

embOS

Zero latency
Real Time Operating System

CPU & Compiler specifics for

Fujitsu FR series CPUs

and Softune compiler V6

Document Rev. 3

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for FR CPUs and Fujitsu compiler Fcc911s 3/22

 2008 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. What�s new?.. 5

2.1. Update / Upgrade information.. 5
3. Using embOS with Softune Workbench ... 6

3.1. Installation.. 6
3.2. First steps .. 7
3.3. The sample application Main.c .. 8
3.4. Stepping through the sample project using Softune simulator............................. 9

4. Project and compiler settings .. 13
4.1. Available libraries... 13

5. Modify the start project for your application... 14
5.1. Choose an other library.. 14
5.2. Switch between target CPU and Simulator .. 14
5.3. Select an other CPU .. 14

6. Stacks ... 15
6.1. Task stack for FR CPUs .. 15
6.2. FR CPU System (Interrupt) stack .. 15
6.3. FR CPU User stack.. 15
6.4. Stack specifics of the Fujitsu FR family ... 16
6.5. Stack check using embOS .. 16

7. Interrupts ... 17
7.1. What happens when an interrupt occurs? ... 17
7.2. Defining interrupt handlers in "C"... 17
7.3. Defining interrupt vectors ... 18
7.4. Zero latency, fast interrupts with FR CPUs.. 18
7.5. Interrupt priorities ... 18
7.6. Interrupt-stack.. 19
7.7. Special considerations for FR CPUs.. 19

8. Stop / Sleep Mode... 20
9. Technical data... 21

9.1. Memory requirements .. 21
10. Files shipped with embOS for FR... 21
11. Index ... 22

4/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS Real Time Operating System for the
Fujitsu FR series CPUs using Fujitsu compiler Fcc911s and Fujitsu Softune
Workbench V6.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS for FR CPU
series and Fujitsu Fcc911s compiler. Before actually using embOS, you should
read or at least glance through this manual in order to become familiar with the
software.
Chapter 3 gives you a step-by-step introduction, how to install and use embOS
using Softune workbench. If you have no experience using embOS, you should
follow this introduction, even if you do not plan to use Softune Workbench or
Softune simulator, because it is the easiest way to learn how to use embOS in
your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the FR
CPU series using Fujitsu Fcc911s compiler.

embOS for FR CPUs and Fujitsu compiler Fcc911s 5/22

 2008 SEGGER Microcontroller GmbH & Co. KG

2. What�s new?
• Zero latency, fast interrupts:
Since version 3.22a of embOS for FR CPUs, interrupt handling inside embOS
was modified. Instead of disabling interrupts when embOS does atomic opera-
tions, the interrupt level of the CPU is set to 20. Therefore all interrupts with
level below twenty can still be processed which results in zero latency.

• Selectable priority for Fast interrupts:
Since version 3.60d of embOS for FR CPUs, the interrupt priority limit for fast
interrupts can be modified during runtime.
Initially, the limit is set to 20, but may be modified by a call of the new function
OS_SetFastIntPriorityLimit().

2.1. Update / Upgrade information

When you update / upgrade from an embOS version prior 3.22a, you may
have to change your interrupt handlers because of Fast interrupt support. All in-
terrupt handlers using embOS functions have to run on priorities from 21 to 30.
Please read chapter �Interrupts� in this manual.

6/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

3. Using embOS with Softune Workbench

3.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Softune Workbench to develop your application,
no further installation steps are required. You will find prepared sample work-
spaces and start projects for different FR CPUs which you should use and
modify to write your application. So follow the instructions of the next chapter
�First steps�.

You should do this even if you do not intend to use Softune Workbench for your
application development in order to become familiar with embOS.

If for some reason you will not work with Softune Workbench, you should:
Copy either all or only the library-file that you need to your work-directory. Also
copy all source and include files found in the start folder of your embOS distri-
bution. This has the advantage that when you switch to an updated version of
embOS later in a project, you do not affect older projects that use embOS
also.
embOS does in no way rely on Softune Workbench, it may be used without the
workbench using batch files or a make utility without any problem.

embOS for FR CPUs and Fujitsu compiler Fcc911s 7/22

 2008 SEGGER Microcontroller GmbH & Co. KG

3.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample workspaces and start
projects for different CPUs. These workspaces are found in the CPU specific
subfolders under �Start\BoardSupport\�. The following sample session is based
on the startproject for an MB91362 CPU, located in the subdirectory
�Start\BoradSupport\MB91362�. You may use an other workspace from an
other subdirectory, if there is one available for your CPU.

The sample start project contains everything you need for the specific CPU.
As long as this CPU should be used, no further settings or modifications are re-
quired. When you would use an other CPU, you have to select an other start
project, or have to modify the project as described later in this manual.
To get familiar with embOS you should first use the sample start project.

To get your new application running, you should proceed as follows.

• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start� from your embOS distribution into your work

directory.
• Clear the read only attribute of all files in the new �Start�-folder in your work-

ing directory.
• Open the folder �Start\Boardsupport\MB91362�.
• Open the sample start workspace �Start_91362.wsp� (e.g. by double clicking

it). You may be ask to create the output folders for the application. Please
accept the default settings.

• Build the start project

8/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

Please note:
The sample start project configuration �Debug_Sim� is selected per default and
is set up for Softune debugger simulator. This was done to enable an easy start
with embOS.
The simulator needs a SIMULATOR define macro to disable initialization of PLL,
because this can not be simulated and the simulator would be blocked in the
startup code.
We modified the original sample startup code. The SIMULATOR define can be
set as Project Tool Option for Assembler. The assembler startup file does not
need to be modified.
The �Debug� configuration is prepared for your target. This configuration is pre-
pared to initialize the target CPUs PLL during startup.

3.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 OS_Delay (10);
 }
}

void Task1(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for FR CPUs and Fujitsu compiler Fcc911s 9/22

 2008 SEGGER Microcontroller GmbH & Co. KG

3.4. Stepping through the sample project using Softune simulator

When starting the Softune simulator debugger, you will usually see the main
function (very similar to the screenshot below). The simulator procedure file
Start_simulator.prc, required for embOS timer interrupt simulation, also auto-
matically runs to main().
If you look at startup code after starting the simulator, please ensure that
Start_simulator.prc is called after download of target file.
If simulator hangs and main is not reached, ensure that startup code is assem-
bled with define SIMULATOR=1, this will inhibit PLL initialization in the simula-
tion target.

Now you can step through the program.
OS_IncDI() initially disables interrupts and avoids re-enabling of interrupts
during the call of OS_InitKern().
OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant embOS-Variables and
would enable interrupts if OS_IncDI()was not called before.
OS_InitHW() is part of CPU specific Rtosinit_*.c and therefore part of your
application. Its primary purpose is to initialize the hardware required to generate
the timer-tick-interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. In this case it should initialize the UART used for communication.
For the simulator configuration, UART communication is disabled, because it
can not be simulated.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

10/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

Before you step into OS_Start(), you should set breakpoints in the two tasks:

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, Task0() is the highest priority task and is therefore active.

embOS for FR CPUs and Fujitsu compiler Fcc911s 11/22

 2008 SEGGER Microcontroller GmbH & Co. KG

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).
OS_Idle() is found in Rtosinit_*.c:

12/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay.
Coming from OS_Idle(), execute the �Go� command to arrive at the highest
priority task after its delay is expired. The watch window shows the system vari-
able OS_Time, which shows how much time has expired in the target system.

embOS for FR CPUs and Fujitsu compiler Fcc911s 13/22

 2008 SEGGER Microcontroller GmbH & Co. KG

4. Project and compiler settings

4.1. Available libraries

embOS comes with different libraries with different debug and runtime error
check capabilities.
The library files are located in the subfolder �Lib� in the start project folder.
The library model settings for your target application have to confirm to the li-
brary used in your application.

The naming convention for library files is as follows:

RTOS<LIBRARYTYPE>.lib

<LIBRARYTYPE> specifies the type of embOS -library:
• XR stands for eXtreme release build library, which does not support round

robin and also does not support task names.
• R stands for Release build library.
• S stands for Stack check library, which performs stack checks during run-

time.
• SP stands for Stack check and Profiling library, which performs stack check-

ing and additional runtime (Profiling) calculations
• D stands for Debug library which performs error checking during runtime.
• DP stands for Debug and Profiling library which performs error checking and

additional Profiling during runtime.
• DT stands for Debug and Trace library which performs error checking and

additional Trace functionality during runtime.

Example:

RTOSSP.lib is the embOS library with Stack check and Profiling functionality.
It is located in the Start\lib\ subdirectory.

For FR CPUs, the following libraries are available (located in the subfolder
�Start\lib\):

Library type Library #define (OS_LIBMODE)
Exteme release RtosXR.lib OS_LIBMODE_XR
Release RtosR.lib OS_LIBMODE_R
Stack-check RtosS. Lib OS_LIBMODE_S
Stack-check + Profiling RtosSP. Lib OS_LIBMODE_SP
Debug RtosD. Lib OS_LIBMODE_D
Debug + Profiling RtosDP. Lib OS_LIBMODE_DP
Debug + Profiling + Trace RtosDT. Lib OS_LIBMODE_DT

You have to add one library to your project. Ensure that the define for the library
type used is set as Tool Option for compiler.
When using the Softune workbench, just check the define that corresponds to
the library file used:
Select �Project | Setup Project | C/C++ Compiler | Define Macro�.
Using batchfiles, pass the library mode define as parameter to your compiler.

14/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

5. Modify the start project for your application
The sample start workspaces and projects delivered with embOS are set up to
run with the Softune simulator and may also contain a configuration for an incir-
cuit emulator or just to run in the target CPU. This ensures an easy start as de-
scribed in chapter 3 of this manual.
For your target application, you will have to add your own code, you may wish
to use an other library or select an other CPU.
You should always use the start project as a starting point for your application,
as all necessary files for embOS are included and specific settings are already
prepared.

5.1. Choose an other library

For debugging purposes during program development you may wish to use a
debug library. Later in your final application you may use the release library.

To use an other library, proceed as follows:

• All embOS libraries are included in the project in the folder Lib. Just exclude
all libraries from build, except the one you wish to use.

• Set the compiler macro define according to the library type used. Using
Softune workbench select �Project | Setup Project | C/C++ Compiler | Cate-
gory: Define Macro� to uncheck the previous OS_LIBMODE and then check
the new library mode.

5.2. Switch between target CPU and Simulator

Simulator and target CPU may require different builds of startup code.
Our modified assembly startup files accepts a define passed to the assembler
to select either a build for the simulator or the target CPU.
This define can be modified under �Project | Setup Project | Assembler | Cate-
gory: Define Macro�.
• For simulator usage, check the define �SIMULATOR=1�
• For target CPU builds, uncheck �SIMULATOR=1�
If you delete the defined macro, the startup code defaults to SIMULATOR=0,
thus builds startup code for the target CPU which initializes PLL.

5.3. Select an other CPU

The sample start project described under chapter 3 was built for an MB91F362
CPU. Specific files for other CPUs are located in the �Start\BoardSupport� di-
rectory.

To use a different CPU that is already supported, proceed as follows:

• Open the CPU specific subdirectory under �Start\BoardSupport�.
• Build the project

If your CPU is currently not supported, modify the start project:

• Copy any CPU specific folder and rename it according to your target CPU.
• Rename and modify Rtosinit_*.c and startup code in your new folder.
• Check and change project settings of your new project.
• Ensure that your project contains the files of your new CPU folder.

embOS for FR CPUs and Fujitsu compiler Fcc911s 15/22

 2008 SEGGER Microcontroller GmbH & Co. KG

6. Stacks

6.1. Task stack for FR CPUs

Every task has to have its own stack. The task stack-size required is the sum of
the stack-size of all routines called by the task plus a basic stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the FR CPU, this minimum stack size is about 128 bytes in release build.
Every task has its individual stack which may be located in any RAM location.
The task stack is addressed with the CPUs user stack pointer.

6.2. FR CPU System (Interrupt) stack

The FR CPU series has been designed with multitasking in mind; it has 2 stack-
pointers, USP and SSP. The S-Flag selects the active stack-pointer. During
execution of a task, the S-flag is set, thereby selecting the user-stack-pointer. If
an interrupt occurs, the FR CPU clears the S-flag and switches to the system-
stack-pointer automatically this way. The SSP is active during the entire ISR (in-
terrupt service routine). This way, the interrupt does not use the stack of the
task and the stack-size does not have to be increased for interrupt-routines.
Additional stack-switching as for other CPUs therefore is not necessary for the
FR CPUs.
After reset, the FR CPU switches to its system stack. With embOS, since ver-
sion 3.22, this stack has to be used for interrupts only. Therefore the startup
code has to define a user stack and has to switch to the user stack during
startup.
The interrupt stack size required by embOS is about 128 bytes but varies with
different library modes. However, since the system stack is also used by the
application specific interrupts, the actual stack requirements depend on the ap-
plication.
The size of the interrupt stack is defined in the startup file, given as
SSTACK_SIZE . Initially we define a stack size of 512 bytes and recommend a
minimum of 256 bytes:

#define SSTACK_SIZE 0x200 // define system (interrupt) stack size: 512 bytes
#define USTACK_SIZE 0x200 // define user stack size: 512 bytes

 .export __systemstack_top
 .export __systemstack
 .export __userstack_top
 .export __userstack

 .section STACK, stack, align=4
__systemstack:
 .res.b SSTACK_SIZE
__systemsstack_top:
__userstack:
 .res.b 0 USTACK_SIZE
__userstack_top:

6.3. FR CPU User stack

The FR has 2 stack-pointers, USP and SSP. The S-Flag selects the active
stack-pointer. During execution of a task, the S-flag is set, thereby selecting the
user-stack-pointer.

16/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

Since version 3.22, embOS uses the user stack during startup and execution
of main(). Therefore a user stack has to be defined in the startup code as
shown in the example above.
This default user stack is also used during execution of OS_Idle(), during inter-
nal scheduler operation and for embOS software timers.
The user stack size therefore depends on library mode and the application.
We recommend at least 256 bytes.
The size of the user stack is defined as USTACK_SIZE) in the startup file.

6.4. Stack specifics of the Fujitsu FR family

The Fujitsu FR family can use the whole memory area as stack, therefore
stacks may reside in any RAM location.
For embOS, since version 3.22, it is necessary to setup your startup file to use
the user stack as initial stack.
For performance reasons, stacks should be located in fast memory.

6.5. Stack check using embOS

embOS performs automatic stack check of all stacks, when a stack check or
debug library is used.
Therefore, it Is required, that embOS knows the size and address of the sys-
tem and user stack.
The startup file has to use and export the following symbols for the stack defini-
tion:

• __systemstack is the base address of the system stack.
• __systemstack_top is the first location behind the system stack. The

system stack pointer has to be initialized with this value.
• __userstack is the base address of the user stack.
• __usestack_top is the first location behind the user stack. The user

stack pointer has to be initialized with this value.
The startup code has to select the user stack as default stack before main() is
called.
If main() is called with the system stack selected, embOS will end in the error
handler OS_Error() with error code OS_ERR_WRONG_STACK. (0x67) .

embOS for FR CPUs and Fujitsu compiler Fcc911s 17/22

 2008 SEGGER Microcontroller GmbH & Co. KG

7. Interrupts

7.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor interrupt priority

level is below the requesting interrupt priority level, the interrupt is executed
• the CPU switches to system stack
• the CPU saves PC and flags on the stack
• the ILM register is loaded with the priority of the requesting interrupt
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR: save registers
• ISR: user-defined functionality
• ISR: restore registers
• ISR: Execute RETI command, restoring PC, Flags and switching to User

stack
• For details, please refer to the FR CPUs users manual.
IMPORTANT:
Fujitsu�s FR CPUs does not automatically disable interrupts, when an ISR is en-
tered. Therefore nested interrupts are enabled per default.

7.2. Defining interrupt handlers in "C"

Routines defined with the keyword __interrupt automatically save & restore
the registers they modify and return with RETI.
The interrupt vector (interrupt function name) has to be added to the interrupt
vector table.
To enable hardware interrupts, the appropriate interrupt priority control register
has to be initialized also.
For a detailed description on how to define an interrupt routine in "C", refer to
the Fcc911s C-Compiler's user's guide.

Example

"Simple" interrupt-routine

__interrupt void IntHandlerTimerA1(void) {
 IntCnt++;
}

Interrupt-routine calling embOS functions

__interrupt void IntHandlerTimerA1(void) {
 OS_EnterInterrupt(); /* Inform embOS that interrupt function is running */
 IntCnt++;
 OS_PutMailCond(&MB_Data, &IntCnt);
 OS_LeaveInterrupt();
}

OS_EnterInterrupt() has to be the first function called in an interrupt han-
dler using embOS functions, when nestable interrupts are not required.
OS_LeaveInterrupt() has to be called at the end the interrupt handler then.

18/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

If interrupts should be nested, use OS_EnterNestableInterrupt() /
OS_LeaveNestableInterrupt() instead.

7.3. Defining interrupt vectors

Most commonly, interrupt vector tables are defined in the assembler include file
�intvecs.inc� which is then included in �startup.asm�.
Our sample interrupt vector table files delivered with embOS are derived from
Fujitsus sample interrupt vector table files and contain all modifications required
for embOS.
Please refer to the comment in the file header of intvecs.inc.

Interrupt vectors could also be defined in �C� source file as described in
Fcc911s compiler manual.
Unfortunately this requires all interrupt vectors defined in the same �C�-source
file. As embOS needs a timer interrupt and optionally two UART interrupts, the
interrupt vector table may be defined in Rtosinit_*.c. This requires import of ap-
plication specific interrupt function names in Rtosinit_*.c. As this file may be
changed by later updates, we do not recommend to modify Rtoinit_*.c. There-
fore we choose the method of defining interrupts in the separate interrupt vector
table file intvecs.inc which will be included in startup.asm. This method is most
commonly used by all samples delivered with Softune workbench.

7.4. Zero latency, fast interrupts with FR CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to priority level 21. Therefore all interrupts with pri-
orities of 20 to 16 can still be processed.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.
Please note, that the highest useable interrupt priority of interrupt handler call-
ing embOS functions is 21.

7.5. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.

• Any interrupt handler using embOS API functions has to run with inter-
rupt priorities between 21 and 30. These embOS interrupt handlers
have to start with OS_EnterInterrupt() or
OS_EnterNestableInterrupt() and end with
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt().

• Any Fast interrupt (running at priority 16 to 20 must not call any embOS
API function. Even OS_EnterInterrupt() and
OS_LeaveInterrupt() must not be called.

• Interrupt handler running at low priorities, not calling any embOS API
function, are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Fast interrupts is pre-defined
as 20, thus allowing 5 different interrupt levels for zero latency interrupt handler.
This setting can be changed at runtime by a call of the new embOS function
OS_SetFastIntPriorityLimit ().

embOS for FR CPUs and Fujitsu compiler Fcc911s 19/22

 2008 SEGGER Microcontroller GmbH & Co. KG

7.6. Interrupt-stack

Since the FR CPUs have a separate stack pointer for interrupts, there is no
need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.

7.7. Special considerations for FR CPUs

When entering an external interrupt, FR CPUs do not automatically disable fur-
ther interrupts, the interrupt priority for further interrupts is raised to the priority
of the accepted interrupt + 1 instead.
Generic rules for embOS require that interrupts are disabled in an interrupt
handler, unless OS_EnterNestableInterrupt() is called at the beginning
of an interrupt handler.
Therefore interrupts are disabled when calling OS_EnterInterrupt().

Rules for interrupt handlers which should not be interrupted by other interrupts:

• OS_EnterInterrupt() has to be the first function called. It disables fur-
ther interrupts and informs embOS that interrupt code is running, thus inhib-
its task switches.

• Interrupts must not be reenabled in the interrupt handler.
• OS_LeaveInterrupt() has to be the last function called. It informs

embOS that interrupt function ends and performs a task switch if required.

Rules for interrupt handlers which may be interrupted by other interrupts:

• OS_EnterNestableInterrupt() has to be the first function called. It en-
ables further interrupts and informs embOS that interrupt code is running,
thus inhibits task switches.

• OS_LeaveNestableInterrupt() has to be the last function called. It in-
forms embOS that interrupt function ends and performs a task switch if re-
quired.

20/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

8. Stop / Sleep Mode
Usage of the Sleep mode is one possibility to save power consumption during
idle times. If required, you may modify the OS_Idle() routine, which is part of
the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted after entering stop mode. With external clock connected to an in-
terrupt input which is able to release stop mode, the scheduler keeps working.
If internal timer is used for embOS, the time variable is not updated. Therefore
stop mode should not be used.

embOS for FR CPUs and Fujitsu compiler Fcc911s 21/22

 2008 SEGGER Microcontroller GmbH & Co. KG

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for release build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1700 46
Event-management < 200 ---
Mailbox management < 550 ---
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 ---
Timer-management < 250 ---
Add. Task --- 32
Add. Semaphore --- 8
Add. Mailbox --- 20
Add. Timer --- 20
Power-management --- ---

10. Files shipped with embOS for FR

Directory File Explanation
root *.pdf Generic API and target specific

documentation
root Release.html Release notes of embOS FR
root embOSView.ex

e
Utility for runtime analysis, de-
scribed in generic documentation

Start\BoardSupport* Start_*.prj Start projects for various FR CPUs
Start\BoardSupport* Start_*.dat Project settings for various FR

CPUs
Start\BoardSupport* Start_*.sup Debugger support files for various

FR CPUs
Start\BoardSupport* *.prc Debug macros macro for start pro-

jects
Start\Inc\ RTOS.h To be included in any file using em-

bOS functions
Start\Lib\ *.lib embOS libraries

22/22 embOS for FR CPUs and Fujitsu compiler Fcc911s

 2008 SEGGER Microcontroller GmbH & Co. KG

11. Index
_
__systemstack 16
__systemstack_top 16
__userstack 16
__userstack_top 16
F
Fast interrupt................................ 18
I
Installation 6
Interrupt priority 18
Interrupt stack 19
Interrupt vector table.................... 18
Interrupt vectors........................... 18
Interrupt, fast................................ 18

Interrupts17
Intvecs.inc18
L
Libraries13
M
Memory requirements21
O
OS_EnterInterrupt..................17, 19
OS_EnterNestableInterrupt18, 19
OS_ERR_WRONG_STACK.......16
OS_LeaveInterrupt17, 19
OS_LeaveNestableInterrupt ...18, 19
OS_SetFastIntPriorityLimit().......18

S
Simulator14
Sleep-mode...................................20
SSTACK_SIZE15
Stacks ...15
Stop-mode20
T
Technical data...............................21
U
USTACK_SIZE............................16
Z
Zero latency..................................18

	Contents
	About this document
	How to use this manual

	What’s new?
	Update / Upgrade information

	Using embOS with Softune Workbench
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample project using Softune simulator

	Project and compiler settings
	Available libraries

	Modify the start project for your application
	Choose an other library
	Switch between target CPU and Simulator
	Select an other CPU

	Stacks
	Task stack for FR CPUs
	FR CPU System (Interrupt) stack
	FR CPU User stack
	Stack specifics of the Fujitsu FR family
	Stack check using embOS

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Defining interrupt vectors
	Zero latency, fast interrupts with FR CPUs
	Interrupt priorities
	Interrupt-stack
	Special considerations for FR CPUs

	Stop / Sleep Mode
	Technical data
	Memory requirements

	Files shipped with embOS for FR
	Index

