
 

 

 

 

 
 

embOS 
 

Real Time Operating System 
 
 
 

CPU & Compiler specifics for  

Renesas K/0, K/0S & K0R cores using 

IAR Embedded Workbench 

 
Document Rev. 6 

 
 
 
 
 
 

 
 

A product of SEGGER Microcontroller GmbH & Co. KG 
 

www.segger.com 
 



2/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 3/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

Contents 
 
Contents.............................................................................................................................. 3 
1. About this document ....................................................................................................... 4 

1.1. How to use this manual........................................................................................ 4 
2. Using embOS with IAR Embedded Workbench ............................................................. 5 

2.1. Installation............................................................................................................ 5 
2.2. First steps ............................................................................................................ 6 
2.3. Stepping through the sample application using CSpy.......................................... 7 

3. Renesas K/0, K/0S and K0R specifics .......................................................................... 11 
3.1. Processor configuration ..................................................................................... 11 
3.2. Available libraries for K0 CPUs, used with CLIB................................................ 11 
3.3. Available libraries for K0 CPUs, used with DLIB................................................ 11 
3.4. Available libraries for K0S CPUs, used with CLIB ............................................. 12 
3.5. Available libraries for K0S CPUs, used with DLIB ............................................. 12 
3.6. Available libraries for K0R CPUs, used with CLIB ............................................. 13 
3.7. Available libraries for K0R CPUs, used with DLIB ............................................. 14 
3.8. Profiling.............................................................................................................. 14 
3.9. Changing the tick frequency .............................................................................. 15 

4. Stacks ........................................................................................................................... 16 
4.1. Task stack for Renesas K/0, K/0S and K0R ...................................................... 16 
4.2. System and Interrupt stack for Renesas K/0, K/0S and K0R............................. 16 

5. Interrupts ....................................................................................................................... 17 
5.1. What happens when an interrupt occurs? ......................................................... 17 
5.2. Defining interrupt handlers in "C"....................................................................... 17 
5.3. Interrupt-stack.................................................................................................... 18 
5.4. Interrupt stack switching .................................................................................... 18 

6. STOP / WAIT Mode ...................................................................................................... 19 
7. Technical data............................................................................................................... 20 

7.1. Memory requirements ........................................................................................ 20 
8. Files shipped with embOS............................................................................................ 20 
9. Index ............................................................................................................................. 21 
 



4/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

1. About this document 
This guide describes how to use the embOS Real Time Operating System for 
the Renesas K/0, K/0S and K0R series of microcontroller using IAR Embedded 
Workbench. 

1.1. How to use this manual 

This manual describes all CPU and compiler specifics for embOS using Rene-
sas K/0 & K/0S or K0R based controllers with IAR Embedded Workbench. Be-
fore actually using embOS, you should read or at least glance through this 
manual in order to become familiar with the software. 
Chapter 2 gives you a step-by-step introduction, how to install and use embOS 
using IAR Embedded Workbench. If you have no experience using embOS, 
you should follow this introduction, because it is the easiest way to learn how to 
use embOS in your application. 
Most of the other chapters in this document are intended to provide you with 
detailed information about functionality and fine-tuning of embOS for the Re-
nesas K/0, K/0S and K0R based controllers using IAR Embedded Workbench. 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 5/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

2. Using embOS with IAR Embedded Work-
bench  

2.1. Installation 

embOS is shipped on CD-ROM or as a zip-file in electronic form. 
 
In order to install it, proceed as follows: 
 
If you received a CD, copy the entire contents to your hard-drive into any folder 
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying. 
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file. 
 
Assuming that you are using IAR Embedded Workbench project manager to 
develop your application, no further installation steps are required. You will find 
a prepared sample start application, which you should use and modify to write 
your application. So follow the instructions of the next chapter �First steps�. 
 
You should do this even if you do not intend to use the IAR Embedded Work-
bench for your application development in order to become familiar with 
embOS. 
  
If for some reason you will not work with the IAR Embedded Workbench, you 
should: 
Copy either all or only the library-file that you need to your work-directory. Also 
copy the hardware initialization file RTOSInit_*.c found in the CPU specific sub-
directories and the embOS header file RTOS.h This has the advantage that 
when you switch to an updated version of embOS later in a project, you do not 
affect older projects that use embOS also. 
embOS does in no way rely on IAR Embedded Workbench, it may be used 
without the project manager using batchfiles or a make utility without any prob-
lem. 



6/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

 

2.2. First steps 

After installation of embOS (→ Installation) you are able to create your first 
multitasking application. You received a ready to go sample workspace which 
contains two start projects and it is a good idea to use this as a starting point of 
all your applications.  
 
To get your new application running, you should proceed as follows: 
 
Create a work directory for your application, for example c:\work 
Copy the whole folder �Start� which is part of your embOS distribution into your 
work directory 
Clear the read only attribute of all files in the new �start� folder.  
Open one sample workspace found in any of the CPU specific sub-directories 
of the Start\Boardsupport\ folder with your IAR Embedded Workbench (e.g. by 
double clicking it) 
Select a configuration and then build he start project 
Further documentation describes the configuration �FF3_Debug_Sim� form the 
project workspace �Start\BoardSupport\CPU_78F1166\Start_78F1166.eww� 
which is set up for the CSpy simulator. 
 
After building the project, your screen should look like follows: 
 

 
 
For latest information you should open the file start\ReadMe.txt. 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 7/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

2.2.1. The sample application Start_2Tasks.c 
The following is a printout of the sample application Start_2Tasks.c. It is a good 
starting-point for your application. (Please note that the file actually shipped 
with your port of embOS may look slightly different from this one) 
What happens is easy to see: 
After initialization of embOS, two tasks are created and started. 
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution. 
 
/********************************************************** 
*          SEGGER MICROCONTROLLER SYSTEME GmbH 
*   Solutions for real time microcontroller applications 
*********************************************************** 
---------------------------------------------------------------------- 
File    : Start_2Tasks.c 
Purpose : Skeleton program for OS 
--------  END-OF-HEADER  --------------------------------------------- 
*/ 
 
#include "RTOS.h" 
 
OS_STACKPTR int StackHP[128], StackLP[128];          /* Task stacks */ 
OS_TASK TCBHP, TCBLP;                        /* Task-control-blocks */ 
 
static void HPTask(void) { 
  while (1) { 
    OS_Delay (10); 
  } 
} 
 
static void LPTask(void) { 
  while (1) { 
    OS_Delay (50); 
  } 
} 
 
/********************************************************************* 
* 
*       main 
* 
*********************************************************************/ 
 
int main(void) { 
  OS_IncDI();                      /* Initially disable interrupts  */ 
  OS_InitKern();                   /* Initialize OS                 */ 
  OS_InitHW();                     /* Initialize Hardware for OS    */ 
  /* You need to create at least one task here !                    */ 
  OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP); 
  OS_CREATETASK(&TCBLP, "LP Task", LPTask,  50, StackLP); 
  OS_Start();                      /* Start multitasking            */ 
  return 0; 
} 

2.3. Stepping through the sample application using CSpy 

When starting the debugger, you will usually see the main() function (very 
similar to the screenshot below). Now you can step through the program. 
OS_IncDI() initially disables interrupts and prevents OS_InitKern() from 
re-enabling them. Interrupts are automatically re-enabled when OS_Start() is 
called. 
OS_InitKern() is part of the embOS library; you can therefore only step into 
it in disassembly mode. It initializes the relevant OS-Variables and enables in-
terrupts unless they were blocked by a previous call of OS_IncDI(). 
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its 
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS.  Step through it to see what is done. 



8/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

OS_Start() should be the last line in main(), since it starts multitasking and 
does not return. OS_Start() automatically enables interrupts. 
 

 
 
Before you execute OS_Start(), you should set break points in HPTask and 
LPTask: 
 

 
 
When step into OS_Start(), you can only step into it in disassembly mode, 
because this function is part of the embOS library. However, you can press GO 
now or step in disassembly mode until you reach the highest priority task. 
 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 9/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

 
 
If you continue program execution, you will arrive in the task with the second 
highest priority: 
 

 
 
Continuing the program program, there is no other task ready for execution. 
embOS will therefore start the idle-loop, which is an endless loop which is al-
ways executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing). 
 



10/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

 
 
If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay: 
 

 
 
As can be seen by the value of embOS timer variable, HPTask() continues 
operation after the given delay of 10 embOS timer tick cycles. 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 11/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

3. Renesas K/0, K/0S and K0R specifics 

3.1. Processor configuration 

embOS supports 78K/0 (7800X, 780XXX) and 78K/0S (789XXX) processors 
using the standard memory model. 
For K0R CPUs, all code model- / data model-combinations are supported. 

3.2. Available libraries for K0 CPUs, used with CLIB 

Core CPU variant Memory 
model 

Library type Library 

7800x 78K0 basic Standard Extreme Release rtosCS0XR.r26 
7800X 78K0 basic Standard Release rtosCS0R.r26 
7800X 78K0 basic Standard Stack-check rtosCS0S.r26 
7800X 78K0 basic Standard Stack-check + 

Profiling 
rtosCS0SP.r26 

7800X 78K0 basic Standard Debug rtosCS0D.r26 
7800X 78K0 basic Standard Debug + Profiling rtosCS0DP.r26 
7800X 78K0 basic Standard Debug + Trace rtosCS0DT.r26 
7801x 78K0 Standard Extreme Release rtosCS1XR.r26 
7801X 78K0 Standard Release rtosCS1R.r26 
7801X 78K0 Standard Stack-check rtosCS1S.r26 
7801X 78K0 Standard Stack-check + 

Profiling 
rtosCS1SP.r26 

7801X 78K0 Standard Debug rtosCS1D.r26 
7801X 78K0 Standard Debug + Profiling rtosCS1DP.r26 
7801X 78K0 Standard Debug + Trace rtosCS1DT.r26 

3.3. Available libraries for K0 CPUs, used with DLIB 

Core CPU variant Memory 
model 

Library type Library 

7800x 78K0 basic Standard Extreme Release rtosDS0XR.r26 
7800X 78K0 basic Standard Release rtosDS0R.r26 
7800X 78K0 basic Standard Stack-check rtosDS0S.r26 
7800X 78K0 basic Standard Stack-check + 

Profiling 
rtosDS0SP.r26 

7800X 78K0 basic Standard Debug rtosDS0D.r26 
7800X 78K0 basic Standard Debug + Profiling rtosDS0DP.r26 
7800X 78K0 basic Standard Debug + Trace rtosDS0DT.r26 
7801x 78K0 Standard Extreme Release rtosDS1XR.r26 
7801X 78K0 Standard Release rtosDS1R.r26 
7801X 78K0 Standard Stack-check rtosDS1S.r26 
7801X 78K0 Standard Stack-check + 

Profiling 
rtosDS1SP.r26 

7801X 78K0 Standard Debug rtosDS1D.r26 
7801X 78K0 Standard Debug + Profiling rtosDS1DP.r26 
7801X 78K0 Standard Debug + Trace rtosCS1DT.r26 



12/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

3.4. Available libraries for K0S CPUs, used with CLIB 

Core CPU variant Memory 
model 

Library type Library 

789XXX 78K0S Standard Extreme Release rtosCS2XR.r26 
789XXX 78K0S Standard Release rtosCS2R.r26 
789XXX 78K0S Standard Stack-check rtosCS2S.r26 
789XXX 78K0S Standard Stack-check + 

Profiling 
rtosCS2SP.r26 

789XXX 78K0S Standard Debug rtosCS2D.r26 
789XXX 78K0S Standard Debug + Profiling rtosCS2DP.r26 
789XXX 78K0S Standard Debug + Trace rtosCS2DT.r26 
 

3.5. Available libraries for K0S CPUs, used with DLIB 

Core CPU variant Memory 
model 

Library type Library 

789XXX 78K0S Standard Extreme Release rtosDS2XR.r26 
789XXX 78K0S Standard Release rtosDS2R.r26 
789XXX 78K0S Standard Stack-check rtosDS2S.r26 
789XXX 78K0S Standard Stack-check+ 

Profiling 
rtosDS2SP.r26 

789XXX 78K0S Standard Debug rtosDS2D.r26 
789XXX 78K0S Standard Debug + Profiling rtosDS2DP.r26 
789XXX 78K0S Standard Debug + Trace rtosDS2DT.r26 
 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 13/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

3.6. Available libraries for K0R CPUs, used with CLIB 

Code 
mode
l 

Data 
model 

Library type Library mode 
#define 

Library 

Near Near Extreme Release OS_LIBMODE_XR rtosCNN3XR.r26
Near Near Release OS_LIBMODE_R rtosCNN3R.r26 
Near Near Stack-check OS_LIBMODE_S rtosCNN3S.r26 
Near Near Stack-check + Profiling OS_LIBMODE_SP rtosCNN3SP.r26
Near Near Debug OS_LIBMODE_D rtosCNN3D.r26 
Near Near Debug + Profiling OS_LIBMODE_DP rtosCNN3DP.r26
Near Near Debug + Trace OS_LIBMODE_DT rtosCNN3DT.r26
Near Far Extreme Release OS_LIBMODE_XR rtosCNF3XR.r26
Near Far Release OS_LIBMODE_R rtosCNF3R.r26 
Near Far Stack-check OS_LIBMODE_S rtosCNF3S.r26 
Near Far Stack-check + Profiling OS_LIBMODE_SP rtosCNF3SP.r26 
Near Far Debug OS_LIBMODE_D rtosCNF3D.r26 
Near Far Debug + Profiling OS_LIBMODE_DP rtosCNF3DP.r26
Near Far Debug + Trace OS_LIBMODE_DT rtosCNF3DT.r26 
Far Near Extreme Release OS_LIBMODE_XR rtosCFN3XR.r26
Far Near Release OS_LIBMODE_R rtosCFN3R.r26 
Far Near Stack-check OS_LIBMODE_S rtosCFN3S.r26 
Far Near Stack-check + Profiling OS_LIBMODE_SP rtosCFN3SP.r26 
Far Near Debug OS_LIBMODE_D rtosCFN3D.r26 
Far Near Debug + Profiling OS_LIBMODE_DP rtosCFN3DP.r26
Far Near Debug + Trace OS_LIBMODE_DT rtosCFN3DT.r26 
Far Far Extreme Release OS_LIBMODE_XR rtosCFF3XR.r26 
Far Far Release OS_LIBMODE_R rtosCFF3R.r26 
Far Far Stack-check OS_LIBMODE_S rtosCFF3S.r26 
Far Far Stack-check + Profiling OS_LIBMODE_SP rtosCFF3SP.r26 
Far Far Debug OS_LIBMODE_D rtosCFF3D.r26 
Far Far Debug + Profiling OS_LIBMODE_DP rtosCFF3DP.r26 
Far Far Debug + Trace OS_LIBMODE_DT rtosCFF3DT.r26 



14/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

3.7. Available libraries for K0R CPUs, used with DLIB 

Code 
mode
l 

Data 
model 

Library type Library mode 
#define 

Library 

Near Near Extreme Release OS_LIBMODE_XR rtosDNN3XR.r26
Near Near Release OS_LIBMODE_R rtosDNN3R.r26 
Near Near Stack-check OS_LIBMODE_S rtosDNN3S.r26 
Near Near Stack-check + Profiling OS_LIBMODE_SP rtosDNN3SP.r26
Near Near Debug OS_LIBMODE_D rtosDNN3D.r26 
Near Near Debug + Profiling OS_LIBMODE_DP rtosDNN3DP.r26
Near Near Debug + Trace OS_LIBMODE_DT rtosDNN3DT.r26
Near Far Extreme Release OS_LIBMODE_XR rtosDNF3XR.r26
Near Far Release OS_LIBMODE_R rtosDNF3R.r26 
Near Far Stack-check OS_LIBMODE_S rtosDNF3S.r26 
Near Far Stack-check + Profiling OS_LIBMODE_SP rtosDNF3SP.r26 
Near Far Debug OS_LIBMODE_D rtosDNF3D.r26 
Near Far Debug + Profiling OS_LIBMODE_DP rtosDNF3DP.r26
Near Far Debug + Trace OS_LIBMODE_DT rtosDNF3DT.r26 
Far Near Extreme Release OS_LIBMODE_XR rtosDFN3XR.r26
Far Near Release OS_LIBMODE_R rtosDFN3R.r26 
Far Near Stack-check OS_LIBMODE_S rtosDFN3S.r26 
Far Near Stack-check + Profiling OS_LIBMODE_SP rtosDFN3SP.r26 
Far Near Debug OS_LIBMODE_D rtosDFN3D.r26 
Far Near Debug + Profiling OS_LIBMODE_DP rtosDFN3DP.r26
Far Near Debug + Trace OS_LIBMODE_DT rtosDFN3DT.r26 
Far Far Extreme Release OS_LIBMODE_XR rtosDFF3XR.r26 
Far Far Release OS_LIBMODE_R rtosDFF3R.r26 
Far Far Stack-check OS_LIBMODE_S rtosDFF3S.r26 
Far Far Stack-check + Profiling OS_LIBMODE_SP rtosDFF3SP.r26 
Far Far Debug OS_LIBMODE_D rtosDFF3D.r26 
Far Far Debug + Profiling OS_LIBMODE_DP rtosDFF3DP.r26 
Far Far Debug + Trace OS_LIBMODE_DT rtosDFF3DT.r26 

3.8. Profiling 

Cycle accurate time measurement needs a 32bit X 32bit operation. Because 
78K/0 and 78K/0S cannot execute 32 bit multiplications in a fast way, we do not 
recommend to use the profiling libraries (SP, DP or DT). If you are going to use 
profiling libraries, the interrupt latency time may increase drastically. 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 15/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

3.9. Changing the tick frequency 

Normally, the initialization code in RTOSInit.c is set up to generate an embOS 
timer interrupt every millisecond. 
For very slow CPUs such as some of the K0/K0S CPUs, it might be better to 
generate interrupts at larger periods. 
Different (lower or higher) interrupt rates are possible. If you choose an interrupt 
frequency different from 1 kHz, the value of the time variable will no longer be 
equivalent to multiples of 1 ms. However, if you use a multiple of 1ms as tick 
time, the basic time unit can be made 1 ms by using the (optional) configuration 
function OS_TICK_Config() and calling the special embOS tick handler func-
tion OS_TICK_HandleEx() instead one used in the embOS timer interrupt 
handler. The basic time unit does not have to be 1 ms; it might just as well be 
10 ms or any other value. 

3.9.1.OS_TICK_Config() 
OS_TICK_Config() can be used to configure embOS in situations where the 
basic timer-interrupt interval (tick) is a multiple of 1 ms and the time values for 
delays still should represent 1 ms as the time base. OS_CONFIG() tells 
embOS how many system time units expire per embOS tick and what the sys-
tem frequency is. 

Example 

The following code example will instruct embOS to increment the time variable 
OS_Time by 2 per embOS timer-interrupt. 
 
OS_TICK_Config(2,1); /* Configure OS : System-frequency, ticks/int */ 
 
If, for example, the basic timer was initialized to 500 Hz, which would result in 
an embOS timer-interrupt every 2 ms, a call of OS_Delay(10) would result in 
a delay of 20 ms, because all timing values are interpreted as ticks. A call of 
OS_TICK_Config() with the parameters shown in example 2 would compen-
sate for the difference, resulting in a delay of 10 ms when calling 
OS_Delay(10). 
 

Note: 

The default embOSembOSembOSembOS timer tick handler does not handle the settings which 
were made by a call of OS_TICK_Config(). 
The alternate embOS timer tick handler OS_TICK_HandleEx() has to be 
called from the timer interrupt service routine to use the correction which was 
set by OS_TICK_Config(). 
To use OS_TICK_Config(), the timer interrupt service routine in 
RTOSInit.c has to be modified as shown below: 
#pragma vector=OS INTTM00_vect 
__interrupt void OS_ISR_Tick (void) { 
  OS_EnterNestableInterrupt(); 
  OS_EnterIntStack(); 
  OS_TICK_HandleEx(); 
  OS_LeaveIntStack(); 
  OS_LeaveNestableInterrupt(); 
} 



16/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

4. Stacks 

4.1. Task stack for Renesas K/0, K/0S and K0R 

The stack pointer can point to any location of the K/0 & K/0S address space. 
The stack pointer of K0R is a 16bit register which can address the upper 64KB 
of the address space. However, usually only the internal high speed RAM is 
suitable for stacks; please check also the hardware manual of your device. If 
you use one of our sample *.xcl files and the storage modifier for your stack 
declaration, the stack will be placed automatically into the internal high speed 
RAM. 
We defined a section K0_STACKS in our linker control files for the K0 CPUs. 
To ensure that stacks are located in this section, you have to use a #pragma 
statement or the �@� operator to place the task stacks into internal high speed 
RAM. Please refer to our XCL-files and sample main application: 
 
/* Task stacks need to be located in segment K0_STACKS   */ 
/* which resides in internal high speed RAM.             */ 
__no_init int Stack0[64] @ "K0_STACKS"; 
__no_init int Stack1[64] @ "K0_STACKS"; 
 
 

4.2. System and Interrupt stack for Renesas K/0, K/0S and K0R 

The IAR CSTACK is used as system stack. Your application uses this stack be-
fore executing OS_Start(), during internal functions and during the timer tick 
routines. Also software timers use the system stack. If your interrupt service 
routines use OS_EnterIntStack(), they will also use the system stack. 
The CSTACK segment also has to be located in internal high speed RAM on 
most CPUs. 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 17/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

5. Interrupts 

5.1. What happens when an interrupt occurs? 

• The CPU-core receives an interrupt request 
• As soon as the interrupts are enabled, the interrupt is executed 
• The corresponding interrupt service routine (ISR) is started 
• The first thing you should do in the ISR, is to call OS_EnterInterrupt() 
or OS_EnterNestableInterrupt(). This tells embOS, that you are 
executing an ISR. In case of calling OS_EnterNestableInterrupt() 
embOS will re-enable interrupts again to allow nesting. 

• The ISR does store all registers which are modified by the ISR on the current 
stack. Current stack is either a task stack or the system stack, 

• If your are using OS_EnterIntStack() in the ISR, it will switch the stack 
pointer to the system stack. Please be aware, that a function calling 
OS_EnterIntStack() is not allowed to have local variables. 

• If you used OS_EnterIntStack() at the beginning of your ISR, you have 
to call OS_LeaveIntStack() at the end of this function. The stack pointer 
will be restored to its original value. 

• Depending on which function you have called at the beginning of your ISR, 
you will have to call OS_LeaveInterrupt() or 
OS_LeaveNestableInterrupt() and the ISR will return from interrupt. If 
the ISR caused a task switch, it will take place immediately when leaving the 
ISR. 

5.2. Defining interrupt handlers in "C" 

The definition of an interrupt function using embOS calls is very much the 
same as for a normal interrupt service routine (ISR). If your ISR will use 
embOS system calls, or if you enable interrupts again in your ISR, you will 
have to call OS_EnterInterrupt() or OS_EnterNestableInterrupt() 
at the start and OS_LeaveInterrupt() or 
OS_LeaveNestableInterrupt() at the end of your ISR. In case you want 
to execute the ISR on the system stack, you will have to call 
OS_EnterIntStack() right after e.g. OS_EnterInterrupt() and 
OS_LeaveIntStack() right before e.g. OS_LeaveInterrupt().  

Example 
 
"Simple" interrupt-routine 
 
#pragma vector= INTTM00_vect 
__interrupt void OS_ISR_Tick (void) { 
  OS_EnterNestableInterrupt(); 
  OS_EnterIntStack(); 
  OS_TICK_Handle(); 
  OS_LeaveIntStack(); 
  OS_LeaveNestableInterrupt(); 
} 



18/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

5.3. Interrupt-stack 

The routines OS_EnterIntStack() and OS_LeaveIntStack() can be 
used to switch the stack pointer to the system stack during execution of the 
ISR. If you are not using these routines, the ISR uses the active staks. The 
active stack is either a task stack or the system stack. 

5.4. Interrupt stack switching 

Since the Renesas K0/K0S/K0R CPUs do not have a separate stack pointer for 
interrupts, every interrupt runs on the current stack. To reduce stack load of 
tasks, embOS offers its own interrupt stack which is located in the system 
stack. 
To use the embOS interrupt stack, call OS_EnterIntStack() at the begin-
ning of an interrupt handler just after the call of OS_EnterInterrupt() and 
call OS_LeaveIntStack() at the end just before OS_LeaveInterrupt(). 
 
Please note, that an interrupt handler using interrupt stack switching 
must not use local variables. 

Interrupt-routine using embOS interrupt stack: 
static void OS_ISR_Rx_Handler(void) { 
  int Dummy; 
  if (ASIS0 & 0x07) {           /* Check any reception error        */ 
    Dummy = RXB0;               /* Reset error, discard Byte        */ 
  } else { 
    OS_OnRx(RXB0);              /* Process data                     */ 
  } 
} 
 
__interrupt [INTSR0_vect] void OS_ISR_rx(void) { 
  OS_EnterNestableInterrupt();  /* We will enable interrupts        */ 
  OS_EnterIntStack();           /* We will use interrupt stack      */ 
  OS_ISR_Rx_Handler();          /* A call to a handler is required !*/ 
  OS_LeaveIntStack();           /* Interrupt stack switching does   */ 
  OS_LeaveNestableInterrupt();  /* not allow local variables in ISR */ 
} 
 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 19/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

6. STOP / WAIT Mode 
In case your controller supports some kind of power saving mode, it should be 
possible to use it also with embOS, as long as the timer keeps working and 
timer interrupts are processed. To enter that mode, you usually have to imple-
ment some special sequence in the function OS_Idle(), which is implemented 
in the source file RTOSINIT.c. 

 



20/21 embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

7. Technical data 

7.1. Memory requirements 

These values are neither precise nor guaranteed but they give you a good idea 
of the memory-requirements. They vary depending on the current version of 
embOS. The minimum ROM requirement for the kernel itself is about 1.500 In 
the table below, you can find minimum RAM size for embOS resources. Please 
note, that sizes depend on selected embOS library mode; table below is for a 
release build. 
 
embOS resource RAM [bytes] 
Task control block 18
Resource semaphore 4
Counting semaphore 2
Mailbox 12
Software timer 10
 

8. Files shipped with embOS 
 
Directory File Explanation 
root *.pdf Generic API- and target specific 

documentation 
root Release.html Release notes of embOS for 

K0/K0S/K0R 
root embOSView.exe Utility for runtime analysis, described 

in generic documentation 
Start\Inc\ Rtos.h Include file for embOS, to be in-

cluded in every �C�-file using embOS
functions. 

Start\Lib\ rtos*.r26 Libraries for all memory models 
Start\BoardSupport\ 
CPU_*\ 

Start*.eww CPU specific sample workspace 

Start\BoardSupport\ 
CPU_*\ 

Start*.ewp CPU specific sample project 

Start\BoardSupport\ 
CPU_*\ 

Start*.ewd CPU and project specific debug con-
figuration file. 

Start\BoardSupport\ 
CPU_*\Application\ 

*.* Sample application programs. 

Start\BoardSupport\ 
CPU_*\Setup\ 

RTOSInit*.* Target CPU specific init functions. 
May be modified if required. 

Start\BoardSupport\ 
CPU_*\Setup\ 

OS_Error.c embOS error handler, used in stack 
check or debug builds. 

Start\BoardSupport\ 
CPU_*\Setup\ 

*.mac Target CPU specific simulation macro 
files for C-SPY simulator. 

Start\BoardSupport\ 
CPU_*\Setup\ 

*.* Target CPU specific linker files and 
others required for the specific CPU 
variant 

 
embOSView and the manuals are found in the root directory of the distribution. 
Any additional files are shipped as example. 



embOS for Renesas K/0, K/0S & K0R and IAR Embedded Workbench 21/21 

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG 

 

9. Index 
C 
CSTACK...................................... 16 
H 
Halt-mode .................................... 19 
I 
Idle-task-mode ............................. 19 
Installation ..................................... 5 
Interrupt stack switching.............. 18 
Interrupts...................................... 17 

Interrupt-stack ..............................18 
K 
K0_STACKS................................16 
M 
memory models ............................11 
memory requirements ...................20 
O 
OS_EnterIntStack() ......................18 
OS_LeaveIntStack() .....................18 

OS_TICK_Config() ..................... 15 
OS_TICK_HandleEx() ................ 15 
S 
Stacks .......................................... 16 
Stop-mode ................................... 19 
T 
target hardware ............................ 20 
W 
Wait-mode ................................... 19 

 


	Contents
	About this document
	How to use this manual

	Using embOS with IAR Embedded Workbench
	Installation
	First steps
	The sample application Start_2Tasks.c

	Stepping through the sample application using CSpy

	Renesas K/0, K/0S and K0R specifics
	Processor configuration
	Available libraries for K0 CPUs, used with CLIB
	Available libraries for K0 CPUs, used with DLIB
	Available libraries for K0S CPUs, used with CLIB
	Available libraries for K0S CPUs, used with DLIB
	Available libraries for K0R CPUs, used with CLIB
	Available libraries for K0R CPUs, used with DLIB
	Profiling
	Changing the tick frequency
	OS_TICK_Config()


	Stacks
	Task stack for Renesas K/0, K/0S and K0R
	System and Interrupt stack for Renesas K/0, K/0S and K0R

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack
	Interrupt stack switching

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

