS_TimeDex will be assigned the time stamp of the next task or timer to be ac-
tivated.

16.2. OS internal variables and data-structures

embOS internal variables are not explained here as they are in no way
required to use embOS. Your application should not rely on any of the internal
variables, as only the documented API functions are guaranteed to remain
unchanged in future versions of embOS.

Important

Do not alter any system variables.

124/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

17. Configuration for your target system (RTOSINIT.c)
You do not have to configure anything in order to get started with embOS. The
start project supplied will execute on your system. Small changes in the con-
figuration will be necessary at a later point for system frequency or for the
UART used for communication with the optional embOSView.

The file RTOSInit.c is provided in source code form and can be modified in
order to match your target hardware needs. It is compiled and linked with your
application program.

17.1. Hardware-specific routines

Routine Explanation

OS_InitHW()

Initializes the hardware timer used for
generating interrupts.
embOS needs a timer-interrupt to determine
when to activate tasks that wait for the
expiration of a delay, when to call a software
timer, and to keep the time variable up-to-date.

OS_Idle()
The idle loop is always executed whenever no
other task (and no interrupt service routine) is
ready for execution.

OS_GetTime_Cycles()
Reads the timestamp in cycles. Cycle length
depends on the system. This function is used
for system information sent to embOSView.

OS_ConvertCycles2us() Converts cycles into us (used with profiling
only).

OS_COM_Init() Initializes communication for embOSView
(used with embOSView only).

OS_ISR_Tick()
The embOS timer-interrupt handler. When
using a different timer, always check the
specified interrupt vector.

OS_ISR_rx() Rx Interrupt service handler for embOSView
(used with embOSView only).

OS_ISR_tx() Tx Interrupt service handler for embOSView
(used with embOSView only).

OS_COM_Send1()
Send 1 byte via UART (used with embOSView
only). DO NOT call this function from your
application.

17.2. Configuration defines

For most embedded systems, configuration is done by simply modifying the
following defines, located at the top of the RTOSInit.c file:

User's & reference manual for embOS real time OS 125/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Define Explanation

OS_FSYS System frequency (in Hz).
Example: 20000000 for 20MHz.

OS_UART Selection of UART to be used for embOSView
(-1 will disable communication),

OS_BAUDRATE Selection of baudrate for communication with embOSView.

17.3. How to change settings

The only file which you may need to change is RTOSInit.c. This file contains
all hardware-specific routines. The one exception is that some ports of embOS
require an additional interrupt vector table file (details can be found in the CPU
& Compiler Specifics manual of embOS documentation).

17.3.1. Setting the system frequency OS_FSYS

Relevant defines
OS_FSYS

Relevant routines
OS_ConvertCycles2us() (used with profiling only)

For most systems it should be sufficient to change the OS_FSYS define at the
top of RTOSInit.c. When using profiling, certain values may require a change
in OS_ConvertCycles2us(). The RTOSInit.c file contains more informa-
tion about in which cases this is necessary and what needs to be done.

17.3.2. Using a different timer to generate the tick-interrupts for embOS

Relevant routines
OS_ InitHW()

embOS usually generates 1 interrupt per ms, making the timer-interrupt, or
tick, normally equal to 1 ms. This is done by a timer initialized in the routine
OS_InitHW(). If you have to use a different timer for your application, you
must modify OS_InitHW() to initialize the appropriate timer. For details about
initialization, please read the comments in RTOSInit.c.

17.3.3. Using a different UART or baudrate for embOSView

Relevant defines
OS_UART
OS_BAUDRATE

Relevant routines:
OS_COM_Init()
OS_COM_Send1()
OS_ISR_rx()
OS_ISR_tx()

In some cases, this is done by simply changing the define OS_UART. Please
refer to the contents of the RTOSInit.c file for more information on which
UARTS are supported for your CPU.

126/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

17.3.4. Changing the tick frequency

Relevant defines
OS_FSYS

As noted above, embOS usually generates 1 interrupt per ms. OS_FSYS
defines the clock frequency of your system in Hz (times per second). The value
of OS_FSYS is taken to calculate the desired reload counter value for the
system timer for 1000 interrupts/sec. The interrupt frequency is therefore
normally 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt
frequency different from 1 kHz, the value of the time variable OS_Time will no
longer be equivalent to multiples of 1 ms. However, if you use a multiple of 1
ms as tick time, the basic time unit can be made 1 ms by using the (optional)
configuration macro OS_CONFIG() (see below). The basic time unit does not
have to be 1 ms; it might just as well be 100 us or 10 ms or any other value. For
most applications, 1 ms is a convenient value.

17.4. OS_CONFIG()

OS_CONFIG() can be used to configure embOS in situations where the basic
timer-interrupt interval (tick) is a multiple of 1 ms and the time values for delays
still should use 1 ms as the time base. OS_CONFIG() tells embOS how many
system time units expire per embOS tick and what the system frequency is.

Examples
1) The following will increment the time variable OS_Time by 1 per RTOS timer-
interrupt. This is the default for embOS, so usage of OS_CONFIG() is not
required.

OS_CONFIG(8000000,8000); /* Configure OS : System-frequency, ticks/int */

.
2) The following will increment the time variable OS_Time by 2 per embOS
timer-interrupt.

OS_CONFIG(8000000,16000); /* Configure OS : System-frequency, ticks/int */

If, for example, the basic timer was initialized to 500 Hz, which would result in
an embOS timer-interrupt every 2 ms, a call of OS_Delay(10) would result in
a delay of 20 ms, because all timing values are interpreted as ticks. A call of
OS_CONFIG() with the parameter shown in example 2 would compensate for
the difference, resulting in a delay of 10 ms when calling OS_Delay(10).

User's & reference manual for embOS real time OS 127/160

 1996- 2004 Segger Microcontroller Systeme GmbH

18. Time-related routines
embOS supports two basic types of run-time measurement which may be used
to calculate the execution time of any section of user code. Low-resolution
measurements use a time base of ticks, while high-resolution measurements
are based on a time unit called a cycle. The length of a cycle depends on the
timer clock frequency.

18.1. Low-resolution measurement

The system time variable OS_Time is measured in ticks, or ms. The low-
resolution functions OS_GetTime() and OS_GetTime32() are used to return
the current contents of this variable. The basic idea behind low-resolution
measurement is quite simple: the system time is returned once before the
section of code to be timed and once after, and the first value is subtracted
from the second to obtain the time it took for the code to execute.

The term low-resolution is used because the time values returned are
measured in completed ticks. Consider the following: With a normal tick of 1
ms, the variable OS_Time is incremented with every tick-interrupt, or once
every ms. This means that the actual system time can potentially be more than
what a low-resolution function will return (i.e. if an interrupt actually occurs at
1.4 ticks, the system will still have measured only 1 tick as having elapsed). The
problem becomes even greater with run-time measurement since the system
time must be measured twice. Each measurement can potentially be up to 1
tick less than the actual time, so the difference between two measurements
could theoretically be inaccurate by up to two ticks.

The following diagram illustrates how low-resolution measurement works. We
can see that the section of code actually begins at 0.5 ms and ends at 5.2 ms,
which means that its actual execution time is (5.2 � 0.5) = 4.7 ms. However
(with a tick of 1 ms), the first call to OS_GetTime() returns 0, and the second
call returns 5. The measured execution time of the code would therefore result
in (5 � 0) = 5 ms.

OS_Time

6 ms0 ms 5 ms4 ms3 ms2 ms1 ms

Code to be timed

OS_GetTime() => 0 OS_GetTime() => 5

0.5 ms 5.2 ms

128/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

For many applications, low-resolution measurement may be fully sufficient for
your needs. In some cases, it may be more desirable due to its ease of use and
faster computation time than high-resolution measurement.

18.1.1. OS_GetTime()

Description
Returns the current system time in ticks.

Prototype
int OS_GetTime(void);

Return value
The system variable OS_Time as a 16- or 32-bit integer value.

Add. Information
This function returns the system time as a 16-bit value on 8/16-bit CPUs, and
as a 32-bit value on 32-bit CPUs.
The OS_Time variable is a 32-bit value. Therefore, if the return value is 32-bit,
it is simply the entire contents of the OS_Time variable. If the return value is 16-
bit, it is the lower 16 bits of the OS_Time variable.

18.1.2. OS_GetTime32()

Description
Returns the current system time in ticks as a 32-bit value.

Prototype
U32 OS_GetTime32(void);

Return value
The system variable OS_Time as a 32-bit integer value.

Add. Information
This function always returns the system time as a 32-bit value. Since the
OS_Time variable is also a 32-bit value, the return value is simply the entire
contents of the OS_Time variable.

18.1.3. Example of typical use of low-resolution measurement
/*
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes(void) {
 int t;
 t = OS_GetTime();
 UserCode(); /* Execute the user code to be benchmarked */
 t = OS_GetTime() – t;
 return t;
}

User's & reference manual for embOS real time OS 129/160

 1996- 2004 Segger Microcontroller Systeme GmbH

18.2. High-resolution measurement

High-resolution measurement uses the same routines as those used in profiling
builds of embOS, allowing for fine-tuning of time measurement. While system
resolution depends on the CPU used, it is typically about 1 us, making high-
resolution measurement about 1000 times more accurate than low-resolution
calculations.

Instead of measuring the number of completed ticks at a given time, an internal
count is kept of the number of cycles that have been completed. Look at the
illustration below, which measures the execution time of the same code used in
the low-resolution calculation. Fot this example, we assume that the CPU has a
timer running at 10 MHz and is couting up. The number of cycles per tick is
therefore (10 MHz / 1 kHz) = 10,000. This means that with each tick-interrupt,
the timer restarts at 0 and counts up to 10,000.

Cycles

10,0000 10,00010,00010,00010,00010,000

Code to be timed

t1 = 5,000 t2 = 52,000

0.5 ms 5.2 ms

The call to OS_Timing_Start() calculates the starting value at 5,000 cycles,
while the call to OS_Timing_End() calculates the ending value at 52,000
cycles (both values are kept track of internally). The measured execution time
of the code in this example would therefore be (52,000 � 5,000) = 47,000
cycles, which corresponds to 4.7 ms.

Although the function OS_Timing_GetCycles() may be used to return the
execution time in cycles as above, it is typically more common to use the
function OS_Timing_Getus(), which returns the value in microseconds (us).
In the above example, the return value would be 4,700 us.

Data structure
All high-resolution routines take as parameter a pointer to a data structure of
type OS_TIMING, defined as follows:

#define OS_TIMING OS_U32

130/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

18.2.1. OS_Timing_Start()

Description
Marks the beginning of a section of code to be timed.

Prototype
void OS_Timing_Start(OS_TIMING* pCycle);

Parameter Meaning
pCycle Pointer to a data structure of type OS_TIMING.

Return value
Void.

Add. Information
This function must be used with OS_Timing_End().

18.2.2. OS_Timing_End()

Description
Marks the end of a section of code to be timed.

Prototype
void OS_Timing_End(OS_TIMING* pCycle);

Parameter Meaning
pCycle Pointer to a data structure of type OS_TIMING.

Return value
Void.

Add. Information
This function must be used with OS_Timing_Start().

User's & reference manual for embOS real time OS 131/160

 1996- 2004 Segger Microcontroller Systeme GmbH

18.2.3. OS_Timing_Getus()

Description
Returns the execution time of the code between OS_Timing_Start() and
OS_Timing_End() in microseconds.

Prototype
OS_U32 OS_Timing_Getus(OS_TIMING* pCycle);

Parameter Meaning
pCycle Pointer to a data structure of type OS_TIMIING.

Return value
The execution time in microseconds (us) as a 32-bit integer value.

18.2.4. OS_Timing_GetCycles()

Description
Returns the execution time of the code between OS_Timing_Start() and
OS_Timing_End() in cycles.

Prototype
OS_U32 OS_Timing_GetCycles(OS_TIMING* pCycle);

Parameter Meaning
pCycle Pointer to a data structure of type OS_TIMING.

Return value
The execution time in cycles as a 32-bit integer.

Add. Information
Cycle length depends on the timer clock frequency.

18.2.5. Example of typical use of high-resolution management
/*
* Measure the execution time with hi resolution and return it in us
*/
OS_U32 BenchmarkHiRes(void) {
 OS_U32 t;
 OS_Timing_Start(&t);
 UserCode(); /* Execute the user code to be benchmarked */
 OS_Timing_End(&t);
 Return OS_Timing_Getus(&t);
}

132/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

18.3. Example

The following sample demonstrates the use of low-resolution and high-
resolution measurement to return the execution time of a section of code:

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : SampleHiRes.c
Purpose : Demonstration of embOS Hires Timer
--------------END-OF-HEADER------------------------------*/

#include "RTOS.H"
#include <stdio.h>

OS_STACKPTR int Stack[1000]; /* Task stacks */
OS_TASK TCB; /* Task-control-blocks */

volatile int Dummy;
void UserCode(void) {
 for (Dummy=0; Dummy < 11000; Dummy++); /* Burn some time */
}

/*
* Measure the execution time with low resolution and return it in ms (ticks)
*/
int BenchmarkLoRes(void) {
 int t;
 t = OS_GetTime();
 UserCode(); /* Execute the user code to be benchmarked */
 t = OS_GetTime() - t;
 return t;
}

/*
* Measure the execution time with hi resolution and return it in us
*/
OS_U32 BenchmarkHiRes(void) {
 OS_U32 t;
 OS_Timing_Start(&t);
 UserCode(); /* Execute the user code to be benchmarked */
 OS_Timing_End(&t);
 return OS_Timing_Getus(&t);
}

void Task(void) {
 int tLo;
 OS_U32 tHi;
 char ac[80];
 while (1) {
 tLo = BenchmarkLoRes();
 tHi = BenchmarkHiRes();
 sprintf(ac, "LoRes: %d ms\n", tLo);
 OS_SendString(ac);
 sprintf(ac, "HiRes: %d us\n", tHi);
 OS_SendString(ac);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB, "HP Task", Task, 100, Stack);
 OS_Start(); /* Start multitasking */
}

User's & reference manual for embOS real time OS 133/160

 1996- 2004 Segger Microcontroller Systeme GmbH

The output of the above sample is as follows:

LoRes: 7 ms
HiRes: 6641 us
LoRes: 7 ms
HiRes: 6641 us
LoRes: 6 ms

134/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

19. STOP / HALT / IDLE modes
Most CPUs support power-saving STOP, HALT or IDLE modes. Using these
types of modes is one possible way to save power consumption during idle
times. As long as the timer-interrupt will wake up the system with every embOS
tick, or as long as other interrupts will activate tasks, these modes may be used
to save power consumption.

If required, you may modify the OS_Idle() routine, which is part of the hard-
ware-dependant module RTOSInit.c, to switch the CPU to power-saving
mode during idle times. Please check out the CPU & Compiler Specifics man-
ual of embOS documentation for details on your processor.

User's & reference manual for embOS real time OS 135/160

 1996- 2004 Segger Microcontroller Systeme GmbH

20. embOSView: profiling and analyzing

20.1. Overview

embOSView displays the state of a running application using embOS. A serial
interface (UART) is normally used to communicate with the target.

The hardware-dependent routines and defines to communicate with embOS-
View are located in RTOSInit.c. This file has to be configured properly. For
details on how to configure this file, please refer the CPU & Compiler Specifics
manual of embOS documentation.

The embOSView utility is shipped as embosView.exe with embOS and runs
under Windows 9x / NT / 2000. The latest version is available on our website at
www.segger.com.

embOSView is a very helpful tool for analysis of the running target application.

http://www.segger.com/

136/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

20.2. Task list window

embOSView shows the state of every created task of the target application in
the Task list window. The information shown depends on the library used in
your application.

Item Explanation Builds
Prio Current priority of task. All

Id Task ID, which is the address of the task control
block. All

Name Name assigned during creation. All

Status Current state of task (ready, executing, delay,
etc.) . All

Data Depends on status. All
Timeout Time of next activation. All
Stack Used stack size/max. stack size/stack location. S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task. SP, DP, DT
Context-
Switches Number of activations since reset. SP, DP, DT

The task list window is helpful in analysis of stack usage and CPU load for
every running task.

20.3. System variables window

embOSView shows the actual state of major system variables in the system
variables window. The information shown also depends on the library used in
your application:

Item Explanation Builds
OS_VERSION Current version of embOS. All
CPU Target CPU and compiler All
LibMode Library mode used for target application. All
OS_Time Current system time in timer ticks. All
OS_NumTasks Current number of defined tasks. All
OS_Status Current error code (or O.K.). All
OS_pActiveTask Active task that should be running. SP, D, DP, DT
OS_pCurrentTask Actual currently running task. SP, D, DP, DT

SysStack Used size/max. size/location of system
stack. SP, DP, DT

IntStack Used size/max. size/location of interrupt
stack. SP, DP, DT

TraceBuffer Current count/maximum size and cur-
rent state of trace buffer. all trace builds

20.4. Sharing the SIO for terminal I/O

The serial input/output (SIO) used by embOSView may also be used by the
application at the same time for both input and output. This can be very helpful.
Terminal input is often used as keyboard input, where terminal output may be
used to output debug messages. Input and output is done via the terminal
window, which can be shown by selecting View/Terminal from the menu.

User's & reference manual for embOS real time OS 137/160

 1996- 2004 Segger Microcontroller Systeme GmbH

To ensure communication via the terminal window in parallel with the viewer
functions, the application uses the function OS_SendString() for sending a
string to the terminal window and the function OS_SetRxCallback() to hook
a reception routine that receives one byte.

20.4.1. OS_SendString()

Description
Sends a string over SIO to the terminal window.

Prototype
void OS_SendString(const char* s);

Parameter Meaning

s Pointer to a zero-terminated string that should be sent to the
terminal.

Add. information
This function uses OS_COM_Send1() which is defined in RTOSInit.c.

20.4.2. OS_SetRxCallback()

Description
Sets a callback hook to a routine for receiving one character.

Prototype
typedef void OS_RX_CALLBACK(OS_U8 Data)
OS_RX_CALLBACK* OS_SetRxCallback(OS_RX_CALLBACK* cb);

Parameter Meaning

cb Pointer to the application routine that should be called when
one character is received over serial interface.

Return value
OS_RX_CALLBACK* as described above. This is the pointer to the callback
function that was hooked before the call.

Add. information

The user function is called from embOS. The received character is passed as
parameter. See the example below.

Example
void GUI_X_OnRx(OS_U8 Data); /* Callback ... called from Rx-interrupt */

void GUI_X_Init(void) {
 OS_SetRxCallback(&GUI_X_OnRx);
}

138/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

20.5. Using the API trace

embOS versions 3.06 or higher contain a trace feature for API calls. This
requires the use of the trace build libraries in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API
calls can be started and stopped from embOSView via the Trace menu, or
from within the application by using the functions OS_TraceEnable() and
OS_TraceDiasable(). Individual filters may be defined to determine which
API calls should be traced for different tasks or from within interrupt or timer
routines.

Once the trace is started, the API calls are recorded in the trace buffer, which is
periodically read by embOSView. The result is shown in the Trace window:

Every entry in the trace list is recorded with the actual system time. In case of
calls or events from tasks, the task ID and task name (limited to 15 characters)
are also recorded. Parameters of API calls are recorded if possible, and are
shown as part of the APIName column. In the example above, this can be seen
with OS_Delay(3).

Once the trace buffer is full, trace is automatically stopped. The trace list and
buffer can be cleared from embOSView.

Setting up trace from embOSView
Three different kinds of trace filters are defined for tracing. These filters can be
set up from embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the
task. As the Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls
that occur outside a running task. These calls may come from the idle loop or
during startup when no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.

User's & reference manual for embOS real time OS 139/160

 1996- 2004 Segger Microcontroller Systeme GmbH

To enable or disable a filter, simply check or uncheck the corresponding
checkboxes labeled Filter 4 Enable to Filter 0 Enable.

For any of these five filters, individual API functions can be enabled or disabled
by checking or unchecking the corresponding checkboxes in the list. To speed
up the process, there are two buttons available:
Select all enables trace of all API functions for the currently enabled
(checked) filters.
Deselect all disables trace of all API functions for the currently enabled
(checked) filters.

Filter 2 to 4 allow tracing of task-specific API calls. A task name can therefore
be specified for each of these filters. In the example above, Filter 4 is
configured to trace calls of OS_Delay() from the task called MainTask.

After the settings are saved (via the Apply or OK button), the new settings are
sent to the target application.

140/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

20.6. Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOS-
View. Per default, trace is initially disabled in an application program. It may be
very helpful to control the recording of trace events directly from the application,
using the following functions.

20.6.1. OS_TraceEnable()

Description
Enables tracing of filtered API calls.

Prototype
void OS_TraceEnable(void);

Add. information
The trace filter conditions should have been set up before calling this function.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.2. OS_TraceDisable()

Description
Disables tracing of API and user function calls.

Prototype
void OS_TraceDisable(void);

Add. information
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.3. OS_TraceEnableAll()

Description
Sets up Filter 0 (any task), enables tracing of all API calls and then enables the
trace function.

Prototype
void OS_TraceEnableAll(void);

Add. information
The trace filter conditions of all the other trace filters are not affected.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.4. OS_TraceDisableAll()

Description
Sets up Filter 0 (any task), disables tracing of all API calls and also disables
trace.

User's & reference manual for embOS real time OS 141/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Prototype
void OS_TraceDisableAll(void);

Add. information
The trace filter conditions of all the other trace filters are not affected, but
tracing is stopped.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.5. OS_TraceEnableId()

Description
Sets the specified ID value in Filter 0 (any task), thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableId(OS_U8 Id);

Parameter Meaning

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Add. information

To enable trace of a specific embOS API function, you must use the correct Id
value. These values are defined as symbolic constants in RTOS.h.
This function may also be used to enable trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.6. OS_TraceDisableId()

Description
Resets the specified ID value in Filter 0 (any task), thus disabling trace of the
specified function, but does not stop trace.

Prototype
void OS_TraceDisableId(OS_U8 Id);

Parameter Meaning

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Add. information

To disable trace of a specific embOS API function, you must use the correct Id
value. These values are defined as symbolic constants in RTOS.h.
This function may also be used to disable trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

142/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

20.6.7. OS_TraceEnableFilterId()

Description
Sets the specified ID value in the specified trace filter, thus enabling trace of the
specified function, but does not start trace.

Prototype
void OS_TraceEnableFilterId(OS_U8 FilterIndex, OS_U8 id)

Parameter Meaning

FilterIndex
Index of the filter that should be affected:
0 <= FilterIndex <= 4
0 affects Filter 0 (any task) and so on.

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Add. information

To enable trace of a specific embOS API function, you must use the correct Id
value. These values are defined as symbolic constants in RTOS.h.
This function may also be used to enable trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.6.8. OS_TraceDisableFilterId()

Description
Resets the specified ID value in the specified trace filter, thus disabling trace of
the specified function, but does not stop trace.

Prototype
void OS_TraceDisableFilterId(OS_U8 FilterIndex, OS_U8 id)

Parameter Meaning

FilterIndex
Index of the filter that should be affected:
0 <= FilterIndex <= 4
0 affects Filter 0 (any task) and so on.

Id
ID value of API call that should be enabled for trace:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Add. information

To disable trace of a specific embOS API function, you must use the correct Id
value. These values are defined as symbolic constants in RTOS.h.
This function may also be used to disable trace of your own functions.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

User's & reference manual for embOS real time OS 143/160

 1996- 2004 Segger Microcontroller Systeme GmbH

20.7. Trace record functions

The following functions are used to write (record) data into the trace buffer. As
long as only embOS API calls should be recorded, these functions are used
internally by the trace build libraries. If, for some reason, you want to trace your
own functions with your own parameters, you may call one of these routines.

All of these functions have the following points in common:

• To record data, trace must be enabled.
• An ID value in the range from 100 to 127 must be used as the Id

parameter. ID values from 0 to 99 are internally reserved for embOS.
• The events specified as Id have to be enabled in any of the trace filters.
• Active system time and the current task are automatically recorded to-

gether with the specified event.

20.7.1. OS_TraceVoid()

Description
Writes an entry identified only by its ID into the trace buffer.

Prototype
void OS_TraceVoid(OS_U8 Id);

Parameter Meaning

Id
ID value that should be written into trace buffer:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

Add. information
This functionality is available in trace builds only. In none trace builds this API
call is removed by the preprocessor.

20.7.2. OS_TracePtr()

Description
Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype
void OS_TracePtr(OS_U8 id, void* p);

Parameter Meaning

Id
ID value that should be written into trace buffer:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

p Any void pointer that should be recorded as parameter.

Add. information
The pointer passed as parameter will be displayed in the trace list window of
embOSView.

144/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.7.3. OS_TraceData()

Description
Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
void OS_TraceData (OS_U8 id, int v);

Parameter Meaning

Id
ID value that should be written into trace buffer:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

v Any integer value that should be recorded as parameter.

Add. information
The value passed as parameter will be displayed in the trace list window of
embOSView.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.7.4. OS_TraceDataPtr()

Description
Writes an entry with ID, an integer and a pointer as parameter into the trace
buffer.

Prototype
void OS_TraceDataPtr(OS_U8 id, int v, void*p);

Parameter Meaning

Id
ID value that should be written into trace buffer:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Add. information
The values passed as parameter will be displayed in the trace list window of
embOSView.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

20.7.5. OS_TraceU32Ptr()

Description
Writes an entry with ID, a 32-bit unsigned integer and a pointer as parameter
into the trace buffer.

Prototype

User's & reference manual for embOS real time OS 145/160

 1996- 2004 Segger Microcontroller Systeme GmbH

void OS_TraceU32Ptr(OS_U8 id, OS_U32 p0, void*p1);

Parameter Meaning

Id
ID value that should be written into trace buffer:
0 <= Id <= 127
Values from 0 to 99 are reserved for embOS.

p0 Any unsigned 32-bit value that should be recorded as
parameter.

p1 Any void pointer that should be recorded as parameter.

Add. information
This function may be used to record two pointers.
The values passed as parameter will be displayed in the trace list window of
embOSView.
This functionality is available in trace builds only. In non-trace builds, the API
call is removed by the preprocessor.

146/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

20.8. Application-controlled trace example

As described in the previous section, the user application can enable and set
up the trace conditions without the need of a connection or command from
embOSView. The trace record functions can also be called from any user
function to write data into the trace buffer, using ID numbers from 100 to 127.

Controlling trace from the application can be very helpful for tracing API and
user functions just after starting the application, when the communication to
embOSView is not yet available or when the embOSView setup is not
complete.

The example below shows how a trace filter can be set up by application. The
function OS_TraceEnableID() sets the trace filter 0 which affects calls from
any running task. Therefore, the first call to SetState() in the example would
not be traced because there is no task running at that moment. The additional
filter setup routine OS_TraceEnableFilterId() is called with filter 1, which
results in the tracing of calls from outside running tasks.

#include “RTOS.h”

#ifndef OS_TRACE_FROM_START
 #define OS_TRACE_FROM_START 1
#endif

/* Application specific trace id numbers */
#define APP_TRACE_ID_SETSTATE 100

char MainState;

/* Sample of application routine with trace */
void SetState(char* pState, char Value) {
 #if OS_TRACE
 OS_TraceDataPtr(APP_TRACE_ID_SETSTATE, Value, pState);
 #endif
 * pState = Value;
}

/* Sample main routine, that enables and setup API and function call trace
 from start */
void main(void) {
 OS_InitKern();
 OS_InitHW();
 #if (OS_TRACE && OS_TRACE_FROM_START)
 /* OS_TRACE is defined in trace builds of the library */
 OS_TraceDisableAll(); /* Disable all API trace calls */
 OS_TraceEnableId(APP_TRACE_ID_SETSTATE); /* User trace */
 OS_TraceEnableFilterId(APP_TRACE_ID_SETSTATE); /* User trace */
 OS_TraceEnable();
 #endif
 /* Application specific initilisation */
 SetState(&MainState, 1);
 OS_CREATETASK(&TCBMain, "MainTask", MainTask, PRIO_MAIN, MainStack);
 OS_Start(); /* Start multitasking -> MainTask() */
}

Per default, embOSView lists all user function traces in the trace list window as
Routine, followed by the specified ID and two parameters as hexadecimal
values. The example above would result in the following:

Routine100(0xabcd, 0x01)

where 0xabcd is the pointer address and 0x01 is the parameter recorded from
OS_TraceDataPtr().

User's & reference manual for embOS real time OS 147/160

 1996- 2004 Segger Microcontroller Systeme GmbH

20.9. User-defined functions

In order to be able to use the built-in trace (available in trace builds of embOS)
for application program user functions, embOSView can be customized. This
customization is done in the setup file embOS.ini.

This setup file is parsed at the startup of embOSView. It is optional; you will not
see an error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID
number, the function name and the type of two optional parameters that can be
traced. The format is explained in the following sample embOS.ini file:

File: embOS.ini

embOSView Setup file

embOSView loads this file at startup. It has to reside in the same
directory as the execuatble itself.

Note: The file is not required in order to run embOSView. You will not get
an error message if it is not found. However, you will get an error message
if the contents of the file are invalid.

Define add. API functions.
Syntax: API(<Index>, <Routinename> [parameters])
Index: Integer, between 100 and 127
Routinename: Identifier for the routine. Should be no more than 32
characters
parameters: Optional paramters. A max. of 2 parameters can be specified.
Valid parameters are:
int
ptr
Every parameter has to be preceeded by a colon.

API(100, "Routine100")
API(101, "Routine101", int)
API(102, "Routine102", int, ptr)

148/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

21. Debugging

21.1. Run time errors

Some error conditions can be detected during run time. These are:

• Usage of uninitialized data structures
• Invalid pointers
• Resource unused that has not been used by this task before
• OS_LeaveRegion() called more often than OS_EnterRegion()
• Stack overflow (this feature is not available with some processors)

Which run time errors can be detected depends on how much checking is
performed. Unfortunately, additional checking costs memory and speed (it is
not that significant, but there is a difference). If embOS detects a run time
error, it calls the following routine:

void OS_Error(int ErrCode);

This routine is shipped in source as part of the module OS_Error.c. It simply
disables further task switches and then, after re-enabling interrupts, loops for-
ever as follows:

/*
 Run-time error reaction
*/

void OS_Error(int ErrCode) {
 OS_EnterRegion(); /* Avoid further task switches */
 OS_DICnt =0; /* Allow interrupts so we can communicate */
 OS_EI();
 OS_Status = ErrCode;
 while (OS_Status);
}

If you are using embOSView, you can see the value and meaning of OS_Status
in the system variable window.

When using an emulator, you should set a breakpoint at the beginning of this
routine or simply stop the program after a failure. The error code is passed to
the function as parameter.

You can modify the routine to accommodate your own hardware; this could
mean that your target hardware sets an error-indicating LED or shows a little
message on the display.
When modifying the OS_Error() routine, the first statement needs to be
the disabling of scheduler via OS_EnterRegion(); the last statement
needs to be the infinite loop.

If you look at the OS_Error() routine, you will see that it is more complicated
than necessary. The actual error code is assigned to the global variable
OS_Status. The program then waits for this variable to be reset. Simply reset
this variable to 0 using your in circuit-emulator, and you can easily step back to
the program sequence causing the problem. Most of the time, looking at this
part of the program will make the problem clear.

User's & reference manual for embOS real time OS 149/160

 1996- 2004 Segger Microcontroller Systeme GmbH

21.2. List of error codes

Value Symbolic name Explanation
120 OS_ERR_STACK Stack overflow or invalid stack.

128 OS_ERR_INV_TASK Task control block invalid, not
initialized or overwritten.

129 OS_ERR_INV_TIMER Timer control block invalid, not
initialized or overwritten.

130 OS_ERR_INV_MAILBOX Mailbox control block invalid, not
initialized or overwritten.

132 OS_ERR_INV_CSEMA
Control block for counting sema-
phore invalid, not initialized or
overwritten.

133 OS_ERR_INV_RSEMA
Control block for resource sema-
phore invalid, not initialized or
overwritten.

135 OS_ERR_MAILBOX_NOT1

One of the following 1-byte mailbox
functions has been used on a
multi- byte mailbox:
OS_PutMail1()
OS_PutMailCond1()
OS_GetMail1()
OS_GetMailCond1().

140 OS_ERR_MAILBOX_NOT_IN_LIST

The mailbox is not in the list of
mailboxes as expected. Possible
reasons may be that one mailbox
data structure was overwritten.

142 OS_ERR_TASKLIST_CORRUPT The OS internal tasklist is
destroyed.

150 OS_ERR_UNUSE_BEFORE_USE
OS_Unuse() has been called be-
fore OS_Use().

151 OS_ERR_LEAVEREGION_BEFORE_
ENTERREGION

OS_LeaveRegion() has been
called before
OS_EnterRegion().

152 OS_ERR_LEAVEINT Error in OS_LeaveInterrupt().

153 OS_ERR_DICNT

The interrupt disable counter
(OS_DICnt) is out of range (0-15).
The counter is affected by the
following API calls:
OS_IncDI()
OS_DecRI()
OS_EnterInterrupt()
OS_LeaveInterrupt().

154 OS_ERR_INTERRUPT_DISABLED

OS_Delay() or
OS_DelayUntil() called from
inside a critical region with inter-
rupts disabled.

160 OS_ERR_ILLEGAL_IN_ISR

Illegal function call in interrupt ser-
vice routine:
A routine that may not be called
from within an ISR has been called
from within an ISR.

161 OS_ERR_ILLEGAL_IN_TIMER
Illegal function call in interrupt ser-
vice routine:
A routine that may not be called

150/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

Value Symbolic name Explanation
from within a software timer has
been called from within a timer.

170 OS_ERR_2USE_TASK
Task control block has been initial-
ized by calling a create function
twice.

171 OS_ERR_2USE_TIMER
Timer control block has been ini-
tialized by calling a create function
twice.

172 OS_ERR_2USE_MAILBOX
Mailbox control block has been
initialized by calling a create func-
tion twice.

173 OS_ERR_2USE_BSEMA
Binary semaphore has been initial-
ized by calling a create function
twice.

174 OS_ERR_2USE_CSEMA
Counting semaphore has been
initialized by calling a create func-
tion twice.

175 OS_ERR_2USE_RSEMA
Resource semaphore has been
initialized by calling a create func-
tion twice.

180 OS_ERR_NESTED_RX_INT
OS_Rx interrupt handler for
embOSView is nested. Disable
nestable interrupts.

190 OS_ERR_MEMF_INV Fixed size memory block control
structure not created before use.

191 OS_ERR_MEMF_INV_PTR Pointer to memory block does not
belong to memory pool on Release

192 OS_ERR_MEMF_PTR_FREE

Pointer to memory block is already
free when calling
OS_MEMF_Release(). Possibly,
same pointer was released twice.

193 OS_ERR_MEMF_RELEASE

OS_MEMF_Release() was called
for a memory pool, that had no
memory block allocated (All avail-
able blocks were already free be-
fore).

200 OS_ERR_SUSPEND_TOO_OFTEN
Nested call of OS_Suspend() ex-
ceeded OS_MAX_SUSPEND_CNT

201 OS_ERR_RESUME_BEFORE_SUSPE
ND

OS_Resume() called on a task
that was not suspended.

The latest version of defined error table is part of the comment just before the
OS_Error() function declaration in the source file OS_Error.c.

User's & reference manual for embOS real time OS 151/160

 1996- 2004 Segger Microcontroller Systeme GmbH

22. Supported development tools
embOS has been developed with and for a specific �C� compiler version for the
selected target processor. Please check the file RELEASE.HTML for details. It
works with the specified �C� compiler only, since other compilers may use
different calling conventions (incompatible object file formats) and therefore
might be incompatible. However, if you prefer to use a different �C� compiler,
please contact us and we will do our best to satisfy your needs in the shortest
possible time.

Reentrance
All routines that can be used from different tasks at the same time have to be
fully reentrant. A routine is in use from the moment it is called until it returns or
the task that has called it is terminated.

All routines supplied with your real time operating system are fully reentrant. If
for some reason you need to have non-reentrant routines in your program that
can be used from more than one task, it is recommended to use a resource
semaphore to avoid this kind of problem.

�C� routines and reentrance
Normally, the "C" compiler generates code that is fully reentrant. However, the
compiler has options that force it to generate non-reentrant code (in order to
optimize compiler performance). It is recommended not to use these options,
although it is possible to do so under certain circumstances.

Assembly routines and reentrance
As long as assembly functions access local variables and parameters only, they
are fully reentrant. Everything else has to be thought about carefully.

152/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

23. Limitations
Max. no. of tasks: limited by available RAM only
Max. no. of priorities: 255
Max. no. of semaphores: limited by available RAM only
Max. no. of mailboxes: limited by available RAM only
Max. no. of queues: limited by available RAM only
Max. size. of queues: limited by available RAM only
Max. no. of timers limited by available RAM only
Event flags : 8 bits / task

We appreciate your feedback regarding possible additional functions and we
will do our best to implement these functions if they fit into the concept.

Please do not hesitate to contact us. If you need to make changes to embOS,
the full source code is available.

User's & reference manual for embOS real time OS 153/160

 1996- 2004 Segger Microcontroller Systeme GmbH

24. Source code of kernel and library
embOS is available in two versions:

1. Object version: Object code + hardware init source.
2. Full source version: Full sources.

Since this is the document that describes the object version, the internal data
structures are not explained in detail. The object version offers the full
functionality of embOS including all supported memory models of the compiler,
the debug libraries as described and the source code for idle task and
hardware init. However, the object version does not allow source-level
debugging of the library routines and the kernel.

The full source version gives you the ultimate options: embOS can be
recompiled for different data sizes; different compile options give you full control
of the generated code, making it possible to optimize the system for versatility
or minimum memory requirements. You can debug the entire system and even
modify it for new memory models or other CPUs.

Building embOS libraries

The embOS libraries can only be built if you have purchased a source code
version of embOS.

In the root path of embOS, you will find a DOS batch file PREP.BAT, which
needs to be modified to match the installation directory of your �C� compiler.
Once this is done, you can call the batch file M.BAT to build all embOS
libraries for your CPU.

The build process should run without any error or warning message. If the build
process reports any problem please check the following:

• Are you using the same compiler version as mentioned in the file
RELEASE.HTML?

• Can you compile a simple test file after running PREP.BAT and does it
really use the compiler version you have specified?

• Is there anything mentioned about possible compiler warnings in the
RELEASE.HTML?

If you still have a problem, please let us know.

154/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

25. Additional modules

25.1. Keyboard manager: KEYMAN.C

Keyboard driver module supplied in "C". It serves both as example and as a
module that can actually be used in your application. The module can be used
in most applications with only little changes to the hardware-specific portion. It
needs to be initialized on startup and creates a task that checks the keyboard
50 times per second.

Changes required for your hardware
void ReadKeys(void);

Example of how to implement into your program
void main(void) {
 OS_InitKern(); /* initialize OS (should be first !) */
 OS_InitHW(); /* initialize Hardware for OS (see RtosInit.c)*/
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0); /*Create Task0*/
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1); /*Create Task1*/
 InitKeyMan(); /* Initialize keyboard manager */
 OS_Start();
}

User's & reference manual for embOS real time OS 155/160

 1996- 2004 Segger Microcontroller Systeme GmbH

25.2. Additional libraries and modules

For all embOS-compatible real time operating systems, there are additional
libraries and modules available. However, these modules can also be used
without embOS or with a different operating system. Since these libraries are
written in ANSI "C", they can be used on any target CPU for which an ANSI "C"
compiler exists. In general, these modules are highly optimized for both low
memory consumption (especially in RAM) and high speed.

The modules can be scaled for optimum performance at minimum memory
consumption using compile-time switches. Unused portions of the modules are
not even compiled; your program stays lean and fast.

emWin The complete solution for graphical LCDs. A fully

scaleable graphical user interface featuring:
• different fonts (from 4*6 to 16*32)
• line drawing, bitmap drawing
• advanced drawing (e.g. circles)
• display routines for strings, dec/hex/bin values,

multiple windows
• ultra-fast, yet still very compact (typically between

8 and 20 kB ROM)
Everything you need for graphic displays!
Any LCD * Any LCD controller * Any CPU
Both monochrome and color versions available, as well
as bitmapconverter, font converter, PC simulation and
viewer. Check out our website!

emLoad Boot-loader software.

156/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

26. FAQ (frequently asked questions)
Q : Can I implement different priority scheduling algorithms ?
A : Yes, the system is fully dynamic, which means that task priorities can
be changed while the system is running (using OS_SetPriority()). This
feature can be used to change priorities in a way so that basically every desired
algorithm can be implemented. One way would be to have a task control task
with a priority higher than that of all other tasks that dynamically changes
priorities. Normally, the priority-controlled round-robin algorithm is perfect for
real time applications.

Q : Can I use a different interrupt source for embOS ?
A : Yes, any periodical signal can be used, i.e. any internal timer, but it
could also be an external signal.

Q : What interrupt priorities can I use for the interrupts my program uses?
A : Any.

User's & reference manual for embOS real time OS 157/160

 1996- 2004 Segger Microcontroller Systeme GmbH

Glossary
Some technical terms used in this manual are explained below.

Active Task Only one task can execute at any given time. The task that is

currently executing is called the active task.

Cooperative
multitasking

A scheduling system in which each task is allowed to run until
it gives up the CPU; an ISR can make a higher priority task
ready, but the interrupted task will be returned to and finished
first.

Counting
semaphore

A type of semaphore that keeps track of multiple resources.
Used when a task must wait for something that can be
signaled more than once.

CPU Central Processing Unit. The "brain" of a microcontroller; the

part of a processor that carries out instructions.

Critical region A section of code which must be executed without

interruption.

Event A message sent to a single, specified task that something has

occurred. The task then becomes ready.

ISR Interrupt Service Routine. The routine called automatically by

the processor when an interrupt is acknowledged. ISRs must
preserve the entire context of a task (all registers).

Mailbox A data buffer managed by the RTOS, used to send a

message to a task.

Message An item of data (sent to a mailbox, queue, etc.).

Multitasking The execution of multiple software routines independently of

one another. The OS divides the processor�s time so that the
different routines (tasks) appear to be happening
simultaneously.

NMI Non-Maskable Interrupt. An interrupt that cannot be masked

(disabled) by software. Example: Watchdog timer-interrupt.

Preemptive
multitasking

A scheduling system in which the highest priority task that is
ready will always be executed. If an ISR makes a higher
priority task ready, that task will be executed before the
interrupted task is returned to.

Processor Short for microprocessor. The CPU core of a controller

Priority The relative importance of one task to another. Every task in

an RTOS has a priority.

Priority inver-
sion

A situation in which a high priority task is delayed while it
waits for access to a shared resource which is in use by a
lower priority task. The lower priority task temporarily gets the

158/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

highest priority until it releases the resource.

Queue Like a mailbox, but used to send one or more messages to a

task.

Resource Anything in the computer system with limited availability (e.g.

memory, timers, computation time). Essentially, anything
used by a task.

Resource
semaphore

A type of semaphore used to manage resources by ensuring
that only one task has access to a resource at a time.

RTOS Real Time Operating System.

Scheduler The program section of an RTOS that selects the active task,

based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

Semaphore A data structure used for synchronizing tasks.

Software timer A data structure which calls a user-specified routine after a

specified delay.

Stack An area of memory with FIFO storage of parameters,

automatic variables, return addresses, and other information
that needs to be maintained across function calls. In
multitasking systems, each task normally has its own stack.

Superloop A program that runs in an infinite loop and uses no real time

kernel. ISRs are used for real time parts of the software.

Task A program running on a processor. A multitasking system

allows multiple tasks to execute independently from one
another.

Tick The OS timer interrupt. Usually equals 1 ms.

Timeslice The time (number of ticks) for which a task will be executed

until a round-robin task change may occur.

User's & reference manual for embOS real time OS 159/160

 1996-2004 Segger Microcontroller Systeme GmbH

Index
A

Additional modules 154
ANSI 8

B
Baudrate, for embOSView 125

C
C programming language 8
C startup 19
Configuration, of embOS .. 124�

26
Cooperative multitasking 12
Counting semaphores .. 61�68
Critical regions 120�22

D
Debug version, of embOS .. 20
Debugging 148�50
Defines, for configuration.. 124
Development tools 151

E
embOS

building libraries of 153
builds of 20
configuration of....... 124�26
debug version................. 20
features of 9
libraries........................... 21
limitations of 152
release version 20

embOS.ini file 147
embOSView................ 135�47

customizing 147
SIO 136
system variables window136
task list window 136
tracing API calls............ 146

Events..................... 15, 90�98

F
Features of embOS 9
Fixed Size Memory

management 100�106

G
Global variables 15, 69

H
Halt mode 134
Hardware-specific routines 124
Heap memory management99

I
Idle mode.......................... 134

Internal data structures......123
Interrupt control macros115
Interrupt frequency126
Interrupts110�19

and preemptive multitasking
..................................111

enabling/disabling114
nesting...........................116

K
Keyboard driver154
KEYMAN.C........................154

L
Libraries, building153
Limitations, of embOS.......152

M
Mailboxes15, 69�81

single-byte.......................72
Main routine.........................19
Memory management

Fixed block size.............100
Heap memory..................99

Multitasking..........................12
cooperative......................12
preemptive12

N
Nested interrupts116
NMIs119

O
OS_BAUDRATE................125
OS_ClearEvents..................98
OS_ClearMB79
OS_COM_Init124
OS_COM_Send1...............124
OS_CONFIG126
OS_ConvertCycles2us124
OS_CreateCSema63
OS_CREATECSEMA..........62
OS_CREATEMB71
OS_CREATERSEMA..........54
OS_CreateTask...................25
OS_CREATETASK23
OS_CreateTimer41
OS_CREATETIMER40
OS_DecRI114
OS_Delay27
OS_DelayUntil28
OS_DeleteCSema...............68
OS_DeleteMB......................81
OS_DeleteTimer..................46
OS_DI................................115
OS_EI115
OS_EnterInterrupt112
OS_EnterNestableInterrupt117
OS_EnterRegion121
OS_Error148

OS_Error.c file................... 148
OS_free............................... 99
OS_FSYS.......................... 125
OS_GetCSemaValue 67
OS_GetEventsOccured....... 97
OS_GetMail......................... 75
OS_GetMail1....................... 75
OS_GetMailCond 76
OS_GetMailCond1 76
OS_GetMailTimed............... 77
OS_GetMessageCnt 80
OS_GetpCurrentTask 38
OS_GetpCurrentTimer........ 50
OS_GetPriority 30
OS_GetResourceOwner 60
OS_GetSemaValue............. 59
OS_GetStackSpace.......... 109
OS_GetTaskID.................... 37
OS_GetTime 123, 128
OS_GetTime_Cycles 124
OS_GetTime32 128
OS_GetTimerPeriod............ 47
OS_GetTimerStatus............ 49
OS_GetTimerValue............. 48
OS_Idle 124
OS_IncDI........................... 114
OS_InitHW 124
OS_ISR_rx 124
OS_ISR_Tick 124
OS_ISR_tx 124
OS_IsTask 36
OS_LeaveInterrupt............ 112
OS_LeaveInterruptNoSwitch

...................................... 113
OS_LeaveNestableInterrupt117
OS_LeaveNestableInterruptNo

Switch 117
OS_LeaveRegion.............. 122
OS_malloc........................... 99
OS_MEMF_Alloc............... 102
OS_MEMF_AllocTimed..... 102
OS_MEMF_Create............ 100
OS_MEMF_Delete 101
OS_MEMF_FreeBlock 104
OS_MEMF_GetBlockSize.105
OS_MEMF_GetMaxUsed .105
OS_MEMF_GetNumBlocks104
OS_MEMF_GetNumFreeBlock

s 105
OS_MEMF_IsInPool 106
OS_MEMF_Release 103
OS_MEMF_Request 103
OS_PutMail 73
OS_PutMail1 73
OS_PutMailCond................. 74
OS_PutMailCond1............... 74
OS_Q_Clear........................ 88
OS_Q_Create 83
OS_Q_GetMessageCnt 89
OS_Q_GetPtr...................... 85
OS_Q_GetPtrCond 86
OS_Q_Purge....................... 87
OS_Q_Put........................... 84
OS_realloc 99

160/160 User's & reference manual for embOS real time OS

 1996-2004 Segger Microcontroller Systeme GmbH

OS_Request........................ 58
OS_RestoreI 115
OS_Resume........................ 33
OS_RetriggerTimer............. 44
OS_SendString 137
OS_SetPriority..................... 29
OS_SetRxCallback 137
OS_SetTimerPeriod............ 45
OS_SetTimeSlice................ 31
OS_SignalCSema............... 64
OS_SignalEvent 95
OS_Start 19
OS_StartTimer 42
OS_StopTimer 43
OS_Suspend....................... 32
OS_Terminate..................... 34
OS_Time........................... 123
OS_TimeDex 123
OS_Timing_End................ 130
OS_Timing_GetCycles...... 131
OS_Timing_Getus 131
OS_Timing_Start............... 130
OS_TraceData 144
OS_TraceDataPtr.............. 144
OS_TraceDisable.............. 140
OS_TraceDisableAll.......... 140
OS_TraceDisableFilterId... 142
OS_TraceDisableId........... 141
OS_TraceEnable............... 140
OS_TraceEnableAll........... 140
OS_TraceEnableFilterId.... 142
OS_TraceEnableId............ 141
OS_TracePtr 143
OS_TraceU32Ptr............... 144
OS_TraceVoid................... 143
OS_UART 125
OS_Unuse........................... 57
OS_Use............................... 55

OS_WaitCSema 65
OS_WaitCSemaTimed 66
OS_WaitEvent 91
OS_WaitEventTimed 93
OS_WaitMail....................... 78
OS_WaitSingleEvent 92
OS_WaitSingleEventTimed 94
OS_WakeTask 35

P
Preemptive multitasking...... 12
Priority................................. 14
Priority inversion.................. 14
Profiling 21

Q
Queues 15, 82�89

R
Reentrance 151
Release version, of embOS 20
Resource semaphores.. 51�60,

69
Round-robin 13
RTOS.................................... 9
RTOSInit.c file........... 124, 135

S
Sample project............ 22, 124
Scheduler............................ 13
Semaphores 15

counting 61�68
resource.................... 51�60

Single-byte mailboxes......... 72
Single-task system.............. 11

Software timers..............39�50
Stack overflow107
Stack pointers................17, 19
Stacks..........................16, 107

switching..........................17
Stop mode134
Superloop11
System frequency......124, 125
System variables123

T
Task routines22�38
Tasks11

communication between ...9,
15

states of...........................18
switching between16

TCB16, 22
Ticks125
Time variables123
Timer for embOS...............125
Trace filters, of embOSView138

setup functions140�42
Trace record functions.143�45
Tracing API calls

with embOSView.....138�46

U
UART.................................135
UART, for embOSView124, 125

V
Vector table file125

	Disclaimer
	Copyright notice
	Trademarks
	Registration
	Contact address
	Software and manual versions
	Contents
	About this document
	Assumptions
	How to use this manual
	Typographic conventions for syntax

	Introduction to embOS
	What is embOS?
	Features� XE "embOS:features of" �� XE "Features of embOS"

	Basic concepts
	Tasks�xe "Tasks"
	Single-task system (superloop)� XE "Superloop" �� XE "Single-task system"
	Multitasking systems� XE "Multitasking"
	Cooperative multitasking�xe " Cooperative multitasking "�� XE "Multitasking:cooperative"
	Preemptive multitasking� XE "Preemptive multitasking" �� XE "Multitasking:preemptive"

	Scheduling�xe "Scheduler"
	Round-robin scheduling algorithm� XE "Round-robin"
	Priority-controlled scheduling algorithm� XE "Priority"
	Priority inversion� XE "Priority inversion"

	� Communication between tasks
	Global variables� XE "Global variables"
	Communication mechanisms� XE "Tasks:communication between"

	How task-switching works� XE "Tasks:switching between"
	Switching stacks� XE "Stacks: switching"
	Change of task status� XE "Tasks:states of"
	How the OS gains control
	Different builds of embOS� XE "embOS:builds of"
	Profiling� XE "Profiling"
	List of libraries� XE "embOS:libraries"

	Task routines
	OS_CREATETASK(): Create a task� XE "OS_CREATETASK"
	OS_CreateTask(): Create a task� XE "OS_CreateTask"
	OS_Delay(): Suspend for fixed time� XE "OS_Delay"
	OS_DelayUntil(): Suspend until� XE "OS_DelayUntil"
	OS_SetPriority(): Change priority of a task� XE "OS_SetPriority"
	OS_GetPriority(): Retrieve priority of a task� XE "OS_GetPriority"
	OS_SetTimeSlice(): Change timeslice of a task� XE "OS_SetTimeSlice"
	OS_Suspend(): Suspend a task� XE "OS_Suspend"
	OS_Resume(): Restarts a suspended task� XE "OS_Resume"
	OS_Terminate(): Terminate a task� XE "OS_Terminate"
	OS_WakeTask(): Resume a time suspended task� XE "OS_WakeTask"
	OS_IsTask(): Check whether a task is valid� XE "OS_IsTask"
	OS_GetTaskID(): Retrieve ID of current task � XE "OS_GetTaskID"
	OS_GetpCurrentTask(): Retrieve TCB of current task � XE "OS_GetpCurrentTask"

	Software timers
	OS_CREATETIMER(): Create a software timer� XE "OS_CREATETIMER"
	OS_CreateTimer(): Create a software timer� XE "OS_CreateTimer"
	OS_StartTimer(): Start a timer� XE "OS_StartTimer"
	OS_StopTimer(): Stop a timer� XE "OS_StopTimer"
	OS_RetriggerTimer(): Restart a timer� XE "OS_RetriggerTimer"
	OS_SetTimerPeriod(): Set restart value� XE "OS_SetTimerPeriod"
	OS_DeleteTimer(): Delete a timer� XE "OS_DeleteTimer"
	OS_GetTimerPeriod(): Retrieve restart value� XE "OS_GetTimerPeriod"
	OS_GetTimerValue(): Retrieve remaining time� XE "OS_GetTimerValue"
	OS_GetTimerStatus(): Retrieve timer status� XE "OS_GetTimerStatus"
	OS_GetpCurrentTimer(): Retrieve current timer� XE "OS_GetpCurrentTimer"

	Resource semaphores
	OS_CREATERSEMA(): Create resource semaphore� XE "OS_CREATERSEMA"
	OS_Use(): Use a resource� XE "OS_Use"
	OS_Unuse(): Release a resource� XE "OS_Unuse"
	OS_Request(): Request a resource� XE "OS_Request"
	OS_GetSemaValue(): Retrieve usage counter value� XE "OS_GetSemaValue"
	OS_GetResourceOwner(): Retrieve blocking task� XE "OS_GetResourceOwner"

	Counting Semaphores
	OS_CREATECSEMA(): Create counting semaphore� XE "OS_CREATECSEMA"
	OS_CreateCSema(): Create counting semaphore� XE "OS_CreateCSema"
	OS_SignalCSema(): Increment counter� XE "OS_SignalCSema"
	OS_WaitCSema(): Decrement counter� XE "OS_WaitCSema"
	OS_WaitCSemaTimed(): Decrement counter with timeout� XE "OS_WaitCSemaTimed"
	OS_GetCSemaValue(): Retrieve counter value� XE "OS_GetCSemaValue"
	OS_DeleteCSema(): Delete a counting semaphore� XE "OS_DeleteCSema"

	Mailboxes
	Why mailboxes?
	Basics
	Typical applications
	OS_CREATEMB(): Create a mailbox� XE "OS_CREATEMB"
	Single-byte mailbox functions� XE "Mailboxes:single-byte" �� XE "Single-byte mailboxes"
	OS_PutMail() / OS_PutMail1(): Store a message� XE "OS_PutMail" �� XE "OS_PutMail1"
	OS_PutMailCond() / OS_PutMailCond1(): Store a message if possible� XE "OS_PutMailCond" �� XE "OS_PutMailCond1"
	OS_GetMail() / OS_GetMail1(): Retrieve a message � XE "OS_GetMail" �� XE "OS_GetMail1"
	OS_GetMailCond() / OS_GetMailCond1(): Retrieve a message if possible� XE "OS_GetMailCond" �� XE "OS_GetMailCond1"
	OS_GetMailTimed(): Retrieve a message within a given time� XE "OS_GetMailTimed"
	OS_WaitMail(): Wait until a mail is available� XE "OS_WaitMail"
	OS_ClearMB(): Empty a mailbox� XE "OS_ClearMB"
	OS_GetMessageCnt(): Get number of messages in mailbox� XE "OS_GetMessageCnt"
	OS_DeleteMB(): Delete a mailbox� XE "OS_DeleteMB"

	Queues
	Why queues?
	Basics
	OS_Q_Create(): Create a message queue� XE "OS_Q_Create"
	OS_Q_Put(): Store message� XE "OS_Q_Put"
	OS_Q_GetPtr(): Retrieve message� XE "OS_Q_GetPtr"
	OS_Q_GetPtrCond(): Retrieve message if possible� XE "OS_Q_GetPtrCond"
	OS_Q_Purge(): Delete one message in queue � XE "OS_Q_Purge"
	OS_Q_Clear(): Delete all messages in queue � XE "OS_Q_Clear"
	OS_Q_GetMessageCnt(): Get number of messages in queue � XE "OS_Q_GetMessageCnt"

	Events
	OS_WaitEvent(): Wait for event, then clear all events� XE "OS_WaitEvent"
	OS_WaitSingleEvent(): Wait for event, then clear masked events only� XE "OS_WaitSingleEvent"
	OS_WaitEventTimed():Wait for event with timeout� XE "OS_WaitEventTimed"
	OS_WaitSingleEventTimed(): Wait for event, then clear masked events, with timeout� XE "OS_WaitSingleEventTimed"
	OS_SignalEvent(): Signal a task that an event has occured� XE "OS_SignalEvent"
	OS_GetEventsOccured(): Get a list of events� XE "OS_GetEventsOccured"
	OS_ClearEvents(): Clear list of events� XE "OS_ClearEvents"

	Heap type memory management� XE "Memory management:Heap memory"
	API reference

	Fixed block size memory pools� XE "Memory management:Fixed block size"
	API reference
	OS_MEMF_Create(): Create a fixed size memory pool� XE "OS_MEMF_Create"
	OS_MEMF_Delete(): Delete a fixed size memory pool� XE "OS_MEMF_Delete"
	OS_MEMF_Alloc(): Retrieve one block from memory pool� XE "OS_MEMF_Alloc"
	OS_MEMF_AllocTimed(): Retrieve block with timeout� XE "OS_MEMF_AllocTimed"
	OS_MEMF_Request(): Retrieve memory block if available� XE "OS_MEMF_Request"
	OS_MEMF_Release(): Free a memory block in pool� XE "OS_MEMF_Release"
	OS_MEMF_FreeBlock(): Free a memory block� XE "OS_MEMF_FreeBlock"
	OS_MEMF_GetNumBlocks(): Returns number of blocks in pool� XE " OS_MEMF_GetNumBlocks"
	OS_MEMF_GetBlockSize(): Returns size of one memory block� XE " OS_MEMF_GetBlockSize"
	OS_MEMF_GetNumFreeBlocks(): Returns number of free blocks in pool� XE " OS_MEMF_GetNumFreeBlocks"
	OS_MEMF_GetMaxUsed(): Returns max. number of used blocks in pool� XE " OS_MEMF_GetMaxUsed"
	OS_MEMF_IsInPool(): Check if block belongs to pool� XE " OS_MEMF_IsInPool"

	Stacks� XE "Stacks"
	System stack
	Task stack
	Interrupt stack
	OS_GetStackSpace()� XE "OS_GetStackSpace"

	Interrupts
	Rules for interrupt handlers
	General rules
	Additional rules for preemptive multitasking� XE "Interrupts:and preemptive multitasking"

	Calling embOS routines from within an ISR
	OS_EnterInterrupt()� XE "OS_EnterInterrupt"
	OS_LeaveInterrupt()� XE "OS_LeaveInterrupt" �,
	OS_LeaveInterruptNoSwitch(),� XE "OS_LeaveInterruptNoSwitch"
	Example

	Enabling / disabling interrupts from "C" � XE "Interrupts:enabling/disabling"
	OS_IncDI() / OS_DecRI()
	OS_DI() / OS_EI() / OS_RestoreI()

	Definitions of interrupt control macros (in RTOS.h)� XE "Interrupt control macros"
	Nesting interrupt routines� XE "Nested interrupts" �� XE "Interrupts:nesting"
	OS_EnterNestableInterrupt()� XE "OS_EnterNestableInterrupt"
	OS_LeaveNestableInterrupt()� XE "OS_LeaveNestableInterrupt"
	OS_LeaveNestableInterruptNoSwitch()� XE "OS_LeaveNestableInterruptNoSwitch"

	Non-maskable interrupts (NMIs) � XE "NMIs"

	Critical regions
	OS_EnterRegion(): Enter critical region� XE "OS_EnterRegion"
	OS_LeaveRegion(): Leave critical region� XE "OS_LeaveRegion"

	System variables� XE "System variables"
	Time Variables� XE "Time variables"
	OS_Time� XE "OS_Time"
	OS_TimeDex� XE "OS_TimeDex"

	OS internal variables and data-structures� XE "Internal data structures"

	Configuration for your target system (RTOSINIT.c)
	Hardware-specific routines� XE "Hardware-specific routines"
	Configuration defines� XE "Defines, for configuration"
	How to change settings
	Setting the system frequency OS_FSYS� XE "System frequency"
	Using a different timer � XE "Timer for embOS" �to generate the tick-interrupts for embOS
	Using a different UART or baudrate for embOSView� XE "Baudrate, for embOSView" �� XE "UART, for embOSView"
	Changing the tick frequency� XE "Interrupt frequency"

	OS_CONFIG()� XE "OS_CONFIG"

	Time-related routines
	Low-resolution measurement
	OS_GetTime()� XE "OS_GetTime"
	OS_GetTime32()� XE "OS_GetTime32"
	Example of typical use of low-resolution measurement

	High-resolution measurement
	OS_Timing_Start()� XE "OS_Timing_Start"
	OS_Timing_End()� XE "OS_Timing_End"
	OS_Timing_Getus()� XE "OS_Timing_Getus"
	OS_Timing_GetCycles()� XE "OS_Timing_GetCycles"
	Example of typical use of high-resolution management

	Example

	STOP / HALT / IDLE modes� XE "Stop mode" �� XE "Halt mode" �� XE "Idle mode"
	embOSView: profiling and analyzing
	Overview
	Task list window� XE "embOSView:task list window"
	System variables window� XE "embOSView:system variables window"
	Sharing the SIO for terminal I/O� XE "embOSView:SIO"
	OS_SendString()� XE "OS_SendString"
	OS_SetRxCallback()� XE "OS_SetRxCallback"

	Using the API trace
	Trace filter setup functions
	OS_TraceEnable()� XE "OS_TraceEnable"
	OS_TraceDisable()� XE "OS_TraceDisable"
	OS_TraceEnableAll()� XE "OS_TraceEnableAll"
	OS_TraceDisableAll()� XE "OS_TraceDisableAll"
	OS_TraceEnableId()� XE "OS_TraceEnableId"
	OS_TraceDisableId()� XE "OS_TraceDisableId"
	OS_TraceEnableFilterId()� XE "OS_TraceEnableFilterId"
	OS_TraceDisableFilterId()� XE "OS_TraceDisableFilterId"

	Trace record functions
	OS_TraceVoid()� XE "OS_TraceVoid"
	OS_TracePtr()� XE "OS_TracePtr"
	OS_TraceData()� XE "OS_TraceData"
	OS_TraceDataPtr()� XE "OS_TraceDataPtr"
	OS_TraceU32Ptr()� XE "OS_TraceU32Ptr"

	Application-controlled trace example
	User-defined functions� XE "embOSView:customizing"

	Debugging
	Run time errors
	List of error codes

	Supported development tools� XE "Development tools"
	Limitations� XE "Limitations, of embOS" �� XE "embOS:limitations of"
	Source code of kernel and library
	Additional modules� XE "Additional modules"
	Keyboard manager: KEYMAN.C�XE "KEYMAN.C"��XE "Keyboard driver"
	Additional libraries and modules

	FAQ (frequently asked questions)
	Glossary
	Index

