

embOS

Real Time Operating System

CPU & Compiler specifics for

RENESAS M16C/R8C CPUs

used

with HEW and GNU compiler

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

embOS for M16C/R8 CPUs and GNU compiler 3/15

 1996- 2006 Segger Microcontroller Systeme GmbH

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with RENESAS HEW .. 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Main.c .. 6

3. M16C and GNU compiler specifics ... 8
3.1. Memory models ... 8
3.2. Available libraries... 8
3.3. Distributed project files... 8
3.4. M306N CPU specifics .. 8
3.5. M16C/62P CPU specifics... 9
3.6. Startup file start_M16C.asm .. 9
3.7. Section definition file start_M16C.sec.. 9

4. Stacks ... 10
4.1. Task stack for M16C.. 10
4.2. System stack for M16C.. 10
4.3. Interrupt stack for M16C .. 10
4.4. Reducing the stack size ... 10

5. Interrupts ... 11
5.1. What happens when an interrupt occurs? ... 11
5.2. Defining interrupt handlers in "C"... 11
5.3. Writing interrupt handlers which call embOS functions...................................... 11
5.4. Interrupt vector table .. 11
5.5. Interrupt-stack.. 12
5.6. Fast interrupts with M16C.. 12
5.7. Interrupt priorities ... 12

6. STOP / WAIT Mode .. 13
7. Technical data... 14

7.1. Memory requirements .. 14
8. Files shipped with embOS for NC30 compiler.. 14
9. Index ... 15

4/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS for M16C/R8C Real Time Operating
System for the RENESAS M16C/R8C series of microcontroller using
RENESAS HEW version 4 and KPIT GNU compiler.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
M16C/R8C CPUs with GNU compiler. Before actually using embOS, you
should read or at least glance through this manual in order to become familiar
with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using RENESAS High-performance Embedded Workshop HEW. If you have no
experience using embOS, you should follow this introduction, even if you do
not plan to use RENESAS HEW, because it is the easiest way to learn how to
use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
M16C/R8C CPUs and GNU compiler.

embOS for M16C/R8 CPUs and GNU compiler 5/15

 1996- 2006 Segger Microcontroller Systeme GmbH

2. Using embOS with RENESAS HEW

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using RENESAS HEW to develop your application, no
further installation steps are required. You will find a prepared sample work-
space and sample start project for M16C CPU, which you should use and mod-
ify to write your application. So follow the instructions of the next chapter �First
steps�.

You should do this even if you do not intend to use RENESAS HEW for your
application development in order to become familiar with embOS.

embOS does in no way rely on RENESAS HEW, it may be used without the
workbench using batch files or a make utility without any problem.

6/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start project for
M16C CPUs and it is a good idea to use this as a starting point of all your appli-
cations.

Your embOS distribution contains everything you need for NC30 compiler ver-
sion 5.40 and HEW version 4. If you have to use compiler version 5.3 or lower
and RENESAS Tool manager, the sample start workspace can not be used.

For NC30 compiler version 5.40 and HEW version 4 which is explained in this
manual, you should:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the folder �em-

bOS_M16C_NC30_V540_HEW� from your embOS distribution into your
work directory.

• Clear the read only attribute of all files in the new �Start�-folder in your work-
ing directory.

• Open the folder �Start�
• Open the start workspace �Start_M16C.hws�. (e.g. by double clicking it)
• Build the start project

After building the start project, your screen should look like follows:

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

embOS for M16C/R8 CPUs and GNU compiler 7/15

 1996- 2006 Segger Microcontroller Systeme GmbH

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
**
* *
* (C) 2006 SEGGER Microcontroller Systeme GmbH *
* *
* www.segger.com Support: support@segger.com *
* *
**

--
File : Main.c
Purpose : Skeleton program for embOS
-------- END-OF-HEADER ---
*/

#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

8/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

3. M16C and GNU compiler specifics

3.1. Memory models

embOS supports all memory models that the KPIT GNU compiler supports.
For M16C there is only one memory models available:

Model Code Data
Near far (20 bits always) near (16 bits)

3.2. Available libraries

The files to use are:

Memorymodel Library type Library define
Near Release osNR OS_LIBMODE_R
Near Stack-check osNS OS_LIBMODE_S
Near Stack-check + Profiling osNSP OS_LIBMODE_SP
Near Debug osND OS_LIBMODE_D
Near Debug + Profiling osNDP OS_LIBMODE_DP
Near Trace + Debug osNDT OS_LIBMODE_DT

When using RENESAS HEW, please check the following points:
• One embOS library is part of your project (included in the library list under

Project Options | LFLAGS)
• The appropriate define is set as compiler option for your project.

3.3. Distributed project files

The distribution of embOS contains one start workspace and one start project
which is set up to use the Debug+Profiling library.

3.4. M306N CPU specifics

The M16C/6N group of CPUs require modification affecting RTOSInit.c. The
hardware initialization routines and default settings in RTOSInit.c were de-
signed for M16C/62 CPUs.
M306N CPUs have additional prescalers that are activated per default after re-
set and divide the peripheral clock for timer and UART by two.
This results in wrong settings for embOS timer tick and baudrate for UART
used for embOSView.
There are different solutions to correct these settings.

As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked, when you update to a newer
version of embOS.

You may reprogram the Peripheral function clock select register (PCLKR) at
address 0x025E to disable the prescaler for timer and UART, before calling
OS_InitHW(). This could be done during your own target specific hardware
initialization. The protection register bit 0 has to be set to enable modification of
PCLKR

embOS for M16C/R8 CPUs and GNU compiler 9/15

 1996- 2006 Segger Microcontroller Systeme GmbH

When PCLKR is left unchanged (reset value = 0x00), CPUs internal timer A0
and UART clock is derived from CPU clock divided by two.
If you do not want to disable (reprogram) the prescaler for UART or timer, you
may define different values for OS_PCLK_TIMER and OS_PCLK_UART as com-
piler / project option without any changes in RTOSInit.c
OS_PCLK_TIMER is the frequency of CPUs internal peripheral clock used for
the timer. Calculations of timer reload value is derived from this define. Without
modification or override, it is defined to OS_FSYS.
OS_PCLK_UART is the frequency of CPUs internal peripheral clock used for
UARTs. Calculations of baudrate generator value is derived from this define.
Without modification or override, it is defined to OS_FSYS.

3.5. M16C/62P CPU specifics

M16C/62P CPUs come with a built in PLL.
The initialization routine OS_InitHW() for timer initialization is written for ge-
neric M16C CPUs and can also be used for M16C/62P CPUs.
If you want to use the PLL, you will have to modify the initialization sequence
for CPU clock mode setting in OS_InitHW().
You might also have to modify the clock mode initialization when you decide to
use the KD30 ROM monitor for debugging. If the monitor is set up to initialize
the PLL, the system may stop working when the CPU clock mode is modified
during OS_InitHW().

3.6. Startup file start_M16C.asm

embOS. comes with a modified startup file for M16C. Minor modifications of
the original startup files are required; they are documented in this file.

3.7. Section definition file start_M16C.sec

The section file is required to export information about stack sizes and stack
start and end addresses which are needed for embOS stack check.
When building a new project, the linker options have to be modified to use this
file as �Sections only (script file)�.
Depending on the specific CPU derivate, the RAM and ROM address and size
definitions will have to be modified.

10/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

4. Stacks

4.1. Task stack for M16C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the M16C CPU.
As M16C CPUs have a 16bit stack pointer only, this may be any RAM located
from 0x0000..0xFFFF.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the M16C, this minimum task stack size is about 42 bytes.

4.2. System stack for M16C

The system stack size required by embOS is about 40 bytes (65 bytes in. pro-
filing builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.
The stack used as system stack is the one defined at startup. Its size is defined
as STACKSIZE in the ncrt0.a30 start up file.
A good value for the system stack is typically about 80 to 200 bytes.

4.3. Interrupt stack for M16C

The M16C CPU has been designed with multitasking in mind; it has 2 stack-
pointers, the USP and the ISP. The U-Flag selects the active stack-pointer.
During execution of a task or timer, the U-flag is set thereby selecting the user-
stack-pointer. If an interrupt occurs, the M16C clears the U-flag and switches to
the interrupt-stack-pointer automatically this way. The ISP is active during the
entire ISR (interrupt service routine). This way, the interrupt does not use the
stack of the task and the task-stack-size does not have to be increased for in-
terrupt-routines. Additional stack-switching as for other CPUs is therefore not
necessary for the M16C CPUs.
The interrupt stack size is defined as _ISTACKSIZE in the section definition
file.
The interrupt stack size depends on the interrupt handler functions and the
nesting level of interrupts. A minimum stack size of 256 bytes is required, we
recommend a a stack size of 512 bytes.

4.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
and interrupt stack also. Using embOSView, the total size and used size of any
stack can be examined. This may be used to analyze stack requirements and to
reduce the stack sizes, if RAM space is a problem in your application.

embOS for M16C/R8 CPUs and GNU compiler 11/15

 1996- 2006 Segger Microcontroller Systeme GmbH

5. Interrupts

5.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor interrupt priority

level is below or equal to the interrupt priority level, the interrupt is executed
• the CPU switches to the Interrupt stack
• the CPU saves PC and flags on the stack
• the IPL is loaded with the priority of the interrupt
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute REIT command, restoring PC, Flags and switching to User

stack
• For details, please refer to the RENESAS users manual.

5.2. Defining interrupt handlers in "C"

Routines declared with the keywords __attribute__ ((interrupt)) automatically
save & restore the registers they modify and return with REIT.
All interrupt functions are declared in the header file �inthandler.h�.
As the interrupt sources may be device specific, this file may have to be modi-
fied according to the specific target CPU.
The interrupt handler functions itself are implemented in the interrupt functions
file inthandler.c
You may add your code directly into the predefined interrupt handler functions,
or may call your own interrupt handler from there.

5.3. Writing interrupt handlers which call embOS functions

Before any embOS API function is called, embOS has to be informed that an
interrupt handler is running. This is required to inhibit immediate task switches
and is realized by an �EnterInterrupt� function.
A pending task switch will the be executed at the end of the interrupthandler
during execution of the �LeaveInterrupt� function.

Example
"Simple" interrupt-routine which calls an embOS function

#pragma INTERRUPT OS_ISR_tx
void OS_ISR_tx(void) {
 OS_EnterNestableInterrupt(); // We will enable interrupts
 OS_SignalEvent(&TCBrx, 0x01);
 OS_LeaveNestableInterrupt();
}

5.4. Interrupt vector table

The interrupt vectors are defined in the assembly file vects.asm which may
have to be modified according to the specific target CPU.

12/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

5.5. Interrupt-stack

Since the M16C CPUs have a separate stack pointer for interrupts, there is no
need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.

5.6. Fast interrupts with M16C

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 4. Therefore all interrupts with level 5 or above
can still be processed.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

5.7. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.
• Any interrupt handler using embOS API functions has to run with interrupt

priorities from 1 to 4. These embOS interrupt handlers have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and must
end with OS_LeaveInterrupt() or OS_LeaveNestableInterrupt().

• Any Fast interrupt (running at priorities from 5 to 7) must not call any embOS
API function. Even OS_EnterInterrupt() and OS_LeaveInterrupt()
must not be called.

• Interrupt handler running at low priorities (from 1 to 4) not calling any
embOS API function are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Fast interrupts is fixed to
4 and can only be changed by modification of the source code and re-
compiling embOS libraries!

embOS for M16C/R8 CPUs and GNU compiler 13/15

 1996- 2006 Segger Microcontroller Systeme GmbH

6. STOP / WAIT Mode
Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

14/15 embOS for M16C/R8C CPUs and GNU compiler

  1996-2006 Segger Microcontroller Systeme GmbH

7. Technical data

7.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the near memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1670 27
Add. Task --- 19
Add. Semaphore --- 4
Add. Mailbox --- 11
Add. Timer --- 11
Power-management --- ---

8. Files shipped with embOS for NC30 compiler
embOS for M16C/R8C and NC30 compiler is shipped for compiler version 5.40
and projects for HEW version 4.
This version of embOS is located in Folder �embOS_M16C_NC30_V540� and
contains the following files:

Directory File Explanation
Start\ Start_M16C.hws Start workspace for HEW 4
Start\ PD30_SimInt21.

scr
IO script file for embOS timer
interrupt simulation

Start\Start_M16c\ *.* Project files for HEW
Start\INC\ RTOS.h embOS API header file. To be

included in any file using em-
bOS functions

Start\INC\ CPUM16C.h SFR definition file for M16C CPU
Start\Lib *.a embOS libraries
Start\Src\ main.c Frame program to serve as a

start
Start\Src\ inthandler.* Interrupt handler sources and

definitions
Start\Src OS_Error.c The embOS error handler, used

called on runtime error occur-
rence in debug builds.

Start\Src\ vects.asm Interrupt vector table
Start\Src\CPU_M16C RTTOSInit.c CPU specific functions required

for embOS
Start\Src\CPU_M16C start_M16C.asm startup code used with embOS
Start\Src\CPU_M16C start_M16C.sec Section definition file required for

embOS

embOSView and the manuals are found in the root directory of the distribution.

embOS for M16C/R8 CPUs and GNU compiler 15/15

 1996- 2006 Segger Microcontroller Systeme GmbH

9. Index
F
Fast interrupt 12
I
Installation 5
Interrupt priority 12
Interrupt stack 10
Interrupt vector table.................... 11
Interrupt, fast................................ 12
Interrupts...................................... 11
Interrupt-stack.............................. 12
ISTACKSIZE............................... 10
M
M16C/62P...................................... 9

M306N ...8
Memory models..............................8
Memory requirements14
N
NCRT0.a309
O
OS_PCLK_UART..........................9
OS_PLCK_TIMER9
P
PLL ..9
S
SECT30.inc9
Stacks ...10

Stacks, interrupt stack.................. 10
Stacks, system stack..................... 10
Stacks, task stacks........................ 10
STACKSIZE................................ 10
Startup file 9
Stop-mode 13
System stack 10
T
Task stacks................................... 10
Technical data.............................. 14
W
Wait-mode 13

	Contents
	About this document
	How to use this manual

	Using embOS with RENESAS HEW
	Installation
	First steps
	The sample application Main.c

	M16C and GNU compiler specifics
	Memory models
	Available libraries
	Distributed project files
	M306N CPU specifics
	M16C/62P CPU specifics
	Startup file start_M16C.asm
	Section definition file start_M16C.sec

	Stacks
	Task stack for M16C
	System stack for M16C
	Interrupt stack for M16C
	Reducing the stack size

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Writing interrupt handlers which call embOS functions
	Interrupt vector table
	Interrupt-stack
	Fast interrupts with M16C
	Interrupt priorities

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS for NC30 compiler
	Index

