embOS &
embOS-MPU

Real-Time Operating System
User Guide & Reference Manual

Document: UMO1001
Software Version: 5.00

Revision: 0
Date: May 8, 2018

\\—
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

https://segger.com/embOS
https://segger.com/embOS
http://www.segger.com
http://www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 1995-2018 SEGGER Microcontroller GmbH, Hilden / Germany

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.
Contact address

SEGGER Microcontroller GmbH

In den Weiden 11
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
E-mail: support @egger.com

Internet: WWW. segger. com

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.

Contact us for further information on topics or functions that are not yet documented.
Print date: May 8, 2018

Software

Revision

Date

By

Description

5.00

180508

TS

New API names.
Chapter “"Debugging” updated.
Minor spelling & wording corrections.

4.40

171220

MC

Introductory description in chapter “Software timers” expanded.
Description of limitations in chapter “Mailboxes” corrected.
Description of limitations in chapter “"Queues” added.

Description of embOS trial edition in chapter “Shipment” updated.
Decription of OS_WD_Confi g() updated for change in parameters.
List of error codes in chapter “Debugging” updated.

Minor spelling & wording corrections.

4.38

170928

MC

Minor spelling & wording corrections.

4.38

170919

TS

First version generated with emDoc.

New function in chapter “Tasks” added:
e OS_Set Def aul t TaskSt art Hook()

New functions in chapter "Debugging” added:
e OS_Set Obj Nane()
® OS_Get Obj Name()

Minor corrections/updates.

4.36

170711

TS

New library mode OS_L| BMODE_SAFE added in chapter “"Basic Concepts”.
New functions in chapter “Stacks” added:
e OS_Get St ackCheckLimt()
e OS_Set St ackCheckLimt()
New functions in chapter "MPU"” added:
e OS_MPU_AddSani t yCheckBuf f er ()
e OS_MPU_Sani t yCheck()
Chapter “Source Code” updated.
New functions in chapter “Task Routines” added:
e OS_Config_Stop()
* 08_Stop()
Minor corrections/updates

4.34

170308

TS

New functions in chapter “Event Objects” added:
e OS_EVENT_Get MaskMbde()
e OS_EVENT_Set MaskMode()

4.32

170105

RH/TS

Chapter “"Watchdog” added.
New functions in chapter “Event Objects” added:
e OS_EVENT_Get Mask()
e OS_EVENT_Set Mask()
e OS_EVENT_Wai t Mask()
e OS_EVENT_Wai t MaskTi med()
New functions in chapter “"Mailboxes” added:
e OS_Put Mai | Ti med()
e OS_Put Mai | Ti med1()

4.30

161130

MC/TS

Chapter “"Basic Concepts”, “Time Measurement”, “MPU", “Profiling” and
“Updates” updated.

Chapters, “System Tick”, “Low Power Support”, “Configuration (BSP)”
updated and re-structured.

Chapter “"Resource Semaphores” updated.

4.26

160907

RH

Chapter "embOSView”, “Interrupts” and “MPU” updated.
Minor corrections/updates.

4.24

160628

MC

Chapter “Multi-core Support” added.
Chapter “Debugging” updated.

4.22

160525

MC

New functions in chapter "Queues” added:
e OS_Q Put Ex()
e OS_Q Put Bl ockedEx()
e OS_Q Put Ti medEx()

4.20

160421

TS

Chapter *"MPU - Memory Protection” added.
OS_AddExt endTaskCont ext () added.

160210

TS

Minor corrections/updates

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

4.14a

0

160115

TS

Minor corrections/updates

151029

TS

Chapter “Interrupts” updated.
Description of new API function OS_Set Def aul t TaskCont ext Ext en-
si on() added.
Chapter “System Variables”: embOS info routines added.
Chapter “Shipment” updated.
Chapter “Low Power Support” updated.
Chapter “Interrupts”: Description of
e OS_| NT_PRI O_PRESERVE() and
e OS_| NT_PRI O RESTORE() added.
Chapter “Software Timerss”: Description of
e OS TriggerTinmer() and
e OS_Trigger Ti mer Ex() added.

4.12b

150922

TS

Update to latest software version.

4.12a

150916

TS

Description of API function GS_I nl nterrupt () added.

150715

TS

New funtions in chapter “Mailboxes” added:
e OS_Muil _GetPtr()
e OS_Mai | _get PtrCond()
e OS_Mai | _Purge()
Chapter “Debugging” with new error codes updated.

4.10b

150703

MC

Minor spelling and wording corrections.

4.10b

150527

TS

Minor spelling and wording corrections.

Chapter “Source Code of Kernel and Library” updated.
New chapter “"embOS Shipment”.

New chapter “Update”.

New chapter “Low Power Support”.

4.10a

150519

MC

Minow spelling and wording corrections.
Chapter "embOSView"”: added JTAG Chain configuration.

4.10

150430

TS

Chapter "embOSView” updated.

4.06b

150324

MC

Minow spelling and wording corrections.

4.06a

150318

MC

Minow spelling and wording corrections.

4.06

150312

TS

Updated to latest software version.

4.04a

oj]o|lo|o| o

141201

TS

Updated to latest software version.

4.04

141112

TS

Chapter “Tasks”

e Task priority description updated.
Chapter “Debugging”

e New error number

4.02a

140918

TS

Update to latest software version.
Minor corrections.

4.02

140818

TS

New functions in chapter "Time Measurement” added:
e OS_Config_SysTimer()
e OS_GetTime_us()
e OS_Get Ti me_us64()

4.00a

140723

TS

New functions added in chapter “System Tick”:
e OS_St opTi ckl esMbde()
New functions added in chapter “Profiling”:
e OS_STAT_Start()
e OS_STAT_Stop()
e OS_STAT_Get TaskExecTi nme()

4.00

140606

TS

Tickless support added.

3.90a

140410

AW

Software-Update, OS_Ter ni nat eTask() modified / corrected.

3.90

140312

SC

Added cross-references to the API-lists.

3.90

140303

AW

New functions to globally enable / disable Interrupts:
e OS_| NTERRUPT_Mask@ obal ()
e OS_| NTERRUPT_Unnmaskd obal ()
e OS_| NTERRUPT_Pr eser ved obal ()
e OS_| NTERRUPT_Rest or ed obal ()
e OS_| NTERRUPT_Pr eser veAndMaskd obal ()

3.88h

UMO01001 User Guide & Reference Manual for embOS

131220

AW

New functions added, chapter “System Tick”:
e OS_Get Nuni dl eTi cks()

© 1995-2018 SEGGER Microcontroller GmbH

Software | Revision | Date By Description

e OS_Adj ust Ti ne()
Chapter “System Variables”: Description of internal variable OS_d ob-
al .TimeDex corrected.

3.88g 1 131104 TS Corrections.
3.88g 0 131030 TS Update to latest software version.
3.88f 0 130922 TS Update to latest software version.
3.88e 0 130906 TS Update to latest software version.
3.88d 0 130904 AW Update to latest software version.
3.88c 0 130808 TS Update to latest software version.
3.88b 0 130528 TS Update to latest software version.
Software update.
Event handling modified, the reset behaviour of events can be con-
trolled.
New functions added, chapter “Events”:
3.88a 0 130503 AW « OS_EVENT O eat eEx()
e OS_EVENT_Set Reset Mode()
e OS_EVENT_Get Reset Mode()
Mailboxes message size limits enlarged.
3.88 0 130219 TS Minor corrections.
3.86n 0 121210 | AW/TS | Update to latest software version.

Software update.
3.86l 0 121122 AW OS_AddTi ckHook() function corrected.
Several functions modified to allow most of MISRA rule checks.

Chapter “Queue”:

3.86k 0 121004 TS e OS_Q Get MessageSi ze() and
e OS_Q PeekPtr () added.
3.86i 0 120926 TS Update to latest software version.
3.86h 0 120906 AW Software update, OS_EVENT handling with timeout corrected.

Software update, OS_Ret ri gger Ti mer () corrected.
3.86g 0 120806 AW Task events explained more in detail.
Additional software examples in the manual.

Task event modified, default set to 32bit on 32bit CPUs.
Chapter 4:
3.86f 0 120723 AW e New API function OS_AddOnTer ni nat eHook ()
e OS_ERR TI MESLI CE removed. A time slice value of zero is legal
when creating tasks.

Update to latest software version with corrected functions:
e OS_Get SysSt ackBase()
e OS_Get SysSt ackSi ze()
e OS_Get SysSt ackSpace()
e OS_Get SysStackUsed()
e OS_Getlnt StackBase()
3.86e 0 120529 AW e OS_Get I nt StackSi ze()
e OS_Getlnt StackSpace()
e OS_Getlnt StackUsed()
could not be used in release builds of embOS.
Manual corrections:
e Several index entries corrected.
e OS_Ent er Regi on() described more in detail.

3.86d 0 120510 TS Update to latest software version.

3.86¢ 0 120508 TS Update to latest software version.

Chapter “Mailbox"”
e OS_PeekMai | () added.
3.86b 0 120502 TS Chapter “Support” added.
Chapter “Debugging”:
¢ Application defined error codes added.

Timeout handling for waitable objects modified. A timeout will be re-
turned from the waiting function, when the object was not available
during the timeout time. Previous implementation of timeout functions
might have returned a signaled state when the object was signaled af-

3.86 0 120323 AW

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Software | Revision | Date

By

Description

ter the timeout when the calling task was blocked for a longer period by
higher priorized tasks
Modified functions:

e OS_UseTi med()

e OS Wi t CSemaTi med()

e OS_Get Mai | Ti med()

e OS_\WMi t Mai | Ti med()

e OS_Q Get Pt r Ti med()

e OS_EVENT Wi t Ti ned()

e OS_ MEMF_Al | ocTi med()
New chapter “Extending the Task Context” added.
New functions added and described in the manual:

e OS_Cet TaskNane()

e OS GetTimeSliceRem()
Handling of queues described more in detail:

e 0S QGetPtr()

e 0OS _Q Get PtrCond()

e OS_Q Get Pt r Ti med()

e OS_Q Purge()
Chapter “Priority Inversion / Inheritance” updated.
Function names OS_Ti ming_Start() and OS_Ti m ng_End() corrected in
the API table.

3.84c 1 120130

AW/TS

Since version 3.822 of embOS, all pointer parameter pointing to objects
which were not modified by the function were declared as const, but the
manual was not updated accordingly.
The prototype descriptions of the following API functions are corrected
now:

e OS_Get Ti mer Val ue()

e OS GetTinerStatus()

e OS_Get Ti nmer Period()

e OS_Get SemaVal ue()

e OS_Get Resour ceOmner ()

e 0S _Q IslnUse()

e OS_Q Get MessageCnt ()

e OS | sTask()

e OS_Get Event sCccured()

e OS_Get CSsemaVal ue()

e OS_TI CK_RenoveHook()

e OS_MEMF_I sl nPool ()

e OS_MEMF_Get MaxUsed()

e OS_MEMF_Get NunBI ocks()

e OS_MEMF_GCet Bl ockSi ze()

e OS_Get SuspendCnt ()

e (OS GetPriority()

e OS_EVENT_Get ()

e OS_Timng_Cetus()
Chapter “Preface”:

e Segger Logo replaced
Chapter “Mailbox":

e OS_CREATEMB() changed to OS_Cr eat eMB()
Chapter “Queues”:

e Typos corrected

3.84c 0 120104

TS

Chapter “Events”:
e Return value of OS_EVENT_Wai t Ti ned() explained in more detail

3.84b 0 111221

TS

Chapter “Queues”:
e OS_Q Put Bl ocked() added

3.84a 0 111207

TS

General updates and corrections.

3.84 0 110927

TS

Chapter “Stacks”:
e OS_Get SysSt ackBase() added
e OS_Get SysSt ackSi ze() added
e OS_Get SysSt ackUsed() added
e OS_Cet SysSt ackSpace() added
e OS_Get I nt StackBase() added
e OS_Get I nt StackSi ze() added
e OS_Getlnt StackUsed() added
e OS_Get I nt St ackSpace() added

3.82x 0 110829

TS

Chapter “Debugging”:
e New error code “"OS_ERR_REG ONCNT” added

3.82w 0 110812

UMO01001 User Guide & Reference Manual for embOS

TS

New embOS generic sources.

© 1995-2018 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

Chapter “Debugging” updated.

3.82v

110715

AW

OS_Term nat e() renamed to OS_Ter m nat eTask() .

3.82u

110630

TS

New embOS generic sources.
Chapter 13: Fixed size memory pools modified.

3.82t

110503

TS

New embOS generic sources.
Trial time limitation increased.

3.82s

110318

AW

Chapter “Timer” API functions table corrected.

All functions can be called from main(), task, ISR or Timer.
Chapter 6: OS_UseTi ned() added.

Chapter 9: OS_Q I sl nUse() added.

3.82p

110112

AW

Chapter “Mailboxes”:
e OS_Put Mai | ()
e OS_Put Mai | Cond()
e OS_Put Mai | Front ()
e OS_Put Mai | Front Cond()
parameter decklaration changed.
Chapter 4.3 API functions table corrected.
OS_Suspend() cannot be called from ISR or Timer.

3.820

110104

AW

Chapter “Mailboxes”:
e OS5 Wit Mai | Ti med() added

3.82n

101206

AW

Chapter “Taskroutines”:
e OS_ResuneAl | SuspendedTasks() added
e OS Setlnitial SuspendCnt () added
e OS_SuspendAl | Tasks() added
Chapter “Time Measurement”:
¢ Description of OS_Get Ti me32() corrected
Chapter “List of Error Codes”:
¢ New error codes added

3.82k

100927

TS

Chapter “Taskroutines”:
e OS_Del ayus() added
e OS_Q Del ete() added

3.82i

100917

TS

General updates and corrections

3.82h

100621

AW

Chapter “Event Objects”:
e Samples added
Chapter “Configuration of Target System”:
¢ Detailed description of OS_| dl e() added

3.82f

100505

TS

Chapter “Profiling” added
Chapter “System Tick”:
e OS_Ti ckHandl eNoHook() added

3.82f

100419

AW

Chapter “Tasks”:
e OS_| sRunni ng() added
e Description of OS_Start () added

3.82e

100309

TS

Chapter "Working with embOS - Recommendations” added.
Chapter “Basics”:
e Priority inversion image added
Chapter “Interrupt”:
e subchapter “"Using OS functions from high priority interrupts” added
Added text at chapter 22 “Performance and resource usage”

3.82

090922

TS

API function overview now contains information about allowed context of
cuntion usage (main, task, ISR or timer)
TOC format corrected

3.80

090612

AW

Scheduler optimized for higher task switching speed.

3.62c

080903

SK

Chapter structure updated.

Chapter “Interrupts”:
e OS_LeaveNest abl el nt errupt NoSwi t ch() removed
e OS_Leavel nterrupt NoSwi t ch() removed

Chapter “System Tick":
e OS_TI CK _Config() added

3.60

080722

SK

Contact address updated.

3.60

080617

SK

General updates.
Chapter “Mailboxes”:
e OS_Get Mai | Cond() / OS_Get Mai | Cond1() corrected

3.60

UMO01001 User Guide & Reference Manual for embOS

080117

(0]0)

General updates.

© 1995-2018 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

Chapter “System Tick” added.

3.52

071026

AW

Chapter “Task Routines”:
e OS_Set TaskNane() added

3.52

070824

(0]}

Chapter “Task Routines”:

e OS_Ext endTaskCont ext () added
Chapter “Interrupts”:

e Updated

e OS Cal | I SR() added

e OS_Cal | Nest abl el SR() added

3.50c

070814

AW

Chapter “List of Libraries” updated, XR library type added.

3.40c

070716

(0]0)

Chapter “Performance and Resource Usage” updated.

3.40c

070625

SK

Chapter “Debugging”, error codes updated:
e OS_ERR | SR | NDEX added
e OS_ERR | SR _VECTOR added
e OS_ERR _RESOURCE_OWNER added
e OS_ERR CSEMA OVERFLOWadded
Chapter “Task Routines”:
* OS_Yiel d() added
Chapter “Counting Semaphores” updated
e OS_Si gnal CSemn() , additional information adjusted
Chapter “Performance and Resource Usage” updated:
e Minor changes in wording.

3.40a

070608

SK

Chapter “Counting Semaphores” updated:

e OS_Set CSenaVal ue() added

e OS_Creat eCSemm() : Data type of parameter InitValue changed from
unsigned char to unsigned int

e OS_Si gnal CSemaMax() : Data type of parameter MaxValue changed
from unsigned char to unsigned int

e OS_Si gnal CSemm() : Additional information updated

3.40

070516

SK

Chapter “Performance and Resource Usage” added.

Chapter “Configuration of your Target System (RTOSInit.c)” renamed to
“Configuration of your Target System”.

Chapter "STOP/WAIT/IDLE modes” moved into chapter “Configuration of
your Target System”.

Chapter “Time-related Routines” renames to “Time Measurement”.

3.320

070422

SK

Chapter 4: OS_CREATETI MER_EX(), additional information corrected.

3.32m

070402

AW

Chapter 4: Extended timer added.
Chapter 8: API overview corrected, OS_Q_Get MessageCount ()

3.32j

070216

AW

Chapter 6: 0OS_CSemaRequest () function added.

3.32e

061220

SK

About: Company description added.
Some minor formatting changes.

3.32e

061107

AW

Chapter 7: OS_Get MessageCnt () return value corrected to unsigned int.

3.32d

061106

AW

Chapter 8: OS_Q Get PtrTi med() function added.

3.32a

061012

AW

Chapter 3: OS_Creat eTaskEx() function, description of parameter pCon-
t ext corrected.

Chapter 3: OS_Creat eTaskEx() function, type of parameter TimeSlice
corrected.

Chapter 3: 0OS_Creat eTask() function, type of parameter TimeSlice cor-
rected.

Chapter 9: OS_Get Event Cccur ed() renamed to OS_Get Event sCc-
cured() .

Chapter 10: OS_EVENT_Wai t Ti ned() added.

3.32a

060804

AW

Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_Creat eTaskEx() function added.

3.32

060717

00

Event objects introduced. Chapter 10 inserted which describes event ob-
jects.
Previous chapter “Events” renamed to “Task Events”.

3.30

060519

00

New software version.

3.28

060223

00

All chapters: Added API tables.
Some minor changes.

3.28

UMO01001 User Guide & Reference Manual for embOS

051109

AW

Chapter 7: OS_Si gnal CSemaMax() function added.

© 1995-2018 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

Chapter 14: Explanation of interrupt latencies and high / low priorities
added.

3.28

050926

AW

Chapter 6: OS_Del et eRSema() function added.

3.28

050707

AW

Chapter 4: 0OS_Get SuspendCnt () function added.

3.28

050425

AW

Version number changed to 3.28 to fit to current embOS version.
Chapter 18.1.2: Type return value of OS_Get Ti ne32() corrected.

3.26

050209

AW

Chapter 4: OS_Ter mi nat e() modified due to new features of version
2.26.

Chapter 24: Source code version: additional compile time switches and
build process of libraries explained more in detail.

3.24

011115

AW

Chapter 6: Some prototype declarations showed in OS_SEMA instead of
OS_RSEMA. Corrected.

3.22

040816

AW

Chapter 8: New Mailbox functions added
e OS_Put Mai | Front ()
e OS_Put Mai | Front 1()
e OS_Put Mai | Front Cond()
e OS_Put Mai | Front Cond1()

3.20

040621

RS/AW

Software timers: Maximum timeout values and GS_TI MER_MAX_TI ME de-
scribed.

Chapter 14: Description of rules for interrupt handlers revised.
OS_LeaveNest abl el nt er rupt NoSwi t ch() added which was not de-
scribed before.

3.20

040329

AW

OS_Creat eCSena() prototype declaration corrected. Return type is void.
OS_Q Get MessageCnt () prototype declaration corrected.

OS_Q d ear () function description added.

OS_MEMF_FreeBl ock() prototype declaration corrected.

3.20

031128

AW

OS_CREATEMB() Range for parameter MaxnofMsg corrected. Upper limit
is 65535, but was declared 65536 in previous manuals.

3.20

040831

AW

Code samples modified: Task stacks defined as array of int, because
most CPUs require alignment of stakc on integer aligned addresses.

3.20

031016

AW

Chapter 4: Type of task priority parameter corrected to unsigned char.
Chapter 4: OS_Del ayunti | () : Sample program modified.

Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resune() added.

Chapter 5: OS_Get Ti ner Val ue() : Range of return value corrected.
Chapter 6: Sample program for usage of resource semaphores modified.
Chapter 6: OS_Get Resour ceOaner () : Type of return value corrected.
Chapter 8: OS_CREATEMB() : Types and valid range of parameter correct-
ed.

Chapter 8: OS_Wii t Mai | () added

Chapter 10: OS_Wii t Event Ti med() : Range of timeout value specified.

021015

AW

Chapter 8: OS_Get Mai | Ti med() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

020926
020924
020910

KG

Index and glossary revised.

Section 16.3 (Example) added to Chapter 16 (Time-related Routines).
Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multitasking,
nested interrupts, low-res nad hi-res measurement.

Section 1.3 (Typographic conventions) changed to table.

Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains control).
Chapter 4 (Configuration for your target system) moved to after Chapter
15 (System variables)

Chapter 16 (Time-related routines) added.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

10

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

11

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0-13-1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

12

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

13

Table of contents

Introduction and basiC CONCEPLS ...cvvueiiiiiiiii e 17
1.1 What is @mMbDO S i 18
3 = 1= 1< 20
1.3 Single-task systems (SUPEHOOP) .iiiriiiiiiiiii i i 21
1.4 MUIitasKing SYStEMIS ittt i 23
3 T Yo o T=To U] 7.0 T P 25
1.6 Communication between tasks ..iiiiiiiiiiii i 27
1.7 How task sWitChing WOIKSuiiiiiiiiiii i e e e 28
1.8 Change of task Stalus ...oiviiiiiiii i e 30
1.9 How the OS gains CONTIOl ..o e 31
1.10 Different builds of @mbOS ... 32
1.11 Valid context for embOS AP ... i 34
1.12 Blocking and Non blocking embOS API ... e 35
1,13 AP fUNCHIONS o i e e e et 36
2T G PSP RR 42
2.1 INErOdUCHION i e 43
2.2 Cooperative vs. preemptive task switchesc.ccoiiiiiiiiiiiii 44
2.3 Extending the task context ... s 45
A S N = I W o Vo o o e 47
SORWAIE TIMEIS ..ot e e e e e e e e e e s e e e e e e e raaa e e e eeessaaeeaens 88
3.1 INErOdUCHION i e 89
3.2 AP fUNCHIONS ctii i e 91
TASK EVENTS ..ottt ettt et te e e e et e e e e e e e e e s e e eaa e e e raa e erraaaees 117
T 1 0o oY [T o o 118
N N = N 01 T o 1= 119
Y o1 B @ o] [=T o £ PP PPPPRPRR 128
Bl INErOdUCEION i e 129
5.2 AP fUNCHIONS ot 132
MIUEEXES ..ottt ettt ettt e ettt e e et e e e e eaa e e e eaa e e eesaeesaaan e esaneeesanaeesnneeenanns 152
(2 A o/ Yo 11 T o o) o T 153
(ST N = N 1 o Tt of [0 o 1= 155

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

14

UMO01001 User Guide & Reference Manual for embOS

10

11

12

13

14

15

16

17

18

L= E=T 0] L] (=T USSP 165
2% NN 1 1 g'o Ta [T u o 1 166
/2872 - = R 1 U Tt o oY o =P 167
Y=Y o) (= = S 178
S 7 A 1 o' Yo 11 [o e) o P 179
8.2 AP fUNCHIONS 1ttt i e ettt e e 182
QUUEBUES ...ttt ettt e anaaaararrraneeeeeees 210
178 SN 1 o1 f o' Yo 8T o o PP 211
1S TR A AN = R 1 T o o 1= 213

L= o (oo PP PPUPPP 232
L0 T R 1 o o Yo [ot o] o I 233
10.2 AP fUNCHIONS .ttt i e e e e e e e e et e 234

MUIEI-COrE SUPPOIT ...ttt e e e e e e e e e e e e e e e e e s s nnnnnnes 240
3 0 T o o [T o] PP 241
3 A A o A 4 U Tt oo = PP 243

1 Y ¢ o €= SRR 250
12,1 What are interrupts? .o e 251
12.2 Interrupt latenCy ..o e 252
12.3 Rules for interrupt handlerscooiiiiiiiii e 256
12.4 Interrupt CONLrOl ...v e e 266

Critical REQIONSeeiiiiiieiee et e e e e e e e e e e 277
3N 700 N 1 |l o o 18 L o] PP 278
3 70 A A o 4 U Tt oo =P 279

TiMe MEASUIEMENTeeeiiie e e e e et e e e e e e e r e e e e e eeeaaaaeaaeees 282
12 R I o o Yo [ot o] I 283
14.2 Low-resolution measurement ..o i e 284
14.3 High-resolution measurementcoiiiiiiiiiii e 287
I G |] 0] 1= 293
14.5 Microsecond precise system timeccooiiiiiiiiiii 294

LOW POWET SUPPOIT ...oeeiiiiiieeeee ettt e e e e e e e e e e e e e e e e e s enneeneeeeees 299
38500 N o |l o Yo 18 L o] PP 300
15.2 Starting power save modes in OS_Idle() .oiviiiiiiiiiiiiiii i 301
3TNGB o Y (=TT U o] o o] o v PP 302
15.4 Peripheral power CONtrol ..o 310

Heap Type Memory Management ... 315
LG T R 1 o o Yo 1 ot o] o I 316
16.2 AP fUNCHIONS .ttt i e e e e e 317

Fixed Block Size Memory POOI ... 321
3 728 SN o |l o Yo 18 L o] PP 322
0 A A o R U Tt oo o =P 324

321 (= 0 0 T PR 337
RS T S 1 o o Yo [F ot o] o I 338
18.2 AP fUNCHIONS .ttt e e e e e 338

© 1995-2018 SEGGER Microcontroller GmbH

15

UMO01001 User Guide & Reference Manual for embOS

19

20

21

22

23

24

25

26

27

18.3 Hooking into the system tick ..o 343
18.5 Disabling the system tick ..o 346

9721 018 o o 11 Vo PSSP 347
19.1 Runtime application €rrOrS ..iuiiiiiiii i e e e 348
19.2 Human readable object identifiersoooveiiiiiiiii 354

[o) 1111 o PP 357
70 0 RN N o) o ' Yo ¥ ot f o o P 358
X 0 B0 AN o A 1§ o Vo o =P 359

EMDOSVIBW ...t e e e e e e e e e e e e s e bbbt e e e e e e e e ees 368
B2 I R © 17 oY T 1 PR 369
21.2 Task lSt WINAOW ..ot e et e e ae e enes 370
21.3 System variables WINAOWc.oiiiiiiiiiiiii i e e e e 371
21.4 Sharing the SIO for terminal I/O ...oiiiiiiiii e ens 372
21.5 Enable communication to embOSVIEWcoiiiiiiiiii e 375
21.6 Select the communication channelo 376
21.7 Setup embOSView for communicationcoooiiiiiiiiiiii e 377
21.8 USING the API tracCe .oicviiiiiiiiiii it e re e e aeans 381
21.9 Trace filter setup fUNCLIONS ..o s 383
21.10 Trace record fUNCHIONSoiviiriiiiii i e e s e e e reaeans 392
21.11 Application-controlled trace exampleccoiviiiiiiiiii 398
21.12 User-defined fUNCHLIONSciiiiii i e e e e e s 399

MPU - MemOry ProteCioNoeeeeeiiiiiiiiiiiiieeeeee e 400
727205 SN N o) o o' Yo 1F [t f o o PP 401
22.2 Memory ACCESS PEIMISSIONS .iiuuiiiieetiieeraneeraeesanneranesaanesanessanesanreraneranneraneranes 402
22.3 ROM placement of embOS ..o e 403
22.4 Allowed embOS API in unprivileged taskscoooeiiiiiii s 404
B T B LAV Tl e [Y= PP 409
2 T AN o A 1§ o Vo o o 1= PP 411

= T2 (< PP PEEPPPPPPPPTPPR 427
1226 70 RN 1 0} o Yo [T] o [PP 428
23.2 API fUNCHIONS ottt e et e 430

Board Support Packagesccoooiiiiiiiiiiiiiiiee et 445
722 RN N o) o ' Yo ¥ ot f o o PP 446
24.2 Hardware-specCifiC rOULINES ...icviiiiiiii i i s e e reans 447
24.3 How to change Settingsccoviieiiiiii e 458

SYSEM VaAri@bIES ... 459
922530 RN 1 0} o Yo [o] o [PP 460
25.2 TIiMeE Variables oo e 461
25.3 OS information rOULINES ...viiriiiiii i e 462

Supported Development TOOISueueiiiiiiiiiiiiieeeeee e 468
B S I © 1 = VT 469

SOUICE GO ...ttt e e e e e e e e e e e e e e e s s e b b b e e e e eeeeees 470
W22 RN 1 0} o Yo [o] o [PR 471
27.2 Building embOS [IDrariesccoiviiiiiiiiiii e e 472
27.3 Compile time SWItChES ... s 473
DY A Yo 1 1 ol ol Yo [T o o) =Y ot P 475

© 1995-2018 SEGGER Microcontroller GmbH

16

28 SRIPMENT ... e e e e e e e e e e e e e e e e e e e 476
28.1 General information ..o 477
28.2 Library variant ..o e 478
28.3 Free Variant .o e 479
P T S Yo 18| gl =R oo o [T =T o =1 o | 480

P24 B U Lo To F= (= PP PPPPPPRPRTP 481
922> 1 SN 1 0} o Yo [T] o P 482
29.2 How to update an existing projectccoiiiiiiiiiiii 483
29.3 embOS API Migration gUIAEcciiiiiiiiiiiiiiiiiin i s ae e e e e saeas 484

10O TS 1o o Yo o (PSPPSR 492
G108 R @o] o | =Tt o | T K= U] o] oY o 493

31 Performance and Resource USAQEccccuuiiiiiiiiiiiiiiiiiiaaee e 494
0 A N 1 o) e Yo [T] o P 495
31.2 MemOry reqUIrEMENTES ...uiiiiitiiiiitiie it rar s e ras st e s s e s aa s s seaansaneans 496
G2 G B == T s o] o o 0 1= [l PP 497
I R S = 7= o el o =T o X1 T [P 497

K2 €] 011t o TSP PPUPPPPOPPPPPPRP 502

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 1

Introduction and basic
concepts

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

18 CHAPTER 1 What is embOS?

1.1 What is embQOS?

embQOS is a priority-controlled multitasking system, designed to be used as an embedded
operating system for the development of real-time applications for a variety of microcon-
trollers.

embOS is a high-performance tool that has been optimized for minimal memory consump-
tion in both RAM and ROM, as well as high speed and versatility.

Throughout the development process of embOS, the limited resources of microcontrollers
have always been kept in mind. The internal structure of the real-time operating system
(RTOS) has been optimized in a variety of applications with different customers, to fit the
needs of industry. Fully source-compatible implementations of embOS are available for a
variety of microcontrollers, making it well worth the time and effort to learn how to structure
real-time programs with real-time operating systems.

embQOS is highly modular. This means that only those functions that are required are linked
into an application, keeping the ROM size very small. The minimum memory consumption
is little more than 1.7 Kbyte of ROM and about 70 bytes of RAM (plus memory for stacks). A
couple of files are supplied in source code to make sure that you do not loose any flexibility
by using embOS libraries and that you can customize the system to fully fit your needs.

The tasks you create can easily and safely communicate with each other using a number
of communication mechanisms such as semaphores, mailboxes, and events.

Some features of embOS include:

e Preemptive scheduling:
Guarantees that of all tasks in READY state the one with the highest priority executes,
except for situations in which priority inheritance applies.
Round-robin scheduling for tasks with identical priorities.
Preemptions can be disabled for entire tasks or for sections of a program.
Up to 4,294,967,296 priorities.
Every task can have an individual priority, which means that the response of tasks can
be precisely defined according to the requirements of the application.
e Unlimited number of tasks
(limited only by the amount of available memory).
¢ Unlimited number of semaphores
(limited only by the amount of available memory).
e Two types of semaphores: Mutex and counting semaphores.
e Unlimited number of mailboxes
(limited only by the amount of available memory).
e Size and number of messages can be freely defined when initializing mailboxes.
Unlimited number of software timers
(limited only by the amount of available memory).
Up to 32 bit events for every task.
Time resolution can be freely selected (default is 1 msec).
Easily accessible time variable.
Power management.
Calculation time in which embQS is idle can automatically be spent in power save mode.
Power-consumption is minimized.
e Full interrupt support:
Interrupts may call any function except those that require waiting for data, as well
as create, delete or change the priority of a task. Interrupts can wake up or suspend
tasks and directly communicate with tasks using all available communication methods
(mailboxes, semaphores, events).
Disabling interrupts for very short periods allows minimal interrupt latency.
Nested interrupts are permitted.
embQOS has its own, optional interrupt stack.
Application samples for an easy start.
Debug build performs runtime checks that catch common programming errors early on.
Profiling and stack-check may be implemented by choosing specified libraries.
Monitoring during runtime is available using embOSView via UART, Debug
Communications Channel (DCC) and memory read/write, or else via Ethernet.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

19 CHAPTER 1 What is embOS?

Very fast and efficient, yet small code.

Minimal RAM usage.

API can be called from assembly, C or C++ code.

Board support packages (BSP) as source code available.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

20 CHAPTER 1 Tasks

1.2 Tasks

In this context, a task is a program running on the CPU core of a microcontroller. Without
a multitasking kernel (an RTOS), only one task can be executed by the CPU. This is called a
single-task system. A real-time operating system, on the other hand, allows the execution
of multiple tasks on a single CPU. All tasks execute as if they completely “owned” the
entire CPU. The tasks are scheduled for execution, meaning that the RTOS can activate and
deactivate each task according to its priority, with the highest priority task being executed
in general.

1.2.1 Threads vs. Processes

Thread 1

Thread 2 Process 1 Process 2 Process 3

Thread 3

Threads are tasks that share the same memory layout, hence any two threads can access
the same memory locations. If virtual memory is used, the same virtual to physical trans-
lation and access rights are used.

With embOS, all tasks are threads: they all have the same memory access rights and
translation (in systems with virtual memory).

Processes are tasks with their own memory layout. Two processes cannot normally access
the same memory locations. Different processes typically have different access rights and
(in case of MMUs) different translation tables. Processes are not supported with the current
version of embOS.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

21

CHAPTER 1 Single-task systems (superloop)

1.3 Single-task systems (superloop)

1.3.

1.3.

1.3

The classic way of designing embedded systems does not use the services of an RTOS,
which is also called “superloop design”. Typically, no real time kernel is used, so interrupt
service routines (ISRs) are used for the real-time parts of the application and for critical
operations (at interrupt level). This type of system is typically used in small, simple systems
or if real-time behavior is not critical.

A
> ISR (nested) B Interrupt
= e level
o Superloop Task level
>
Time

Typically, since no real-time kernel and only one stack is used, both program (ROM) size and
RAM size are smaller for simple applications when compared to using an RTOS. Obviously,
there are no inter-task synchronization problems with a superloop application. However,
superloops can become difficult to maintain if the program becomes too large or uses
complex interactions. As sequential processes cannot interrupt themselves, reaction times
depend on the execution time of the entire sequence, resulting in a poor real-time behavior.

1 Advantages & disadvantages

Advantages

e Simple structure (for small applications)
e Low stack usage (only one stack required)

Disadvantages

No “delay” capability

Higher power consumption due to the lack of a power save mode in most architectures
Difficult to maintain as program grows

Timing of all software components depends on all other software components:

Small change in one place can have major side effects in other places

Defeats modular programming

e Real time behavior only with interrupts

2 Using embOS in superloop applications

In a true superloop application, no tasks are used, hence the biggest advantage of using
an RTOS cannot be utilized unless the application is re-written for multitasking. However,
even with just one single task, using embOS offers the following advantages:

e Software timers are available
e Power saving: Idle mode can be used
e Future extensions can be put in a separate task

.3 Migrating from superloop to multi-tasking

A common situation is that an application exists for some time and has been designed as
a single-task super-loop-application. At some point, the disadvantages of this approach
result in a decision to use an RTOS. The typical question now usually is: How do I do this?

The easiest way is to start with one of the sample applications that come with embOS and
to add the existing “super-loop code” into one task. At this point, you should also ensure
that the stack size of this task is sufficient. Later, additional functionality is added to the

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

22 CHAPTER 1 Single-task systems (superloop)

software and can be put in one or more additional tasks; the functionality of the super-loop
can also be distributed over multiple tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

23

CHAPTER 1 Multitasking systems

1.4 Multitasking systems

In a multitasking system, there are different ways to distribute CPU time amongst different
tasks. This process is called scheduling.

A
ISR I
>
= | High prio task
ke,
a | Low prio task
Idle

Time

1.4.1 Task switches

There are two types of task switches, also called context switches: Cooperative and pre-
emptive task switches.

A cooperative task switch is performed by the task itself. As its name indicates, it requires
the cooperation of the task: it suspends itself by calling a blocking RTOS function, e.g.
OS _TASK Del ay() or OS_TASKEVENT Cet Bl ocked() .

A preemptive task switch, on the other hand, is a task switch that is caused externally.
For example, a task of higher priority becomes ready for execution and, as a result, the
scheduler suspends the current task in favor of that task.

1.4.2 Cooperative multitasking

Cooperative multitasking requires all tasks to cooperate by using blocking functions. A task
switch can only take place if the running task blocks itself by calling a blocking function
such as OGS _TASK Del ay() or OS_MAI LBOX Get Bl ocked() . If tasks do not cooperate, the
system “hangs”, which means that other tasks have no chance of being executed by the
CPU while the first task is being carried out. This is illustrated in the diagram below. Even
if an ISR makes a higher-priority task ready to run, the interrupted task will be resumed
and complete before the task switch is made.

A pure cooperative multi-tasking system has the disadvantage of longer reaction times
when high priority tasks become ready for execution. This makes their usage in embedded
real-time systems uncommon.

A High priority task
OS_TASK_Delay() resumes

Lower priority

ngh prlO taSk task is executed

Low prio task

Priority

Idle

Time

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

24

CHAPTER 1 Multitasking systems

1.4.3 Preemptive multitasking

Real-time operating systems like embOS operate with preemptive multitasking. The high-
est-priority task in the READY state always executes as long as the task is not suspended by
a call of any blocking operating system function. A high-priority task waiting for an event is
signaled READY as soon as the event occurs. The event can be set by an interrupt handler,
which then activates the task immediately. Other tasks with lower priority are suspended
(preempted) for as long as the high-priority task is executing. Usually, real-time operating
systems such as embQOS utilize a timer interrupt that interrupts tasks at periodic intervals
and thereby allows to perform task switches whenever timed task switches are necessary.

A ISR puts high priority
task in READY state;
task switch occurs

High priority
IS R task is executed

Executing task Interrupted

ngh pr|0 taSk is interrupted task resumes

Priority

Low prio task

Idle

Time

Preemptive multitasking may be switched off in sections of a program where task switch-
es are prohibited, known as critical regions. embOS itself will also temporarily disable pre-
emptive task switches during critical operations, which might be performed during the ex-
ecution of some embOS API functions.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

25 CHAPTER 1 Scheduling

1.5 Scheduling

There are different algorithms that determine which task to execute, called schedulers. All
schedulers have one thing in common: they distinguish between tasks that are ready to be
executed (in the READY state) and other tasks that are suspended for some reason (delay,
waiting for mailbox, waiting for semaphore, waiting for event, etc). The scheduler selects
one of the tasks in the READY state and activates it (executes the body of this task). The task
which is currently executing is referred to as the running task. The main difference between
schedulers is the way they distribute computation time between tasks in the READY state.

1.5.1 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating the
running task, activates the next task that is in the READY state. Round-robin can be used
with either preemptive or cooperative multitasking. It works well if you do not need to
guarantee response time. Round-robin scheduling can be illustrated as follows:

All tasks share the same priority; the possession of the CPU changes periodically after a
predefined execution time. This time is called ati ne sl i ce and may be defined individually
for each task.

1.5.2 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For example, in
an application that controls a motor, a keyboard, and a display, the motor usually requires
faster reaction time than the keyboard and the display. E.g., even while the display is being
updated, the motor needs to be controlled. This renders preemptive multitasking essential.
Round-robin might work, but as it cannot guarantee any specific reaction time, a more
suitable algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. Depending on these
priorities, a task is chosen for execution according to one simple rule:

Note

The scheduler activates the task that has the highest priority of all tasks and is ready
for execution.

This means that every time a task with a priority higher than the running task becomes
ready, it becomes the running task, and the previous task gets preempted. However, the
scheduler can be switched off in sections of a program where task switches are prohibited,
known as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between tasks of
identical priority. One hint at this point: round-robin scheduling is a nice feature because
you do not need to decide whether one task is more important than another. Tasks with
identical priority cannot block each other for longer periods than their time slices. But
round-robin scheduling also costs time if two or more tasks of identical priority are ready
and no task of higher priority is, because execution constantly switches between the identi-
cal-priority tasks. It usually is more efficient to assign distinct priority to each task, thereby
avoiding unnecessary task switches.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

26 CHAPTER 1 Scheduling

1.5.3 Priority inversion / priority inheritance

The rule the scheduler obeys is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a resource
owned by a lower-priority task? According to the above rule, it would wait until the low-
priority task is resumed and releases the resource. Up to this point, everything works as
expected. Problems arise when a task with medium priority becomes ready during the
execution of the higher prioritized task.

When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finishes its work, because it has a higher priority than the
low-priority task. In this scenario, a task with medium priority runs in place of the task with
high priority. This is known as priority inversion.

A
OS_MUTEX_LockBlocked() OS_MUTEX_Unlock()
J s Interrupt activates

ngh prlo taSk high prio task 0S_TASK_Delay() -
= . .
‘= | Medium prio task
o 0S_MUTEX_LockBlocked|() OS_MUTEX_Unloc()
a | Low prio task

Idle

>
Time

The low priority task claims the semaphore with OS_MJTEX LockBIl ocked() . An interrupt
activates the high priority task, which also calls OS_MJTEX_LockBI ocked() . Meanwhile a
task with medium priority becomes ready and runs when the high priority task is suspend-
ed. The task with medium priority eventually calls OS_TASK Del ay() and is therefore sus-
pended. The task with lower priority now continues and calls OS_ MJTEX Unl ock() to release
the mutex. After the low priority task releases the semaphore, the high priority task is
activated and claims the semaphore.

To avoid this situation, embQOS temporarily raises the low-priority task to high priority until
it releases the resource. This unblocks the task that originally had the highest priority and
can now be resumed. This is known as priority inheritance.

A
OS_MUTEX_LockBlocked() OS_MUTEX_Unlock()
. . Interrupt e
- prio task
2| Medium prio task 05 MUTEX_
) OS_MUTEX_LockBlocked(), Unlock()
a | Low prio task
Idle

Time

With priority inheritance, the low priority task inherits the priority of the waiting high priority
task as long as it holds the mutex. The lower priority task is activated instead of the medium
priority task when the high priority task tries to claim the semaphore.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

27 CHAPTER 1 Communication between tasks

1.6 Communication between tasks

In a multitasking (multithreaded) program, multiple tasks and ISRs work completely sep-
arately. Because they all work in the same application, it will sometimes be necessary for
them to exchange information with each other.

1.6.1 Periodic polling

The easiest way to communicate between different pieces of code is by using global vari-
ables. In certain situations, it can make sense for tasks to communicate via global variables,
but most of the time this method has disadvantages.

For example, if you want to synchronize a task to start when the value of a global variable
changes, you must continually poll this variable, wasting precious computation time and
energy, and the reaction time depends on how often you poll.

1.6.2 Event-driven communication mechanisms

When multiple tasks work with each other, they often have to:

e exchange data,
e synchronize with another task, or
e make sure that a resource is used by no more than one task at a time.

For these purposes embOS offers mailboxes, queues, semaphores and events.

1.6.3 Mailboxes and queues

A mailbox is a data buffer managed by the RTOS and is used for sending a message to
a task. It works without conflicts even if multiple tasks and interrupts try to access the
same mailbox simultaneously. embQOS activates any task that is waiting for a message in
a mailbox the moment it receives new data and, if necessary, switches to this task.

A queue works in a similar manner, but handles larger messages than mailboxes, and each
message may have an individual size.

For more information, refer to the chapters Mailboxes on page 178 and Queues on
page 210.

1.6.4 Semaphores and Mutexes

Semaphores and mutexes are used for task synchronization and to manage resources of
any kind. The most common are mutex, although semaphores are also used.

For details and samples, refer to the chapters Mutex on page and Semaphores on
page 165.

1.6.5 Events

A task can wait for a particular event without consuming any CPU time. The idea is as
simple as it is convincing, there is no sense in polling if we can simply activate a task once
the event it is waiting for occurs. This saves processor cycles and energy and ensures that
the task can respond to the event without delay. Typical applications for events are those
where a task waits for some data, a pressed key, a received command or character, or the
pulse of an external real-time clock.

For further details, refer to the chapters Task Events on page 117 and Event Objects on
page 128.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

28 CHAPTER 1 How task switching works

1.7 How task switching works

A real-time multitasking system lets multiple tasks run like multiple single-task programs,
quasi-simultaneously, on a single CPU. A task consists of three parts in the multitasking
world:

e The program code, which typically resides in ROM
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The task’s stack has the same function as in a single-task system: storage of return ad-
dresses of function calls, parameters and local variables, and temporary storage of inter-
mediate results and register values. Each task can have a different stack size. More infor-
mation can be found in chapter Stacks on page 427.

The task control block (TCB) is a data structure assigned to a task when it is created.
The TCB contains status information for the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management data.
Knowledge of the stack pointer allows access to the other registers, which are typically
stored (pushed onto) the stack when the task is created and each time it is suspended.
This information allows an interrupted task to continue execution exactly where it left off.
TCBs are only accessed by the RTOS.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

29

CHAPTER 1

1.7.1 Switching stacks

The following diagram demonstrates the process of switching from one stack to another.

Task O

Task 0 Stack

Task Control Block

Stack Pointer .
Variables

Temp. Storage
Ret. Addresses
CPU Register

Free Stack Area

Task 1

Task Control Block Task 1 Stack

Stack Pointer

Variables
Temp. Storage
Ret. Addresses

CPU Register

CPU Register

Free Stack Area

The scheduler deactivates the task to be suspended (Task 0) by saving the processor reg-
isters on its stack. It then activates the higher-priority task (Task 1) by loading the stack

pointer (SP) and the processor registers from the values stored on Task 1’s stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:

1. Save (push) the processor registers on the task’s stack.
2. Save the stack pointer in the Task Control Block.

Activating a task

The scheduler activates the higher-priority task (Task 1) by performing the sequence in

reverse order:

1. Load (pop) the stack pointer (SP) from the Task Control Block.
2. Load the processor registers from the values stored on Task 1’s stack.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

How task switching works

30 CHAPTER 1 Change of task status

1.8 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
placed into the READY state.

A task in the READY state is activated as soon as there is no other task in the READY state
with higher priority. Only one task may be running at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task remains in
the READY state.

The running task may be delayed for or until a specified time; in this case it is placed into
the WAITING state and the next-highest-priority task in the READY state is activated.

The running task might need to wait for an event (or semaphore, mailbox or queue). If
the event has not yet occurred, the task is placed into the waiting state and the next-
highest-priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it either has been terminated
or was not created at all.

The following illustration shows all possible task states and transitions between them.

Not existing

OS_TASK_Create()
OS_TASK_CreateEx()

OS_TASK_Terminate()

Scheduler Running

API class such as:
0S_EVENT_Set()
or delay expiration

API class such as:
OS_TASK_Delay()
OS_..._Blocked()

Waiting

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

31 CHAPTER 1 How the OS gains control

1.9 How the OS gains control

Upon CPU reset, the special-function registers are set to their default values. After reset,
program execution begins: The PC register is set to the start address defined by the start
vector or start address (depending on the CPU). This start address is usually in a startup
module shipped with the C compiler, and is sometimes part of the standard library.

The startup code performs the following:

e Loads the stack pointer(s) with the default values, which is for most CPUs the end of
the defined stack segment(s)

o Initializes all data segments to their respective values

e Calls the mai n() function.

The mai n() function is the part of your program which takes control immediately after
the C startup. Normally, embOS works with the standard C startup module without any
modification. If there are any changes required, they are documented in the CPU & Compiler
Specifics manual of the embOS documentation.

With embQS, the mai n() function is still part of your application program. Essentially,
mai n() creates one or more tasks and then starts multitasking by calling S _Start (). From
this point, the scheduler controls which task is executed.

St art up_code()
mai n()
s Init();
CS_ I nitHW);
OS_TASK_CREATE() ;
CS Start();

The mai n() function will not be interrupted by any of the created tasks because those
tasks execute only following the call to OS_Start () . It is therefore usually recommended to
create all or most of your tasks here, as well as your control structures such as mailboxes
and semaphores. Good practice is to write software in the form of modules which are (up
to a point) reusable. These modules usually have an initialization routine, which creates
any required task(s) and control structures. A typical mai n() function looks similar to the
following example:

Example

voi d mai n(void) {
oS Init(); I/l Initialize enbOS (nust be first)
OS_Ini t HW() ; // Initialize hardware for enbOS (in RTOSInit.c)
/1 Call Init routines of all program nodules which in turn will create
/'l the tasks they need ... (Order of creation may be inportant)
MODULEL_Init();
MODULE2_I nit();
MODULE3_I nit();
MODULE4_I nit();
MODULES_I nit();
oS Start(); // Start multitasking
}

With the call to G5 Start (), the scheduler starts the highest-priority task created in
mai n() . Note that OS_St art () is called only once during the startup process and does not
return.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

32 CHAPTER 1 Different builds of embOS

1.10 Different builds of embQOS

embOS comes in different builds or versions of the libraries. The reason for different builds
is that requirements vary during development. While developing software, the performance
(and resource usage) is not as important as in the final version which usually goes as
release build into the product. But during development, even small programming errors
should be caught by use of assertions. These assertions are compiled into the debug build
of the embOS libraries and make the code a little bigger (about 50%) and also slightly
slower than the release or stack-check build used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for your
final product (release or stack-check build of the libraries), and a safer (though bigger
and slower) build for development which will catch most common application programming
errors. Of course, you may also use the release build of embOS during development, but
it will not catch these errors.

The following features are included in the different embOS builds:

Debug code

The embOS debug code is mainly implemented as assertions which detect application pro-
gramming errors like calling an API function from an invalid context.

Stack check

The stack check detects stack overflows of task stacks, system stack and interrupt stack.
Also the maximum amount of used stack can be calculated.

Profiling

embOS supports profiling in profiling builds. Profiling makes precise information available
about the execution time of individual tasks. You may always use the profiling libraries, but
they require larger task control blocks, additional ROM and additional runtime overhead.
This overhead is usually acceptable, but for best performance you may want to use non-
profiling builds of embOS if you do not use this feature.

Trace

embOS API trace saves information about called API in a trace buffer. The trace data can
be visualized in embOSView.

Round Robin

Round Robin lets all task at the same priority periodically run with an according time slice.

Object names

Tasks and OS object names can be used to easily identify a task or e.g. a mailbox in tools
like embOSView, SystemView or IDE RTOS plug-ins.

Task context extension

For some applications it might be useful or required to have individual data in tasks that are
unique to the task. With the task context extension support each task control block includes
function pointer to save and restore routines which are executed during context switch.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

1.10.1 List of builds

CHAPTER 1

Different builds of embOS

In your application program, you need to let the compiler know which build of embQOS you
are using. This is done by adding the corresponding Define to your preprocessor settings
and linking the according library file. The actual library file name depends on the embOS
port. Please check the according CPU and compiler specific embOS manual for more details.

@)
g Q g S| o ;
o |2 D c o | X @
: c|Rlc|FZ|a|adX -
Name Define Q@ ~NIZIR|2I5|28 Description
0=|53 |8 o 5
S Slolg|2 |52
a8 @ CAERERY
Q = |0 x
o | = S —
Extreme .
OS LI BMODE_XR Smallest fastest build.
Release
Small, fast build, normally
Release CS LIBMODE R oo used for release build of ap-

plication.

Stack Check | OS LI BMODE_ S

Same as release, plus stack
checking.

Stackc_h_eck 0S LI BMODE SP ol e ole Sanje_z as stack check, plus
+ Profiling - = profiling.

Debug CS LI BMODE_D o e oo Maximum runtime checking.
Deby_g + OS LI BMODE DP olele ole R Maximunfl.runtime checking,
Profiling - - plus profiling.

Debug + Maximum runtime checking,
Trace + Os_LI BMODE_DT e/ e|e|e|e|e| e |plustracing API callss and
Profiling profiling.

Safe Library

OS_LI BVODE_SAFE

Additional safety features
for certified embOS.

1.10.2 OS_Config.h

OS Config. h is part of every embOS port and located in the Start\ I nc folder. Use of
OS_Confi g. h makes it easier to define the embQOS library mode: Instead of defining S LI B-
MODE_* in your preprocessor settings, you may define DEBUG=1 in your preprocessor settings
in debug compile configuration and define nothing in the preprocessor settings in release
compile configuration. Subsequently, GS_Confi g. h will automatically define GS_LI BMOD-
E _DP for debug compile configuration and OS_LI BMODE_R for release compile configuration.

Compile Configuration

Preprocessor Define

Define Set by OS_Confi g.h

Debug

DEBUG=1

OS_LI BVODE_DP

Release

OS_LI BMODE_R

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

34 CHAPTER 1 Valid context for embOS API

1.11 Valid context for embQOS API

Some embOS functions may only be called from specific locations inside your application.
We distinguish between mai n() (before the call of GS_Start ()), task, interrupt routines
and embOS software timer.

Note

Please consult the embOS API tables to determine whether an embOS function is
allowed from within a specific execution context. Please find the API tables at beginning

of each chapter.

An embQOS debug build will check for violations of these rules and calls OS_Error () with
an according error code.

Example
. e 3 |d|= |2
Routine Description o |8 %’ CBD
S5 |x @
0S_TASK_Del ay() Suspends the calling task for a specified period of ol e
- - y time, or waits actively when called from main().

This table entry says it is allowed to call OS_TASK Del ay() from main() and a task but not
from an embOS software timer or an interrupt handler.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

35 CHAPTER 1 Blocking and Non blocking embOS API

1.12 Blocking and Non blocking embOS API

Most embOS API comes in three different version: Non blocking, blocking and blocking with
a timeout. The embOS API uses a specific naming convention for those API functions. API
functions which do not block a task have no suffix. API functions which could block a task
have the suffix "Blocked”. API functions which could block a task but have a timeout have
the suffix “Timed".

Non blocking API

Non blocking API functions always return at once, irrespective of the state of the OS object.
The return value can be checked in order to find out if e.g. hew data is available in a mailbox.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
char r;
while (1) {
r = OS_MAI LBOX_Get (MyMai | box, Buffer);
if (r == 0u) {
/'l Process nessage
}
}
}

Blocking API

Blocking API functions suspend the task until it is activated again by another embQOS API
function. The task does not cause any CPU load while it is waiting for the next activation.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
while (1) {
/1 Suspend task until a new nessage is avail able
OS_MAI LBOX_Cet Bl ocked(MyMai | box, Buffer);
/'l Process nessage
}
}

Blocking API with timeout

These API functions have an additional timeout. They are blocking until the timeout occurs.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
char r;
while (1) {
/1 Suspend task until a new nessage is available or the tineout occurs
r = OS_MAI LBOX_Get Ti ned(MyMai | box, Buffer, 10);
if (r == 0u) {
/'l Process nessage
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

36 CHAPTER 1 API functions

1.13 API functions

, - 3 3 7|5

Routine Description % o |3 ‘-3'2
OS_Confi gStop() Configures the Gs_St op() function. °
S Init() Initializes the embOS kernel. °

0S| sRunni ng() Examine whether OS_St art () was called. NEIARRE
OS Start () Start the embOS kernel. °

05_St op() f;???)the embOS scheduler and returns from CS_S- olelele

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

37 CHAPTER 1

1.13.1 OS_ConfigStop()

Description
Configures the Gs_St op() function.

API functions

Prototype
void OS_Confi gSt op(OS_MAI N_CONTEXT* pCont ext,
voi d* Addr,
0s_U32 Si ze) ;
Parameters
Parameter Description
pCont ext Pointer to an object of type OS_MAI N_CONTEXT.
Addr Address of the buffer which is used to save the main() stack.
Si ze Si ze of the buffer.

Additional information

This function configures the OS_St op() function. When configured, OS_Start () saves the
context and stack from within main(), which subsequently are restored by CS_St op() . The
main() context and stack are saved to the resources configured by OS_Confi gSt op() . Only
the stack that was actually used during main() is saved. Therefore, the size of the buffer

depends on the used stack. If the buffer is too sm
0S _Error () with the error code OS_ERR OSSTOP_BUF
is core and compiler specific; it is specifically defined

Example

#i ncl ude "RTCS. h"
#i ncl ude "stdio. h"

#def i ne BUFFER_SI ZE (32u)

all, debug builds of embQS will call
FER. The structure OS_MAI N_CONTEXT
with each embOS port.

static OS_U8 Buf f er[BUFFER_SI ZE]; // Buffer for main stack copy
static OS_MAI N CONTEXT Mai nCont ext ; /1 Main context control structure
static OS_STACKPTR int StackHP[128]; /'l Task stack

static OS _TASK TCBHP; /1 Task control bl ock

static void HPTask(void) {
OS_TASK_Del ay(50);
OS_INT_Di sabl e();
OS_Stop();

}

int main(void) {
i nt TheAnswer ToEveryt hing = 42;
CS Init(); /'l Initialize enbOS

CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask,

St ackHP) ;

OS_Confi gSt op(&Vvai nCont ext, Buffer, BUFFER S| ZE);

CS Start(); /1 Start enmbOS

I

/1 W arrive here because OS_Stop() was call ed.
/'l The local stack variable still has its val ue.
I

printf("%l", TheAnswer ToEveryt hing);
whi |l e (TheAnswer ToEveryt hing == 42) {

}

return O;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

CHAPTER 1 API functions

1.13.2 OS_Init()

Description

Initializes the embOS kernel.

Prototype

void OS | nit(void);

Additional information

In library mode OS_LI BMODE_SAFE all RTOS variables are explicitly initialized. All other li-
brary modes presume that, according to the C standard, all initialized variables have their
initial value and all non initialized variables are set to zero.

Note

OS_ I nit () must be called in main() prior to any other embQOS API.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /1 Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200);
}
}

/‘k*‘k**

*

* mai n()
*/
int mai n(void) {
oS _Init(); /1 Initialize enbQOS
S InitHW); Il Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
Os_Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

39 CHAPTER 1 API functions

1.13.3 OS _IsRunning()

Description

Determines whether the embOS scheduler was started by a call of OS_Start ().

Prototype

OS_BOOL OS_I sRunni ng(voi d);

Return value

=0 Scheduler is not started.
*0 Scheduler is running, Gs_St art () has been called.

Additional information

This function may be helpful for some functions which might be called from main() or from
running tasks. As long as the scheduler is not started and a function is called from main(),
blocking task switches are not allowed. A function which may be called from a task or
main() may use OS_I| sRunni ng() to determine whether a subsequent call to a blocking API
function is allowed.

Example

void PrintStatus() {
Cs_BOOL b;

b = OS_I SRunni ng();
if (b ==20) {
printf("enmbOS schedul er not started, yet.\n");
} else {
printf("enmbOS scheduler is running.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

40 CHAPTER 1

1.13.4 OS_Start()

API functions

UMO01001 User Guide & Reference Manual for embOS

Description
Starts the embOS scheduler.

Prototype

void OS_Start(void);

Additional information

This function starts the embOS scheduler, which will activate and start the task with the
highest priority.

0s _Start () marks embOS as running; this may be examined by a call of the function
OS IsRunning(). GS _Start() automatically enables interrupts. It must be called from
main() only.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /1 Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200);
}
}

/‘k*‘k**

*

* mai n()
*/
int main(void) {
OS_Init(); /1 Initialize enbQOS
S InitHW); Il Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
Os_Start(); /1 Start enmbCS

return O;

© 1995-2018 SEGGER Microcontroller GmbH

41 CHAPTER 1

1.13.5 OS Stop()

Description

API functions

Stops the embOS scheduler and returns from CS _Start ().

Prototype

voi d OS_Stop(void);

Additional information

This function stops the embOS scheduler and the application returns from OS_Start ().

0S_Confi gSt op() must be called prior to OS_Stop() . If S_Confi gSt op() was not called,
debug builds of embOS will call S_Error () with the error code OS_ERR _CONFI G_CSSTOP.
0S_Stop() restores context and stack to their state prior to calling 0s_Start (). OS_St op()
does not deinitialize any hardware. It's the application’s responsibility to deinitialize all

hardware that was initialzed during OS_I ni t H\() .

It is possible to restart embOS after OS_St op() . To do so, G5 | nit () must be called and
any task must be recreated. It also is the application’s responsibility to initialize all embOS
variables to their default values. With the embOS source code, this can easily be achived

using the compile time switch OS_I NI T_EXPLI CI TLY.

With some cores it is not possible to save and restore the main() stack. This is e.g. true for
8051. Hence, in that case no functionality should be implemented that relies on the stack

to be preserved. But OS_St op() can be used anyway.

Example

#i ncl ude "RTCS. h"
#i ncl ude "stdio. h"

#defi ne BUFFER_SI ZE (32u)
static OS_U8 Buf f er [BUFFER_SI ZE] ;
static OS_MAI N CONTEXT Mai nCont ext ;

static OS_STACKPTR int StackHP[128];
static OS _TASK TCBHP;

static void HPTask(void) {
OS_TASK_Del ay(50);
OS_Stop();

}

int main(void) {
i nt TheAnswer ToEveryt hing = 42;
CS Init();
CS InitHW);

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&Vvai nCont ext, Buffer, BUFFER S| ZE);

CS Start();
Il

/1 We arrive here because OS Stop() was call ed.

/1 The local stack variable still has its val ue.

Il
printf("%l", TheAnswer ToEveryt hing);

while (1) {

}

return O;
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

Chapter 2

Tasks

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

43 CHAPTER 2 Introduction

2.1 Introduction

A task that should run under embOS needs a task control block (TCB), a task stack, and a
task body written in C. The following rules apply to task routines:

e The task routine can either not take parameters (void parameter list), in which case
OS TASK Create() is used to create it, or take a single void pointer as parameter, in
which case OS_TASK Creat eEx() is used to create it.

The task routine must not return.
The task routine must be implemented as an endless loop or it must terminate itself
(see examples below).

2.1.1 Example of atask routine as an endless loop

voi d Taskl(void) {
while(l) {
DoSomet hing(); // Do sonething
OS_TASK Del ay(10); // Gve other tasks a chance to run
}
}

2.1.2 Example of atask routine that terminates itself

voi d Task2(void) {
char DoSomeMor e;

do {

DoSoneMore = DoSonet hi ngEl se(); // Do sonething

OS_TASK Del ay(10); /1 Gve other tasks a chance to run
} while (DoSonmeMbre);
OS_TASK Ter mi nat e(NULL) ; /1 Term nate yourself

}

There are different ways to create a task: On the one hand, embOS offers a simple macro
to facilitate task creation which is sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a function is available allowing “fine-tuning” of all parameters.
For most applications, at least initially, we recommend using the macro as in the sample
start projects.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

44 CHAPTER 2 Cooperative vs. preemptive task switches

2.2 Cooperative vs. preemptive task switches

In general, preemptive task switches are an important feature of an RTOS. Preemptive
task switches are required to guarantee responsiveness of high-priority, time critical tasks.
However, it may be desirable to disable preemptive task switches for certain tasks in some
circumstances. The default behavior of embQOS is to always allow preemptive task switches.

2.2.1 Disabling preemptive task switches for tasks of equal
priority

In some situations, preemptive task switches between tasks running at identical priorities
are not desirable. To inhibit time slicing of equal-priority tasks, the time slice of the tasks
running at identical priorities must be set to zero as in the example below:

#i ncl ude "RTCS. h"

#define PRI O_COOP 10
#define TIME_SLICE_NULL O

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void TaskEx(voi d* pData) {
while (1) {
OS_TASK Del ay ((OS_TI ME) pData);
}
}

/***

*

* mai n()

*/

int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /'l Initialize required hardware
BSP_Init(); /1 Initialize LED ports

OS_TASK Creat eEx(&TCBHP, "HP Task", PRI O COOP, TaskEx, StackHP,
si zeof (StackHP), TIME_SLI CE_NULL, (void *) 50);

OS_TASK Creat eEx(&TCBLP, "LP Task", PRI O COOP, TaskEx, StackLP,
si zeof (StackLP), TIME_SLICE_NULL, (void *) 200);

CS Start(); /1 Start enmbCS

return O;

2.2.2 Completely disabling preemptions for a task

This is simple: The first line of code should be OS_TASK Ent er Regi on() as shown in the
following sample:

voi d MyTask(voi d* pContext) {
OS_TASK EnterRegion(); // Disable preenptive context switches
while (1) {
/'l Do sonmething. In the code, nmake sure that you call a bl ocking
/1 funtion periodically to give other tasks a chance to run.

}
}

This will entirely disable preemptive context switches from that particular task and will
therefore affect the timing of higher-priority tasks. Do not use this carelessly.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

45 CHAPTER 2 Extending the task context

2.3 Extending the task context

For some applications it might be useful or required to have individual data in tasks that are
unique to the task. Local variables, declared in the task, are unique to the task and remain
valid, even when the task is suspended and resumed again. When the same task function
is used for multiple tasks, local variables in the task may be used, but cannot be initialized
individually for every task. embOS offers different options to extend the task context.

2.3.1 Passing one parameter to a task during task creation

Very often it is sufficient to have just one individual parameter passed to a task. Using the
OS_TASK _CREATEEX() or OS_TASK CreateEx() function to create a task allows passing a
void-pointer to the task. The pointer may point to individual data, or may represent any
data type that can be held within a pointer.

2.3.2 Extending the task context individually at runtime

Sometimes it may be required to have an extended task context for individual tasks to store
global data or special CPU registers such as floating-point registers in the task context.
The standard libraries for file I/0, locale support and others may require task-local stor-
age for specific data like errno and other variables. embOS enables extension of the task
context for individual tasks during runtime by a call of OS_TASK_Set Cont ext Ext ensi on() .
The sample application file OS_Ext endTaskCont ext . ¢ delivered in the application samples
folder of embOS demonstrates how the individual task context extension can be used.

2.3.3 Extending the task context by using own task struc-
tures

When complex data is needed for an individual task context, the OS_TASK CREATEEX() or
OS_TASK Creat eEx() functions may be used, passing a pointer to individual data structures
to the task. Alternatively you may define your own task structure which can be used. Note,
that the first item in the task structure must be an embOS task control structure OS_TASK.
This can be followed by any amount and type of additional data of different types.

The following code shows the example application OS_Ext endedTask. ¢ which is delivered
in the sample application folder of embQOS.

/***

* SEGCGER M crocontrol |l er GrbH & Co. KG *
* The Enbedded Experts *
EE R IR Sk S I I S I R R I S I I S R S I S R S I I S S R R R S I I I I Sk I S I R b I S I I
-------------------------- END- OF- HEADER - -------------mmmmm e e oo - -
File . OS_Ext endedTask. c

Purpose : enbOS sanpl e program denonstrating the extension of tasks.
*/

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

[*****%% Custom task structure with extended task context **xxx**kxxxx/
typedef struct {
OS_TASK Task; /'l OS_TASK has to be the first el enent
OS_TIME Timeout; // Any other data type nay be used to extend the context
char* pString; // Any nunber of elenents nay be used to extend the context
} MY_APP_TASK;

/****** Stath data ***/

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static MY_APP_TASK TCBHP, TCBLP; /1l Task control blocks

/****** Task functlon ***/

static void MyTask(void) {

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

46 CHAPTER 2 Extending the task context

MY_APP_TASK* pThi's;

CS_TI ME Ti meout ;

char* pString;

pThis = (MY_APP_TASK*) OS_TASK Get | D();
while (1) {

Ti neout = pThi s->Ti neout ;
pString = pThis->pString;
printf(pString);
OS_TASK Del ay(Ti neout) ;
}
}

/***

*

* mai n()

*/

int main(void) {
CS Init(); /'l Initialize enhOS
Cs_ I nitHW); /1 Initialize required hardware
I

/1l Create the extended tasks just as nornal tasks.

/1l Note that the first paraneter has to be of type OS TASK
I

OS_TASK_CREATE(&TCBHP. Task, "HP Task", 100, MyTask, StackHP);
OS_TASK_CREATE(&TCBLP. Task, "LP Task", 50, MyTask, StackLP);

I

/'l Gve task contexts individual data
I

TCBHP. Ti meout = 200;

TCBHP. pString = "HP task runni ng\n";
TCBLP. Ti neout = 500;

TCBLP. pString = "LP task runni ng\n";
CS Start(); /1l Start enbCsS

return O;

}

/****** End G Flle ***/

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

47 CHAPTER 2

2.4 API functions

API functions

Routine

Description

urew

Nsel

dSi
JETT

OS_TASK _AddCont ext Ext ensi on()

Adds an additional task context ex-
tension.

OS_TASK_AddTer m nat eHook()

Adds a hook (callback) function to
the list of functions which are called
when a task is terminated.

OS_TASK_CREATE()

Creates a new task.

OS_TASK Create()

Creates a new task.

0S_TASK_CREATEEX()

Creates a new task and passes a pa-
rameter to the task.

OS_TASK Creat eEx()

Creates a new task and passes a pa-
rameter to the task.

OS_TASK Del ay()

Suspends the calling task for a spec-
ified period of time, or waits actively
when called from main().

OS_TASK_Del ayUnti | ()

Suspends the calling task until a
specified time, or waits actively when
called from main().

0S_TASK_Del ayus()

Waits for the given time in microsec-
onds.

0S_TASK_Get Nane()

Returns a pointer to the name of a
task.

0S_TASK_Get Nunirasks()

Returns the number of tasks.

OS TASK CGetPriority()

Returns the task priority of a speci-
fied task.

OS _TASK Get SuspendCnt ()

Returns the suspension count and
thus suspension state of the specified
task.

OS_TASK_Get | D()

Returns a pointer to the task control
block structure of the currently run-
ning task.

OS _TASK CGet Ti meSl i ceRem()

Returns the remaining time slice val-
ue of a task.

OS_TASK | sTask()

Determines whether a task control
block belongs to a valid task.

OS_TASK_| ndex2Ptr ()

Returns the task control block of the
task with the specified Index.

OS_TASK RenpveAl | Ter ni nat e-
Hooks()

Removes all hook functions from the
OS_ON_TERM NATE_HOXK list which
contains the list of functions that are
called when a task is terminated.

OS_TASK_RenoveTer i nat eHook()

This function removes a hook func-
tion from the OS_ON_TERM NATE_HOK
list which contains the list of func-
tions that are called when a task is
terminated.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

48 CHAPTER 2

API functions

Routine

Description

urew

Asel
dSli
JETI

OS_TASK Resune()

Decrements the suspend count of the
specified task and resumes it if the
suspend count reaches zero.

OS_TASK ResuneAl | ()

Decrements the suspend count of all
tasks that have a nonzero suspend
count and resumes these tasks when
their respective suspend count reach-
€s zero.

OS_TASK_Set Cont ext Ext ensi on()

Makes global variables or processor
registers task-specific.

OS_TASK_ Set Def aul t Cont ext Ex-
tensi on()

Sets the default task context exten-
sion for newly created tasks.

OS_TASK_Set Def aul t St art Hook()

Sets a default hook routine which is
executed before a task starts.

OS_TASK_ Set | nitial SuspendCnt ()

Sets the initial suspend count for
newly created tasks to 1 or 0.

0OS_TASK_Set Nane()

Allows modification of a task name at
runtime.

OS TASK SetPriority()

Assigns a priority to a specified task.

OS_TASK Set Ti meSlice()

Assigns a specified timeslice period to
a specified task.

OS_TASK_Suspend()

Suspends the specified task and in-
crements a counter.

OS_TASK_SuspendAl | ()

Suspends all tasks except the run-
ning task.

OS_TASK Term nat e()

Ends (terminates) a task.

0S_TASK_Wake()

Ends delay of a specified task imme-
diately.

OS_TASK_Yi el d()

Calls the scheduler to force a task
switch.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

49 CHAPTER 2 API functions

24.1 OS_TASK_ AddContextExtension()

Description

Adds an additional task context extension. The task context can be extended with
OS_TASK_ Set Cont ext Ext ensi on() only once. Additional task context extensions can be
added with OS_TASK AddCont ext Ext ensi on() . The function OS_TASK AddCont ext Ext en-
si on() requires an additional parameter of type OS_EXTEND TASK CONTEXT_LI NK which is
used to create a task specific linked list of task context extensions.

Prototype

voi d OS_TASK_AddCont ext Ext ensi on
(OS_EXTEND_TASK_CONTEXT_LI NK* pExt endCont ext Li nk,

OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext) ;
Parameters
Parameter Description
pExt endCont ext Li nk Pointer to the OS_EXTEND TASK CONTEXT LI NK structure.

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

The object of type OS_EXTEND_TASK_CONTEXT_LI NK is task specific and must only be used
for one task. It can be located e.g. on the task stack. OS_TASK_AddCont ext Ext ensi on()
must only be used when OS_TASK_ Set Cont ext Ext ensi on() has been called before.

Example

static void HPTask(void) {
OS_EXTEND_TASK_CONTEXT_LI NK p;
Il
/'l Extend task context by VFP registers
Il
OS_TASK_Set Cont ext Ext ensi on(& _SaveRest or eVFP) ;
Il
/1 Extend task context by global variable
I
OS_TASK_AddCont ext Ext ensi on(&p, & SaveRestored obal Var);
a=1.2;
while (1) {
b =37* g
d obal Var = 1;
OS_TASK Del ay(10);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

50

CHAPTER 2 API functions

24.2 OS _TASK_AddTerminateHook()

Description

Adds a hook (callback) function to the list of functions which are called when a task is
terminated.

Prototype

voi d OS_TASK_AddTer nmi nat eHook(OS_ON_TERM NATE_HOOK* pHook,
OS_ON_TERM NATE_FUNC* pf User);

Parameters
Parameter Description
Pointer to a variable of type OS_ON _TERM NATE_HOOK which
pHook will be inserted into the linked list of functions to be called
during GS_TASK Terni nate().
f User Pointer to the function of type OS_TERM NATE_FUNC which
P shall be called when a task is terminated.

Additional information

For some applications, it may be useful to allocate memory or objects specific to tasks. For
other applications, it may be useful to have task-specific information on the stack. When a
task is terminated, the task-specific objects may become invalid. A callback function may
be hooked into GS_TASK Terni nate() by calling OS TASK AddTer m nat eHook() to allow
the application to invalidate all task-specific objects before the task is terminated. The
callback function of type OS_ON TERM NATE_FUNC receives the ID of the terminated task as
its parameter. OS_ON_TERM NATE_FUNC is defined as:

typedef void OS_ON_TERM NATE_FUNC(OS_CONST_PTR OS_TASK* pTask);

Note

The variable of type OS_ON_TERM NATE_HOOK must reside in memory as a global or
static variable. It may be located on a task stack, as local variable, but it must not be
located on any stack of any task that might be terminated.

Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Term nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) {
/1 This function is executed upon calling OS_TASK Term nate().
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter mi nat eHook, Ter m nat eHookFunc) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

51

CHAPTER 2 API functions

2.43 OS TASK_CREATE()

Description

Creates a new task.

Prototype

voi d OS_TASK_CREATE(CS_TASK* pTask,
char* pNane,
OS_PRIO Priority,
voi d* pRouti ne,
voi d* pSt ack) ;

Parameters
Parameter Description

pTask Pointer to a task control block structure.

pNane Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
1 < Priority < 28-1 = OxFF for 8/16 bit CPUs

Priority 1 < Priority < 232-1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities. The type OS_PRI Ois defined
as 32 bit value for 32 bit CPUs and 8 bit value for 8 or 16 bit CPUs by
default.

pRouti ne Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack area for

pSt ack the task. The size of this block of memory determines the size of the
stack area.

Additional information

OS_TASK CREATE() is a macro which calls an OS library function. It creates a task and
makes it ready for execution by placing it into the READY state. The newly created task will
be activated by the scheduler as soon as there is no other task with higher priority in the
READY state. If there is another task with the same priority, the new task will be placed
immediately before it. This macro is normally used for creating a task instead of the function
call OS_TASK Create() because it has fewer parameters and is therefore easier to use.

OS_TASK _CREATE() can be called either from main() during initialization or from any other
task. The recommended strategy is to create all tasks during initialization in main() to
keep the structure of your tasks easy to understand. The absolute value of Priority is of no
importance, only the value in comparison to the priorities of other tasks matters.

OS_TASK _CREATE() determines the size of the stack automatically, using sizeof(). This is
possible only if the memory area has been defined at compile time.

Note

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size. The task stack cannot be shared
between multiple tasks and must be assigned to one task only. The memory used as
task stack cannot be used for other purposes unless the task is terminated.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

52 CHAPTER 2 API functions

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);

}
}
static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200);
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware

OS_TASK _CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK _CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enmbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

53

CHAPTER 2 API functions

2.4.4 0OS TASK Create()

Description

Creates a new task.

Prototype

voi d OS_TASK_Creat e(
const

Parameters

OS_TASK* pTask,

char* pNane,

OS_PRIO Priority,

voi d (*pRoutine)(),

voi d OS_STACKPTR *pSt ack,
OS_U NT Stacksi ze,

CS_UNT TineSlice);

Parameter

Description

pTask

Pointer to a task control block structure.

pName

Pointer to the name of the task. Can be NULL (or 0) if not
used. When using an embOS build without task name sup-
port, this parameter does not exist and must be omitted.
The embOS OS_LI BMODE_XR libraries do not support task
names.

Priority

Priority of the task. Must be within the following range:

1 <Priority <28-1 = 0xFF for 8/16 bit CPUs

1 <Priority <232 -1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities. The type G5 PRI Ois
defined as a 32 bit value for 32 bit CPUs and as an 8 bit val-
ue for 8 or 16 bit CPUs by default.

pRout i ne

Pointer to a function that should run as the task body.

pSt ack

Pointer to an area of memory in RAM that will serve as stack
area for the task. The size of this block of memory deter-
mines the size of the stack area.

St ackSi ze

Size of stack in bytes.

TimeSlice

Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
notes the time (in embOS embOS system ticks) that the
task will run before it suspends, and must be in the following
range: 0 < Ti neSl i ce £ 255. When using an embOS build
without round-robin support, this parameter does not exist
and must be omitted. The embOS OS_LI BMODE_XR libraries
do not support round robin and time slice.

Additional information

This function works the same way as OS TASK CREATE(), except that all parameters of
the task can be specified. The task can be dynamically created because the stack size is
not calculated automatically as it is with the macro. A time slice value of zero is allowed
and disables round-robin task switches. (see sample in chapter Disabling preemptive task
switches for tasks of equal priority on page 44)

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

54

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 2 API functions

Note

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size. The task stack cannot be shared
between multiple tasks and must be assigned to one task only. The memory used as
task stack cannot be used for other purposes unless the task is terminated.

Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks
static void HPTask(void) {
while (1) {
OS_TASK Del ay(50);
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(200);
}
}
int mai n(void) {
CS Init(); /[l Initialize enbCS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK Create(&TCBHP, "HP Task", 100, HPTask, StackHP, sizeof(StackHP), 2);
OS_TASK Create(&TCBLP, "LP Task", 50, LPTask, StackLP, sizeof(StackLP), 2);
CS Start(); /1 Start enbOS

return O;

© 1995-2018 SEGGER Microcontroller GmbH

55

CHAPTER 2 API functions

2.45 OS TASK_CREATEEX()

Description

Creates a new task and passes a parameter to the task.

Prototype

voi d OS_TASK_CREATEEX(CS_TASK* pTask,
char* pNane,
OS_PRIO Priority,
voi d* pRouti ne,
voi d* pSt ack,
voi d* pCont ext) ;

Parameters
Parameter Description
pTask Pointer to a task control block structure.
pNane Pointer to the name of the task. Can be NULL (or 0) if not used.
Priority of the task. Must be within the following range:
1 < Priority < 28-1 = OxFF for 8/16 bit CPUs
Priority 1 < Priority < 232-1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities. The type OS_PRI Ois defined
as 32 bit value for 32 bit CPUs and 8 bit value for 8 or 16 bit CPUs by
default.
pRouti ne Pointer to a function that should run as the task body.
Pointer to an area of memory in RAM that will serve as stack area for
pSt ack the task. The size of this block of memory determines the size of the
stack area.
pCont ext Parameter passed to the created task function.

Additional information

OS _TASK CREATEEX() is a macro calling an embOS library function. It works like
OS_TASK CREATE() but allows passing a parameter to the task. Using a void pointer as an
additional parameter gives the flexibility to pass any kind of data to the task function.

Note

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be
aligned to a multiple of the processor word size. The task stack cannot be shared
between multiple tasks and must be assigned to one task only. The memory used as
task stack cannot be used for other purposes unless the task is terminated.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

56 CHAPTER 2

Example

API functions

The following example is delivered in the Application folder of embOS.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128],
stati c OS_TASK TCBHP, TCBLP;

static void Task(void* pContext) ({
while (1) {
OS_TASK Del ay((i nt) pContext);

}
}
int main(void) {
CS Init(); /'l Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATEEX(&TCBHP, "HP Task",
OS_TASK_CREATEEX(&TCBLP, "LP Task",

CS Start(); /1 Start enmbOS
return O;

UMO01001 User Guide & Reference Manual for embOS

St ackLP[128] ;

/'l Task stacks
/1 Task control bl ocks

100, Task, StackHP, (void*) 50);
50, Task, StackLP, (void*)200);

© 1995-2018 SEGGER Microcontroller GmbH

57 CHAPTER 2 API functions

2.4.6 0OS TASK CreateEx()

Description

Creates a new task and passes a parameter to the task.

Prototype

voi d OS_TASK Creat eEx(OS_TASK* pTask,
const char* pNane,
OS_PRIO Priority,
voi d (*pRoutine)(void * pVoid),
voi d OS_STACKPTR *pSt ack,
OS_U NT Stacksi ze,
CS_U NT TineSlice,
voi d* pCont ext) ;

Parameters

Parameter Description

pTask Pointer to a task control block structure.

Pointer to the name of the task. Can be NULL (or 0) if not
used. When using an embOS build without task hame sup-
pNanme port, this parameter does not exist and must be omitted.
The embOS OS_LI BMODE_XR libraries do not support task
names.

Priority of the task. Must be within the following range:

1 <Priority <28-1 = 0xFF for 8/16 bit CPUs

1 <Priority <232 -1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities. The type G5 PRI Ois
defined as a 32 bit value for 32 bit CPUs and as an 8 bit val-
ue for 8 or 16 bit CPUs by default.

pRouti ne Pointer to a function that should run as the task body.

Priority

Pointer to an area of memory in RAM that will serve as stack
pSt ack area for the task. The size of this block of memory deter-
mines the size of the stack area.

St ackSi ze Size of stack in bytes.

Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
notes the time (in embOS embOS system ticks) that the
task will run before it suspends, and must be in the following
range: 0 < Ti neSl i ce £ 255. When using an embOS build
without round-robin support, this parameter does not exist
and must be omitted. The embOS OS_LI BMODE_XR libraries
do not support round robin and time slice.

TimeSlice

pCont ext Parameter passed to the created task.

Additional information

This function works the same way as OS _TASK CREATE(), except that all parameters of
the task can be specified. The task can be dynamically created because the stack size is
not calculated automatically as it is with the macro. A time slice value of zero is allowed
and disables round-robin task switches. (see sample in chapter Disabling preemptive task
switches for tasks of equal priority on page 44)

Note

The stack that you define must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

58 CHAPTER 2

API functions

aligned to a multiple of the processor word size. The task stack cannot be shared
between multiple tasks and must be assigned to one task only. The memory used as
task stack cannot be used for other purposes unless the task is terminated.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128];

stati c OS_TASK TCBHP, TCBLP;
static void Task(void* pContext) {
while (1) {
OS_TASK_Del ay((i nt)pContext);

}
}
int main(void) {
OS_Init(); /1 Initialize enbQOS
CS InitHW); Il Initialize required hardware

OS_TASK_Creat eEx(&TCBHP, "HP Task", 100, Task,
(voi d*) 50);
OS_TASK_Creat eEx(&TCBLP, "LP Task", 50, Task,
(voi d*) 200);

St ackHP, si zeof (StackHP),

St ackLP, si zeof (StackLP),
CS Start(); [l Start enbCS

return O;

UMO01001 User Guide & Reference Manual for embOS

/1 Task stacks
/1 Task control bl ocks

© 1995-2018 SEGGER Microcontroller GmbH

59 CHAPTER 2 API functions

2.4.7 OS_TASK_Delay()

Description

Suspends the calling task for a specified period of time, or waits actively when called from

main().

Prototype

voi d OS_TASK Del ay(OS _TIME t);

Parameters

Parameter Description

Time interval to delay. Must be within the following range:
215 = 0x8000 <t < 215 -1 = Ox7FFF for 8/16 bit CPUs

t 231 = 0x80000000 <t < 231 -1 = Ox7FFFFFFF for 32 bit
CPUs
Please note that these are signed values.

Additional information

OS_TASK Del ay() returns immediately if the parametert is less than or equal to zero. The
parametert specifies the precise interval during which the task is suspended given in basic
time intervals (usually 1/1000 seconds). The actual delay (in basic time intervals) will be in
the following range: t - 1 < delay < t, depending on when the interrupt for the scheduler
occurs. After the expiration of the delay, the task is made ready and activated according
to the rules of the scheduler. A delay can be ended prematurely by another task or by an
interrupt handler calling OS_TASK Wake() .

If OS_TASK Del ay() is called from main(), it will actively wait for the timeout to expire.
Therefore, interrupts must be enabled.

Example

voi d Hel | o(void) {
printf("Hello");
printf("The next output will occur in 5 seconds");
0S_TASK_Del ay(5000) ;
printf("Delay is over");
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

60 CHAPTER 2 API functions

2.4.8 OS _TASK_DelayUntil()

Description

Suspends the calling task until a specified time, or waits actively when called from main().

Prototype

voi d OS_TASK Del ayUntil (OS_TIME t);

Parameters

Parameter Description

Time to delay until. Must be within the following range:
0 <t < 216 -1 = OxFFFF for 8/16 bit CPUs
0 <t < 232-1 = OxFFFFFFFF for 32 bit CPUs
Also, the following additional condition must be met:

t 1 < (t - OS_GLOBAL.Time) < 215 - 1 = Ox7FFF for 8/16 bit
CPUs
1 < (t - OS_GLOBAL.Time) < 231 - 1 = Ox7FFFFFFF for 32 bit
CPUs
Please note that these are signed values.

Additional information

OS _TASK Del ayUntil () suspends the calling task until the global time-variable OS_Q ob-
al . Time (see OS_d obal .Time on page 461) reaches the specified value. The main ad-
vantage of this function is that it avoids potentially accumulating delays. The additional
condition towards parameter t ensures proper behavior even when a overflow of the em-
bOS system tick timer occurs.

If S _TASK Del ayuntil () is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled.

Example

int sec, mn;

voi d TaskShowTi me(voi d) {

OS_TIME t0;

t0 = OS_TI ME_Get Ti cks();

while (1) {
ShowTi me(); // Routine to display tine
t0 += 1000;

OS_TASK _Del ayuntil (t0);
if (sec < 59) {
sec++;
} else {
sec = 0;
m n++;
}
}
}

In the example above, using OS_TASK Del ay() could lead to accumulating delays and would
cause the simple “clock” to be slow. Using OS_TASK Del ayunti | () instead avoids accumu-
lating delays.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

61 CHAPTER 2 API functions

2.4.9 0OS TASK Delayus()

Description

Waits for the given time in microseconds.

Prototype

voi d OS_TASK Del ayus(OS_U16 us);

Parameters

Parameter Description

Number of microseconds to delay. Must be within the follow-

us ing range:
1 <us < 215-1 = Ox7FFF.
Please note that these are sighed values.

Additional information

This function can be used for short delays. OS_TASK Del ayus() must only be called with
interrupts enabled and after G I nit () and OS_I ni t HW) have been called. This only works
when the embQOS system timer is running. An debug build of S _TASK Del ayus() checks
whether interrupts are enabled and calls OS_Error () if they are not.

OS_TASK Del ayus() does not block task switches and does not block interrupts. Therefore,
the delay may not be accurate because the function may be interrupted for an undefined
time. The delay duration therefore is a minimum delay.

OS _TASK Del ayus() does not suspend the calling task, thus all tasks with lower priority
can not interrupt OS_TASK Del ayus() and will not be executed before OS_ TASK Del ayus()
returns.

Example

void Hel lo(void) {
printf("Hello");
printf("The next output will occur in 500 m croseconds");
OS_TASK Del ayus(500);
printf("Delay is over");

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

62 CHAPTER 2 API functions

2.4.10 OS_TASK_ GetName()

Description

Returns a pointer to the name of a task.

Prototype
char *OS_TASK_Get Name(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
pTask Pointer to a task control block structure.

Return value
A pointer to the name of the task. NULL indicates that the task has no name.

When using an embOS build without task name support, OS_ TASK Get Nane() returns “n/
a” in any case. The embOS OS LI BMODE _XR libraries do not support task names.

Additional information

If pTask is NULL, the function returns the name of the running task. If there is no currently
running task, the return value is "*OS_I dl e() ”. If pTask is not NULL and does not specify a
valid task, a debug build of embOS calls GS_Error (). The release build of embOS cannot
check the validity of pTask and may therefore return invalid values if pTask does not specify
a valid task.

Example

voi d Print TaskName(void) ({
char* s;
s = OS_TASK_Get Narme(NULL) ;
printf("Task name: %\n", s);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

63 CHAPTER 2 API functions

2.4.11 OS _TASK GetNumTasks()

Description

Returns the number of tasks.

Prototype

i nt OS_TASK_ Get NunTasks(voi d);

Return value

Number of tasks.

Example

voi d PrintNunmber Of Tasks(voi d) {
i nt Nunirasks;
NunmTasks = OS_TASK_ Get NunTTasks();
printf("Nunber of tasks %\ n", NunfTasks);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

64 CHAPTER 2 API functions

2.4.12 OS_TASK_GetPriority()

Description

Returns the task priority of a specified task.

Prototype
OS_PRIO OS_TASK GetPriority(OS_CONST_PTR OS TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block structure or NULL for current
pTask task.

Return value

Priority of the specified task (range 1 to 255 for 8/16 bit CPUs and up to 4294967295 for
32 bit CPUs).

Additional information

If pTask is NULL, the function returns the priority of the currently running task. If pTask
does not specify a valid task, the debug build of embOS calls OS_Error (). The release build
of embOS cannot check the validity of pTask and may therefore return invalid values if
pTask does not specify a valid task.

Note

This function can be called from within an interrupt handler with OS_TASK Get Pri or -
i ty(NULL) but if the handler interrupts OS I dl e() no task is currently running and
no valid task is specified. The debug build of embOS calls GS Error () in this case.
We suggest to call OS TASK Get Priority() from an interrupt handler with a pointer
to a valid task control block only.

Example

void PrintPriority(const OS_TASK* pTask) {

OCS_PRIO Prio;

Prio = OS_TASK GetPriority(pTask);

printf("Priority of task Ox% = %\n", pTask, Prio);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

65

CHAPTER 2 API functions

2.4.13 OS_TASK GetSuspendCnt()

Description

Returns the suspension count and thus suspension state of the specified task. This function
may be used to examine whether a task is suspended by previous calls of OS_TASK_ Sus-
pend() .

Prototype
0S_U8 OS_TASK_Get SuspendCnt (OS_CONST_PTR OS_TASK *pTask) ;
Parameters

Parameter Description
pTask Pointer to task control block structure.

Return value
Suspension count of the specified task.

=0 Task is not suspended.
>0 Task is suspended by at least one call of GS_TASK_Suspend() .

Additional information

If pTask does not specify a valid task, the debug build of embOS calls GS Error (). The
release build of embOS cannot check the validity of pTask and may therefore return invalid
values if pTask does not specify a valid task. When tasks are created and terminated dy-
namically, S _TASK | sTask() may be called prior to calling OS_TASK Get SuspendCnt () to
determine whether a task is valid. The returned value can be used to resume a suspended
task by calling OS_TASK Resune() as often as indicated by the returned value.

Example

voi d ResumeTask(OS_TASK* pTask) {
OS_U8 SuspendCnt;
SuspendCnt = OS_TASK_Get SuspendCnt (pTask) ;
whil e (SuspendCnt > Ou) {
OS_TASK_Resune(pTask); // My cause a task sw tch
SuspendCnt - - ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

66 CHAPTER 2 API functions

2.4.14 OS_TASK_GetID()

Description

Returns a pointer to the task control block structure of the currently running task. This
pointer is unique for the task and is used as a task Id.

Prototype

OS_TASK* OS_TASK Get | D(voi d);

Return value

A pointer to the task control block. NULL indicates that no task is executing.

Additional information

This function may be used for determining which task is executing. This may be helpful if
the reaction of any function depends on the currently running task.

Example

voi d PrintCurrent Taskl D(voi d) ({
OS_TASK* pTask;
pTask = OS_TASK Getl D();
printf("Task I D Ox%\n", pTask);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

67 CHAPTER 2 API functions

2.4.15 OS _TASK_ GetTimeSliceRem()

Description

Returns the remaining time slice value of a task.

Prototype
0S_U8 OS_TASK_Get Ti neSl i ceRem(OS_CONST_PTR OS_TASK *pTask) ;
Parameters

Parameter Description
pTask Pointer to a task control block structure.

Return value

Remaining time slice value of the task.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call OS Error () in case pTask does not indicate a valid task. The release
build of embOS cannot check the validity of pTask and may therefore return invalid values
if pTask does not specify a valid task.

The function is unavailable when using an embOS build without round-robin support. The
embOS Os LI BMODE XR libraries do not support round-robin. In that case OS_TASK GCet -
Ti meSl i ceRen() returns zero.

Example

voi d PrintRemaini ngTi neSlices(void) ({
OS W8 slices;

slices = OS_TASK Get Ti neSl i ceRem(NULL) ;

printf("Remaining Tinme Slices: %\ n", slices);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

68

CHAPTER 2 API functions

2.4.16 OS_TASK_IsTask()

Description

Determines whether a task control block belongs to a valid task.

Prototype
OS_BOOL OS_TASK | sTask(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
pTask Pointer to a task control block structure.

Return value

0 TCB is not used by any task.
1 TCB is used by a task.

Additional information

This function checks if the specified task is present in the internal task list. When a task is
terminated it is removed from the internal task list. In applications that create and terminate
tasks dynamically, this function may be useful to determine whether the task control block
and stack for one task may be reused for another task.

Example
voi d Print TCBSt at us(OS_TASK* pTask) {
CS_BOOL b;
b = OS_TASK | sTask(pTask);
if (b ==20) {
printf("TCB can be reused for another task.\n");
} else {
printf("TCB refers to a valid task.\n");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

69 CHAPTER 2 API functions

2.4.17 OS_TASK_Index2Ptr()

Description

Returns the task control block of the task with the specified Index.

Prototype
OS_TASK *OS_TASK_ | ndex2Ptr (i nt Taskl ndex);
Parameters
Parameter Description
Taskl ndex Index of a task control block in the task list.

Return value

= NULL No task control block with this index found.
NULL Pointer to the task control block with the index Taskl ndex.

Example

voi d Print TaskNane(int Taskl ndex) ({
OS_TASK* pTask;

pTask = OS_TASK | ndex2Ptr (Taskl ndex);
if (pTask != NULL) {

printf("%", pTask->Nane);
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

70

CHAPTER 2 API functions

2.4.18 OS_TASK_RemoveAllTerminateHooks()

Description

Removes all hook functions from the 0§ _ON_TERM NATE_HOX list which contains the list of
functions that are called when a task is terminated.

Prototype

voi d OS_TASK_RenoveAl | Ter m nat eHooks(voi d);

Additional information

OS_TASK _RenoveAl | Ter mi nat eHooks() removes all hook functions which were previously
added by OS_TASK_AddTer mi nat eHook() .

Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Termni nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) {
/1 This function is called when OS TASK Termi nate() is called.
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter m nat eHook, Ter m nat eHookFunc) ;
OS_TASK _RenpveAl | Ter m nat eHooks() ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

71 CHAPTER 2 API functions

2.4.19 OS_TASK _RemoveTerminateHook()

Description

This function removes a hook function from the OS_ON_TERM NATE_HOX list which contains
the list of functions that are called when a task is terminated.

Prototype
voi d OS_TASK_RenoveTer n nat eHook(OS_CONST_PTR OS_ON_TERM NATE_HOCOK * pHook) ;
Parameters
Parameter Description
pHook Pointer to a variable of type OS_ON _TERM NATE_HOCK.

Additional information

OS_TASK RenpveTer m nat eHook() removes the specified hook function which was previ-
ously added by OS_TASK_AddTer m nat eHook() .

Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Term nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) ({
/1 This function is called when OS_TASK Term nate() is called.
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter m nat eHook, Ter m nat eHookFunc) ;
OS_TASK_RenpveTer m nat eHook(& Ter mi nat eHook) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

72

CHAPTER 2 API functions

2.4.20 OS_TASK Resume()

Description

Decrements the suspend count of the specified task and resumes it if the suspend count

reaches zero.

Prototype
voi d OS_TASK Resune(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block structure.

Additional information

The specified task’s suspend count is decremented. When the resulting value is zero, the
execution of the specified task is resumed. If the task is not blocked by other task blocking
mechanisms, the task is placed in the READY state and continues operation according to the
rules of the scheduler. In debug builds of embOS, OS TASK Resune() checks the suspend
count of the specified task. If the suspend count is zero when OS_TASK Resune() is called,
OS_Error() is called with error 0S_ERR_RESUVE_BEFORE_SUSPEND.

Example

Please refer to the example of 08 TASK Suspend() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

73

CHAPTER 2 API functions

2.421 OS_TASK_ResumeAll()

Description

Decrements the suspend count of all tasks that have a nonzero suspend count and resumes
these tasks when their respective suspend count reaches zero.

Prototype

voi d OS_TASK ResuneAl | (voi d);

Additional information

This function may be helpful to synchronize or start multiple tasks at the same time. The
function resumes all tasks, no specific task must be addressed. The function may be used
together with the functions 08 _TASK SuspendAl | () and OS_TASK Set | niti al SuspendCn-
t().

The function may cause a task switch when a task with higher priority than the calling task
is resumed. The task switch will be executed after all suspended tasks are resumed.

The function may be called even when no task is suspended.

Example
Please refer to the example of OS_TASK_Set I ni ti al SuspendCnt ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

74

CHAPTER 2 API functions

2.4.22 0OS_TASK SetContextExtension()

Description

Makes global variables or processor registers task-specific. The function may be used for
a variety of purposes. Typical applications are:

e Global variables such as “errno” in the C library, making the C-lib functions thread-safe.

e Additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.

e Coprocessor registers such as registers of a VFP (floating-point coprocessor).

e Data registers of an additional hardware unit such as a CRC calculation unit.

This allows the user to extend the task context as required. A major advantage is that
the task extension is task-specific. This means that the additional information (such as
floating-point registers) needs to be saved only by tasks that actually use these registers.
The advantage is that the task switching time of other tasks is not affected. The same is
true for the required stack space: Additional stack space is required only for the tasks which
actually save the additional registers.

Prototype

voi d OS_TASK Set Cont ext Ext ensi on
(OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext);

Parameters

Parameter Description

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

The save and restore functions must be declared according the function type used in the
structure. The sample below shows how the task stack must be addressed to save and
restore the extended task context.

OS_TASK_ Set Cont ext Ext ensi on() is not available in the XR libraries.

Note

The task context can be extended only once per task with OS_TASK_Set Cont ext Ex-
t ensi on() . The function must not be called multple times for one task. Additional task
context extensions can be set with OS_TASK_AddCont ext Ext ensi on() .

The OS_EXTEND TASK CONTEXT structure is defined as follows:

typedef struct OS_EXTEND TASK CONTEXT {
voi d* (*pf Save) (voi d* pStack);
voi d* (*pfRestore)(const voi d* pStack);
} OS_EXTEND TASK_CONTEXT;

Example

The following example is delivered in the Application folder of embOS.

-------------------------- END- OF- HEADER - - - -=----=---ccmmmecmeaaae o

File . OS_ExtendTaskContext.c

Purpose : enbOS sanpl e program denonstrating the dynam ¢ extension of
tasks' contexts. This is done by adding a global variable to
the task context of certain tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

75

CHAPTER 2 API functions

/]
#i ncl ude "RTGCS. h"

/***
*

* Types, | ocal

*

R Rk S kS O O S R O O S S O O I

*/

I
/'l Custom structure with task context extension.
/1 In this case, the extended task context consists of just
/'l a single nmenber, which is a global variable.
I
typedef struct {
int d obal Var;
} CONTEXT_EXTENSI ON;

/***
*

2 Static data

*

R Rk S kS O O S R S R S kI S

*/

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks
static int d obal Var;

/***

*

2 Local functions

*

R R R S kS O O I S O R O S

*/
/***
_Save()

Function description
This function saves an extended task context.

* 0% kX kX

/

static void OS_STACKPTR* _Save(void OS_STACKPTR* pStack) {
CONTEXT_EXTENSI ON* p;

I

/1l Create pointer to our structure

I

p = ((CONTEXT_EXTENSI ON*) pStack) - (1 - OS_STACK AT _BOTTOW) ;
I

/'l Save all nenbers of the structure

I

p- >d obal Var = @ obal Var;

return (void OS_STACKPTR*) p;

}

/***

_Restore()

Function description
This function restores an extended task context.

E N I A

/

static void OS_STACKPTR* _Restore(const void OS_STACKPTR* pStack) {
const CONTEXT_EXTENSI ON* p;

/1

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

76

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 2

/1l Create pointer to our structure

i)/: ((const CONTEXT_EXTENSI ON *)pStack) - (1 - OS_STACK AT _BOTTOM;
;; Restore all nenbers of the structure

/GI/obaI Var = p->d obal Var;

return (void OS_STACKPTR*) p;

}

/***

*

* Public APl structure
*/
const OS_EXTEND TASK CONTEXT _SaveRestore = {
_Save, /1 Function pointer to save the task context
_Restore // Function pointer to restore the task context
Ji i
/***
*
* HPTask()
*
* Function description
* During the execution of this function, the thread-specific
* gl obal variabl e d obal Var always has the sane val ue of 1.
*/

static void HPTask(void) {
OS_TASK_Set Cont ext Ext ensi on(& _SaveRestore);
d obal Var = 1;
while (1) {
OS_TASK Del ay(10);
}
}

/***

LPTask()

Function description
During the execution of this function, the thread-specific
gl obal variabl e d obal Var always has the sane val ue of 2.

E I I R I

/
static void LPTask(void) {
OS_TASK_Set Cont ext Ext ensi on(& _SaveRestore);
d obal Var = 2;
while (1) {
OS_TASK Del ay(50);
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /'l Initialize enhOS
Cs_ I nitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1l Start enbCsS

return O;

API functions

© 1995-2018 SEGGER Microcontroller GmbH

77

CHAPTER 2 API functions

2.4.23 OS_TASK_ SetDefaultContextExtension()

Description

Sets the default task context extension for newly created tasks.

Prototype
voi d OS_TASK_Set Def aul t Cont ext Ext ensi on

(OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext) ;

Parameters

Parameter Description

pExt endCont ext

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

Additional information

After calling this function all newly started tasks will automatically use this context exten-
sion. The same task context extension is used for all tasks.

Example

extern const OS_EXTEND TASK_CONTEXT _SaveRest ore;

int main(void) {

OS_Init(); Il Initialize embOS

CS InitHW); I/ Initialize required hardware
OS_TASK_Set Def aul t Cont ext Ext ensi on(& SaveRestore);
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

78

CHAPTER 2 API functions

2.4.24 0OS_TASK_ SetDefaultStartHook()

Description

Sets a default hook routine which is executed before a task starts. May be used to perform
additional initialization for newly created tasks.

Prototype
voi d OS_TASK_ Set Def aul t St art Hook(voi dRout i ne* pf Hook) ;
Parameters
Parameter Description
f Hook Pointer to the hook routine.
P If NULL is passed no hook routine gets executed.

Additional information

After calling OS_TASK Set Def aul t St art Hook() all newly created tasks will automatically
call this hook routine before the tasks are started for the first time. The same hook function
is used for all tasks.

Example

voi d _HookRoutine(void) { // This routine is automatically executed before

DoSomeThi ng() ; /'l HPTask() gets executed
}
voi d HPTask(void) {

while (1) {

OS_TASK Del ay(10);

}
}
int main(void) {

OS_Init(); Il Initialize embOS

OS_ I nit HW); /1 Initialize required hardware

OS_TASK_ Set Def aul t St art Hook(_HookRoutine); // Set task start hook routine
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);

CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

79

CHAPTER 2 API functions

2.4.25 O0OS_TASK SetlnitialSuspendCnt()

Description

Sets the initial suspend count for newly created tasks to 1 or 0. May be used to create
tasks which are initially suspended.

Prototype
voi d OS_TASK Setlnitial SuspendCnt (0OS_U8 SuspendCnt);
Parameters
Parameter Description
SuspendCnt 1: Tasks will be created in suspended state.
P 0: Tasks will be created normally, unsuspended.

Additional information

Can be called at any time from main(), any task, ISR or software timer. After calling this
function with nonzero SuspendCnt, all newly created tasks will be automatically suspended
with a suspend count of one. This function may be used to inhibit further task switches,
which may be useful during system initailization.

Note

When this function is called from main() to initialize all tasks in suspended state, at
least one task must be resumed before the system is started by a call of 05 Start ().
The initial suspend count should be reset to allow normal creation of tasks before the
system is started.

Example

/1
/1 High priority task started first after OS Start().
/1
voi d I nitTask(void) {
OS_TASK SuspendAll ();
/1 Prevent execution of all other existing tasks.
OS_TASK Setlnitial SuspendCnt (1);
/'l Prevent execution of subsequently created tasks.
/1 New tasks may be created, but will not execute.
. /'l Even when |nitTask() blocks itself, no other task may execute.
OS _TASK Setlnitial SuspendCnt(0); // Reset initial suspend count for new tasks.
OS_TASK ResuneAl | ();
/1l Resune all tasks that were bl ocked before or

/1 were created in suspended state. May cause a
/1 task sw tch.
while (1) {
/1 Do the normal work.
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

80 CHAPTER 2 API functions

2.4.26 OS_TASK SetName()

Description

Allows modification of a task name at runtime.

Prototype
voi d OS_TASK_Set Nane(OS_TASK* pTask,
const char* s);
Parameters
Parameter Description
pTask Pointer to a task control block structure.
S Pointer to a null-terminated string which is used as task
name.

Additional information

If NULL is passed for pTask, the currently running task is modified. However, NULL must
not be passed for pTask from main(), from a timer callback or from an interrupt handler.
A debug build of embOS will call S_Error () in case pTask does not indicate a valid task.

When using an embOS build without task name support, OS_TASK Set Nane() performs no
modifications at all. The embQOS OS_LI BMODE_XR libraries do not support task names.

Example

voi d Task(void) {
OS_TASK Set Nane(NULL, "Initializer Task");
while (1) {
OS_TASK_Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

81 CHAPTER 2

2.4.27 OS_TASK_SetPriority()

Description

Assigns a priority to a specified task.

Prototype

voi d OS_TASK SetPriority(OS_TASK* pTask,
OS PRIO Priority);

Parameters

API functions

Parameter

Description

pTask task.

Pointer to a task control block structure or NULL for current

Priority

Priority of the task. Must be within the following range:

1 <Priority <28 -1 = OxFF for 8/16 bit CPUs

1 <Priority < 232-1 = OxFFFFFFFF for 32 bit CPUs
Higher values indicate higher priorities. The type G5 PRI Ois
defined as 32 bit value for 32 bit CPUs and 8 bit value for 8
or 16 bit CPUs per default.

Additional information

If NULL is passed for pTask, the currently running task is modified. However, NULL must
not be passed for pTask from main(). A debug build of embOS will call S Error () in case

pTask does not indicate a valid task.

Calling this function might lead to an immediate task switch.

Example

voi d Task(void) {

OS_TASK SetPriority(NULL, 20); /'l Change priority of this task to 20.

while (1) {
OS_TASK_Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

82

CHAPTER 2 API functions

2.4.28 OS _TASK SetTimeSlice()

Description

Assigns a specified timeslice period to a specified task.

Prototype

O5_U8 Os_TASK Set Ti neSli ce(O5_TASK* pTask,
os_us TineSlice);

Parameters
Parameter Description
pTask Pointer to a task control block structure.
New time slice period for the task. Must be within the follow-
TineSlice ing range:
0 <TineSlice < 255.

Return value

Previous time slice period of the task.

Additional information

If NULL is passed for pTask, the currently running task is modified. However, NULL must not
be passed for pTask from main(), a timer callback or from an interrupt handler. A debug
build of embOS will call S Error () in case pTask does not indicate a valid task.

Setting the time slice period only affects tasks running in round-robin mode. The new time
slice period is interpreted as a reload value: It is used with the next activation of the task,
but does does not affect the remaining time slice of a running task.

A time slice value of zero is allowed, but disables round-robin task switches (see Disabling
preemptive task switches for tasks of equal priority on page 44).

The function is unavailable when using an embOS build without round-robin support. The
embOS OS LI BMODE_XR libraries do not support round-robin. In that case OS _TASK Set -
Ti meSl i ce() does nothing and returns zero.

Example
voi d Task(void) {
OS_TASK_Set Ti neSl i ce(NULL, 4); /1 Gve this task a higher tine slice
while (1) {
OS_TASK Del ay(100);
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

83 CHAPTER 2 API functions

2.4.29 O0OS_TASK Suspend()

Description

Suspends the specified task and increments a counter.

Prototype
voi d OS_TASK_ Suspend(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block structure.

Additional information

If pTask is NULL, the current task suspends. If the function succeeds, execution of the
specified task is suspended and the task’s suspend count is incremented. The specified task
will be suspended immediately. It can only be restarted by a call of OS_TASK Resune() .
Every task has a suspend count with a maximum value of GS_MAX SUSPEND CNT. If the
suspend count is greater than zero, the task is suspended.

In debug builds of embQOS, upon calling GS_TASK Suspend() more often than the maxi-
mum value without calling OS_TASK Resune() the task’s internal suspend count is not in-
cremented and OS_Error () is called with error OS_ ERR_SUSPEND TOO COFTEN.

Cannot be called from main(), an interrupt handler or software timer as this function may
cause an immediate task switch. The debug build of embOS will call the OS_Error () function
when OS_TASK Suspend() is not called from a task.

Example

voi d Hi ghPrioTask(void) {
OS_TASK_Suspend(NULL) ;
/1 Suspends itself, low priority task will be executed

}

voi d LowPri oTask(void) {
OS_TASK_Resune(&H ghPri oTCB); // Resunes the high priority task

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

84 CHAPTER 2 API functions

2.430 OS_TASK_SuspendAll()

Description

Suspends all tasks except the running task.

Prototype

voi d OS_TASK SuspendAl | (void);

Additional information

This function may be used to inhibit task switches. It may be useful during application
initialization or supervising.

The calling task will not be suspended.

After calling OS_TASK_SuspendAl | (), the calling task may block or suspend itself. No other
task will be activated unless one or more tasks are resumed again. The tasks may be re-
sumed individually by a call of OS_TASK Resune() or all at once by a call of CS_TASK Re-
suneAl | ().

Example
Please refer to the example of OS_TASK_Set I ni ti al SuspendCnt ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

85 CHAPTER 2 API functions

2.431 OS_TASK_Terminate()

Description

Ends (terminates) a task.

Prototype
voi d OS_TASK_ Ter ni nat e(OS_TASK* pTask);
Parameters
Parameter Description
Pointer to the task control block structure of the task that
pTask shall be terminated. A value of NULL terminates the current
task.

Additional information

The specified task will terminate immediately. The memory used for stack and task control
block can be reassigned.

All resources which are held by a task are released upon its termination. Any task may be
terminated regardless of its state.
Example

voi d Task(void) {
DoSonet hi ng() ;
OS_TASK Terminate(NULL); // Terminate itself

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

86

CHAPTER 2 API functions

2.432 0OS_TASK_Wake()

Description

Ends delay of a specified task immediately.

Prototype
voi d OS_TASK Wake(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block structure.

Additional information

Places the specified task, which is already suspended for a certain amount of time by a call
of OS_TASK Del ay() or OS_TASK Del ayuntil (), back into the READY state.

The specified task will be activated immediately if it has a higher priority than the task that
had the highest priority before. If the specified task is not in the WAITING state (e.g. when
it has already been activated, or the delay has already expired, or for some other reason),
calling this function has no effect.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks
static void HPTask(void) {
while (1) {
OS_TASK Del ay(50);
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(10);
OS_TASK Wake(&TCBHP); // Wake HPTask which is in delay state
}
}

/***

*

k3 mai n()
*/
int main(void) {
OS_Init(); Il Initialize embOS
OS I nit HW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

87

CHAPTER 2 API functions

2.4.33 OS_TASK_Yield()

Description

Calls the scheduler to force a task switch.

Prototype

void OS_TASK Yiel d(void);

Additional information

If the task is running on round-robin, it will be suspended if there is another task with equal
priority ready for execution.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
DoSonet hi ng() ;
}
}

static void LPTask(void) {
while (1) {
DoSomet hi ngEl se() ;
I
/1 This task don't need the conplete tine slice.
/1 Gve another task with the sane priority the chance to run
I
OS_TASK Yiel d();
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /'l Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK _CREATE(&TCBLP, "LP Task", 100, LPTask, StackLP);
CS Start(); /1 Start enmbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 3

Software Timers

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

89 CHAPTER 3

3.1 Introduction

Introduction

A software timer is an object that calls a user-specified routine after a specified delay. An
unlimited number of software timers can be defined with the macro OS_TI MER_CREATE() .

Timers can be stopped, started and retriggered much like hardware timers. When defining
a timer, you specify a routine to be called after the expiration of the delay. Timer routines
are similar to interrupt routines: they have a priority higher than the priority of any task.
For that reason they should be kept short just like interrupt routines.

Software timers are called by embOS with interrupts enabled, so they can be interrupted by
any hardware interrupt. Generally, timers run in single-shot mode, which means they expire
exactly once and call their callback routine exactly once. By calling OS_TI MER Rest art ()
from within the callback routine, the timer is restarted with its initial delay time and there-

fore functions as a periodic timer.

The state of timers can be checked by the functions OS_TI MER _Get St at us(), OS_TI MER _Ge-

t Remai ni ngPeri od() and OS_TI MER Get Peri od() .

Example

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_TI MER TI MER50, TI MER200;

static void Timer50(void) {
BSP_Toggl eLED(0) ;
OS_TI MER_Rest art (&TI MER50) ;
}

static void Timer200(void) {
BSP_Toggl eLED(1) ;
CS_TI MER Rest art (&TlI MER200) ;

}

int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /1 Initialize required hardware
BSP_Init(); /1 Initialize LED ports

OS_TI MER_CREATE(&Tl MER50, Ti mer 50, 50);
OS_TI MER_CREATE(&TlI MER200, Ti mer 200, 200);
CS Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

90 CHAPTER 3 Introduction

Minimum timeout / period

Software timer periods elapse with the appropriate embOS system tick. This means that the
actual timeout period can actually be slightly shorter than the configured timeout period.
For example, if the system tick is configured to occur once every msec, and the timer is
configured for a timeout of 1, the actual timeout duration is somewhere between 0 and
1 msec.

The following diagram illustrates how software timer timeouts work. We can see that the
timer configuration is performed prior to the first system tick, that is: at system time 0. The
timeout period is configured to 5 system ticks, therefore the callback is called upon the 5th
system tick. For example, if the the system ticks occurs at 1 msec, 2 msec, (...), 5 msec,
and the timer was started at 0.8 msec, the actual timer period would equal 4.2 msec.

OS_TIMER_Create() Execution of timer routine

Sytem ticks

0 1 2 3 4 5 6

Maximum timeout / period

The timeout value is stored as an integer, thus a 16 bit value on 8/16 bit CPUs, a 32 bit
value on 32 bit CPUs. The comparisons are done as signed comparisons because expired
time-outs are permitted. This means that only 15 bits can be used on 8/16 bit CPUs, 31
bits on 32 bit CPUs. Another factor to take into account is the maximum time spent in
critical regions. Timers may expire during critical regions, but because the timer routine
cannot be called from a critical region (timers are “put on hold”), the maximum time that
the system continuously spends in a critical region needs to be deducted. In most systems,
this is no more than a single tick. However, to be safe, we have assumed that your system
spends no more than a maximum of 255 consecutive system ticks in a critical region and
defined a macro for the maximum timeout value. This macro, OS_TI MER_MAX_TI Mg, defaults
to 0x7F00 on 8/16 bit systems and to Ox7FFFFF0O0 on 32 bit Systems as defined in RTCS. h.
If your system spends more than 255 consecutive ticks in a critical section, effectively
disabling the scheduler during this time (which is not recommended), you must ensure
your application uses shorter timeouts.

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This allows
the callback function to be shared between different software timers. Since version 3.32m
of embQS, the extended timer structure and related extended timer functions were imple-
mented to allow parameter passing to the callback function.

Except for the different callback function with parameter passing, extended timers behave
exactly the same as regular embOS software timers and may be used in parallel with these.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

3.2 API functions

CHAPTER 3

API functions

Routine

Description

urew

Nsel

dSi
JETT

OS_TI MER_CREATE()

Macro that creates and starts a software
timer.

OS _TI MER Create()

Creates a software timer without starting it.

OS_TI MER_CREATEEX()

Macro that creates and starts an extended
software timer.

OS_TI MER _Cr eat eEx()

Creates an extended software timer without
starting it.

OS_TI MER Del et e()

Stops and deletes a software timer.

OS_TI MER Del et eEx()

Stops and deletes an extended software
timer.

OS_TI MER _CGet Current ()

Returns a pointer to the data structure of the
timer that just expired.

OS_TI MER _Get Current Ex()

Returns a pointer to the data structure of the
extended software timer that just expired.

OS_TI MER Get Peri od()

Returns the current reload value of a soft-
ware timer.

OS_TI MER_Cet Per i odEX()

Returns the current reload value of an ex-
tended software timer.

OS_TI MER_Cet Renai ni ng-
Peri od()

Returns the remaining timer value of a soft-
ware timer.

OS_TI MER_Get Remai ni ng-
Peri odEx()

Returns the remaining timer value of an ex-
tended software timer.

OS_TI MER Get St at us()

Returns the current timer status of a software
timer.

OS_TI MER Get St at usEx()

Returns the current timer status of an ex-
tended software timer.

OS_TI MER Restart ()

Restarts a software timer with its initial time
value.

OS_TI MER Restart Ex()

Restarts an extended software timer with its
initial time value.

OS_TI MER _Set Peri od()

Sets a new timer reload value for a software
timer.

OS_TI MER_Set Per i odEXx()

Sets a new timer reload value for an extend-
ed software timer.

OS_TIMER Start ()

Starts a software timer.

OS_TI MER St ar t Ex()

Starts an extended software timer.

OS_TI MER_St op()

Stops a software timer.

OS_TI MER St opEX()

Stops an extended software timer.

OS_TI MER Tri gger ()

Ends a software timer at once and calls the
timer callback function.

OS_TI MER Tri gger Ex()

Ends an extended software timer at once and
calls the timer callback function.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

92 CHAPTER 3 API functions

3.2.1 OS TIMER_CREATE()

Description

Macro that creates and starts a software timer.

Prototype

voi d OS_TI MER_CREATE(CS_TI MER* pTi ner,
OS_TI MERROUTI NE* Cal | back,
oS _TI ME Peri od);

Parameters

Parameter Description
oTi ner Pointer to the OS_TI MER data structure which contains the data of the
timer.

Pointer to the callback routine to be called by the RTOS after expira-
Cal | back tion of the delay. The callback function must be a void function which
does not take any parameters and does not return any value.

Initial period in embOS system ticks.

The data type OS_TI ME is defined as an integer, therefore valid values
Peri od are:

1 <Perio

< d < 215 -1 = Ox7FFF for 8/16 bit CPUs
1 <Period =<

2
231 - 1 = Ox7FFFFFFF for 32 bit CPUs

Additional information

embOS keeps track of the timers by using a linked list. Once the period is expired, the
callback routine will be called immediately (unless the current task is in a critical region
or has interrupts disabled).

This deprecated macro uses the functions S _TI MER Create() and OS_TIMER Start (). It
is supplied for backward compatibility; in newer applications these routines should instead
be called directly.

OS_TI MERROUTI NE is defined in RTCS. h as follows:
t ypedef void OS_TI MERROUTI NE(voi d);
Source of the macro (in RTCS. h):

#define OS_TI MER_CREATE(pTinmer, c, d) \
OCS_TI MER Create(pTiner, c, d); \
OS_TIMER Start (pTi nmer);

Example

static OS_TI MER TI MER10O;

static void Timer100(void) {

BSP_Toggl eLED(0) ;

OS_TI MER_Rest art (&TI MERL0O0); // Make tinmer periodic
}

voi d | nitTask(void) {
I
/1l Create and inplicitly start Tiner100
I
OS_TI MER_CREATE(&TI MER100, Ti mer 100, 100);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

93

CHAPTER 3 API functions

3.2.2 OS_TIMER_Create()

Description

Creates a software timer without starting it.

Prototype
void OS_TI MER Creat e(OS_TI MER* pTi ner,
OS_TI MERROUTI NE* Cal | back,
oS _TI ME Peri od);
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.
Pointer to the callback routine to be called by the RTOS after
Cal | back

expiration of the delay.

Initial period in embQOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Additional information

embOS keeps track of the timers by using a linked list. Once the period is expired, the
callback routine will be called immediately (unless the current task is in a critical region or
has interrupts disabled). The timer is not automatically started. This must be done explicitly
by a call of OS_ TIMER Start () or OS_ TI MER Restart().

OS_TI MERRQUTI NE is defined in RTOS.h as follows:

t ypedef void OS_TI MERROUTI NE(voi d);

Example

static OS_TI MER Tl MER10OO;

static void Timer100(void) {

BSP_Toggl eLED(0) ;

OS_TI MER _Restart (&TI MERLOO); // Make tiner periodic
}

voi d I nitTask(void) {
Il
/'l Create Timerl00, but start it seperately
Il
CS_TI MER_Cr eat e(&TI MER100O, Ti mer 100, 100);
CS_TI MER_St art (&TI MER10O) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

94 CHAPTER 3 API functions

3.2.3 OS_TIMER_CREATEEX()

Description

Macro that creates and starts an extended software timer.

Prototype
voi d OS_TI MER_CREATEEX(OS_TI MER_EX* pTi mer Ex,
OS_TI MER_EX_ROUTI NE* Cal | back,
S _TI ME Peri od,
voi d* pDat a) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTi mer Ex -
the extended software timer.
Pointer to the callback routine to be called by the RTOS after
cal | back expiration of the delay. The callback function must be of type
OS_TI MER_EX_RQUTI NE which takes a void pointer as parameter and
does not return any value.
Initial period in embOS system ticks.
The data type OS_TI ME is defined as an integer, therefore valid values
Peri od are:
1 < Period < 215 -1 = 0x7FFF for 8/16 bit CPUs
1 < Period < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs
A void pointer which is used as parameter for the extended timer call-
pDat a .
back function.

Additional information

embOS keeps track of the timers by using a linked list. Once the period is expired, the
callback routine will be called immediately (unless the current task is in a critical region
or has interrupts disabled).

This macro uses the functions GS_TI MER_Cr eat eEx() and OS_TI MER St art Ex() .

OS_TI MER_EX_ROUTI NE is defined in RTCS. h as follows:
typedef void OS_TI MER_EX ROUTI NE(voi d *pVoi d);
Source of the macro (in RTCS. h):
#defi ne OS_TI MER_CREATEEX(pTi ner Ex, cb, Period, pData) \

OS_TI MER_Cr eat eEx(pTi mer Ex, cb, Period, pData); \
OS_TI MER_St art Ex(pTi mer Ex)

Example

static OS_TI MER_EX TI MERL0O;
static OS_TASK TCB_HP;

static void Tinmerl100(void* pTask) {
if (pTask != NULL) {
OS_TASKEVENT Set (0x01, (OS_TASK*)pTask);

}

CS_TI MER _Rest art Ex(&TI MER100); // Make tiner periodic
}
voi d I nitTask(void) {

I

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

95 CHAPTER 3 API functions

I/l Create and inplicitly start Tiner100
Il
CS_TI MER_CREATEEX(&TI MER100, Ti ner 100, 100, (voi d*)&TCB _HP);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

96

CHAPTER 3 API functions

3.2.4 OS_TIMER_CreateEx()

Description

Creates an extended software timer without starting it.

Prototype
voi d OS_TI MER Creat eEx(OS_TI MER_EX* pTi ner Ex,
OS_TI MER_EX_ROUTI NE* Cal | back,
S _TI ME Peri od,
voi d* pDat a) ;
Parameters
Parameter Description
Ti mer Ex Pointer to the OS_TI MER_EX data structure which contains
P the data of the extended software timer.
Cal | back Pointer to the callback routine of type OS_TI MER_EX_ ROUTI NE

to be called by the RTOS after expiration of the timer.

Initial period in embQOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

A void pointer which is used as parameter for the extended

pDat a

timer callback function.

Additional information

embOS keeps track of the timers by using a linked list. Once the period is expired, the
callback routine will be called immediately (unless the current task is in a critical region or
has interrupts disabled). The timer is not automatically started. This must be done explicitly
by a call of S _TI MER Start Ex() or OS_TI MER Restart Ex().

OS_TI MER_EX_ROUTI NE is defined in RTOS.h as follows:

typedef void OS_TI MER_EX ROUTI NE(voi d *pVoi d);

Example

static OS_TIMER EX Tl MERLOO;
static OS_TASK TCB_HP;

static void Timerl100(voi d* pTask) {
if (pTask !'= NULL) {
OS_TASKEVENT_Set (0x01, (OS_TASK*)pTask);

}
OS_TI MER_Rest art Ex(&TI MER100) ; // Make tiner periodic

}

voi d I nitTask(void) {
Il
/Il Create Tinerl00, but start it seperately
Il
OS_TI MER_Cr eat eEx(&TI MER100, Ti ner 100, 100, (voi d*)&TCB_HP);
OS_TI MER_St art (&TI MER10O) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

97

CHAPTER 3

3.25 OS_TIMER Delete()

Description

Stops and deletes a software timer.

API functions

Prototype
void OS_TI MER Del et e(OS_TI MER* pTi ner) ;
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.

Additional information

The timer is stopped and therefore removed from the linked list of running timers. In debug

builds of embOS, the timer is also marked as invalid.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

98 CHAPTER 3 API functions

3.2.6 OS_TIMER DeleteEx()

Description

Stops and deletes an extended software timer.

Prototype
voi d OS_TI MER_Del et eEx(OS_TI MER_EX* pTi mer Ex) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTI mer Ex the timer.

Additional information

The extended software timer is stopped and removed from the linked list of running timers.
In debug builds of embQOS, the timer is also marked as invalid.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

99 CHAPTER 3 API functions

3.2.7 OS TIMER_GetCurrent()

Description

Returns a pointer to the data structure of the software timer that just expired.

Prototype
OS_TIMER* OS_TI MER Get Current (voi d) ;

Return value

A pointer to the control structure of a timer.

Additional information

The return value of OS_TI MER_Get Current () is valid during execution of a timer callback
function; otherwise it is undefined. If only one callback function should be used for multiple
timers, this function can be used for examining the timer that expired. The example below
shows one usage of OS_TI MER_Get Cur r ent () . Since version 3.32m of embQOS, the extended
timer structure and functions may be used to generate and use a software timer with an
individual parameter for the callback function. Please be aware that OS_TI MER must be the
first member of the structure.

Example

#i ncl ude "RTGCS. h"

typedef struct {

CS TIMER Tiner; // OS_TIMER has to be the first el enent

voi d* pUser; // Any other data type may be used to extend the struct
} TI MER_EX;

static TIMER_EX Ti nmer_User;
static int a;

static void _ch(void) {

TI MER_EX* p = (TIMER_EX*) OS_TI MER Get Current ();
voi d* pUser = p->pUser; /1 Exami ne user data
CS_TI MER_Rest art (&p->Ti ner) ; /1 Make tinmer periodic

}

static void _CreateTimer(TI MER_EX* tiner, OS_TI MERROUTI NE* Cal | back,
OS_UI NT Period, void* pUser) {
timer->pUser = pUser;
OS_TIMER Create(&tinmer->Timer, Callback, Period);

}
int mai n(void) {
CS Init(); /[l Initialize enbCS
OS_Ini t HW() ; /1 Initialize required hardware
_CreateTi ner (&Ti ner _User, _cb, 100, &a);
CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

100

CHAPTER 3 API functions

3.2.8 OS_TIMER_GetCurrentEx()

Description

Returns a pointer to the data structure of the extended software timer that just expired.

Prototype
OS_TI MER_EX* OS_TI MER Get Cur r ent Ex(voi d);

Return value

A pointer to the control structure of an extended software timer.

Additional information

The return value of OS_TI MER_Get Cur r ent Ex() is valid during execution of a timer callback
function; otherwise it is undefined. If one callback function should be used for multiple
extended timers, this function can be used for examining the timer that expired.

Example

OS_TI MER_EX MyTi mer Ex;

static void _cbTi nmer Ex(voi d* pData) {
CS_TI MER_EX* pTinerEx = OS_TI MER Get Current Ex();
OS_TASKEVENT _Set (0x01, (OS_TASK*)pDat a);
OS_TI MER Restart(pTinerEx); // Make tinmer periodic

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

101

CHAPTER 3 API functions

3.2.9 OS TIMER_GetPeriod()

Description

Returns the current reload value of a software timer.

Prototype
OS_TI ME OS_TI MER_Get Per i od(OS_CONST_PTR CS_TI MER *pTi ner);
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.

Return value

Type OS_TI ME, which is defined as an integer between

* 1 and 215 -1 = O0x7FFF for 8/16 bit CPUs and as an integer between
* 1 and 231 -1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer values.

Additional information

The period returned is the reload value of the timer which was set as initial value when the
timer was created or which was modified by a call of OS_TI MER_Set Peri od() . This reload
value will be used as time period when the timer is retriggered by OS_TI MER Restart ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

102

CHAPTER 3 API functions

3.2.10 OS_TIMER_GetPeriodEXx()

Description

Returns the current reload value of an extended software timer.

Prototype
OS_TIME OS_TI MER_Get Peri odEx(OS_TI MER_EX* pTi mer Ex) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTi mer Ex -
the extended timer.

Return value

Type OS_TI ME, which is defined as an integer between

* 1 and 215 -1 = O0x7FFF for 8/16 bit CPUs and as an integer between
* 1 and 231 -1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer values.

Additional information

The period returned is the reload value of the timer which was set as initial value when the
timer was created or which was modified by a call of OS_TI MER _Set Peri odEx() . This reload
value will be used as time period when the timer is retriggered by OS_TI MER_Rest art Ex() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

103

CHAPTER 3 API functions

3.2.11 OS_TIMER_GetRemainingPeriod()

Description

Returns the remaining timer value of a software timer.

Prototype
OS_TI ME OS_TI MER_Cet Remai ni ngPer i od(OS_CONST_PTR OS_TI MER *pTi ner);
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.

Return value

Type OS_TI ME, which is defined as an integer between

* 1 and 215 -1 = O0x7FFF for 8/16 bit CPUs and as an integer between
* 1 and 231 -1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer values.

The returned timer value is the remaining timer time in embOS system ticks until expiration
of the timer.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

104

CHAPTER 3 API functions

3.2.12 OS_TIMER_GetRemainingPeriodEXx()

Description

Returns the remaining timer value of an extended software timer.

Prototype
OCS_TI ME OS_TI MER_Get Rerrai ni ngPer i odEx(CS_TI MER_EX* pTi nmer Ex) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTI mer Ex the timer.

Return value

Type OS_TI ME, which is defined as an integer between

* 1 and 215 -1 = O0x7FFF for 8/16 bit CPUs and as an integer between
* 1 and 231 -1 = 0x7FFFFFFF for 32 bit CPUs, which is the permitted range of timer values.

The returned time value is the remaining timer value in embOS system ticks until expiration
of the extended software timer.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

105 CHAPTER 3 API functions

3.2.13 OS_TIMER_GetStatus()

Description

Returns the current timer status of a software timer.

Prototype

OS_BOOL OS_TI MER Get St at us(OS_CONST_PTR OS_TI MER *pTi ner) ;

Parameters

Parameter Description

Pointer to the OS_TI MER data structure which contains the
data of the timer.

pTi mer

Return value
Denotes whether the specified timer is running or not:

=0 Timer has stopped.
+0 Timer is running.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

106 CHAPTER 3 API functions

3.2.14 OS_TIMER_GetStatusEx()
Description
Returns the current timer status of an extended software timer.

Prototype

OS_BOOL OS_TI MER_Cet St at usEx(OS_TI MER_EX* pTi nmer Ex) ;

Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTi mer Ex -
the extended timer.

Return value
Denotes whether the specified timer is running or not:

=0 Timer has stopped.
+0 Timer is running.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

107 CHAPTER 3 API functions

3.2.15 OS_TIMER_Restart()

Description

Restarts a software timer with its initial time value.

Prototype

void OS_TI MER Restart (OS_TI MER* pTi ner);

Parameters

Parameter Description

Pointer to the OS_TI MER data structure which contains the
data of the timer.

pTi mer

Additional information

OS_TI MER Rest art () restarts the timer using the initial time value programmed at creation
of the timer or with the function GS_TI MER Set Peri od() .

OS TIMER Restart () can be called regardless the state of the timer. A running timer will
continue using the full initial time. A timer that was stopped before or had expired will be
restarted.

Example
Please refer to the example for OS_TI MER_CREATE() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

108 CHAPTER 3 API functions

3.2.16 OS_TIMER_RestartEx()

Description

Restarts an extended software timer with its initial time value.

Prototype
void OS_TI MER Restart Ex(OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTi mer Ex -
the extended software timer.

Additional information

OS_TI MER Rest art Ex() restarts the extended software timer using the initial time val-
ue which was programmed at creation of the timer or which was set using the function
OS_TI MER _Set Peri odEx() .

OS_TI MER Rest art Ex() can be called regardless of the state of the timer. A running timer
will continue using the full initial time. A timer that was stopped before or had expired will
be restarted.

Example
Please refer to the example for OS_TI MER_CREATEEX() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

109 CHAPTER 3 API functions

3.2.17 OS_TIMER_SetPeriod()

Description

Sets a new timer reload value for a software timer.

Prototype

void OS_TI MER_Set Peri od(OS_TI MER* pTi mer,
CS_TIME Period);

Parameters

Parameter Description

Pointer to the OS_TI MER data structure which contains the
data of the timer.

pTi nmer

Timer period in embQOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Additional information

OS _TI MER Set Peri od() sets the initial time value of the specified timer. Peri od is the
reload value of the timer to be used as initial value when the timer is retriggered by
OS TI MER Restart().

Example

static OS_TI MER Tl MERPuI se;

static void TimerPul se(void) {
Toggl ePul seCut put () ; /1 Toggl e out put
OS_TI MER _Restart (&TI MERPul se); // Make tiner periodic

}

voi d I nitTask(void) {
;; Create and inmplicitly start timer with first pulse in 500 systemticks
/O/S_TI MER_CREATE(&TI MERPul se, Ti nmer Pul se, 500);
;; Set tiner period to 200 systemticks for further pulses

; /O/S_TI MVER_Set Peri od(&TlI MERPul se, 200);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

110

CHAPTER 3 API functions

3.2.18 OS_TIMER_SetPeriodEx()

Description

Sets a new timer reload value for an extended software timer.

Prototype
voi d OS_TI MER _Set Peri odEx(OS_TI MER_EX* pTi mer EX,
CS_TI ME Peri od) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTi mer Ex

the extended software timer.

Initial period in embOS system ticks.

The data type OS_TI ME is defined as an integer, therefore valid values
Peri od are:

1 < Perio
1 <Perio

15 - 1 = Ox7FFF for 8/16 bit CPUs

d=<2
d < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs

Additional information

OS_TI MER Set Peri odEx() sets the initial time value of the specified extended software
timer. Peri od is the reload value of the timer to be used as initial value when the timer is
retriggered the next time by OGS TI MER Restart Ex().

A call of OS_TI MER_Set Per i odEx() does not affect the remaining time period of an extended
software timer.

Example

static OS_TI MER_EX Tl MERPuIl se;
static OS_TASK TCB_HP;

static void TimerPul se(voi d* pTask) {
if (pTask !'= NULL) {
OS_TASKEVENT _Set (0x01, (OS_TASK*)pTask);
}
CS_TI MER_Rest art Ex(&TI MERPul se); // Make tiner periodic

}

voi d I nitTask(void) {
” Create and inmplicitly start Pulse Tinmer with first pulse in 500 systemticks
é)/S_TI VER_CREATEEX(&Tl MERPul se, Ti nerPul se, 500, (void*)&TCB_HP);
” Set tiner period to 200 systemticks for further pulses
é)/S_TI MER_Set Peri odEx(&TI MERPuUl se, 200);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

111

CHAPTER 3

3.2.19 OS_TIMER_Start()

Description

Starts a software timer.

API functions

Prototype
void OS TIMER Start (OS_TI MER* pTiner);
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.

Additional information

OS TIMER Start () is used for the following reasons:

e Start a timer which was created by OGS TI MER Creat e() . The timer will start with its

initial timer value.

e Restart a timer which was stopped by calling OS_TI MER_St op() . In this case, the timer
will continue with the remaining time value which was preserved upon stopping the

timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired: use OS_TI MER Rest art () to restart those timers.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

112 CHAPTER 3 API functions

3.2.20 OS_TIMER_StartEx()

Description

Starts an extended software timer.

Prototype
void OS_TIMER St art Ex(OS_TI MER_EX* pTi mer Ex) ;
Parameters
Parameter Description
. Pointer to the OS_TI MER_EX data structure which contains the data of
pTi mer Ex -
the extended software timer.

Additional information

OS TI MER Start Ex() is used for the following reasons:

e Start an extended software timer which was created by OS_TI MER Creat eEx(). The
timer will start with its initial timer value.

e Restart a timer which was stopped by calling GS Tl MER St opEx() . In this case, the
timer will continue with the remaining time value which was preserved upon stopping
the timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_TI MER _Rest art Ex() to restart those timers.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

113 CHAPTER 3 API functions

3.2.21 OS_TIMER_Stop()

Description

Stops a software timer.

Prototype
void OS_TI MER_St op(OS_TI MER* pTi ner);
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.

Additional information

The actual value of the timer (the time until expiration) is maintained until OS_TI MER_S-
tart () lets the timer continue. The function has no effect on timers that are not running,
but have expired.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

114 CHAPTER 3 API functions

3.2.22 OS_TIMER_StopEx()

Description

Stops an extended software timer.

Prototype
voi d OS_TI MER_St opEx(OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
Ti mer Ex Pointer to the OS_TI MER_EX data structure which contains the data of
P the extended software timer.

Additional information

The actual time value of the extended software timer (the time until expiration) is main-
tained until OS_TI MER St art Ex() lets the timer continue. The function has no effect on
timers that are not running, but have expired.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

115 CHAPTER 3 API functions

3.2.23 OS_TIMER_Trigger()

Description

Ends a software timer at once and calls the timer callback function.

Prototype
void OS_TI MER Trigger (OS_TI MER* pTi ner);
Parameters
Parameter Description
Ti mer Pointer to the OS_TI MER data structure which contains the
P data of the timer.

Additional information

OS_TI MER Trigger () can be called regardless of the state of the timer. A running timer will
be stopped and the callback function is called. For a timer that was stopped before or had
expired the callback function will not be executed.

Example

static OS_TIMER TI MERUar t Rx;

void TinmerUart(void) {
Handl eUar t Rx() ;
}

voi d Uart Rxl nt Handl er (voi d) {
OS_TIMER Trigger (&TI MERUart Rx); // Character received, stop the software tiner
}

voi d Uart SendNext Characht er (void) ({
OS_TI MER_Start (&TI MERUar t Rx) ;
/1 Send next uart character and wait for Rx character

}

int main(void) {
OS_TI MER _Creat e(&TI MERUart Rx, Ti nmerUart, 20);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

116 CHAPTER 3 API functions

3.2.24 OS_TIMER_TriggerEx()

Description

Ends an extended software timer at once and calls the timer callback function.

Prototype
void OS_TI MER Trigger Ex (OS_TI MER_EX* pTi nmer Ex) ;
Parameters
Parameter Description
Ti mer Ex Pointer to the OS_TI MER_EX data structure which contains the data of
P the extended software timer.

Additional information

OS_TI MER Tri gger Ex() can be called regardless of the state of the timer. A running timer
will be stopped and the callback function is called. For a timer that was stopped before or
had expired the callback function will not be executed.

Example

static OS_TI MER_EX Tl MERUart Rx;
static OS_U32 Uar t Num

void TinmerUart(voi d* pNum) {
Handl eUar t Rx((CS_U32) pNun) ;
}

voi d Uart Rxl nt Handl er (voi d) {
OS_TI MER_Tri gger Ex(&TI MERUar t Rx) ;
/' Character received, stop the software tinmer

}

voi d Uart SendNext Characht er (void) ({
OS_TI MER_St art Ex(&TI MERUar t Rx) ;
/1 Send next uart character and wait for Rx character

}

int main(void) {

Uart Num = O;

OS_TI MER_Cr eat eEx(&TI MERUart Rx, TinerUart, 20, (void*)&UartNum;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 4

Task Events

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

CHAPTER 4 Introduction

Introduction

Task events are another way of communicating between tasks. In contrast to semaphores
and mailboxes, task events are messages to a single, specified recipient. In other words,
a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for one
of several events) to occur. This task can be kept inactive until the event is signaled by
another task, a software timer or an interrupt handler. An event can be, for example, the
change of an input signal, the expiration of a timer, a key press, the reception of a character,
or a complete command.

Every task has an individual bit mask, which by default is the width of an unsigned integer,
usually the word size of the target processor. This means that 32 or 8 different events can
be signaled to and distinguished by every task. By calling OS_TASKEVENT_GCet Bl ocked(), a
task waits for one of the events specified as a bitmask. As soon as one of the events occurs,
this task must be signaled by calling OS_TASKEVENT_Set () . The waiting task will then be put
in the READY state immediately. It will be activated according to the rules of the scheduler
as soon as it becomes the task with the highest priority of all tasks in the READY state.

By changing the definition of OS_TASKEVENT, which is defined as unsigned long on 32 bit
CPUs and unsigned char on 16 or 8 bit CPUs per default, the task events can be expanded
to 16 or 32 bits thus allowing more individual events, or reduced to smaller data types
on 32 bit CPUs.

Changing the definition of OS_TASKEVENT can only be done when using the embQOS sources
in a project, or when the libraries are rebuilt from sources with the modified definition.

Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks
static OS_TASKEVENT MyEvent s;

static void HPTask(void) {
while (1) {
MyEvents = OS_TASKEVENT_Get Bl ocked(3) ; /1l Wait for event bits 0 or 1
if (MEvents & 1) {
_Handl eEvent 0() ;
} else
_Handl eEvent 1() ;

}
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(200);
OS_TASKEVENT_Set (&TCBHP, 1);
}
}
int mai n(void) {
CS Init(); /[l Initialize enbQCS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

119

4.2 API functions

CHAPTER 4

API functions

Routine

Description

urew

Nsel

dSi
JETT

OS_TASKEVENT_d ear ()

Returns the actual state of events and then
clears all events of a specified task.

OS_TASKEVENT_Cl ear Ex()

Returns the actual state of events and then
clears the specified events for the specified
task.

OS_TASKEVENT Get ()

Returns a list of events that have occurred
for a specified task.

OS_TASKEVENT_Get Bl ocked()

Waits for one of the events specified in the
bitmask and clears the event memory when
the function returns.

OS_TASKEVENT_Cet Si ngl e-
Bl ocked()

Waits for one of the specified events and
clears only those events that were specified
in the event mask.

OS_TASKEVENT_Cet Si ngl e-
Ti med()

Waits for one of the specified events for
a given time and clears only those events
that were specified in the event mask.

OS_TASKEVENT Get Ti med()

Waits for the specified events for a given
time, and clears the event memory when
the function returns.

OS_TASKEVENT_Set ()

Signals event(s) to a specified task.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

120 CHAPTER 4 API functions

42.1 OS_TASKEVENT_Clear()

Description

Returns the actual state of events and then clears all events of a specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT O ear (OS_TASK* pTask);
Parameters
Parameter Description
The task whose event mask is to be returned, NULL means
pTask
current task.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears all
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

MyEvents = OS_TASKEVENT_d ear (NULL) ;

while (1) {
/1 Wait for event O or 1 to be signal ed
MyEvents = OS_TASKEVENT_Cet Bl ocked(3) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

121 CHAPTER 4 API functions

4.2.2 OS_TASKEVENT_ClearEx()

Description

Returns the actual state of events and then clears the specified events for the specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_C ear Ex(OS_TASK* pTask,
OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
The task whose event mask is to be returned, NULL means
pTask
current task.
Event Mask The bit mask containing the event bits which shall be
cleared.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears the
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S _Error () in case pTask does not indicate a valid task.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

My/Events = OS_TASKEVENT_C ear Ex(NULL, 1);

while (1) {
/1 Wait for event O or 1 to be signaled
M/Events = OS_TASKEVENT_Get Bl ocked(3);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

122 CHAPTER 4 API functions

4.2.3 OS_TASKEVENT Get()

Description

Returns a list of events that have occurred for a specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get (OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
The task whose event mask is to be returned, NULL means
pTask
current task.

Return value

All events that have been signaled.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

By calling this function, all events remain signaled: event memory is not cleared. This is one
way for a task to query which events are signaled. The task is not suspended if no events
are signaled. If pTask is NULL, the function clears the events of the currently running task.

voi d PrintEvents(void) {
OS_TASKEVENT MyEvents;

M/Events = OS_TASKEVENT_Get (NULL) ;
printf("Events %\n", M/Events);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

123

CHAPTER 4

API functions

4.2.4 OS_TASKEVENT GetBlocked()

Description

Waits for one of the events specified in the bitmask and clears the event memory when

the function returns.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Bl ocked(OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for.

Return value

All events that have been signaled.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the specified
events will wake the task. These events are signaled by another task, a software timer or
an interrupt handler. Any bit that is set in the event mask enables the corresponding event.

When a task waits on multiple events, all of the specified events shall be requested by a
single call of OS_TASKEVENT_Cet Bl ocked() and all events must be be handled when the

function returns.

Note that all events of the task are cleared when the function returns, even those events
that were not set in the parameters in the eventmask. Consecutive calls of OS_TASKEVEN-
T_Get Bl ocked() with different event masks will not work, as all events are cleared when
the function returns. Events may be lost. 0S_ TASKEVENT _Get Si ngl eBl ocked() may be used

for this case.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {

MyEvents = OS_TASKEVENT_Cet Bl ocked(3) ;

1 to be signaled
I
/1 Handl e ALL events
I

if (MEvents & (1 << 0)) {

_Handl eEvent 0() ;
}

if (MEvents & (1 << 1)) {

_Handl eEvent 1() ;
}
}
}

For another example, see OS_TASKEVENT Set ().

UMO01001 User Guide & Reference Manual for embOS

/1 Wait for event 0 or

© 1995-2018 SEGGER Microcontroller GmbH

124 CHAPTER 4 API functions

425 OS_TASKEVENT GetSingleBlocked()

Description

Waits for one of the specified events and clears only those events that were specified in
the event mask.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Si ngl eBl ocked(OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for and reset.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the requested
events will wake the task. These events are signaled by another task, a software timer, or an
interrupt handler. Any bit in the event mask may enable the corresponding event. When the
function returns, it delivers all of the requested events. The requested events are cleared
in the event state of the task. All other events remain unchanged and will not be returned.

OS_TASKEVENT _Cet Si ngl eBl ocked() may be used in consecutive calls with individual re-
quests. Only requested events will be handled, no other events can get lost. When the
function waits on multiple events, the returned value must be evaluated because the func-
tion returns when at least one of the requested events was signaled. When the function
requests a single event, the returned value does not need to be evaluated.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
MyEvents = OS_TASKEVENT_GCet Si ngl eBl ocked(3); // Wait for event 0 or
1 to be signaled
/1
/1 Handl e ALL events
/1
if (MEvents & (1 << 0)) {
_Handl eEvent 0() ;
}
if (M/Events & (1 << 1)) {
_Handl eEvent 1() ;
}
OS_TASKEVENT_Get Si ngl eBl ocked(1 << 2); /1 Wait for event
2 to be signal ed
_Handl eEvent 2() ;
OS_TASKEVENT_Get Si ngl eBl ocked(1 << 3); /1 Wait for event
3 to be signal ed
_Handl eEvent 3() ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

125 CHAPTER 4 API functions

4.2.6 OS_TASKEVENT GetSingleTimed()

Description

Waits for one of the specified events for a given time and clears only those events that
were specified in the event mask.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Si ngl eTi med(OS_TASKEVENT Event Mask,
S _TI ME Ti meCut) ;
Parameters
Parameter Description
Event Mask The event bit mask containing the event bits, which shall be
waited for and reset.
: Maximum time in embOS system ticks until the events must
Ti meQut -
be signaled.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

If none of the specified events are available, the task is suspended for the given time. The
first of the specified events will wake the task if the event is signaled by another task, a
software timer or an interrupt handler within the specified Ti neCut time.

If no event is signaled, the task is activated after the specified timeout and the function
returns zero. Any bit in the event mask may enable the corresponding event. All unmasked
events remain unchanged.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
My/Events = OS_TASKEVENT_Get Si ngl eTi ned(3, 10); // Wait for event 0 or
1 to be
/'l signaled within 10ns
/* Handl e requested events */
if (MEvents == 0) {
_Handl eTi neout ;
} else {
if (MEvents & (1 << 0)) {
_Handl eEvent 0() ;
}
if (MEvents & (1 << 1)) {
_Handl eEvent 1();

}

}

i f (OS_TASKEVENT_Cet Si ngl eBl ocked((1 << 2), 10) == 0) {
_Handl eTi neout () ;

} else {
_Handl eEvent 2();

}

}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

126 CHAPTER 4 API functions

4.2.7 OS_TASKEVENT GetTimed()

Description

Waits for the specified events for a given time, and clears the event memory when the
function returns.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Ti med(OS_TASKEVENT Event Mask,
oS _TI ME Ti meCut) ;
Parameters
Parameter Description

The event bit mask containing the event bits, which shall be

Event Mask ;
waited for.

: Maximum time in embOS system ticks waiting for events to

Ti meQut -

be signaled.

Return value

All events that have been signaled.

Additional information

If none of the specified events are available, the task is suspended for the given time. The
first of the requested events will wake the task if the event is signaled by another task, a
software timer, or an interrupt handler within the specified Ti reQut time.

If none of the requested events is signaled, the task is activated after the specified timeout
and all signaled events are returned and then cleared. Note that the function returns all
events that were signaled within the given timeout time, even those which were not request-
ed. The calling function must handle the returned value. Consecutive calls of OS_TASKEVEN-
T _Get Ti ned() with different event masks will not work, as all events are cleared when the
function returns. Events may got lost. OS_TASKEVENT_Get Si ngl eTi ned() may be used for
this case.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
MyEvents = OS_TASKEVENT_Get Bl ocked_Ti ned(3, 10); // Vit for events 0+1 for
10 nsec
if ((MEvents & 0x3) == 0) {
_Handl eTi neout () ;
} else {
if (MEvents & (1 << 0)) {
_Handl eEvent 0() ;
}
if (MEvents & (1 << 1)) {
_Handl eEvent 1();
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

127 CHAPTER 4 API functions

4.2.8 OS_TASKEVENT Set()

Description

Signals event(s) to a specified task.

Prototype
voi d OS_TASKEVENT_Set (OS_TASK* pTask,
OS_TASKEVENT Event);
Parameters
Parameter Description
pTask Pointer to the task control block.
Event The event bit mask containing the event bits, which shall be
signaled.

Additional information

If the specified task is waiting for one of these events, it will be put in the READY state and
activated according to the rules of the scheduler.

Example

The task that handles the serial input and the keyboard waits for a character to be received
either via the keyboard (EVENT_KEYPRESSED) or serial interface (EVENT_SERI N):

#def i ne EVENT_KEYPRESSED (1u << 0)
#defi ne EVENT_SERI N (1u << 1)

static OS_STACKPTR int Stack0[96]; // Task stacks
static OS_TASK TCBO; /| Data area for tasks (task control bl ocks)

voi d TaskO(void) {
OS_TASKEVENT MyEvent;
whi | e(1)
MyEvent = OS_TASKEVENT_GCet Bl ocked(EVENT_KEYPRESSED | EVENT_SERI N)
if (MyEvent & EVENT_KEYPRESSED) {
/1 Handl e key press
}
if (MyEvent & EVENT_SERIN) {
/1 Handl e serial reception
}
}
}

voi d Key_ I SR(void) { /1 1SR for external interrupt
OS_TASKEVENT_Set (&TCBO, EVENT_KEYPRESSED); // Notify task that key was pressed

}

voi d UART_| SR(voi d) { /1 1SR for uart interrupt
OS_TASKEVENT_Set (&TCB0, EVENT_SERI N);
/1 Notify task that a character was received

}

voi d I nitTask(void) {
OS_TASK_CREATE(&TCBO, "HPTask", 100, TaskO, StackO);
}

If the task was only waiting for a key to be pressed, OS_MAI LBOX Get Bl ocked() could
simply be called. The task would then be deactivated until a key is pressed.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 5

Event Objects

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

129 CHAPTER 5 Introduction

5.1 Introduction

Event objects are another type of communication and synchronization object. In contrast
to task-events, event objects are standalone objects which are not owned by any task.

The purpose of an event object is to enable one or multiple tasks to wait for a particular
event to occur. The tasks can be kept suspended until the event is set by another task,
a software timer, or an interrupt handler. An event can be, for example, the change of
an input signal, the expiration of a timer, a key press, the reception of a character, or a
complete command.

Compared to a task event, the signaling function does not need to know which task is
waiting for the event to occur.

Reset mode

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT _Cr eat eEx()
or may be modified by a call of OS_EVENT_Set Reset Mbde() .

e (S _EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e (S _EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e (S _EVENT_RESET MODE_MANUAL :
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Mask mode

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMbde() .
e (OS_EVENT_MASK_MODE_OR LOG C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e (OS_EVENT_MASK_MODE_AND LOG C:
With this mode all specified event object mask bits must be signaled.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

130 CHAPTER 5 Introduction

5.1.1 Examples of using event objects

This section shows some examples on how to use event objects in an application.

5.1.1.1 Activate a task from interrupt by an event object

The following code example shows usage of an event object which is signaled from an ISR
handler to activate a task. The waiting task should reset the event after waiting for it.

static OS EVENT _Event;

static void _I SRHandl er (void) {
CS_INT_Enter();
I
/1l Wake up task to do the rest of the work
I
OS_EVENT_Set (& Event);
CS_| NT_LEAVE() ;

}

static void Task(void) {
while (1) {
OS_EVENT_Cet Bl ocked(& Event);
I
/1 Do the rest of the work (which has not been done in the | SR
I

5.1.1.2 Activating multiple tasks using a single event object

The following sample program shows how to synchronize multiple tasks with one event
object. The sample program is delivered with embOS in the “Application” folder.

#i ncl ude "RTCS. h"

/*******~k*********~k***********~k***********~k***************************
*
. .
Static data
*

EE Rk S S Sk S O O

*/

static OS_STACKPTR int StackHP[128], StackLP[128], StackHW 128];
static OS_TASK TCBHP, TCBLP, TCBHW

static OS_EVENT HW Event ;

/***

*

* HPTask()
*/
static void HPTask(void) {
Il
/1 Wait until HWnodule is set up
Il
OS_EVENT_Cet Bl ocked(&HW Event) ;
while (1) {
OS_TASK_Del ay(50);
}
}

/***

*

* LPTask()
*/

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

131

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 5

static void LPTask(void) {

I
/1 Wait until HWnodule is set up
I
OS_EVENT_Get Bl ocked(&HW Event) ;
while (1) {

OS_TASK Del ay(200);
}

}

/***

*

* HWIrask()
si atic void HWask(void) {
;; Wait until HWnodule is set up
/O/S_TASK_DeI ay(100);
;; Init done, send broadcast to waiting tasks
/O/S_EVENT_Set (&HW Event);
while (1) {

OS_TASK Del ay(40);
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /1 Initialize enhCS
CS I nitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

OS_TASK_CREATE(&TCBHW " HWlask", 25, HWrask, StackHW;
OS_EVENT_Cr eat e(&HW Event) ;

CS Start(); /1 Start mnultitasking
return O;

Introduction

© 1995-2018 SEGGER Microcontroller GmbH

132

5.2 API functions

CHAPTER 5

API functions

Routine

Description

urew
Asel

dSi
JETT

OS_EVENT Create()

Creates an event object and resets the
event.

OS_EVENT_Cr eat eEx()

Creates an extended event object and sets
its reset behavior as well as mask bits be-
havior.

OS_EVENT_Del et e()

Deletes an event object and releases all
waiting tasks.

OS_EVENT_Get ()

Retrieves current state of an event object
without modification or suspension.

OS_EVENT_Get Bl ocked()

Waits for an event object and suspends
task if event is not signaled.

OS_EVENT_Get Mask()

Returns the bits of an event object that
match the given Event Mask.

OS_EVENT_Cet MaskBl ocked()

Waits for the specified event bits, depend-
ing on the current mask mode.

OS_EVENT_Get MaskMbde()

Retrieves the current mask mode (mask
bits behavior) of an event object.

OS_EVENT_Get MaskTi med()

Waits for the specified event bits with time-
out, depending on the current mask mode.

OS_EVENT_Cet Reset Mbde()

Returns the reset mode (reset behavior) of
an event object.

OS_EVENT_Get Ti ned()

Waits for an event and suspends the task
for a specified time or until the event has
been signaled.

OS_EVENT_Pul se()

Signals an event object and resumes wait-
ing tasks, then resets the event object to
non-signaled state.

OS_EVENT_Reset ()

Resets the specified event object to non-
signaled state.

OS_EVENT_Set ()

Sets an event object to sighaled state, or
resumes tasks which are waiting at the
event object.

OS_EVENT_Set Mask()

Sets the event mask bits of an event ob-
ject.

OS_EVENT_Set MaskMode()

Sets the mask mode of an event object to
OR/AND logic.

OS_EVENT_Set Reset Mbde()

Sets the reset behavior of an event object
to auto-matic, manual or semiauto.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

133

CHAPTER 5 API functions

5.2.1 OS_EVENT Create()

Description

Creates an event object and resets the event. Must be called before the event object can
be used.

Prototype
voi d OS_EVENT_Creat e(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object data structure.

Additional information

Before the event object can be used, it must be created by a call of OS_ EVENT Create() .
On creation, the event is set in non-signaled state, and the list of waiting tasks is empty.
Therefore, OS_EVENT_Creat e() must not be called for an event object which is already
created.

A debug build of embOS cannot check whether the specified event object was already
created.

The event is created with the default reset behavior which is semiauto. Since version 3.88a
of embQOS, the reset behavior of the event can be modified by a call of the function OS_EVEN-
T_Set Reset Mode() .

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Get MaskBl ocked(& Event, 3); // Wait for bit 0 AND 1 to be set

}

voi d LPTask(void) {
OS_EVENT_Set Mask(& Event, 1); /'l Resunmes HPTask due to OR logic

}

int main(void) {
.O.S._EVENT_Cr eate(& Event);
.réfurn 0;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

134

CHAPTER 5 API functions

5.2.2 OS_EVENT CreateEx()

Description

Creates an extended event object and sets its reset behavior as well as mask bits behavior.

Prototype

voi d OS_EVENT_Cr eat eEx(OS_EVENT* pEvent,
unsi gned int Mde);

Parameters

Parameter Description

pEvent Pointer to an event object data structure.

Specifies the reset and mask bits behavior of the event ob-
ject. You can use one of the predefined reset modes:
OS_EVENT_RESET_MODE_SEM AUTO
OS_EVENT_RESET_MODE_NMANUAL

Mode OS_EVENT_RESET_MODE_AUTO

and one of the mask modes:
OS_EVENT_MASK_MODE_OR LOG C
OS_EVENT_MASK_MODE_AND LOG C

which are described under additional information.

Additional information

Before the event object can be used, it must be created by a call of 0S EVENT _Creat e() or
OS_EVENT_Cr eat eEx() . On creation, the event is set in nonsignaled state, and the list of
waiting tasks is empty. Therefore, OS_EVENT_Cr eat eEx() must not be called for an event
object which is already created. A debug build of embOS cannot check whether the specified
event object was already created.

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set Reset Mode() .

e OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS5 _EVENT_Cr eat eEx()
or may be modified by a call of 05_EVENT_Set MaskMbde() .

e (OS_EVENT_MASK_MODE_OR LOd C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.

e (OS_EVENT_MASK_MODE_AND LOG C:

With this mode all specified event object mask bits must be signaled.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

135 CHAPTER 5 API functions

Example

static OS EVENT _Event;

voi d HPTask(void) ({
OS_EVENT_Get MaskBl ocked(& Event, 3); // Wait for bit 0 AND 1 to be set

}

voi d LPTask(void) ({
OS_EVENT_Set Mask(& Event, 1); /1 Does not resune HPTask
OS_EVENT_Set Mask(& Event, 2);
/'l Resune HPTask since both bits are now set

}

int main(void) {

OS_EVENT_Cr eat eEx(& Event, OS_EVENT_RESET MODE_AUTO |
OS_EVENT_MASK_MODE_AND LOGI C) ;

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

136 CHAPTER 5 API functions

5.2.3 OS_EVENT Delete()

Description

Deletes an event object and releases all waiting tasks.

Prototype
voi d OS_EVENT_Del et e(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object which should be deleted.

Additional information

To keep the system fully dynamic, it is essential that event objects can be created dynam-
ically. This also means there must be a way to delete an event object when it is no longer
needed. The memory that has been used by the event object’s control structure can then
be reused or reallocated.

It is your responsibility to make sure that:

e the program no longer uses the event object to be deleted
e the event object to be deleted actually exists (has been created first)
e no tasks are waiting at the event object when it is deleted.

pEvent must address an existing event object, which has been created before by a call of
OS_EVENT_Create() or OS_EVENT_Cr eat eEx() . A debug build of embOS will check whether
pEvent addresses a valid event object and will call S Error () with error code CS ER-
R_EVENT_I NVALI D in case of an error. If any task is waiting at the event object which is
deleted, a debug build of embOS calls GS_Error () with error code OS_ ERR _EVENT DELETE.

To avoid any problems, an event object should not be deleted in a normal application.

Example

static OS EVENT _Event;
voi d Task(void) {

OS_EVENT_Del et e(& Event);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

137

CHAPTER 5 API functions

5.2.4 OS_EVENT Get()

Description

Retrieves current state of an event object without modification or suspension.

Prototype
0S_BOOL OS_EVENT_Get (OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object whose state should be examined.

Return value

0 Event object is not set to signaled state.
1 Event object is set to signaled state.

Additional information

By calling this function, the actual state of the event object remains unchanged. pEvent
must address an existing event object, which has been created before by a call of OS_EVEN-
T Create().

A debug build of embOS will check whether pEvent addresses a valid event object and will
call GS_Error () with error code OS_ERR EVENT_| NVALI D in case of an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_BOCOL St at us;

Status = OS_EVENT_Get (& Event);
printf("Event Object Status: %\n", Status);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

138

CHAPTER 5 API functions

5.2.5 0OS EVENT_ GetBlocked()

Description

Waits for an event object and suspends task if event is not signaled.

Prototype
voi d OS_EVENT_GCet Bl ocked(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to the event object that the task will be waiting for.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get Bl ocked() . A debug build of embQOS will check whether pEvent addresses
a valid event object and will call S Error () with error code OS_ ERR EVENT | NVALI D in
case of an error.

The state of the event object after calling OS_EVENT_Get Bl ocked() depends on the reset
mode of the event object which was set by creating the event object by a call of OS_EVEN-
T Creat eEx() or OS_EVENT_Set Reset Mode() .

The event is consumed when OS _EVENT_RESET MODE AUTO is selected. The event is not
consumed when OS_EVENT_RESET MODE MANUAL is selected. With OS_EVENT_RESET MOD-
E_SEM AUTO the event is consumed only when it was already set before.

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Cet Bl ocked(& Event); // Suspends the task

}
voi d LPTask(void) {

OS_EVENT_Pul se(& Event); /'l Signals the HPTask
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

139

CHAPTER 5 API functions

5.2.6 OS_EVENT GetMask()

Description

Returns the bits of an event object that match the given Event Mask.

Prototype

OS_TASKEVENT OS_EVENT_Get Mask(OS_EVENT* pEvent ,
OS_TASKEVENT Event Mask) ;

Parameters

Parameter Description
pEvent Pointer to an event object whose state should be examined.
Event Mask tTr?:vzlé mask containing the event bits which shall be re-

Return value

Matching event object mask bits.

Additional information

The signaled event mask bits are consumed unless OS_EVENT_RESET MODE_MANUAL is se-
lected. pEvent must address an existing event object, which has been created before by
a call of OS_EVENT_Creat e() .

A debug build of embOS will check whether pEvent addresses a valid event object and will
call OS_Error () with error code OS5 ERR EVENT_I NVALI D in case of an error.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_TASKEVENT Event Mask;

Event Mask = ~0; // Request all event bits
Event Mask = OS_EVENT_Get Mask(& Event, Event Mask);
printf("Signales Event Bits: O0x%X\n", EventMask);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

140

CHAPTER 5 API functions

5.2.7 OS EVENT_ GetMaskBlocked()

Description

Waits for the specified event bits, depending on the current mask mode. The signaled event
mask bits are consumed unless OS_EVENT_RESET MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_Get MaskBl ocked(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to the event object that the task will be waiting for.
The event bit mask containing the event bits, which shall be
Event Mask .
waited for.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get MaskBI ocked() . A debug build of embOS will check whether pEvent address-
es a valid event object and will call OS_Error () with error code S _ERR EVENT | NVALI D
in case of an error.

The state of the event object after calling OS_EVENT_Get MaskBI ocked() depends on the
reset mode of the event object which was set by creating the event object by a call of
OS_EVENT_Creat eEx() or OS_EVENT_Set Reset Mode() .

Example

static OS_EVENT _Event;

voi d Task(void) {
/1
/1 VWaits either for the first or second, or for
/1 both event bits to be singal ed, depending on
/1 the specified mask node.

I
OS_EVENT_Get MaskBl ocked(& Event, 0x3);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

141 CHAPTER 5 API functions

5.2.8 0OS EVENT_GetMaskMode()

Description

Retrieves the current mask mode (mask bits behavior) of an event object.

Prototype
OS_EVENT_MASK_MODE OS_EVENT_Get MaskMbde(OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object.

Return value

The mask mode which is currently set.

Modes are defined in enum OS_EVENT _NMASK MODE.

OS_EVENT_MASK_MODE_OR LOG C (0x00u): Mask bits are used with OR logic (default).
OS_EVENT_MASK _MODE_AND LOd C (0x04u): Mask bits are used with AND logic.

Additional information

pEvent must address an existing event object, which has been created before by a call of
OS_EVENT Create() or OS_ EVENT Creat eEx() .

A debug build of embQOS will check whether pEvent addresses a valid event object and will
call GS_Error () with error code OS_ERR_EVENT_I NVALI D in case of an error. Since version
4.34 of embOS, the mask mode of an event object can be controlled by the OS_EVENT_Cr e-
at eEx() function or set after creation using the new function OS_EVENT_Set MaskMode() .
If needed, the current setting of the mask mode can be retrieved with OS_EVENT_Get -
MaskMode() .

Example

static OS EVENT _Event;

voi d Task(void) {
OS_EVENT_MASK_MODE MaskMode;

MaskMode = OS_EVENT_Get MaskMbde(& Event);
i f (MaskMbde == OS_EVENT_MASK_MODE_OR LOd Q) {
printf("Logic: ORN");
} else {
printf("Logic: AND\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

142

CHAPTER 5 API functions

5.2.9 OS_EVENT GetMaskTimed()

Description

Waits for the specified event bits with timeout, depending on the current mask mode. The
task is suspended for the specified time or until the event(s) have been signaled. The
signaled event mask bits are consumed unless OS_EVENT_RESET MODE_MANUAL is selected.

Prototype

OS_TASKEVENT OS_EVENT_Get MaskTi ned(OS_EVENT* pEvent ,
OS_TASKEVENT Event Mask,

oS _TI ME Ti meout) ;
Parameters
Parameter Description
pEvent Pointer to the event object that the task will be waiting for.
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for.
: Maximum time in embOS system ticks until the event must
Ti meout .
be signaled.

Return value

Matching event object mask bits or 0 when a timeout occurred.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get MaskTi med() . A debug build of embOS will check whether pEvent addresses
a valid event object and will call OS_Error () with error code OS_ERR EVENT_| NVALI D in
case of an error.

Example

static OS_EVENT _Event;
voi d Task(void) {
11
/[l Waits either for the first or second, or for
I/ both event bits to be singal ed, dependi ng on
/1 the specified mask node. The task resunes after
/1 1000 systemticks, if the needed event bits were not
/1 signal ed.

11
OS_EVENT_Get MaskTi ned(& Event, 0x3, 1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

143

CHAPTER 5 API functions

5.2.10 OS_EVENT GetResetMode()

Description

Returns the reset mode (reset behavior) of an event object.

Prototype
OS_EVENT_RESET_MODE OS_EVENT_Get Reset Mode(OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to event object control structure.

Return value

The reset mode which is currently set.

Modes are defined in enum OS_EVENT_RESET MODE.

OS_EVENT_RESET_MODE_SEM AUTO (0x00u): As previous mode (default).
OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set, has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset automatically.

Additional information

pEvent must address an existing event object, which has been created before by a call of
OS_EVENT Create() or OS_ EVENT Creat eEx() .

A debug build of embQOS will check whether pEvent addresses a valid event object and will
call S _Error () with error code OS_ERR EVENT_I NVALI D in case of an error. Since version
3.88a of embOS, the reset mode of an event object can be controlled by the new OS_EVEN-
T _Creat eEx() function or set after creation using the new function OS_EVENT_Set Reset -
Mode() . If needed, the current setting of the reset mode can be retrieved with OS_EVEN-
T _Cet Reset Mode() .

Example

static OS EVENT _Event;

voi d Task(void) {
OS_EVENT_RESET MODE Reset Mode;

Reset Mbde = OS_EVENT_GCet Reset Mbde(& Event);

i f (Reset Mbde == OS_EVENT_RESET_MODE_SEM AUTO) ({
printf("Reset Mbde: SEM AUTOn");

} else if (ResetMbde == OS_EVENT_RESET_MODE MANUAL) {
printf("Reset Mde: MANUAL\n");

} else {
printf("Reset Mde: AUTOnN");

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

144

CHAPTER 5 API functions

5.2.11 OS_EVENT GetTimed()

Description

Waits for an event and suspends the task for a specified time or until the event has been
signaled. The event is consumed unless OS_EVENT_RESET MODE_MANUAL is selected.

Prototype

char OS_EVENT_Get Ti ned(OS_EVENT* pEvent,
OS_TIME Tineout);

Parameters
Parameter Description

pEvent Pointer to the event object that the task will be waiting for.

: Maximum time in embQOS system ticks until the event must
Ti meout .

be signaled.

Return value
0 Success, the event was signaled within the specified time.
1 If the event was not signaled within the specified time.

Additional information

pEvent addresses an existing event object, which must be created before the call of
OS_EVENT_Get Ti ned() . A debug build of embOS will check whether pEvent addresses a
valid event object and will call OS_Err or () with error code OS_ERR_EVENT_I NVALI D in case
of an error.

Example

static OS_EVENT _Event;
voi d Task(void) {

if (OS_EVENT_Get Ti ned(& Event, 1000) == 0) {
/'l event was signaled within tinmeout tinme, handl e event
} else {
/'l event was not signaled within timeout tinme, handle tineout

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

145 CHAPTER 5 API functions

5.2.12 OS_EVENT_Pulse()

Description

Signals an event object and resumes waiting tasks, then resets the event object to non-
signaled state.

Prototype
voi d OS_EVENT_Pul se(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to the event object which should be pulsed.

Additional information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains in non-signaled state, regardless the reset mode.

A debug build of embOS will check whether pEvent addresses a valid event object and will
call GS_Error () with the error code OGS _ERR EVENT | NVALI D in case of an error.

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Cet Bl ocked(& Event); // Suspends the task

}
voi d LPTask(void) {

CS_Event _Pul se(& Event); /'l Signal es the HPTask
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

146 CHAPTER 5

5.2.13 OS_EVENT_Reset()

Description

API functions

Resets the specified event object to non-signaled state.

Prototype
voi d OS_EVENT_Reset (OS_EVENT* pEvent);
Parameters
Parameter Description
Pointer to the event object which should be reset to non-sig-
pEvent
naled state.

Additional information

pEvent must address an existing event object, which has been created before by a call
of OS_EVENT _Create(). A debug build of embOS will check whether pEvent addresses a
valid event object and will call GS_Error () with the error code S ERR EVENT | NVALI D in

case of an error.
Example

static OS_EVENT _Event;
voi d Task(void) {

OS_EVENT_Reset (& Event);

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

147 CHAPTER 5 API functions

5.2.14 OS_EVENT_Set()

Description

Sets an event object to signaled state, or resumes tasks which are waiting at the event
object.

Prototype

voi d OS_EVENT_Set (OS_EVENT* pEvent);

Parameters

Parameter Description

pEvent Pointer to the event object.

Additional information

pEvent must address an existing event object, which must be created before by a call to
OS_EVENT _Create() . A debug build of embOS will check whether pEvent addresses a valid
event object and will call GS_Error () with error code OGS ERR EVENT | NVALI D in case of
an error.

If no tasks are waiting at the event object, the event object is set to signaled state. Any
task that is already waiting for the event object will be resumed. The state of the event
object after calling OS_EVENT_Set () then depends on the reset mode of the event object.

e With reset mode OS_EVENT_RESET MODE SEM AUTOC:
This is the default mode when the event object was created with OS_EVENT Create() .
This was the only mode available in embOS versions prior version 3.88a. If tasks were
waiting, the event is reset when the waiting tasks are resumed.

e With reset mode OS_EVENT_RESET MODE AUTC:
The event object is automatically reset when waiting tasks are resumed and continue
operation.

e With reset mode OS_EVENT_RESET_ MODE_MANUAL :
The event object remains signaled when waiting tasks are resumed and continue
operation. The event object must be reset by the calling task.

Example

Examples on how to use the OS_EVENT_Set () function are shown in Examples of using
event objects on page 130.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

148

CHAPTER 5 API functions

5.2.15 OS_EVENT_SetMask()

Description

Sets the event mask bits of an event object.

Prototype

voi d OS_EVENT_Set Mask(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to the event object.
The event bit mask containing the event bits, which shall be
Event Mask .
signaled.

Additional information

pEvent must address an existing event object, which must be created before by a call to
OS_EVENT_Creat e() . A debug build of embOS will check whether pEvent addresses a valid
event object and will call GS_Error () with error code OS_ERR EVENT_I NVALI D in case of
an error.

Any task that is already waiting for matching event mask bits on this event object will be
resumed. OS_EVENT_Set Mask() does not clear any event mask bits.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_TASKEVENT Event Mask;

Event Mask = 1 << ((sizeof (OS_TASKEVENT) * 8) - 1); // Set MSB event bit
OS_EVENT_Set Mask(& Event, Event Mask); /1 Signal MSB event bit

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

149

CHAPTER 5 API functions

5.2.16 OS_EVENT_ SetMaskMode()

Description
Sets the mask mode of an event object to OR/AND logic.

Prototype

voi d OS_EVENT_Set MaskMbde(OS_EVENT* pEvent,
OS_EVENT_MASK_MODE MaskMbde) ;

Parameters

Parameter Description

pEvent Pointer to an event object.
Event Mask mode.
Modes are defined in enum OS_EVENT_MASK_MCDE.

MaskMode OS_EVENT_MASK_MODE OR LOG C (0x00u): Mask bits are used
with OR logic (default).
OS_EVENT_MASK_MODE_AND LOd C (0x04u): Mask bits are
used with AND logic.

Additional information

pEvent must address an existing event object, which has been created before by a call of
OS_EVENT Create() or OS_EVENT Creat eEx() .

A debug build of embOS will check whether pEvent addresses a valid event object and will
call Os_Error () with error code OS_ERR _EVENT_I NVALI D in case of an error.

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMbde() . The following mask modes are
defined and can be used as parameter:
e OS_EVENT_MASK MODE_OR LOG C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e OS_EVENT_MASK MODE_AND LOG C:
With this mode all specified event mask bits must be signaled.

Example
static OS_EVENT _Event;

voi d Task(void) {

/1l Set the mask node for the event object to AND | ogic
OS_EVENT_Set MaskMode(& Event, OS_EVENT_MASK MODE_AND LOd C);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

150 CHAPTER 5 API functions

5.2.17 OS_EVENT_ SetResetMode()

Description

Sets the reset behavior of an event object to auto-matic, manual or semiauto.

Prototype
voi d OS_EVENT_Set Reset Mbde(OS_EVENT* pEvent,
OS_EVENT_RESET_MODE Reset Mode) ;
Parameters
Parameter Description
pEvent Pointer to an event object.

Controls the reset mode of the event object.
OS_EVENT_RESET_DEFAULT (0x00u): As previous mode.

Reset Mode OS_EVENT_RESET_MANUAL (0x01u): Event remains set, has to
be reset by task.

OS_EVENT_RESET_AUTO (0x02u): Event is reset automatically.

Additional information

pEvent must address an existing event object, which has been created before by a call of
OS_EVENT Create() or OS_EVENT Creat eEx() .

A debug build of embOS will check whether pEvent addresses a valid event object and will
call Os_Error () with error code OS_ERR _EVENT_I NVALI D in case of an error.

Implementation of event objects in embOS versions before 3.88a unfortunately was not
consistent with respect to the state of the event after calling OS_EVENT_Set () or OS_EVEN-
T_Get Bl ocked() functions. The state of the event was different when tasks were waiting
or not.

Since embOS version 3.88a, the state of the event (reset behavior) can be controlled after
creation by the new function OS_EVENT_Set Reset Mbde(), or during creation by the new
OS_EVENT_Cr eat eEx() function. The following reset modes are defined and can be used
as parameter:

e OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Example

static OS_EVENT _Event;

voi d Task(void) {
/1l Set the reset node for the event object to manual
OS_EVENT_Set Reset Mode(& Event, OS_EVENT_RESET_MANUAL) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

151 CHAPTER 5 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 6

Mutexes

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

153 CHAPTER 6 Introduction

6.1 Introduction

Mutexes are used for managing resources by avoiding conflicts caused by simultaneous
use of a resource. The resource managed can be of any kind: a part of the program that is
not reentrant, a piece of hardware like the display, a flash prom that can only be written
to by a single task at a time, a motor in a CNC control that can only be controlled by one
task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_MJTEX_ LockBI ocked() or CS_MJ}
TEX Lock() routines of embOS. If the mutex is available, the program execution of the
task continues, but the mutex is blocked for other tasks. If a second task now tries to
acquire the same mutex while it is in use by the first task, this second task is suspended
until the first task releases the mutex. However, if the first task that uses the mutex calls
OS_MUTEX_ LockBI ocked() again for that mutex, it is not suspended because the mutex is
blocked only for other tasks.

The following diagram illustrates the process of using a mutex:

OS_MUTEX_LockBlocked()

Access resource

0S_MUTEX_Unlock()

A mutex contains a counter that keeps track of how many times the mutex has been
claimed by calling OS_MJTEX Lock() or OS_MJTEX LockBl ocked() by a particular task. It
is released when that counter reaches zero, which means the CS_MJTEX_Unl ock() routine
must be called exactly the same number of times as OS_MJTEX LockBIl ocked() or OS_MJ
TEX Lock() . If it is not, the mutex remains blocked for other tasks.

On the other hand, a task cannot release a mutex that it does not own by calling 05_MJ
TEX_Unl ock() . In debug builds of embOS, a call of OS_MJTEX_Unl ock() for a mutex that
is not owned by this task will result in a call to the error handler OS_Error ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

154

CHAPTER 6 Introduction

Example of using a mutex

Here, two tasks access a (debug) terminal completely independently from each other. The
terminal is a resource that needs to be protected with a mutex. One task may not interrupt
another task which is writing to the terminal, as otherwise the following might occur:

e Task A begins writing to the terminal
e Task B interrupts Task A and writes to the terminal
e Task A is resumed and its output is written at a wrong position

To avoid this type of situation, every time the terminal is to be accessed by a task it is
first claimed by a call to S_MJTEX LockBl ocked() (and is automatically waited for if the
mutex is blocked). After the terminal has been written to, it is released by a call to OS_MJ+
TEX _Unl ock().

The sample application file 0S_RSena. ¢ delivered in the application samples folder of embOS
demonstrates how mutex can be used in the above scenario:

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS_TASK TCBHP, TCBLP; /* Task-control -bl ocks */

/****** Local functlon **/

static void Wite(char const* s) {
OS_MJTEX_ LockBIl ocked(&Vt ex) ;
printf(s);
OS_MJTEX_Unl ock(&Vt ex) ;

}

/****** Task fUnCtlonS **/

static void HPTask(void) {
while (1) {
_Wite("HPTask\n");
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
while (1) {
_Wite("LPTask\n");
OS_TASK Del ay(200);
}
}

/***

*

* mai n()
*/
int mai n(void) {
CS Init(); /1 Initialize enbhCS
CS I nitHW); /1 Initialize hardware for enbCs

0S_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

OS_MJTEX_Cr eat e(&Vt ex) ; /1 Creates nutex
Os _Start(); /1 Start multitasking
return O;

}

/****** End CI File ***/

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

155 CHAPTER 6 API functions

6.2 API functions

. . 3 |d|= |2
Routine Description o |8 %’ 3
= @
OS_MUTEX Create() Creates a mutex. oo
0s_MJTEX Del et e() Deletes a specified mutex. °
OS_MJTEX_ Get Omner () Returns the mutex owner if any. oo
0S_MUTEX_Get Val ue() Retu_rps the value of the usage counter of a ol e
specified mutex.
0S_MUTEX_Lock() Requests a §p_ec_|f|ed mutex and blocks it for ol e
other tasks if it is available.
OS_MUTEX LockBl ocked() Claims a mutex and blocks it for other tasks. | e | @
. Tries to claim a mutex and blocks it for other
OS_MUTEX_LockTi med() tasks if it is available within a specified time. *°
OS_MUTEX_Unl ock() Releases a mutex currently in use by atask. |e | e

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

156 CHAPTER 6 API functions

6.2.1 OS MUTEX_ Create()

Description

Creates a mutex.

Prototype
voi d OS_MJUTEX Create(OS_MJTEX* pMit ex);
Parameters
Parameter Description
pMut ex Pointer to the data structure for a mutex.

Additional information

After creation, the mutex is not blocked; the value of the counter is zero.
Example

static OS_MJTEX _Mit ex;

int main(void) {

OS_MJTEX_Cr eat e(& Mut ex) ;
return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

157

CHAPTER 6 API functions

6.2.2 OS_MUTEX_Delete()

Description

Deletes a specified mutex. The memory of that mutex may be reused for other purposes
or may be used for creating another mutex using the same memory.

Prototype
voi d OS_MUTEX Del et e(OS_MJTEX* pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a data structure of type OS_MJTEX.

Additional information

Before deleting a mutex, make sure that no task is claiming the mutex. A debug build of
embOS will call S_Error () with the error code S ERR_MUTEX_DELETE if a mutex is deleted
when it is already in use. In systems with dynamic creation of mutexes, you must delete a
mutex before recreating it. Failure to so may cause mutex handling to work incorrectly.

Example

static OS_MJTEX _Mit ex;

int Task(void) {
.O.S._MJTEX_DeI ete(& Mitex);
.réfurn 0;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

158

CHAPTER 6 API functions

6.2.3 OS _MUTEX_ GetOwner()

Description

Returns the mutex owner if any. When a task is currently using (blocking) the mutex the
task Id (address of task according task control block) is returned.

Prototype
0S_TASK *0S_MUTEX_Get Oaner (OS_CONST_PTR OS_MJUTEX * pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to the data structure for a mutex.

Return value

= NULL The mutex is not used by any task.
NULL Task Id (address of the task control block).

Additional information

If a mutex was used in main() the return value of S MJUTEX Get Oaner () is ambiguous.
The return value NULL can mean it is currently used in main() or it is currently unused.
Therefore, OS_MUTEX_ Get Omner () must not be used to check if a mutex is available. Please
use OS_MUTEX Get Val ue() instead.

It is also good practice to free all used mutexes in main() before calling GS_Start ().

Example
Please find an example at OS_MJTEX_GCet Val ue() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

159 CHAPTER 6

6.2.4 OS MUTEX GetValue()

Description

API functions

Returns the value of the usage counter of a specified mutex.

Prototype
int OS_MJTEX Get Val ue(OS_CONST_PTR OS_MJTEX *pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to the data structure for a mutex.

Return value

The counter value of the mutex.

A value of zero means the mutex is available.

Example

static OS_MJTEX _Mit ex;

voi d CheckMut ex(void) {
i nt Val ue;
OS_TASK* Owner ;

Val ue = OS_MJTEX_Get Val ue(& Mut ex) ;

if (Value == 0) {

printf("Mitex is currently unused");

} else {

Onner = OS_MJTEX_Get Oaner (& Mt ex) ;

if (Oaner == NULL) {

printf("Mitex was used in main()");

} else {

printf("Mitex is currently used in task Ox%", Owner);

}
}
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

160 CHAPTER 6 API functions

6.2.5 OS _MUTEX_Lock()

Description

Requests a specified mutex and blocks it for other tasks if it is available. Continues execution
in any case.

Prototype
char OS_MJTEX_ Lock(OS_MJUTEX* pMitex);

Parameters

Parameter Description
pMut ex Pointer to the data structure for a mutex.

Return value

1 Mutex was available, now in use by calling task.
0 Mutex was not available.

Additional information
The following diagram illustrates how 08 MJUTEX Lock() works:

0S_MUTEX_Lock()

Resource in use
by other task?

Mark current

In use by this task?
¥ task as owner

Inc Usage Counter Usage Counter =1

Example
if (OS_MJUTEX Lock(&Mutex_LCD)) {
Di spTinme(); /'l Access the resource LCD
OS_MJTEX _Unl ock(&WVutex_LCD); // Resource LCD is no |onger needed
} else {

/1 Do sonething el se

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

161

CHAPTER 6 API functions

6.2.6 OS_MUTEX_ LockBlocked()

Description

Claims a mutex and blocks it for other tasks.

Prototype
int OS_MJTEX LockBl ocked(OS_MJTEX* pMit ex);
Parameters
Parameter Description
pMut ex Pointer to the data structure for a mutex.

Return value

The counter value of the mutex.
A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:

Case A: The mutex is not in use.

If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

Case B: The mutex is used by this task.

The counter of the mutex is incremented. The program continues without a break.
Case C: The mutex is being used by another task.

The execution of this task is suspended until the mutex is released. In the meantime if
the task blocked by the mutex has a higher priority than the task blocking the mutex,
the blocking task is assigned the priority of the task requesting the mutex. This is called
priority inheritance. Priority inheritance can only temporarily increase the priority of a
task, never reduce it.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

Example

static OS_MJTEX _Mit ex;

voi d Task(void) {

OS_MJTEX LockBIl ocked(& Mit ex);

CS_MJTEX Unl ock(& Mut ex) ;

The following diagram illustrates how OS_MJUTEX_ LockBIl ocked() works:

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

162

CHAPTER 6 API functions

6.2.7 OS_MUTEX_LockTimed()

Description

Tries to claim a mutex and blocks it for other tasks if it is available within a specified time.

Prototype

int OS_MJTEX LockTi med(OS_MJTEX* pMit ex,
OS TIME TinmeQut);

Parameters

Parameter Description

pMut ex Pointer to the data structure of a mutex.

Maximum time until the mutex should be available. Timer
period in embOS system ticks. The data type OS_TI ME is de-
Ti meQut fined as an integer, therefore valid values are:

1 < TineQut < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < TimeQut < 231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

=0 Failed, mutex not available before timeout.
=0 Success, mutex available, current usage count of mutex.

A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:

e (Case A: The mutex is not in use.
If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

e Case B: The mutex is used by this task.
The counter of the mutex is incremented. The program continues without a break.

e Case C: The mutex is being used by another task.
The execution of this task is suspended until the mutex is released or the timeout time
expired. In the meantime if the task blocked by the mutex mutex has a higher priority
than the task blocking the mutex, the blocking task is assigned the priority of the task
requesting the mutex. This is called priority inheritance. Priority inheritance can only
temporarily increase the priority of a task, never reduce it.
If the mutex becomes available during the timeout, the calling task claims the mutex
and the function returns a value greater than zero, otherwise, if the mutex does not
become available, the function returns zero.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mutex becomes available before the calling task is resumed.
Anyhow, the function will not claim the mutex because it was not available within the
requested time.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

163 CHAPTER 6 API functions

Example

static OS_ MJUTEX _Mit ex;
voi d Task(void) {

if (OS_MJUTEX LockTi med(& Miutex, 100)) {
/1l Miutex acquired

} else {
/' Ti meout

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

164

CHAPTER 6 API functions

6.2.8 OS_MUTEX_Unlock()

Description

Releases a mutex currently in use by a task.

Prototype
voi d OS_MUTEX Unl ock(OS_MJUTEX* pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to mutex control structure.

Additional information

OS_MUTEX Unl ock() may be used on a mutex only after that mutex has been used by
calling OS_MUTEX LockBIl ocked() or OS_MJTEX Lock(). OGS _MJTEX Unl ock() decrements
the usage counter of the mutex which must never become negative. If this counter be-
comes negative, a debug build will call the embOS error handler S Error () with error
code OS_ERR UNUSE_BEFORE _USE. In a debug build GS_Error () will also be called if 0S_MJF
TEX _Unl ock() is called from a task which does not own the mutex. The error code is OS_ER-
R _RESOURCE_OMER in this case.

Example

Please find an example at OS_MJTEX_Lock() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 7

Semaphores

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

166 CHAPTER 7 Introduction

7.1 Introduction

A semaphore is a variable or abstract data type used to control access to a common resource
by multiple processes in a multitasking operating system. While not as widely used as
mutexes, events or mailboxes, semaphores can be very useful in specific situations. For
example, they are commonly used in “credittracking synchronization” where a task needs
to wait for something that can be signaled one or more times.

Example of using semaphores

Here, an interrupt is issued every time data is received from a peripheral source. The in-
terrupt service routine then signals the arrival of data to a worker task, which subsequently
processes that data. When the worker task is blocked from exection, e.g. by a higher-pri-
ority task, the semaphore’s counter effectively tracks the number of data packets to be
processed by the worker task, which will be executed for that exact number of times when
resumed.

The following sample application shows how semaphores can be used in the above scenario:

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int Stack[128]; /'l Task stack
static OS_TASK TCB; /'l Task control bl ock
stati c OS_SEMAPHORE Seng; /'l Semaphore
static OS_TI CK_HOOK Hook; /1l Hook to enul ate external interrupt
voi d Task(void) {
while(l) {
OS_SEMAPHORE_TakeBl ocked(&Senm) ; /1l Wait for signaling of received data
printf("Task is processing data"); // Act on received data
}
}
voi d OnTi ckHookFunction(voi d) {
OS_SEMAPHORE_G ve(&Senm) ; /1 Signal data reception
}
int main(void) {
CS Init(); /[l Initialize enbCS
CS I nitHW); /1 Initialize required hardware

Il

/'l Register tick hook function to emulate an external interrupt

Il

OS_TI CK_AddHook(&Hook, (OS_TI CK_HOOK ROUTI NE*) OnTi ckHookFuncti on);
OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);

OS_SEMAPHORE_CREATE(&Semm) ; /| Creates semaphore
CS start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

167 CHAPTER 7 API functions

7.2 API functions

. - 3 |d|= |2
Routine Description o |8 %’ 3
= @
0S_SEMAPHORE_CREATE() !Vlggro that creates a semaphore with an ol e
initial count value of zero.
0S_SEMAPHORE_ Cr eat e() Crea_tc_as a_c_oyntlng semaphore with a ol e
specified initial count value.
OS_SENMAPHORE_Del et e() Deletes a counting semaphore. oo
OS_SEMAPHORE_Gi ve() Increments the counter of a semaphore. oo |o o

0S_SEMAPHORE G veMax() Increments the counter of a semaphore olelele
- - up to a specified maximum value.

Returns the current counter value of a

0S_SEMAPHORE_Get Val ue() specified semaphore.

Sets the counter value of a specified sem-

OS_SEMAPHORE_Set Val ue() aphore

Decrements the counter of a semaphore,
OS_SEMAPHORE Take() 1t was signaled. P P I P I

OS_SEMAPHORE TakeBl ocked() | Decrements the counter of a semaphore. | e | e

Decrements a semaphore counter if the
OS_SEMAPHORE TakeTi ned() semaphore is available within a specified |eo | e
time.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

168

CHAPTER 7 API functions

7.2.1 OS_SEMAPHORE_CREATE()

Description

Macro that creates a semaphore with an initial count value of zero.

Prototype
voi d OS_SEMAPHORE CREATE(OS_SEMAPHORE* pSema) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Additional information

To create a semaphore a data structure of the type OS_SEMAPHORE must be defined in
memory and initialized using OS_SEMAPHORE CREATE() . The value of a semaphore created
through this macro is zero. If you need to create a semaphore with an arbitrary initial
counting value, use the function OS_SEMAPHORE Cr eat e() .

Example

Please refer to the example in Introduction on page 166.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

169 CHAPTER 7 API functions

7.2.2 OS_SEMAPHORE_Create()

Description

Creates a counting semaphore with a specified initial count value.

Prototype
voi d OS_SEMAPHORE_Cr eat e(OS_SEMAPHORE* pSenm,
OS_UINT I nitVal ue);
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.
Initial count value of the semaphore:
I ni tVal ue 0 < InitValue < 216 - 1 = OxFFFF for 8/16 bit CPUs.
0 < InitValue < 232 -1 = OxFFFFFFFF for 32 bit CPUs.

Additional information

To create a counting semaphore a data structure of the type OS_SEMAPHORE must be defined
in memory and initialized using OS_ SEMAPHORE Cr eat e() .

Example
static OS_SEMA _Senms;
int main(void) {
bé;SENAPHO?E_O eate(& Semn, 8);

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

170 CHAPTER 7 API functions

7.2.3 0OS_SEMAPHORE_Delete()

Description

Deletes a counting semaphore.

Prototype
voi d OS_SEMAPHORE Del et e(OS_SEMAPHORE* pSema) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Additional information

Before deleting a semaphore, make sure that no task is waiting for it and that no task will
signal that semaphore at a later point.
A debug build of embOS will reflect an error if a deleted semaphore is signaled.

Example

static OS_SEMA _Senms;
voi d Task(void) {

OS_SEMAPHORE_Del et e(& Sem) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

171 CHAPTER 7 API functions

7.2.4 0OS_SEMAPHORE_Give()

Description

Increments the counter of a semaphore.

Prototype
voi d OS_SEMAPHORE G ve(OS_SEMAPHORE* pSenm) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Additional information

OS_SEMAPHORE G ve() signals an event to a semaphore by incrementing its counter. If one
or more tasks are waiting for an event to be signaled to this semaphore, the task with
the highest priority becomes the running task. The counter can have a maximum value
of OxFFFF for 8/16 bit CPUs or OxFFFFFFFF for 32 bit CPUs. It is the responsibility of the
application to make sure that this limit is not exceeded. A debug build of embOS detects
a counter overflow and calls S Error () with error code OS_ERR SEMAPHORE OVERFLOWif
an overflow occurs.

Example

Please refer to the example in Introduction on page 166.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

172 CHAPTER 7 API functions

7.25 OS_SEMAPHORE_GiveMax()

Description

Increments the counter of a semaphore up to a specified maximum value.

Prototype

voi d OS_SEMAPHORE G veMax(OS_SEMAPHORE* pSenm,
CS_UI NT MaxVal ue) ;

Parameters

Parameter Description

pSema Pointer to a data structure of type OS_SEMAPHORE.
Count value of the semaphore:

MaxVal ue 1 < MaxVal ue < 216 - 1 = OxFFFF for 8/16 bit CPUs.
1 < MaxVal ue < 232 - 1 = OxFFFFFFFF for 32 bit CPUs.

Additional information

As long as current value of the semaphore counter is below the specified maximum value,
OS_SEMAPHORE G veMax() signals an event to a semaphore by incrementing its counter. If
one or more tasks are waiting for an event to be signaled to this semaphore, the tasks are
placed into the READY state and the task with the highest priority becomes the running task.

Calling OS_SEMAPHORE G veMax() with a MaxVal ue of 1 makes a counting semaphore be-
have like a mutex. Consider using a mutex instead.

Example

static OS_SEMA _Senms;
voi d Task(void) {

OS_SEMAPHORE_G veMax(& Sema, 8);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

173 CHAPTER 7 API functions

7.2.6 OS_SEMAPHORE_GetValue()

Description

Returns the current counter value of a specified semaphore.

Prototype
int OS_SEMAPHORE_Get Val ue(0S_CONST_PTR OS_SEMAPHORE *pSens) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Return value

The current counter value of the semaphore.

Example

static OS_SEMA _Senms;

voi d Print SenmaVal ue(void) ({
i nt Val ue;

Val ue = OS_SEMAPHORE_Get Val ue(& _Senmm) ;
printf("Sema Value: %l\n", Val ue)

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

174 CHAPTER 7 API functions

7.2.7 OS_SEMAPHORE_SetValue()

Description

Sets the counter value of a specified semaphore.

Prototype
0S_U8 OS_SEMAPHORE_Set Val ue(OS_SEMAPHORE* pSenm,
CS_UI NT Val ue) ;
Parameters
Parameter Description

pSema Pointer to a data structure of type OS_SEMAPHORE.
Count value of the semaphore:

Val ue 0 < Val ue < 216 - 1 = OxFFFF for 8/16 bit CPUs.
0 < Val ue < 232 - 1 = OxFFFFFFFF for 32 bit CPUs.

Return value

0 In any case. The return value can safely be ignored.
Example

static OS SEMA _Senm;
voi d Task(void) {

OS_SEMAPHORE_Set Val ue(& Sema, 0);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

175

CHAPTER 7 API functions

7.2.8 OS_SEMAPHORE_Take()

Description

Decrements the counter of a semaphore, if it was signaled.

Prototype
0S_BOOL OS_SEMAPHORE Take(OS_SEMAPHORE* pSens) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Return value

0 Failed, semaphore was not signaled before the call.
1 Success, semaphore was available and counter was decremented once.
Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE Take() does not wait and does not modify the sem-
aphore counter.

Example

static OS_SEMA _Senms;
voi d Task(void) {

i f (OS_SEMAPHORE Take(& Semm) == 1) {
printf("Semaphore decrenented successfully.\n");
} else {
printf("Semaphore not signaled.\n");

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

176 CHAPTER 7 API functions

7.2.9 0OS_SEMAPHORE_TakeBlocked()

Description

Decrements the counter of a semaphore.

Prototype
voi d OS_SEMAPHORE TakeBl ocked(OS_SEMAPHORE* pSenm) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE TakeBl ocked() waits until the counter is incremented
by another task, a timer or an interrupt handler by a call to 08 SEMAPHORE G ve(). The
counter is then decremented and program execution continues. An unlimited number of
tasks can wait for a semaphore. According to the rules of the scheduler, of all the tasks
waiting for the semaphore, the task with the highest priority will continue program exe-
cution.

Example

Please refer to the example in Introduction on page 166.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

177 CHAPTER 7 API functions

7.2.10 OS_SEMAPHORE_TakeTimed()

Description

Decrements a semaphore counter if the semaphore is available within a specified time.

Prototype
0S_BOOL OS_SEMAPHORE TakeTi med(OS_SEMAPHORE* pSem,
OS_TI ME Ti meCut) ;
Parameters
Parameter Description
pSema Pointer to a data structure of type OS_SEMAPHORE.

Maximum time until semaphore should be available. Timer
period in embOS system ticks. The data type OS_TI ME is de-
Ti meQut fined as an integer, therefore valid values are:

1 < TineQut < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < TimeQut < 231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Failed, semaphore not available before timeout.
1 Success, semaphore was available and counter decremented.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE TakeTi med() waits until the semaphore is signaled
by another task, a timer, or an interrupt handler by a call to OS_SEMAPHORE G ve(). The
counter is then decremented and program execution continues. If the semaphore was not
signaled within the specified time the program execution continues, but returns a value of
zero. An unlimited number of tasks can wait for a semaphore. According to the rules of
the scheduler, of all the tasks waiting for the semaphore, the task with the highest priority
will continue program execution.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the counting semaphore becomes available after the timeout
expired, but before the calling task is resumed. Anyhow, the function returns with timeout,
because the semaphore was not available within the requested time. In this case, the state
of the semaphore is not modified by OS_ SEMAPHORE TakeTi med() .

Example

static OS_SEMA _Senms;
voi d Task(void) {
i f (OS_SEMAPHORE TakeTi ned(& Sermm, 100)) {
/'l Semaphore acquired

} else {
... [l Tinmeout
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 8

Mailboxes

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

179 CHAPTER 8 Introduction

8.1 Introduction

In the preceding chapters, task synchronization by the use of semaphores was described.
Unfortunately, semaphores cannot transfer data from one task to another. If we need to
transfer data between tasks for example via a buffer, we could use a mutex every time we
accessed the buffer. But doing so would make the program less efficient. Another major
disadvantage would be that we could not access the buffer from an interrupt handler,
because the interrupt handler is not allowed to wait for the mutex.

One solution would be the usage of global variables. In this case we would need to disable
interrupts each time and in each place that we accessed these variables. This is possible,
but it is a path full of pitfalls. It is also not easy for a task to wait for a character to be
placed in a buffer without polling the global variable that contains the number of characters
in the buffer. Again, there is solution - the task could be notified by an event signaled to
the task each time a character is placed in the buffer. This is why there is an easier way to
do this with a real-time OS: The use of mailboxes.

A mailbox is a buffer that is managed by the real-time operating system. The buffer behaves
like a normal buffer; you can deposit something (called a message) and retrieve it later.
Mailboxes usually work as FIFO: first in, first out. So a message that is deposited first will
usually be retrieved first. "Message” might sound abstract, but very simply it means “item
of data”. It will become clearer in the typical applications explained in the following section.

Limitations:

Both the number of mailboxes and buffers are limited only by the amount of available
memory. However, the number of messages per mailbox, the message size per mailbox,
and the buffer size per mailbox are limited by software design.

Number of nessages on 8 or 16bit CPUs:
1 <= x <= 215 - 1 = Ox7FFF

Nunmber of messages on 32bit CPUs:
1 <= x <= 231 - 1 = Ox7FFFFFFF

Message size in bytes on 8 or 16bit CPUs:
1 <= x <= 215 - 1 = Ox7FFF

Message size in bytes on 32bit CPUs:
1 <= x <= 215 - 1 = Ox7FFF

Maxi mum buf fer size in bytes for one mail box on 8 or 16bit CPUs:
216 = OxFFFF

Maxi mum buffer size in bytes for one nmil box on 32bit CPUs:
232 = OxFFFFFFFF

These limitations have been placed on mailboxes to guarantee efficient coding and also to
ensure efficient management. These limitations are typically not a problem.

A mailbox can be used by more than one producer, but must be used by one consumer
only. This means that more than one task or interrupt handler is allowed to deposit new
data into the mailbox, but it does not make sense to retrieve messages by multiple tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

180

CHAPTER 8 Introduction

8.1.1 Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and transfer sin-
gle-byte messages. This is the case, for example, with a mailbox that takes the character
received or sent via serial interface, or typically with a mailbox used as a keyboard buffer.
In some of these cases, time is very critical, especially if a lot of data is transferred in short
periods of time.

To minimize the overhead caused by the mailbox management of embQOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions OS_MAI LBOX_Put Bl ocked(), OS_MAI LBOX Put (), OS_MAI LBOX Get Bl ocked(), and
OS_MAI LBOX_Get () can transfer messages of sizes between 1 and 32,767 bytes each.

Their single-byte equivalents GS_MAI LBOX_Put Bl ocked1(), OS_MAI LBOX Put 1(), CS_MAI L-
BOX_Get Bl ocked1(), and OS_MAI LBOX_Get 1() work the same way with the exception that
they execute much faster because management is simpler. It is recommended to use the
singlebyte versions if you transfer a lot of single-byte data via mailboxes.

The routines OS_MAI LBOX_Put Bl ocked1(), OS_MAILBOX Putl1(), OS_MAILBOX_ Get-
Bl ocked1(), and OS_MAI LBOX_ Get 1() work exactly the same way as their universal equiv-
alents. The only difference is that they must only be used for single-byte mailboxes.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

181 CHAPTER 8 Introduction

Example

#define MAX MSG SIZE (9) // Max. nunber of bytes per nessage
#define MAX_ MSG NUM (2) // Max. nunber of messages per Mail box

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS _TASK TCBHP, TCBLP; // Task control bl ocks
static OS_MAI LBOX MyMai | box;
static char MyMai | boxBuf f er [MAX_MSG_SI ZE * MAX_MSG_NUM ;

static void HPTask(void) {
char abDat a] MAX_MSG_SI ZE] ;

while (1) {
OS_MAI LBOX_CGet Bl ocked(&WMai | box, (void *)aData);
OS_COM SendStri ng(abat a) ;

}
}
static void LPTask(void) {
while (1) {
OS_MAI LBOX_Put Bl ocked(&WMai | box, "\nHello\0");
OS_MAI LBOX_Put Bl ocked(&WMai | box, "\nWrld '\0");
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS_MAI LBOX_Cr eat e(&WMai | box, MAX_MsSG_SI ZE, MAX_MSG NUM &MW Mai | boxBuffer);
OS_COM SendString("enbOS OS_Mi | box exanpl e");
OS_COM SendString("\n\nDenonstrating nessage passing\n");
CS Start(); /1 Start enmbOS
return O;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

8.2 API functions

CHAPTER 8

API functions

Routine

Description

urew

Nsel

dSi
JETT

OS_MAI LBOX _d ear ()

Clears all messages in the specified mail-
box.

OS_MAI LBOX Creat e()

Creates a new mailbox.

OS_MAI LBOX_Del et e()

Deletes a specified mailbox.

OS_MAI LBOX_Get ()

Retrieves a new message of a predefined
size from a mailbox if a message is avail-
able.

OS_MAI LBOX_Get 1()

Retrieves a new message of size 1 from a
mailbox if a message is available.

OS_MAI LBOX Cet Bl ocked()

Retrieves a new message of a predefined
size from a mailbox.

OS_MAI LBOX_Get Bl ocked1()

Retrieves a new message of size 1 from a
mailbox.

OS_MAI LBOX_CGet MessageCnt ()

Returns the number of messages current-
ly available in a specified mailbox.

OS_MAI LBOX_Get Ti med()

Retrieves a new message of a predefined
size from a mailbox if a message is avail-
able within a given time.

OS_MAI LBOX_Get Ti med1()

Retrieves a new message of size 1 from a
mailbox if a message is available within a
given time.

OS_MAI LBOX_Get Pt r ()

Retrieves a pointer to a new message of a
predefined size from a mailbox, if a mes-
sage is available.

OS_MAI LBOX_Cet Pt r Bl ocked()

Retrieves a pointer to a new message of a
predefined size from a mailbox.

OS_MAI LBOX_Peek()

Peeks a mail from a mailbox without re-
moving the mail.

OS_MNAI LBOX_Pur ge()

Deletes the last retrieved message in a
mailbox.

OS_MAI LBOX_Put ()

Stores a new message of a predefined
size in a mailbox if the mailbox is able to
accept one more message.

OS_MAI LBOX_Put 1()

Stores a new message of size 1 in a mail-
box if the mailbox is able to accept one
more message.

OS_MAI LBOX_Put Bl ocked()

Stores a new message of a predefined
size in a mailbox.

OS_MNAI LBOX_Put Bl ocked1()

Stores a new message of size 1 in a mail-
box.

OS_NAI LBOX_Put Front ()

Stores a new message of a predefined
size into a mailbox in front of all other
messages if the mailbox is able to accept
one more message.

OS_MAI LBOX_Put Front 1()

UMO01001 User Guide & Reference Manual for embOS

Stores a new message of size 1 into a
mailbox in front of all other messages if

© 1995-2018 SEGGER Microcontroller GmbH

183

CHAPTER 8

API functions

Routine

Description

urew

Asel
dSli
JETI

the mailbox is able to accept one more
message.

OS_MAI LBOX_Put Front -
Bl ocked()

Stores a new message of a predefined
size at the beginning of a mailbox in front
of all other messages.

OS_MAI LBOX_Put Fr ont -
Bl ockedl()

Stores a new message of size 1 at the be-
ginning of a mailbox in front of all other
messages.

OS_MAI LBOX_Put Ti med()

Stores a new message of a predefined
size in a mailbox if the mailbox is able to
accept one more message within a given
time.

OS_MAI LBOX_Put Ti med1()

Stores a new message of size 1 in a mail-
box if the mailbox is able to accept one
more message within a given time.

OS_MAI LBOX_Wai t Bl ocked()

Waits until a mail is available, but does
not retrieve the message from the mail-
box.

OS_MAI LBOX_ Wi t Ti med()

Waits until a mail is available or the time-
out has expired, but does not retrieve the
message from the mailbox.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

184

CHAPTER 8

8.2.1 OS_MAILBOX_ Clear()

Description

Clears all messages in the specified mailbox.

API functions

Prototype
voi d OS_MAI LBOX_Cl ear (QS_MAI LBOX* pMB) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.

Additional information

When the mailbox is in use, a debug build of embOS will call G8 Error () with error code

0S_ERR_MB_| NUSE.

OS_MAI LBOX O ear () may cause a task switch.

Example

static OS_MAI LBOX _MBKey;

voi d C ear KeyBuf fer(void) {
OS_MAI LBOX_Ol ear (& _MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

185 CHAPTER 8 API functions

8.2.2 OS_MAILBOX_ Create()

Description

Creates a new mailbox.

Prototype

voi d OS_MAI LBOX_Cr eat e(OS_MAI LBOX* pMB,
Os_U16 si zeof Msg,
OS_UI NT maxnof Msg,
voi d* Buf fer);

Parameters

Parameter Description
pMB Pointer to the mailbox.
si zeof Msg Size of a message in bytes. Valid values are

1 < sizeof Msg < 32,767.

Maximum number of messages. Valid values are
maxnof Msg 1 < Maxnof Msg < 32,767 on 8 or 16bit CPUs, or
1 < Maxnof Msg < 2,147,483,647 on 32bit CPUs.

Pointer to a memory area used as buffer. The buffer must
Buf f er be big enough to hold the given humber of messages of the
specified size: si zeof Msg * naxnoMsg bytes.

Example

Mailbox used as keayboard buffer:

static OS_MAI LBOX _MBKey;
char MBKeyBuf f er[6] ;

voi d I nitKeyMan(void) {
Il
/1 Create mail box, functioning as type ahead buffer
Il
OS_MAI LBOX Create(& MBKey, 1, sizeof(MBKeyBuffer), &VBKeyBuffer);

}
Mailbox used for transferring complex commands from one task to another:

/*
* Exanpl e of mail box used for transferring commands to a task
* that controls a notor
*/
typedef struct {
char Cnd;
i nt Speed[2];
int Position[2];
} MOTORCMVD;

OS_MAI LBOX MBMbt or;

#def i ne NUM_MOTORCMDS 4

char BufferMtor[sizeof (MOTORCMD) * NUM MOTORCMDS] ;
void MOTOR I nit(void) {

/* Create nmuil box that holds commands nessages */
OS_MAI LBOX_Cr eat e(&vBMot or, si zeof (MOTORCMD), NUM MOTORCMDS, &Buffer Motor);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

186 CHAPTER 8 API functions

8.2.3 0OS_MAILBOX_ Delete()

Description

Deletes a specified mailbox.

Prototype
voi d OS_MAI LBOX_Del et e(OS_MAI LBOX* pMB);
Parameters
Parameter Description
pMB Pointer to the mailbox.

Additional information

To keep the system fully dynamic, it is essential that mailboxes can be created dynamically.
This also means there must be a way to delete a mailbox when it is no longer needed. The
memory that has been used by the mailbox for the control structure and the buffer can
then be reused or reallocated.

It is the programmer’s responsibility to:

make sure that the program no longer uses the mailbox to be deleted
e make sure that the mailbox to be deleted actually exists (i.e. has been created first).

When the mailbox is in use, a debug build of embOS will call S Error () with error code
OS_ERR_MB_| NUSE.

In a debug build CS_Error () will also be called if GS_MAI LBOX_Del et e() is called while
tasks are waiting for new data from the mailbox. The error code in this case is OS_ER-
R_MAlI LBOX_DELETE.

Example

static OS_MAI LBOX _MBSerln;

voi d C eanup(void) {
OS_MAI LBOX_Del et e(& MBSer 1 n);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

187

CHAPTER 8 API functions

8.2.4 OS_MAILBOX_Get()

Description

Retrieves a new message of a predefined size from a mailbox if a message is available.

Prototype
char OS_MAI LBOX_Get (OS_MAI LBOX* pMB,
voi d* pDest);
Parameters
Parameter Description

pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area

pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Return value

0 Success; message retrieved.

1 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and pDest remains unchanged, but the
program execution continues. This function never suspends the calling task. It may there-
fore also be called from an interrupt routine.

Example

static OS_MAILBOX _MBDat a;
struct Data Buffer;

char GetData(void) {
return OS_MAlI LBOX_Get (& MBData, &Buffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

188

CHAPTER 8 API functions

8.2.5 OS MAILBOX_ Getl()

Description

Retrieves a new message of size 1 from a mailbox if a message is available.

Prototype
char OS_MAI LBOX_ Get 1(OS_MAI LBOX* pMB,
char* pDest);
Parameters
Parameter Description

pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area

pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Return value

0 Success; message retrieved.

1 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and pDest remains unchanged, but the
program execution continues. This function never suspends the calling task. It may there-
fore also be called from an interrupt routine.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX_Get ()
and OS_MAI LBOX_Get 1() .

Example

static OS_MAI LBOX _MBKey;

/1
/1 If a key has been pressed, it is taken out of the nail box
/1 and returned to caller. O herw se zero is returned.
/1
char GetKey(void) {
char ¢ = 0;

OS_MAI LBOX_Get 1(& MBKey, &c);
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

189

CHAPTER 8 API functions

8.2.6 0OS MAILBOX GetBlocked()

Description

Retrieves a new message of a predefined size from a mailbox.

Prototype
voi d OS_MAI LBOX_Get Bl ocked(OS_MAI LBOX* pMB,
voi d* pDest);
Parameters
Parameter Description
pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get () /OS_MAI LBOX _Get 1() instead if you need to retrieve data
from a mailbox from within an ISR.

Example

static OS_MAILBOX _MBDat a;
struct Data Buffer;

voi d Wait Data(void) {
OS_MAI LBOX_Get Bl ocked(& _MBDat a, &Buffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

190

CHAPTER 8 API functions

8.2.7 OS_MAILBOX_GetBlocked1()

Description

Retrieves a new message of size 1 from a mailbox.

Prototype
voi d OS_MAI LBOX_Get Bl ocked1(OS_MAI LBOX* pMB,
char* pDest);
Parameters
Parameter Description
pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get () /OS_MAI LBOX _Get 1() instead if you need to retrieve data
from a mailbox from within an ISR.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX Get -
Bl ocked() and OS_MAI LBOX_Get Bl ocked1() .

Example

static OS_MAI LBOX _MBKey;

char Wi tKey(void) {
char c;

OS_MAI LBOX_Get Bl ocked1(& MBKey, &c);
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

191 CHAPTER 8 API functions

8.2.8 0OS MAILBOX GetMessageCnt()

Description

Returns the number of messages currently available in a specified mailbox.

Prototype
OS_UI NT OS_MAI LBOX_Get MessageCnt (OS_CONST_PTR OS_MAI LBOX *pMB) ;
Parameters

Parameter Description
pMB Pointer to the mailbox.

Return value

The number of messages currently available in the mailbox.

Example

static OS_MAI LBOX _MBDat a;

voi d PrintAvail abl eMessages() {
OS_UI NT Nunf Msgs;

NumOF Msgs = OS_MAI LBOX_Get MessageCnt (& _MBDat a) ;

printf("Milbox contains % nessages.\n", NunmOf Msgs);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

192

CHAPTER 8 API functions

8.2.9 0OS_MAILBOX GetTimed()

Description

Retrieves a new message of a predefined size from a mailbox if a message is available
within a given time.

Prototype
char OS_MAI LBOX_Get Ti med(OS_MAI LBOX* pMB,
voi d* pDest,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Maximum time until the requested mail must be available.
Timer period in embOS system ticks. The data type OS_TI ME
Ti meout is defined as an integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success; message retrieved.
1 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved, pDest remains unchanged and the task
is suspended for the given timeout. The task continues execution according to the rules of
the scheduler as soon as a mail is available within the given timeout, or after the timeout
value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that mail becomes available after the timeout expired, but before the
calling task is resumed. Anyhow, the function returns with timeout, because the mail was
not available within the requested time. In this case, no mail is retrieved from the mailbox.

Example

static OS_MAILBOX _MBDat a;
struct Data Buffer;

char GetData(void) {
return OS_MAlI LBOX Get Ti med(& MBData, &Buffer, 10); // Wait for 10 systemticks

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

193 CHAPTER 8 API functions

8.2.10 OS_MAILBOX_GetTimed1()

Description
Retrieves a new message of size 1 from a mailbox if a message is available within a given
time.
Prototype
char OS_MAI LBOX_ Get Ti med1(OS_MAI LBOX* pM\B,
char* pDest,
CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pDest and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Maximum time until the requested mail must be available.
Timer period in embOS system ticks. The data type OS_TI ME
Ti meout is defined as an integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success; message retrieved.
1 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved, pDest remains unchanged and the task
is suspended for the given timeout. The task continues execution according to the rules of
the scheduler as soon as a mail is available within the given timeout, or after the timeout
value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that mail becomes available after the timeout expired, but before the
calling task is resumed. Anyhow, the function returns with timeout, because the mail was
not available within the requested time. In this case, no mail is retrieved from the mailbox.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX Cet -
Ti med() and OS_MAI LBOX_Get Ti ned1() .

Example

static OS_MAI LBOX _MBKey;

I

/1 |If a key has been pressed, it is taken out of the nail box

/1 and returned to caller. Oherwi se zero is returned.

I

char GetKey(void) {
char ¢ = 0;
OS_MAI LBOX_Cet Ti ned1(& MBKey, &c, 10); // Wit for 10 systemticks
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

194 CHAPTER 8

8.2.11 OS_MAILBOX_GetPtr()

Description

API functions

Retrieves a pointer to a new message of a predefined size from a mailbox, if a message

is available. Non blocking function.

Prototype
char OS_MAI LBOX_ Get Pt r (OS_MAI LBOX* pMB,
voi d** ppDest);
Parameters
Parameter Description
pMB Pointer to the mailbox.
Pointer to the memory area that a pointer to the message
ppDest should be stored at. The message size (in bytes) was defined
when the mailbox was created.

Return value

0 Success; message retrieved.
1 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved and ppDest remains unchanged, but
the program execution continues. This function never suspends the calling task. It may

therefore also be called from an interrupt routine.

The retrieved message is not removed from the mailbox, this must be done by a call
of OS_MAI LBOX Purge() after the message was processed. Only one message can be
processed at a time. As long as the message is not removed from the mailbox, the mail-
box is marked “in use”. Following calls of OS_MAI LBOX_Cl ear (), OS_MAI LBOX Del ete(),
OS_MAI LBOX_Get Bl ocked*() and OS_MAI LBOX_Get Pt r Bl ocked*() functions are not allowed
until OS_MAI LBOX_Pur ge() is called and will call OS_Error () in debug builds of embOS.

Example

static OS_MAI LBOX _MBKey;

voi d Print Message(void) {
char* p;
char r;

r = OS_MAILBOX_Get Ptr (& MBKey, (void**)&p);

if (r == 0) {
printf("%l\n", *p);
OS_MAI LBOX_Pur ge(& MBKey) ;
}
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

195

CHAPTER 8 API functions

8.2.12 0OS_MAILBOX_GetPtrBlocked()

Description

Retrieves a pointer to a new message of a predefined size from a mailbox.

Prototype
voi d OS_MAI LBOX_Get Pt r Bl ocked(OS_MAI LBOX* pMB,
voi d** ppDest);
Parameters
Parameter Description
pMB Pointer to the mailbox.

Pointer to the memory area that a pointer to the message
ppDest should be stored at. The message size (in bytes) was defined
when the mailbox was created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get Ptr () instead if you need to retrieve data from a mailbox
from within an ISR.

The retrieved message is not removed from the mailbox, this must be done by a call
of OS_MAI LBOX Purge() after the message was processed. Only one message can be
processed at a time. As long as the message is not removed from the mailbox, the mail-
box is marked “in use”. Following calls of OS_MAI LBOX_Cl ear (), OS_MAI LBOX Del ete(),
OS_MAI LBOX_Get Bl ocked*() and OS_MAI LBOX_Get Pt r Bl ocked*() functions are not allowed
until OS_MAI LBOX_Pur ge() is called and will call OS_Error () in debug builds of embOS.

Example

static OS_MAI LBOX _MBKey;

voi d Print Message(void) {
char* p;

OS_MAI LBOX_Get Pt r Bl ocked(& MBKey, (void**)&p);
printf("%l\n", *p);
OS_MAI LBOX_Pur ge(& MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

196

CHAPTER 8 API functions

8.2.13 OS_MAILBOX_Peek()

Description

Peeks a mail from a mailbox without removing the mail. The mail is copied to *pDest if
one was available.

Prototype
char OS_MAI LBOX_Peek(OS_CONST_PTR OS_MAI LBOX *pMB,
voi d* pDest);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pDest Pointer to a buffer that should receive the mail.
Return value
0 Success, mail was available and is copied to *pDest .
1 Mail could not be retrieved (mailbox is empty).

Additional information

This function is non-blocking and never suspends the calling task. It may therefore be called
from an interrupt routine.

Example

static OS_MAILBOX _MBDat a;
struct Data Buffer;

char PeekDat a(void) ({
return OS_MAI LBOX Peek(& MBData, &Buffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

197 CHAPTER 8 API functions

8.2.14 OS_MAILBOX_Purge()

Description

Deletes the last retrieved message in a mailbox.

Prototype
voi d OS_MAI LBOX_Pur ge(OS_MAI LBOX* pMB) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.

Additional information

This routine should be called by the task that retrieved the last message from the mailbox,
after the message is processed.

Once a message was retrieved by a call of CS_MAI LBOX Get Ptr Bl ocked() or OS_MAI L-
BOX Get Ptr (), the message must be removed from the mailbox by a call of OS_MAI L-
BOX Purge() before a following message can be retrieved from the mailbox. Follow-
ing calls of OS_MAI LBOX_Cl ear (), OS_MAI LBOX_Del et e(), OS_MAI LBOX_Get Bl ocked*() and
OS_MAI LBOX_Get Pt r Bl ocked*() functions are not allowed until GS_MAI LBOX Purge() is
called and will call OS_Error () in debug builds of embOS.

Consecutive calls of GS_MAI LBOX_Pur ge() or calling OS_MAI LBOX_Pur ge() without having
retrieved a message from the mailbox will also call 0S Error () in embOS debug builds.

Example

static OS_MAI LBOX _MBKey;

voi d PrintMessage(void) {
char* p;

OS_MAI LBOX_Get Pt r Bl ocked(& MBKey, (void**)&p);
printf("%\n", *p);
OS_MAI LBOX_Pur ge(& MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

198 CHAPTER 8 API functions

8.2.15 OS_MAILBOX_Put()

Description

Stores a new message of a predefined size in a mailbox if the mailbox is able to accept
one more message.

Prototype

char OS_MAI LBOX_Put (OS_MAI LBOX* pMB,
OS_CONST_PTR voi d *pMail);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Return value

0 Success; message stored.
1 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine.

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pSoneData) {
char Result;

Result = OS_MAI LBOX Put (& MBData, pSoneDat a);
if (Result == 1) {
printf("Was not able to add the nessage to the mail box.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

199 CHAPTER 8 API functions

8.2.16 OS_MAILBOX_Putl()

Description

Stores a new message of size 1 in a mailbox if the mailbox is able to accept one more
message.

Prototype

char OS_MAI LBOX_Put 1(OS_MAI LBOX* pMB,
OS_CONST_PTR char *pMai l);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Return value

0 Success; message stored.
1 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX_Put ()
and OS_MAI LBOX_Put 1() .

Example

static OS_MAI LBOX _MBKey;
static char _MBKeyBuffer[6];

char KEYMAN_St or eCond(char k) {
return OS_MAI LBOX Put 1(& MBKey, &k); /* Store key if space in buffer */

}

This example can be used with the sample program shown earlier to handle a mailbox as
keyboard buffer.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

200

CHAPTER 8 API functions

8.2.17 0OS_MAILBOX_PutBlocked()

Description

Stores a new message of a predefined size in a mailbox.

Prototype

voi d OS_MAI LBOX_Put Bl ocked(OS_MAI LBOX* pMB,
OS_CONST_PTR voi d *pMail);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a sus-
pension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put () /OS_MAI L-
BOX _Put 1() instead if you need to store data in a mailbox from within an ISR. When using
a debug build of embOS, calling from an interrupt routine will call the error handler CS_Er -
ror () with error code OS_ERR | N_I SR.

Example
static OS_MAI LBOX _MBDat a;
voi d AddMessage(struct Data* pSoneData) {

OS_MAI LBOX_Put Bl ocked(& MBDat a, pSoneDat a) ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

201

CHAPTER 8 API functions

8.2.18 0OS_MAILBOX_PutBlocked1()

Description

Stores a new message of size 1 in a mailbox.

Prototype

voi d OS_MAI LBOX_Put Bl ocked1(OS_MAI LBOX* pMB,
OS_CONST_PTR char *pMail);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a sus-
pension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put () /OS_MAI L-
BOX _Put 1() instead if you need to store data in a mailbox from within an ISR. When using
a debug build of embOS, calling from an interrupt routine will call the error handler CS_Er -
ror () with error code OS_ERR | N_I SR.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX Put -
Bl ocked() and OS_MAI LBOX Put Bl ocked1() .

Example
Single-byte mailbox as keyboard buffer:

static OS_MAI LBOX _MBKey;
static char MBKeyBuf f er[6] ;

voi d KEYMAN_St or eKey(char k) {

OS_MAI LBOX_Put Bl ocked1(& MBKey, &k); /* Store key, wait if no space in buffer
*/
}

voi d KEYMAN I nit(void) {
/* Create mail box functioning as type ahead buffer */
OS_MAI LBOX _Create(& MBKey, 1, sizeof (MBKeyBuffer), &VBKeyBuffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

202

CHAPTER 8 API functions

8.2.19 0OS_MAILBOX_PutFront()

Description

Stores a nhew message of a predefined size into a mailbox in front of all other messages if
the mailbox is able to accept one more message. The new message will be retrieved first.

Prototype

char OS_MAI LBOX_Put Front (CS_MAI LBOX* pMB,
OS_CONST_PTR voi d *pMail);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Return value

0 Success; message stored.
1 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine. This function is useful to store
“emergency” messages into a mailbox which must be handled quickly. It may also be used
in general instead of OS_MAI LBOX Put () to change the FIFO structure of a mailbox into a
LIFO structure.

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pSoneData) {
char Result;

Result = OS_MAI LBOX Put Front (& MBData, pSoneDat a) ;
if (Result == 1) {
printf("Was not able to add the nessage to the mail box.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

203

CHAPTER 8 API functions

8.2.20 OS_MAILBOX_PutFrontl()

Description

Stores a new message of size 1 into a mailbox in front of all other messages if the mailbox
is able to accept one more message. The new message will be retrieved first.

Prototype

char OS_MAI LBOX_Put Front 1(OS_MAI LBOX* pMB,
OS_CONST_PTR char *pMai l);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Return value

0 Success; message stored.
1 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine. This function is useful to store
“emergency” messages into a mailbox which must be handled quickly. It may also be used
in general instead of OS_MAI LBOX Put () to change the FIFO structure of a mailbox into a
LIFO structure.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX Put -
Front () and OS_MAI LBOX Put Front 1().

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(char c¢) {
char Result;

Result = OS_MAI LBOX Put Front 1(& MBData, &c);
if (Result == 1) {
printf("Was not able to add the nessage to the mail box.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

204

CHAPTER 8

API functions

8.2.21 OS_MAILBOX_PutFrontBlocked()

Description

Stores a new message of a predefined size at the beginning of a mailbox in front of all other

messages. This new message will be retrieved first.

Prototype

voi d OS_MAI LBOX_Put Fr ont Bl ocked(OS_MAI LBOX*

pMB,

OS_CONST_PTR voi d *pMail);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a
suspension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put Front () /
OS_MAI LBOX_Put Front 1() instead if you need to store data in a mailbox from within an ISR.

This function is useful to store “emergency” messages into a mailbox which must be handled
quickly. It may also be used in general instead of OS_MAI LBOX Put Bl ocked() to change
the FIFO structure of a mailbox into a LIFO structure.

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pSoneData) {

OS_MAI LBOX_Put Front Bl ocked(& MBDat a,

}

UMO01001 User Guide & Reference Manual for embOS

pSoneDat a) ;

© 1995-2018 SEGGER Microcontroller GmbH

205

CHAPTER 8 API functions

8.2.22 0OS_MAILBOX_PutFrontBlocked1()

Description

Stores a new message of size 1 at the beginning of a mailbox in front of all other messages.
This new message will be retrieved first.

Prototype

voi d OS_MAI LBOX_Put Front Bl ocked1(OS_MAI LBOX* pMB,
OS_CONST_PTR char *pMi l);

Parameters

Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a
suspension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put Front () /
OS_MAI LBOX_Put Front 1() instead if you need to store data in a mailbox from within an ISR.

This function is useful to store “emergency” messages into a mailbox which must be handled
quickly. It may also be used in general instead of OS_MAI LBOX Put Bl ocked() to change
the FIFO structure of a mailbox into a LIFO structure.

See Single-byte mailbox functions on page 180 for differences between OS_MAI LBOX Put -
Front Bl ocked() and OS_MAI LBOX_Put Fr ont Bl ockedl() .

Example
Single-byte mailbox as keyboard buffer which will follow the LIFO pattern:

static OS_MAI LBOX _MBCnd;
static char _MBCndBuffer[6];

voi d KEYMAN_St or eConmand(char k) {
OS_MAI LBOX_Put Front Bl ocked1(& MBCmd, &Kk); /* Store conmand, wait if no space in
buf fer*/

}

voi d KEYMAN I nit(void) {
/* Create mail box for command buffer */
OS_MAI LBOX Create(& MBCnd, 1, sizeof(_MBCndBuffer), & MBChdBuffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

206 CHAPTER 8 API functions

8.2.23 0OS_MAILBOX_PutTimed()

Description

Stores a new message of a predefined size in a mailbox if the mailbox is able to accept one
more message within a given time. Returns when a new message has been stored in the
mailbox (mailbox not full) or a timeout occurred.

Prototype

OS_BOOL OS_MAI LBOX_Put Ti med(OS_MAI LBOX* pMB,
OS_CONST_PTR voi d *pMai |,

CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.
Maximum time in embOS system ticks until the given mail
must be stored Timer period in embOS system ticks. The da-
T ta type OS_TI ME is defined as an integer, therefore valid val-
| meout ues are:
1 < Ti neout < 215 -1 = 0x7FFF for 8/16 bit CPUs.
1 < Ti meout < 231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success; message stored.
1 Message could not be stored within the given timeout (mailbox is full). destina-
tion remains unchanged.

Additional information

If the mailbox is full, no message is stored and the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a new mail
is accepted within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mailbox accepts new messages after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the mailbox was not available within the requested time. In this case, no mail is stored
in the mailbox.

Example
static OS_MAI LBOX _MBDat a;
voi d AddMessage(struct Data* pSoneData) {

OS_MAI LBOX_Put Ti ned(& MBDat a, pSoneData, 10); // Wit maxi num 10 system ticks
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

207 CHAPTER 8 API functions

8.2.24 0OS_MAILBOX_PutTimed1()

Description

Stores a new message of size 1 in a mailbox if the mailbox is able to accept one more
message within a given time. Returns when a new message has been stored in the mailbox
(mailbox not full) or a timeout occurred.

Prototype

OS_BOOL OS_MAI LBOX_Put Ti med1(OS_MAI LBOX* pMB,
OS_CONST_PTR char *pMi |,

oS _TI ME Ti meout) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.
pMai | Pointer to the message to store.
Maximum time in embOS system ticks until the given mail
must be stored Timer period in embOS system ticks. The da-
T ta type OS_TI ME is defined as an integer, therefore valid val-
| meout ues are:
1 < Ti neout < 215-1 = 0x7FFF for 8/16 bit CPUs.
1 < Ti meout < 231-1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success; message stored.
1 Message could not be stored within the given timeout (mailbox is full). destina-
tion remains unchanged.

Additional information

If the mailbox is full, no message is stored and the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a new mail
is accepted within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mailbox accepts new messages after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the mailbox was not available within the requested time. In this case, no mail is stored
in the mailbox.

See Single-byte mailbox functions on page 180 for differences between OS_NMAI LBOX Put -
Ti med() and OS_MAI LBOX_Put Ti med1() .

Example

static OS_MAI LBOX _MBKey;

voi d Set Key(char c¢) {
OS_MAI LBOX_Put Ti ned1(& MBKey, &c, 10); // WAit maxi mum 10 systemticks
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

208 CHAPTER 8

8.2.25 0OS_MAILBOX_ WaitBlocked()

Description

API functions

Waits until a mail is available, but does not retrieve the message from the mailbox.

Prototype
voi d OS_MAI LBOX_Wai t Bl ocked(OS_MAI LBOX* pMB) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.

Additional information

If the mailbox is empty, the task is suspended until a mail is available, otherwise the task
continues. The task continues execution according to the rules of the scheduler as soon as
a mail is available, but the mail is not retrieved from the mailbox.

Example

static OS_MAI LBOX _MBDat a;
voi d Task(void) {

while (1) {
OS_MAI LBOX_Wai t Bl ocked(& MBDat a) ;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

209 CHAPTER 8 API functions

8.2.26 0OS_MAILBOX_ WaitTimed()

Description

Waits until a mail is available or the timeout has expired, but does not retrieve the message
from the mailbox.

Prototype
char OS_MAI LBOX Wi t Ti ned(OS_MAI LBOX* pM\B,
CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMB Pointer to the mailbox.
Maximum time in embOS system ticks until the requested
mail must be available. Timer period in embOS system ticks.
T The data type OS_TI ME is defined as an integer, therefore
| meout valid values are:
1 < Ti neout < 215 -1 = 0x7FFF for 8/16 bit CPUs.
1 < Tineout < 231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success; message available.
1 Ti meout ; no message available within the given timeout time.

Additional information

If the mailbox is empty, the task is suspended for the given timeout. The task continues
execution according to the rules of the scheduler as soon as a mail is available within the
given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that mail becomes available after the timeout expired, but before the
calling task is resumed. Anyhow, the function returns with timeout, because the mail was
not available within the requested time.

Example

static OS_MAI LBOX _MBDat a;

voi d Task(void) {
char Result;

Result = OS_MAI LBOX Wi t Ti med(& _MBDat a, 10);
if (Result == 0) {
/| Conpute nessage
} else {
/1 Ti neout
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 9

Queues

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

211 CHAPTER 9 Introduction

9.1 Introduction

In the preceding chapter, inter-task communication using mailboxes was described. Mail-
boxes can handle small messages with fixed data size only. Queues enable inter-task com-
munication with larger messages or with messages of differing lengths.

A queue consists of a data buffer and a control structure that is managed by the realtime
operating system. The queue behaves like a normal buffer; you can deposit something
(called a message) in the queue and retrieve it later. Queues work as FIFO: first in, first out.
So a message that is deposited first will be retrieved first. There are three major differences
between queues and mailboxes:

1. Queues accept messages of differing lengths. When depositing a message into a queue,
the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a pointer
to the message and its size. This enhances performance because the data is copied only
when the message is written into the queue.

3. The retrieving function must delete every message after processing it.

4. A new message can only be retrieved from the queue when the previous message was
deleted from the queue.

The queue data buffer contains the messages and some additional management infor-
mation. Each message has a message header containing the message size. The define
OS_Q SI ZECF_HEADER defines the size of the message header. Additionally, the queue buffer
will be aligned for those CPUs which need data alignment. Therefore the queue data buffer
size must be bigger than the sum of all messages.

Limitations:

Both the number of queues and buffers are limited only by the amount of available memory.
However, the individual message size and the buffer size per queue are limited by software
design.

Message size in bytes on 8 or 16bit CPUs:
1 <= x <= 215 - (1 + OS_Q SI ZEOF_HEADER + MESSAGE_AL| GNMENT)
Message size in bytes on 32bit CPUs:
1 <=x <=231 - (1 + 0S_Q SIZEOF_HEADER + MESSAGE_AL| GNMENT)
Maxi mum buffer size in bytes for one queue on 8 or 16bit CPUs:
216 = OxFFFF
Maxi mum buf fer size in bytes for one queue on 32bit CPUs:
232 = OxFFFFFFFF

Similar to mailboxes, queues can be used by more than one producer, but must be used
by one consumer only. This means that more than one task or interrupt handler is allowed
to deposit new data into the queue, but it does not make sense to retrieve messages by
multiple tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

212 CHAPTER 9 Introduction
Example

#def i ne MESSAGE_ALI GNVENT (4u) /! Depends on core/conpiler
#define MESSAGES_SI ZE HELLO (7u + OS_Q Sl ZEOF_HEADER+ MESSAGE_AL| GNVENT)
#define MESSAGES_SI ZE WORLD (9u + OS_Q Sl ZEOF_HEADER+ MESSAGE_ALI GNVENT)
#defi ne QUEUE_SI ZE (MESSAGES_SI ZE_ HELLO + MESSAGES_SI ZE_WORLD)
static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task-control - bl ocks
static OS_QUEUE My Queue;
static char My QBuf f er [QUEUE_SI ZE] ;
static void HPTask(void) {

char* pDat a;

i nt Len;

while (1) {

Len = OS_QUEUE_Get Pt r Bl ocked(&WQueue,

OS_TASK_Del ay(10);

I

/'l Eval uate Message

I

if (Len) {
OS_COM SendStri ng(pbat a) ;
OS_QUEUE_Pur ge(&WQueue) ;

(voi d**) &pDat a) ;

}
}
}
static void LPTask(void) {
while (1) {
OS_QUEUE_Put (&WQueue, "\nHello\0", 7);
OS_QUEUE_Put (&WQueue, "\nWorld '\ 0", 9);
OS_TASK_Del ay(500) ;
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS_QUEUE_Cr eat e(&WQueue, &WQBuUffer, sizeof (MyQBuffer));
OS_COM SendString("enbOS OS_Queue exanpl e");
OS_COM SendString("\n\nDenonstrating nessage passing\n");
CS Start(); /1 Start enmbOS
return O;
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

9.2 APIfunctions

CHAPTER 9

API functions

Routine

Description

urew

Nsel

dSi
JETT

OS QUEUE _d ear ()

Clears all messages in the specified queue.

OS QUEUE Create()

Creates and initializes a message queue.

OS_QUEUE_Del et e()

Deletes a specific message queue.

OS_QUEUE_GCet MessageCnt ()

Returns the number of messages that are
currently stored in a queue.

OS_QUEUE_ Get MessageSi ze()

Returns the size of the first message in the
queue.

OS_QUEUE_Get Pt r ()

Retrieve the pointer to a message from the
message queue if a message is available.

OS_QUEUE_Get Pt r Bl ocked()

Retrieve the pointer to a message from the
message queue.

OS_QUEUE_Get Pt r Ti med()

Retrieve the pointer to a message from the
message queue within a specified time if a
message is available.

OS_QUEUE_I sl nUse()

Delivers information whether the queue is
actually in use.

OS_QUEUE PeekPtr ()

Retrieve the pointer to a message from the
message queue.

OS_QUEUE_Pur ge()

Deletes the last retrieved message in a
queue.

0S_QUEUE_Put ()

Stors a new message of given size in a
queue.

OS_QUEUE_Put Ex()

Stores a new message, of which the dis-
tinct parts are distributed in memory as in-
dicated by a OS_ QUEUE_SRCLI ST structure,
in a queue.

OS_QUEUE_Put Bl ocked()

Stores a new message of given size in a
queue.

OS_QUEUE_Put Bl ockedEx()

Stores a new message, of which the dis-
tinct parts are distributed in memory as in-
dicated by a OS_QUEUE_SRCLI ST structure,
in a queue.

OS_QUEUE_Put Ti med()

Stores a new message of given size in a
queue if space is available within a given
time.

OS_QUEUE_Put Ti medEx()

Stores a new message, of which the dis-
tinct parts are distributed in memory as in-
dicated by a OS_ QUEUE_SRCLI ST structure,
in a queue.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

214 CHAPTER 9 API functions

9.2.1 OS QUEUE_ Clear()

Description

Clears all messages in the specified queue.

Prototype
voi d OS_QUEUE_d ear (OS_QUEUE* pQ;
Parameters
Parameter Description
pQ Pointer to the queue.

Additional information

When the queue is in use, a debug build of embOS will call S _Error () with error code
OS_ERR_QUEUE_| NUSE.

OS_QUEUE_d ear () may cause a task switch.
Example

static OS_QUEUE _Queue;

voi d C ear Queue() {
OS_QUEUE_d ear (& Queue);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

215

CHAPTER 9 API functions

9.2.2 0OS QUEUE_Create()

Description

Creates and initializes a message queue.

Prototype

voi d OS_QUEUE_Creat e(OS_QUEUE* pQ
voi d* pDat a,
OS_UNT Size);

Parameters
Parameter Description
Pointer to a data structure of type OS_QUEUE reserved for the
PQ management of the message queue.
pDat a Pointer to a memory area used as data buffer for the queue.
Si ze Si ze in bytes of the data buffer.

Additional information

The define OS_Q SI ZEOF_HEADER can be used to calculate the additional management in-
formation bytes needed for each message in the queue data buffer. But it does not account
for the additional space needed for data alignment. Thus the number of messages that can
actually be stored in the queue buffer depends on the message sizes.

Example

#defi ne MESSAGE_CNT 100
#defi ne MESSAGE_SI ZE 100
#define MEMORY_QSI ZE (MESSAGE_CNT * (MESSAGE_SI ZE + OS_Q SI ZEOF_HEADER))

static OS_QUEUE _MenoryQ
static char _acMemBuf f er [MEMORY_(QSI ZE] ;

void MEMORY_Init(void) {
OS_QUEUE Create(& MenoryQ & acMemBuffer, sizeof (_acMenBuffer));
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

216

CHAPTER 9

9.2.3 0OS_QUEUE_Delete()

Description

Deletes a specific message queue.

API functions

Prototype
voi d OS_QUEUE_Del et e(OS_QUEUE* pQ);
Parameters
Parameter Description
pQ Pointer to the queue.

Additional information

To keep the system fully dynamic, it is essential that queues can be created dynamically.
This also means there must be a way to delete a queue when it is no longer needed. The
memory that has been used by the queue for the control structure and the buffer can then

be reused or reallocated.

It is the programmer’s responsibility to:

make sure that the program no longer uses the queue to be deleted
¢ make sure that the queue to be deleted actually exists (i.e. has been created first).

When the queue is in use, a debug build of embOS will call OS Error () with error code

0S_ERR_QUEUE_| NUSE.

When tasks are waiting, a debug build of embOS will call G5 Error () with error code
OS_ERR_QUEUE_DELETE is called.

Example

static OS QUEUE _QSerln;

voi d C eanup(void) {

OS_QUEUE Del ete(& Serln);

}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

217 CHAPTER 9 API functions

9.2.4 0OS QUEUE_ GetMessageCnt()

Description

Returns the number of messages that are currently stored in a queue.

Prototype
int OS_QUEUE_Get MessageCnt (OS_CONST_PTR OS_QUEUE *pQ);
Parameters

Parameter Description
pQ Pointer to the queue.

Return value

The number of messages in the queue.

Example

static OS_QUEUE _Queue;

voi d Print Nunber O Messages() {
int Cnt;

Cnt = OS_QUEUE_Get MessageCnt (& _Queue) ;

printf("% nessages available.\n", Cnt);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

218 CHAPTER 9 API functions

9.25 0OS QUEUE GetMessageSize()

Description

Returns the size of the first message in the queue.

Prototype
int OS_QUEUE_GCet MessageSi ze(OS_CONST_PTR OS_QUEUE *pQ);
Parameters

Parameter Description
pQ Pointer to the queue.

Return value

=0 No data available.
>0 Size of message in bytes.

Additional information

If the queue is empty OS_QUEUE Get MessageSi ze() returns zero. If a message is avail-
able S _QUEUE Get MessageSi ze() returns the size of that message. The message is not
retrieved from the queue.

Example

static OS_QUEUE _MenoryQ@

static void _MenoryTask(void) ({
int Len;

while (1) {
Len = OS_QUEUE_Get MessageSi ze(& MenoryQ; // Get nessage |ength
if (Len > 0) {
printf("Message with size %l retrieved\n", Len);
OS_QUEUE_Pur ge(& MenoryQ ; /| Del ete nmessage

}
OS_TASK Del ay(10);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

219

CHAPTER 9 API functions

9.2.6 OS_QUEUE_GetPtr()

Description

Retrieve the pointer to a message from the message queue if a message is available.

Prototype

int OS_QUEUE_Get Pt r(0OS_QUEUE* pQ
voi d** ppDat a) ;

Parameters
Parameter Description
pQ Pointer to the queue.
Dat a Address of the pointer which will be set to the addr. of the
PP message.
Return value
=0 No message available in queue.
>0 Size of the message that was retrieved from the queue.

Additional information

If the queue is empty, the function returns zero and the value of ppDat a is undefined.
This function never suspends the calling task. It may therefore be called from an interrupt
routine or timer. If a message could be retrieved it is not removed from the queue, this
must be done by a call of 0§ QUEUE Pur ge() after the message was processed. Only one
message can be processed at a time. As long as the message is not removed from the
queue, the queue is marked “in use”.

Following calls of OS QUEUE Cear(), OS QUEUE Delete(), OS QUEUE GetPtr(),
OS QUEUE_ Get Ptr Bl ocked() and OS_QUEUE_Get Pt r Ti ned() functions are not allowed until
OS_QUEUE_Pur ge() is called and will call S _Error () in debug builds of embOS.

Example

static OS_QUEUE _MenoryQ

static void _MenoryTask(void) {
i nt Len;
char* pDat a;

while (1) {
Len = OS_QUEUE Get Ptr (& MenoryQ &pData); // Check nessage
if (Len > 0) {
Mermory Wit ePacket (*(U32*) pData, Len); /'l Process nessage
OS_QUEUE_Pur ge(& MenoryQ) ; /'l Del ete nmessage
} else {
DoSormet hi ngEl se() ;
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

220 CHAPTER 9 API functions

9.2.7 0OS QUEUE_GetPtrBlocked()

Description

Retrieve the pointer to a message from the message queue.

Prototype

int OS_QUEUE_Get Pt r Bl ocked(OS_QUEUE* pQ,
voi d** ppDat a) ;

Parameters
Parameter Description
pQ Pointer to the queue.
Dat a Addr. of the pointer which will be set to the addr. of the
PP message.

Return value

Size of the message in bytes.

Additional information

If the queue is empty, the calling task is suspended until the queue receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine or timer. Use OS_Get Ptr Cond() instead. The retrieved message is not removed
from the queue, this must be done by a call of OS_QUEUE Pur ge() after the message was
processed. Only one message can be processed at a time. As long as the message is not
removed from the queue, the queue is marked “in use”.

Following «calls of OS QUEUE Clear(), OS QUEUE Delete(), OS QUEUE GetPtr(),
OS_QUEUE_Get Pt r Bl ocked() and OS5 _QUEUE_Get Pt r Ti med() functions are not allowed until
OS_QUEUE_Pur ge() is called and will call OS_Error () in debug builds of embOS.
Example

static OS_QUEUE _MenoryQ

static void _MenoryTask(void) {

i nt Len;

char* pDat a;

while (1) {
Len = OS_QUEUE_Get PtrBl ocked(& MenoryQ &pData); // Get nessage
Menory_ Wit ePacket (*(U32*)pData, Len); /| Process nessage
OS_QUEUE_Pur ge(& MenoryQ; /'l Del ete nmessage

}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

221

CHAPTER 9 API functions

9.2.8 OS_QUEUE_GetPtrTimed()

Description

Retrieve the pointer to a message from the message queue within a specified time if a
message is available.

Prototype

int OS_QUEUE_Get Pt r Ti med(OS_QUEUE* pQ
voi d** ppDat a,
OS_TIME Tineout);

Parameters
Parameter Description
pQ Pointer to the queue.
Address of the pointer which will be set to the addr. of the
ppDat a

message.

Maximum time until the requested message must be avail-
able. Timer period in embQOS system ticks. The data type

Ti meout OS_TI ME is defined as an integer, therefore valid values are:
1 < TimeQut < 215-1 = 0x7FFF for 8/16 bit CPUs.

1 < TimeQut < 231 -1 = O0x7FFFFFFF for 32 bit CPUs.

Return value

=0 No message available in queue.
>0 Size of the message that was retrieved from the queue.

Sets the pointer ppDat a to the message that should be retrieved.

Additional information

If the queue is empty no message is retrieved, the task is suspended for the given timeout
and the value of ppDat a is undefined. The task continues execution according to the rules
of the scheduler as soon as a message is available within the given timeout, or after the
timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that a message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case the state of the queue is
not modified by OS_QUEUE_Cet Pt r Ti med() and a pointer to the message is not delivered.
As long as a message was retrieved and the message is not removed from the queue, the
queue is marked “in use”.

Following «calls of OS QUEUE Clear(), OS QUEUE Delete(), OS QUEUE GetPtr(),
OS_QUEUE_Get Pt r Bl ocked() and OS_QUEUE_Get Pt r Ti med() functions are not allowed until
OS_QUEUE_Pur ge() is called and will call OS_Error () in debug builds of embOS.

Example

static OS_QUEUE _MenoryQ

static void _MenoryTask(void) {
i nt Len;
char* pDat a;

while (1) {
Len = OS_QUEUE Get PtrTi ned(& MenoryQ &pData, 10); // Check nessage
if (Len > 0) {
Menmory Wit ePacket (*(U32*) pData, Len); /'l Process nessage

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

222 CHAPTER 9 API functions

OS_QUEUE_Pur ge(& MenoryQ) ; /'l Del ete nessage
} else { /1 Ti neout
DoSonet hi ngEl se() ;

}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

223

CHAPTER 9 API functions

9.2.9 0OS QUEUE IsIinUse()

Description

Delivers information whether the queue is actually in use.

Prototype
0S_BOOL OS_QUEUE_I sl nUse(OS_CONST_PTR OS_QUEUE *pQ);
Parameters

Parameter Description
pQ Pointer to the queue.

Return value

=0 Queue is not in use.
=0 Queue is in use and may not be deleted or cleared.

Additional information

A queue must not be cleared or deleted when it is in use. In use means a task or function
actually accesses the queue and holds a pointer to a message in the queue.

OS_QUEUE | sl nUse() can be used to examine the state of the queue before it can be cleared
or deleted, as these functions must not be performed as long as the queue is used.

Example

voi d Del et eQ OS_QUEUE* pQ {
OS_INT_IncDi(); // Avoid state change of the queue by task or interrupt
Il
[/ Wait until queue is not used
Il
while (OS_QUEUE |slnUse(pQ !=0) {
OS_TASK Del ay(1);
}
OS_QUEUE_Del et e(pQ ;
OS_I NT_DecRI () ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

224 CHAPTER 9 API functions

9.2.10 OS_QUEUE_PeekPtr()

Description
Retrieve the pointer to a message from the message queue. The message must not be
purged.
Prototype
int OS_QUEUE_PeekPt r (OS_CONST_PTR OS_QUEUE *pQ
voi d** ppDat a) ;
Parameters
Parameter Description
pQ Pointer to the queue.
Dat a Address of the pointer which will be set to the addr. of the
PP message.
Return value
=0 No message available.
0 Size of message in bytes.

Sets the pointer ppDat a to the message that should be retrieved.

Additional information

Note

Ensure the queues state is not altered as long as a message is processed. That is the
reason for calling GS_|I NT_I ncDl () in the sample. Ensure no cooperative task switch is
performed, as this may also alter the queue state and buffer. 0S_ TASK Ent er Regi on()
does not inhibit cooperative task switches!

Example

static OS_QUEUE _MenoryQ
static void _MenoryTask(void) {
i nt Len;
char* pDat a;

while (1) {
OS_INT_IncDI ();
/1 Avoid state changes of the queue by task or interrupt
Len = OS_QUEUE_PeekPtr (& MemoryQ &pData); // Get nessage
if (Len > 0) {
Menory_ Wit ePacket (*(U32*)pData, Len); /| Process message

}
OS_RESTORE_ | ();

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

225

CHAPTER 9

9.2.11 OS_QUEUE_Purge()

Description

Deletes the last retrieved message in a queue.

API functions

Prototype
voi d OS_QUEUE_Pur ge(OS_QUEUE* pQ;
Parameters
Parameter Description
pQ Pointer to the queue.

Additional information

This routine should be called by the task that retrieved the last message from the queue,
after the message is processed.

Once a message was retrieved by a call of OS_ QUEUE Get Pt r Bl ocked(), OS_QUEUE_Get P-
tr() or OS_ QUEUE Get PtrTi ned(), the message must be removed from the queue by a
call of OS_QUEUE_Pur ge() before a following message can be retrieved from the queue.

Consecutive calls of OGS _ QUEUE Pur ge() or calling OS_QUEUE Pur ge() without having re-
trieved a message from the queue will call the embOS error handler GS_Error () in embQOS

debug builds.

Example

static OS_QUEUE _MenoryQ@

static void _MenoryTask(void) ({

i nt Len;
char* pDat a;

while (1) {

Len = OS_QUEUE_Get PtrBl ocked(& MenmoryQ &pData); // Get nessage
Menmory Wit ePacket (*(U32*) pData, Len);
OS_QUEUE_Pur ge(& MenoryQ) ;

}
}

UMO01001 User Guide & Reference Manual for embOS

/'l Process nessage
/| Del ete nessage

© 1995-2018 SEGGER Microcontroller GmbH

226

CHAPTER 9 API functions

9.2.12 OS_QUEUE_Put()

Description

Stors a new message of given size in a queue.

Prototype

int OS_QUEUE_Put (OS_QUEUE* pQ
OS_CONST_PTR voi d *pSrec,

OS_UI NT Si ze) ;
Parameters
Parameter Description
pQ Pointer to a data structure of type OS_QUEUE.
pSrc Pointer to the message to store.

Si ze of the message to store. Valid values are:
Si ze 1 < Sjize <215 -1 = Ox7FFF for 8/16 bit CPUs.
1 < Size <231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success, message stored.
1 Message could not be stored (queue is full).

Additional information

This routine never suspends the calling task and may therefore be called from an interrupt
routine.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

static OS_QUEUE _MenoryQ

int MEMORY_Wite(const char* pData, OS_U NT Len) {
return OS_QUEUE Put (& MenoryQ pData, Len);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

227

CHAPTER 9 API functions

9.2.13 OS_QUEUE_PUtEX()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a 08 QUEUE_SRCLI ST structure, in a queue.

Prototype

int OS_QUEUE_Put Ex(OS_QUEUE* pQ
OS_CONST_PTR OS_QUEUE_SRCLI ST *pSrclLi st,

OS_UI NT Nunsrc) ;
Parameters

Parameter Description
pQ Pointer to the queue.

: Pointer to an array of OS5 _QUEUE_SRCLI ST structures which
pSrcLi st - .
contain pointers to the data to store.

Nuntr c Number of OS_QUEUE_SRCLI ST structures at pSrclLi st .

Return value

0 Success, message stored.
1 Message could not be stored (queue is full).

Additional information

This routine never suspends the calling task and may therefore be called from main(), an
interrupt routine or a software timer.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

OS_CONST_PTR OS_QUEUE_SRCLI ST aDatalist[] ={ {"Hello ", 6},
{"veridl", 6}
I 7
OS_QUEUE_Put Ex(& MermoryQ, abDat ali st, 2);
9.2.13.1 The OS_QUEUE_SRCLIST structure
The O8_QUEUE_SRCLI ST structure consists of two elements:
Parameter Description

pSrc Pointer to a part of the message to store.

Size of the part of the message. Valid values are:
Si ze 1 < Size <215-1 = Ox7FFF for 8/16 bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Note

The total size of all parts of the message must not exceed 0x7FFF on 8/16 bit CPUs,
or Ox7FFFFFFF on 32 bit CPUs, respectively.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

228 CHAPTER 9 API functions

9.2.14 OS_QUEUE_PutBlocked()

Description
Stores a new message of given size in a queue.
Prototype

voi d OS_QUEUE_Put Bl ocked(OS_QUEUE* pQ
OS_CONST_PTR voi d *pSrc,

OS_UI NT Si ze) ;
Parameters
Parameter Description
pQ Pointer to the queue.
pSrc Pointer to the message to store.

Si ze of the message to store. Valid values are:
Si ze 1 < Sjize <215 -1 = Ox7FFF for 8/16 bit CPUs.
1 < Size <231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Additional information

If the queue is full, the calling task is suspended.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

static OS_QUEUE _MenoryQ

voi d StoreMessage(const char* pData, OS_U NT Len)
OS_QUEUE_Put Bl ocked(& MenoryQ pData, Len);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

229 CHAPTER 9 API functions

9.2.15 OS_QUEUE_PutBlockedEXx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a OS_ QUEUE_SRCLI ST structure, in a queue. Blocks the calling task when queue is full.

Prototype

voi d OS_QUEUE_Put Bl ockedEx(OS_QUEUE* pQ
OS_CONST_PTR OS_QUEUE_SRCLI ST *pSrclLi st,

OS_UI NT Nunsrc) ;

Parameters

Parameter Description
pQ Pointer to the queue.

: Pointer to an array of OS5 _QUEUE_SRCLI ST structures which
pSrcLi st - .
contain pointers to the data to store.

Nuntr c Number of OS_QUEUE_SRCLI ST structures at pSrclLi st .

Additional information

If the queue is full, the calling task is suspended.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

For more information on the OS_QUEUE_SRCLI ST structure, refer to The OS_QUEUE_SRCLI ST
structure in the chapter The OS_QUEUE_SRCLI ST structure on page 227.

Example

OS_CONST_PTR OS_QUEUE_SRCLI ST abDatalist[] = {

OS_QUEUE_Put Ex(& MenmoryQ abDat aLi st, 2);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

230

CHAPTER 9 API functions

9.2.16 OS_QUEUE_PutTimed()

Description

Stores a new message of given size in a queue if space is available within a given time.

Prototype

char OS_QUEUE_Put Ti med(OS_QUEUE* pPQ
OS_CONST_PTR voi d *pSrc,

OS_UI NT Si ze,
S _TI ME Ti meout) ;
Parameters
Parameter Description
pQ Pointer to the queue.
pSrc Pointer to the message to store.

Si ze of the message to store. Valid values are:
Si ze 1 < Sjize <215 -1 = Ox7FFF for 8/16 bit CPUs.
1 < Size <231 -1 = Ox7FFFFFFF for 32 bit CPUs.

Maximum time until the given message must be stored.
Timer period in embOS system ticks. The data type OS_TI ME
Ti meout is defined as an integer, therefore valid values are:

1 < TineQut < 215 -1 = 0x7FFF for 8/16 bit CPUs.

1 < TimeQut < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

0 Success, message stored.
1 Message could not be stored within the specified time (insufficient space).

Additional information

If the queue holds insufficient space, the calling task is suspended until space for the mes-
sage is available, or the specified timeout time has expired. If the message could be de-
posited into the queue within the sepcified time, the function returns zero.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

Example

static OS_QUEUE _MenoryQ@

int MEMORY _WiteTined(const char* pData, OS_U NT Len, OS_TIME Tineout) {
return OS_QUEUE_Put Ti ned(& MenoryQ pData, Len, Tineout);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

231

CHAPTER 9 API functions

9.2.17 OS_QUEUE_PutTimedEXx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated by
a OS_QUEUE_SRCLI ST structure, in a queue. Suspends the calling task for a given timeout
when the queue is full.

Prototype

char OS_QUEUE_Put Ti nedEx(OS_QUEUE* pQ
OS_CONST_PTR OS_QUEUE_SRCLI ST *pSrclLi st,

OS_UI NT Nunsr c,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
pQ Pointer to the queue.
pSrcLi st Pointer to an array of OS5 _QUEUE_SRCLI ST structures which

contain pointers to the data to store.

Nuntr c Number of OS_QUEUE_SRCLI ST structures at pSrclLi st .

Maximum time until the given message must be stored.
Timer period in embOS system ticks. The data type OS_TI ME
Ti meout is defined as an integer, therefore valid values are:

1 < TimeQut < 215 -1 = Ox7FFF for 8/16 bit CPUs.

1 < TinmeQut < 231 - 1 = Ox7FFFFFFF for 32 bit CPUs.

Return value

=0 Success, message stored.
*0 Message could not be stored within the specified time (insufficient space).

Additional information

If the queue holds insufficient space, the calling task is suspended until space for the mes-
sage is available or the specified timeout time has expired. If the message could be de-
posited into the queue within the sepcified time, the function returns zero.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and accessed by a task reading the message.

For more information on the OS_QUEUE_SRCLI ST structure, refer to The OS_ QUEUE_SRCLI ST
structure in the chapter The OS_QUEUE_SRCLI ST structure on page 227.

Example
OS_CONST_PTR OS_QUEUE_SRCLI ST aDataList[] = { {"Hello ", 6},
{"world'", 6}
I
OS_QUEUE_Put Ex(&\venoryQ, abDat aList, 2, 100);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 10
Watchdog

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

233

CHAPTER 10 Introduction

10.1 Introduction

A watchdog timer is a hardware timer that is used to reset a microcontroller after a speci-
fied amount of time. During normal operation, the microcontroller application periodically
restarts (“triggers”) the watchdog timer to prevent it from timing out. In case of malfunc-
tion, however, the watchdog timer will eventually time out and subsequently reset the mi-
crocontroller. This allows to detect and recover from microcontroller malfunctions.

For example, in a system without an RTOS, the watchdog timer would be triggered period-
ically from a single point in the application. When the application does not run properly,
the watchdog timer will not be triggered and thus the watchdog will cause a reset of the
microcontroller.

In a system that includes an RTOS, on the other hand, multiple tasks run at the same time.
It may happen that one or more of these tasks runs properly, while other tasks fail to run as
intended. Hence it may be insufficient to trigger the watchdog from one of these tasks only.
Therefore, embOS offers a watchdog support module that allows to automatically check if
all tasks, software timers, or even interrupt routines are executing properly.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128];
static OS_TASK TCBHP, TCBLP;

static OS_ WD Wat chdogHP, Wat chdogLP;
static OS_TI CK_HOOK Hook;

static void _Trigger\WatchDog(void) {
WD REG = TRI GGER WD, [l Trigger the hardware watchdog.

}

static void _Reset(OS_CONST_PTR OS WO* pWD) ({
OS_USEPARA(pVD) ;
/1 Applications can use pWD to detect WD expiration cause.
SYSTEM CTRL_REG = PERFORM RESET; // Reboot mcrocontroller.

}

static void HPTask(void) {
OS_WD_Add(&wat chdogHP, 50);
while (1) {
OS_TASK_Del ay(50);
OS_WD_Tri gger (&at chdogHP) ;
}
}

static void LPTask(void) {
OS_WD_Add(&wat chdogLP, 200);
while (1) {
OS_TASK_Del ay(200) ;
OS_WD_Tri gger (&Wat chdogLP) ;

}
}
int main(void) {
CS Init(); /[l Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS_WD_Config(& TriggerWat chDog, & Reset);

OS_TI CK_AddHook(&Hook, OS WD Check);

CS Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

234 CHAPTER 10 API functions

10.2 API functions

Routine Description 5 § 7 g
S |=|® @
OS WD _Add() Adds a software watchdog timer to the watchdog list. oo
0S_ WD _Check() Checks if a watchdog timer expired. o/ oo |e
05 W Config() |Sets the watchdog callback functions. oo
S _WD_Renove() Removes a watchdog timer from the watchdog list. oo
OS WD Trigger() | Triggers a watchdog timer. oo |o e

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

235

CHAPTER 10 API functions

10.2.1 OS_WD_Add()

Description

Adds a software watchdog timer to the watchdog list.

Prototype

voi d OS_WD_Add(OCs_Wb*

pVD,

OS_TI ME Ti neout);

Parameters

Parameter Description
pV\D Pointer to a watchdog timer object.
Ti meout Watchdog timer timeout.
Example

static OS_ W _nmyWD;

voi d HPTask(void) {
S WD _Add(& nyWD, 50);

while (1) {

CS_ WD _Trigger (& nyW) ;

OS_TASK Del ay(50);

}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

236 CHAPTER 10 API functions

10.2.2 OS_WD_Check()

Description

Checks if a watchdog timer expired. If no watchdog timer expired the hardware watchdog
is triggered. If a watchdog timer expired, the callback function is called.

Prototype

void OS_WD_Check(void);

Additional information

OS5 WD Check() must be called periodically. It is good practice to call it from the system
tick handler.

Example

voi d SysTi ck_I SRHandl er (voi d) {
CS_INT_Enter();
OS_Tick_Handl e();
OS_WD_Check();
OS_I NT_Leave();

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

237 CHAPTER 10 API functions

10.2.3 OS_WD_Config()

Description

Sets the watchdog callback functions.

Prototype
void OS_WD Confi g(voi dRout i ne* pf Tri gger Func,
OS_WD_RESET_CALLBACK* pf Reset Func);
Parameters
Parameter Description

Function pointer to hardware watchdog trigger callback func-

pf Tri gger Func tion.

Function pointer to callback function which is called in case
pf Reset Func of an expired watchdog timer. pf Reset Func is optional and
may be NULL.

Additional information

pf Reset Func may be used to perform additional operations inside a callback function prior
to the reset of the microcontroller. For example, a message may be written to a log file. If
pf Reset Func is NULL, no callback function gets executed, but the hardware watchdog will
still cause a reset of the microcontroller.

Example

static void _TriggerWat chDog(void) {
WD _REG = TRI GGER WD, /1 Trigger the hardware watchdog

}

static void _Reset (OS_CONST_PTR CS_W»* pWD) {
_WitelLogMessage(p\VD);
/1 Store information about expired watchdog prior to reset.
SYSTEM CTRL_REG = PERFORM RESET; // Reboot mcrocontroller

}
int main(void) {

CS_WD_Config(& TriggerWatchDog, & Reset);
CS Start();
}

Note

In previous versions of embQOS, CS WD Confi g() expected the parameter pf Reset -
Func to be of a different type.

Since embOS V4.40, instead of a callback of the type voidRoutine*, S WD _Conf i g()
expects a callback of type S WD RESET_CALLBACK*. This allows for passing the rele-
vant OS_WD structure to the routine, e.g. for further examination by the application.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

238 CHAPTER 10 API functions

10.2.4 OS_WD_Remove()

Description

Removes a watchdog timer from the watchdog list.

Prototype
voi d OS_ WD _Renpve(OS_CONST_PTR OS_WD *pWD) ;
Parameters

Parameter Description
pV\D Pointer to a watchdog timer object.
Example

int main(void) {
S WD _Add(& nmyWD) ;
CS WD _Renove(& nmyWD) ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

239 CHAPTER 10 API functions

10.2.5 OS WD _Trigger()

Description

Triggers a watchdog timer.

Prototype
void OS_WD Trigger (CS_ W pWD);
Parameters
Parameter Description
pV\D Pointer to a watchdog timer object.

Additional information

Each software watchdog timer must be triggered periodically. If not, the timeout expires
and OS_WD Check() will no longer trigger the hardware watchdog timer, but will call the
reset callback function (if any).

Example

static OS_WD _nyWD,

static void HPTask(void) {
Os_WD_Add(& _nyWD, 50);
while (1) {
OS_TASK Del ay(50);
OS_WD _Trigger (& nyWD) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 11

Multi-core Support

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

241 CHAPTER 11 Introduction

11.1 Introduction

embQOS can be utilized on multi-core processors by running separate embOS instances on
each individual core. For synchronization purposes and in order to exchange data between
the cores, embOS includes a comprehensive spinlock API which can be used to control
access to shared memory, peripherals, etc.

Spinlocks

Spinlocks constitute a general purpose locking mechanism in which any process trying to
acquire the lock is caused to actively wait until the lock becomes available. To do so, the
process trying to acquire the lock remains active and repeatedly checks the availability of
the lock in a loop. Effectively, the process will “spin” until it acquires the lock.

Once acquired by a process, spinlocks are usually held by that process until they are ex-
plicitly released. If held by one process for longer duration, spinlocks may severely impact
the runtime behavior of other processes trying to acquire the same spinlock. Therefore,
spinlocks should be held by one process for short periods of time only.

Usage of spinlocks with embOS

embOS spinlocks are intended for inter-core synchronization and communication. They are
not intended for synchronization of individual tasks running on the same core, on which
semaphores, queues and mailboxes should be used instead.

However, multitasking still has to be taken into consideration when using embOS spinlocks.
Specifically, an embOS task holding a spinlock should not be preempted, for this would
prevent that task from releasing the spinlock as fast as possible, which may in return
impact the runtime behavior of other cores attempting to acquire the spinlock. Declaration
of critical regions therefore is explicitly recommended while holding spinlocks.

embOS spinlocks are usually implemented using hardware instructions specific to one ar-
chitecture, but a portable software implementation is provided in addition. If appropriate
hardware instructions are unavailable for the specific architecture in use, the software im-
plementation is provided exclusively.

Note

It is important to use matching implementations on each core of the multicore proces-
sor that shall access the same spinlock.

For example, a core supporting a hardware implementation may use that implementation
to access a spinlock that is shared with another core that supports the same hardware
implementation. At the same time, that core may use the software implementation to access
a different spinlock that is shared with a different core that does not support the same
hardware implementation. However, in case all three cores in this example should share
the same spinlock, each of them has to use the software implementation.

To know the spinlock’s location in memory, each core’s application must declare the ap-
propriate OS_SPI NLOCK variable (or OS_SPI NLOCK_SW respectively) at an identical memory
address. Initialization of the spinlock, however, must be performed by one core only. This
API is not available in embOS library mode OS_LI BMODE_SAFE.

Example of using spinlocks

Two cores of a multi-core processor shall access an hardware peripheral, e.g. a LC display.
To avoid situations in which both cores access the LCD simultaneously, access must be
restricted through usage of a spinlock: Every time the LCD is used by one core, it must first
claim the spinlock through the respective embOS API call. After the LCD has been written
to, the spinlock is released by another embOS API call.

Data exchange between cores can be implemented analogously, e.g. through declaration
of a buffer in shared memory: Here, every time a core shall write data to the buffer, it
must acquire the spinlock first. After the data has been written to the buffer, the spinlock

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

242

CHAPTER 11

Introduction

is released. This ensures that neither core can interfere with the writing of data by the

other core.
Core 0:

#i ncl ude "RTGCS. h"

static OS_STACKPTR int Stack[128];
static OS _TASK TCB;
static OS_SPI NLOCK MySpi nl ock @".

static void Task(void) {
while (1) {
OS_TASK_Ent er Regi on() ;

OS_SPI NLOCK_Lock(&V Spi nl ock) ;
I
/1l Performcritical operation
I
OS_SPI NLOCK_Unl ock(&W Spi nl ock) ;
OS_TASK LeaveRegi on();
}
}
int main(void) {
oS Init();
OS_InitHW);

OS_SPI NLOCK_Cr eat e(&W Spi nl ock) ;
OS_TASK_CREATE(&TCB, "Task",
CS Start();

return O;

}
Core 1:

#i ncl ude "RTGCS. h"

stati c OS_STACKPTR i nt Stack[128];
static OS_TASK TCB;
static OS_SPI NLOCK MySpinl ock @".

static void Task(void) {
while (1) {

OS_TASK_Ent er Regi on() ;
OS_SPI NLOCK_Lock(&V Spi nl ock) ;
I
/1 Performcritical
I
OS_SPI NLOCK_Unl ock(&W Spi nl ock) ;
OS_TASK LeaveRegion();

operation

}
}

int main(void) {
OS_Init();
OS_InitHW);
OS_TASK_CREATE(&TCB,
CS Start();
return O;

"Task",

UMO01001 User Guide & Reference Manual for embOS

/'l Task stack
/| Task-control -bl ock
shared_nent';

/1l Inhibit preenptive task switches
/'l Acquire spinlock

/'l Rel ease spinl ock

/'l Re-allow preenptive task sw tches
/'l Initialize enb0S

/1 Initialize Hardware for OS

/1 Initialize Spinlock

100, Task, Stack);

/1 Start multitasking

/| Task stack
/| Task-control-bl ock
shared_nent';

/1 Inhibit preenptive task sw tches
/'l Acquire spinlock

/'l Rel ease spinl ock
/'l Re-allow preenptive task sw tches

Il
Il

Initialize enbQOS

Initialize Hardware for OS

100, Task, Stack);

/] Start nultitasking

© 1995-2018 SEGGER Microcontroller GmbH

243 CHAPTER 11 API functions

11.2 API functions

. - 3 |d|= |2
Routine Description o |8 %’ 3
S|~ @
OS_SPI NLOCK _Cr eat e() Creates a hardware-specific spinlock. oo
Acquires a hardware-specific spinlock. Busy
0S_SPI NLOCK_Lock() wa.ltlng uqtll t_he splnlc_)ck becomes avallaple. ol e
This function is unavailable for some architec-
tures.
0S_SPI NLOCK_Unl ock() Releases a hardware-specific spinlock. oo
OS_SPI NLOCK_SW Creat e() | Creates a software-implementation spinlock. | e | e
OS_SPI NLOCK_SW Lock() Acquires a software-implementation spinlock. | e | e
OS_SPI NLOCK_SW Unl ock() | Releases a software-implementation spinlock. | e | e

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

244 CHAPTER 11 API functions

11.2.0.1 OS_SPINLOCK_ Create()

Description

Creates a hardware-specific spinlock.
This function is unavailable for architectures that do not support an appropriate instruction

set.

Prototype

voi d OS_SPI NLOCK_Cr eat e(OS_SPI NLOCK* pSpi nl ock) ;

Parameters

Parameter Description
Pointer to a variable of type OS_SPI NLOCK reserved for the
pSpi nl ock management of the spinlock. The variable must reside in

shared memory.

Additional information

After creation, the spinlock is not locked.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

245 CHAPTER 11 API functions

11.2.0.2 OS_SPINLOCK_Lock()

Description

OS_SPI NLOCK _Lock() acquires a hardware-specific spinlock. If the spinlock is unavailable,
the calling task will not be blocked, but will actively wait until the spinlock becomes avail-

able.
This function is unavailable for architectures that do not support an appropriate instruction
set.
Prototype
voi d OS_SPI NLOCK_Lock (OS_SPI NLOCK* pSpi nl ock) ;
Parameters

Parameter Description

. Pointer to a variable of type GS_SPI NLOCK reserved for the manage-

pSpi nl ock .
ment of the spinlock.

Additional information

A task that has acquired a spinlock must not call GS_SPI NLOCK Lock() for that spinlock
again. The spinlock must first be released by a call to GS_SPI NLOCK_Unl ock() .

The following diagram illustrates how OS_SPI NLOCK Lock() works:

0S_SPINLOCK_Lock()

Spinlock
available?

Mark Spinlock in use

return

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

246 CHAPTER 11 API functions

11.2.0.3 OS_SPINLOCK_Unlock()

Description

Releases a hardware-specific spinlock.
This function is unavailable for architectures that do not support an appropriate instruction

set.
Prototype
voi d OS_SPI NLOCK_Unl ock(OS_SPI NLOCK* pSpi nl ock) ;
Parameters
Parameter Description
. Pointer to a variable of type OS_SPI NLOCK reserved for the
pSpi nl ock .
management of the spinlock.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

247

CHAPTER 11

11.2.0.4 OS_SPINLOCK_SW _Create()

Description

Creates a software-implementation spinlock.

API functions

Prototype
voi d OS_SPI NLOCK_SW Cr eat e(OS_SPI NLOCK_SW pSpi nl ock) ;
Parameters
Parameter Description
Pointer to a data structure of type OS_SPI NLOCK_SWreserved
pSpi nl ock for the management of the spinlock. The variable must re-
side in shared memory.

Additional information

After creation, the spinlock is not locked.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

248 CHAPTER 11 API functions

11.2.0.5 OS_SPINLOCK_SW._Lock()

Description

Acquires a software-implementation spinlock. If the spinlock is unavailable, the calling task
will not be blocked, but will actively wait until the spinlock becomes available.

Prototype
voi d OS_SPI NLOCK_SW Lock(OS_SPI NLOCK_SW pSpi nl ock,
OS_UINT Id);
Parameters
Parameter Description
. Pointer to a data structure of type OS_SPI NLOCK_SWreserved
pSpi nl ock

for the management of the spinlock.

Unique identifier to specify the core accessing the spinlock.
Valid values are 0 < I d < OS_SPI NLOCK_MAX_ CORES. By de-
Id fault, OS_SPI NLOCK_MAX CORES is defined to 4 and may be
changed when using source code. An embOS debug build
calls S _Error () in case invalid values are used.

Additional information

A task that has acquired a spinlock must not call OS_SPI NLOCK_SW Lock() for that spinlock
again. The spinlock must first be released by a call to OS_SPI NLOCK_SW Unl ock() .

OS_SPI NLOCK_SW Lock() implements Lamport’s bakery algorithm, published by Leslie Lam-
port in "Communications of the Association for Computing Machinery”, 1974, Volume 17,
Number 8. An excerpt is publicly available at research.microsoft.com.

The following diagram illustrates how OS_SPI NLOCK_SW Lock() works:

0S_SPINLOCK_SW._Lock()

Spinlock

available? Mark Spinlock in use

return

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

249 CHAPTER 11 API functions

11.2.0.6 OS_SPINLOCK_SW_Unlock()

Description

Releases a software-implementation spinlock.

Prototype
voi d OS_SPI NLOCK_SW Unl ock(OS_SPI NLOCK_SW pSpi nl ock,
OS_UINT I d);
Parameters
Parameter Description
. Pointer to a data structure of type OS_SPI NLOCK_SWreserved
pSpi nl ock

for the management of the spinlock.

Unique identifier to specify the core accessing the spinlock.
Valid values are 0 < 1 d < OS_SPI NLOCK_MAX_ CORES. By de-
I d fault, OS_SPI NLOCK_MAX CORES is defined to 4 and may be
changed when using source code. An embOS debug build
calls S _Error () in case invalid values are used.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 12

Interrupts

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

251

CHAPTER 12 What are interrupts?

12.1 What are interrupts?

This chapter explains how to use interrupt service routines (ISRs) in cooperation with em-
bOS. Specific details for your CPU and compiler can be found in the CPU & Compiler Specifics
manual of the embOS documentation.

Interrupts are interruptions of a program caused by hardware. When an interrupt occurs,
the CPU saves its registers and executes a subroutine called an interrupt service routine,
or ISR. After the ISR is completed, the program returns to the highest-priority task in the
READY state. Normal interrupts are maskable. Maskable interrupts can occur at any time
unless they are disabled. ISRs are also nestable - they can be recognized and executed
within other ISRs.

There are several good reasons for using interrupt routines. They can respond very quickly
to external events such as the status change on an input, the expiration of a hardware
timer, reception or completion of transmission of a character via serial interface, or other
types of events. Interrupts effectively allow events to be processed as they occur.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

252

12.2

CHAPTER 12 Interrupt latency

Interrupt latency

Interrupt latency is the time between an interrupt request and the execution of the first
instruction of the interrupt service routine. Every computer system has an interrupt latency.
The latency depends on various factors and differs even on the same computer system. The
value that one is typically interested in is the worst case interrupt latency. The interrupt
latency is the sum of a number of individual smaller delays explained below.

Note

Interrupt latency caused by embOS can be avoided entirely when using zero latency
interrupts, which are explained in chapter Zero interrupt latency on page 254.

12.2.1 Causes of interrupt latencies

The first delay is typically in the hardware: The interrupt request signal needs to be
synchronized to the CPU clock. Depending on the synchronization logic, typically up to
three CPU cycles can be lost before the interrupt request reaches the CPU core.

The CPU will typically complete the current instruction. This instruction can take
multiple cycles to complete; on most systems, divide, push-multiple, or memory-copy
instructions are the instructions which require most clock cycles. On top of the cycles
required by the CPU, there are in most cases additional cycles required for memory
access. In an ARM7 system, the instruction STMDB SP!,{R0-R11,LR}; typically is the
worst case instruction. It stores thirteen 32 bit registers to the stack, which, in an ARM7
system, takes 15 clock cycles to complete.

The memory system may require additional cycles for wait states.

After the current instruction is completed, the CPU performs a mode switch or pushes
registers (typically, PC and flag registers) to the stack. In general, modern CPUs (such
as ARM) perform a mode switch, which requires fewer CPU cycles than saving registers.
Pipeline fill

Most modern CPUs are pipelined. Execution of an instruction happens in various stages
of the pipeline. An instruction is executed when it has reached its final stage of the
pipeline. Because the mode switch flushes the pipeline, a few extra cycles are required
to refill the pipeline.

12.2.2 Additional causes for interrupt latencies

There can be additional causes for interrupt latencies. These depend on the type of system
used, but we list a few of them.

Latencies caused by cache line fill. If the memory system has one or multiple caches,
these may not contain the required data. In this case, not only the required data is
loaded from memory, but in a lot of cases a complete line fill needs to be performed,
reading multiple words from memory.

Latencies caused by cache write back. A cache miss may cause a line to be replaced.
If this line is marked as dirty, it needs to be written back to main memory, causing an
additional delay.

Latencies caused by MMU translation table walks. Translation table walks can take a
considerable amount of time, especially as they involve potentially slow main memory
accesses. In real-time interrupt handlers, translation table walks caused by the TLB not
containing translations for the handler and/or the data it accesses can increase interrupt
latency significantly.

Application program. Of course, the application program can cause additional latencies
by disabling interrupts. This can make sense in some situations, but of course causes
additional latencies.

Interrupt routines. On most systems, one interrupt disables further interrupts. Even if
the interrupts are re-enabled in the ISR, this takes a few instructions, causing additional
latency.

Real-time Operating system (RTOS). An RTOS also needs to temporarily disable the
interrupts which can call API-functions of the RTOS. Some RTOSes disable all interrupts,

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

253 CHAPTER 12 Interrupt latency

effectively increasing interrupt latency for all interrupts, some (like embOS) disable only
low-priority interrupts and do thereby not affect the latency of high priority interrupts.

12.2.3 How to measure latency and detect its cause

It is sometimes desirable to detect the cause for high interrupt latency. High interrupt
latency may occur if interrupts are disabled for extended periods of time, or if a low level
interrupt handler is executed before the actual interrupt handler. In these regards, embQOS
related functions like OS_I NT_Ent er () add to interrupt latency as well.

To measure interrupt latency and detect its cause, a timer interrupt may be used. For ex-
ample, if the hardware timer counts upwards starting from zero after each compare-match-
interrupt, its current counter value may be read from within the interrupt service routine
to evaluate how many timer cycles (and thus how much time) have lapsed between the
interrupt’s occurance and the actual execution of the interrupt handler:

static int Latency = O;

voi d Ti merl nt Handl er (voi d) {
CS_INT_Enter();
Latency = TIMER CNT_VALUE; // Get current timer value
OS_I NT_Leave();

}

If this measurement is repeated several times, different results will occur. This is for the
reason that the interrupt will sometimes be asserted while interrupts have been disabled
by the application, while at other times interrupts are enabled when this interrupt request
occurs. Thus, an application may keep track of minimum and maximum latency as shown

below:

static int Latency = 0;

static int MaxLatency = 0;

static int MnLatency = OxFFFFFFFF;

voi d Ti rmer | nt Handl er (voi d) {
CS_INT_Enter();

Lat ency = TIMER_CNT_VALUE; // Get current tiner value
M nLatency = (Latency < M nLatency) ? Latency : M nLatency;
MaxLat ency = (Latency > MaxLatency) ? Latency : MaxlLatency;

OS_I NT_Leave();
}

Using this method, M nLat ency will hold the latency that was caused by hardware (and
any low-level interrupt handler, if applicable). On the other hand, MaxLat ency will hold
the latency caused both by hardware and interrupt-masking in software. Therefore, by
substracting MaxLat ency - M nLat ency, it is possible to calculate the exact latency that
was caused by interrupt-masking (typcially performed by the operating system).

Based on this information, a threshold may be defined to detect the cause of high interrupt
latency. E.g., a breakpoint may be set for when the current timer value exceeds a pre-
defined threshold as shown below:

static int Latency = 0;

voi d Ti merl nt Handl er (voi d) {
CS_INT_Enter();
Latency = TIMER CNT_VALUE; // Get current timer value
if (Latency > LATENCY_THRESHOLD) {
while (1); /1 Set a breakpoint here

}
OS_I NT_Leave();

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

254

CHAPTER 12 Interrupt latency

If code trace information is available upon hitting the breakpoint, the exact cause for the
latency may be checked through a trace log.

Note

If the hardware timer interrupt is the only interrupt in the system, its priority may be
chosen arbitrarily. Otherwise, in case other interrupts occur during measurement as
well, the timer interrupt should be configured to match the specific priority for which
to measure latency. This is important, for other (possibly non-nestable) interrupts
will influence the results depending on their priority relative to the timer interrupt’s
priority, which may or may not be desired on a case-to-case basis.

Also, in order to provide meaningful results, the interrupt should occur quite frequent-
ly. Hence, the timer reload value typically is configured for small periods of time, but
must ensure that interrupt execution will not consume the entire CPU time.

12.2.4 Zero interrupt latency

Zero interrupt latency in the strict sense is not possible as explained above. What we mean
when we say “Zero interrupt latency” is that the latency of high-priority interrupts is not
affected by the RTOS; a system using embOS will have the same worst case interrupt
latency for high priority interrupts as a system running without embOS.

Why is Zero latency important?

In some systems, a maximum interrupt response time or latency can be clearly defined.
This maximum latency can arise from requirements such as maximum reaction time for a
protocol or a software UART implementation that requires very precise timing.

For example a UART receiving at up to 800 kHz in software using ARM FIQ on a 48 MHz
ARM7. This would be impossible to do if FIQ were disabled even for short periods of time.

In many embedded systems, the quality of the product depends on event reaction time
and therefore latency. Typical examples would be systems which periodically read a value
from an A/D converter at high speed, where the accuracy depends on accurate timing. Less
jitter means a better product.

Why can a high priority ISR not use the OS API?

embQOS disables low priority interrupts when embOS data structures are modified. During
this time high priority ISR are enabled. If they would call an embOS function, which also
modifies embOS data, the embOS data structures would be corrupted.

How can a high priority ISR communicate with a task?

The most common way is to use global variables, e.g. a periodical read from an ADC and
the result is stored in a global variable.

Another way is to assert an interrupt request for a low priority interrupt from within the high
priority ISR, which may then communicate or wake up one or more tasks. This is helpful
if you want to receive high amounts of data in your high priority ISR. The low priority ISR
may then store the data bytes e.g. in a message queue or in a mailbox.

12.2.5 High /low priority interrupts

Most CPUs support interrupts with different priorities. Different priorities have two effects:

e If different interrupts occur simultaneously, the interrupt with higher priority takes
precedence and its ISR is executed first.
e Interrupts can never be interrupted by other interrupts of the same or lower priority.

The number of interrupt levels depends on the CPU and the interrupt controller. Details
are explained in the CPU/MCU/SoC manuals and the CPU & Compiler Specifics manual of
embOS. embQOS distinguishes two different levels of interrupts: High and low priority in-
terrupts. The embOS port-specific documentations explain which interrupts are considered

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

255

CHAPTER 12 Interrupt latency

high and which are considered low priority for that specific port. In general, the differences
between those two are as follows:

Low priority interrupts

e May call embOS API functions
e Latencies caused by embOS
e Also called "embOS interrupts”

High priority interrupts

e May not call embOS API functions
¢ No latencies caused by embOS (Zero latency)
e Also called “Zero latency interrupts”

Example of different interrupt priority levels

Let's assume we have a CPU which supports eight interrupt priority levels. With embOS,
the interrupt levels are divided per default equal in low priority and high priority interrupt
levels. The four highest priority levels are considered “High priority interrupts” and the four
lowest priority interrupts are considered as “Low priority interrupts”. For ARM CPUs, which
support regular interrupts (IRQ) and fast interrupt (FIQ), FIQ is considered as “High priority
interrupt” when using embOS.

For most implementations the high-priority threshold is adjustable. For details, refer to the
processor specific embOS manual.

12.2.5.1 Using embOS API from zero latency interrupts

High priority interrupts are prohibited from using embOS functions. This is a consequence
of embOS’s zero-latency design, according to which embOS never disables high priority
interrupts. This means that high priority interrupts can interrupt the operating system at any
time, even in critical sections such as the modification of RTOS-maintained linked lists. This
design decision has been made because zero interrupt latencies for high priority interrupts
usually are more important than the ability to call OS functions.

However, high priority interrupts may use OS functions in an indirect manner: The high
priority interrupt triggers a low priority interrupt by setting the appropiate interrupt request
flag. Subsequently, that low priority interrupt may call the OS functions that the high priority
interrupt was not allowed to use.

A

Triggers embOS
interrupt

Zero Latency Interrupt

Calls embOS API functions
to resume Task 2

embOS Interrupt

Priority

Task 2 Interrupted by zero
latency interrupt

Task 1

Time

The task 1 is interrupted by a high priority interrupt. This high priority interrupt is not
allowed to call an embQOS API function directly. Therefore the high priority interrupt triggers
a low priority interrupt, which is allowed to call embOS API functions. The low priority
interrupt calls an embQOS API function to resume task 2.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

256 CHAPTER 12 Rules for interrupt handlers

12.3 Rules for interrupt handlers

12.3.1 General rules

There are some general rules for interrupt service routines (ISRs). These rules apply to
both single-task programming as well as to multitask programming using embOS.

e ISR preserves all registers.
Interrupt handlers must restore the environment of a task completely. This environment
normally consists of the registers only, so the ISR must make sure that all registers
modified during interrupt execution are saved at the beginning and restored at the end
of the interrupt routine

e Interrupt handlers must finish quickly.
Intensive calculations should be kept out of interrupt handlers. An interrupt handler
should only be used for storing a received value or to trigger an operation in the regular
program (task). It should not wait in any form or perform a polling operation.

12.3.2 Additional rules for preemptive multitasking

A preemptive multitasking system like embOS needs to know if the code that is executing
is part of the current task or an interrupt handler. This is necessary because embOS cannot
perform a task switch during the execution but only at the end of an ISR.

If a task switch was to occur during the execution of an ISR, the ISR would continue as soon
as the interrupted task became the current task again. This is not a problem for interrupt
handlers that do not allow further interruptions (which do not enable interrupts) and that
do not call any embQS functions.

This leads us to the following rule:

e ISRs that re-enable interrupts or use any embOS function need to call OS | NT_Ent er ()
at the beginning, before executing anything else, and call S_| NT_Leave() immediately
before returning.

If a higher priority task is made ready by the ISR, the task switch will be performed in the
routine OS_| NT_Leave(). The end of the ISR is executed later on, when the interrupted
task has been made ready again. Please consider this behaviour if you debug an interrupt
routine, this has proven to be the most efficient way of initiating a task switch from within
an interrupt service routine.

12.3.3 Nesting interrupt routines

By default, interrupts are disabled in an ISR because most CPU disables interrupts with the
execution of the interrupt handler. Re-enabling interrupts in an interrupt handler allows
the execution of further interrupts with equal or higher priority than that of the current
interrupt. These are known as nested interrupts, illustrated in the diagram below:

A
ISR 3
>
)
' | ISR2
S
& | ISR1
Task

Time

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

257

CHAPTER 12 Rules for interrupt handlers

For applications requiring short interrupt latency, you may re-enable interrupts inside an
ISR by using OS_| NT_Ent er Nest abl e() and OS_| NT_LeaveNest abl e() within the interrupt
handler.

Nested interrupts can lead to problems that are difficult to debug; therefore it is not rec-
ommended to enable interrupts within an interrupt handler. As it is important that embOS
keeps track of the status of the interrupt enable/disable flag, enabling and disabling of
interrupts from within an ISR must be done using the functions that embOS offers for this
purpose.

The routine OS_I NT_Ent er Nest abl e() enables interrupts within an ISR and prevents fur-
ther task switches; OS_| NT_LeaveNest abl e() disables interrupts immediately before end-
ing the interrupt routine, thus restoring the default condition. Re-enabling interrupts will
make it possible for an embOS scheduler interrupt to interrupt this ISR. In this case, embQOS
needs to know that another ISR is still active and that it may not perform a task switch.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

258 CHAPTER 12 Rules for interrupt handlers

12.3.4 API functions

Routine Description

urew
Asel
dsl
lawi

Entry function for use in an embOS interrupt

OS_I NT_Cal I () handler.

Entry function for use in an embOS interrupt

OS | NT_Cal | Nest abl e() handler

Informs embOS that interrupt code is execut-
ing.

Informs embOS that interrupt code is execut-
ing and reenables interrupts.

OS_I NT_Enter ()

OS_| NT_Ent er Nest abl e()

Checks if the calling function runs in an inter-
rupt context.

Informs embQOS that the end of the inter-
OS_| NT_Leave() rupt routine has been reached; executes task °
switching within ISR.

Informs embOS that the end of the inter-
OS | NT_LeaveNest abl e() rupt routine has been reached; executes task °
switching within ISR.

CS INT_Inlnterrupt()

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

259

12.3.4.1 OS_INT_cCall()

Description

CHAPTER 12 Rules for interrupt handlers

Entry function for use in an embOS interrupt handler. Nestable interrupts are disabled.

Prototype
void OS_INT_Call (void (*pRoutine)());
Parameters
Parameter Description
pRout i ne Pointer to a routine that should run on interrupt.

Additional information

OS_INT_Cal | () can be used as an entry function in an embOS interrupt handler, when the
corresponding interrupt should not be interrupted by another embQOS interrupt.
OS_INT_Cal | () sets the interrupt priority of the CPU to the user definable ‘fast’ interrupt
priority level, thus locking any other embOS interrupt. Fast interrupts are not disabled.

Note

Example

#pragma i nterrupt

For some specific CPUs OS INT_Cal | () must be used to call an interrupt handler
because OS I NT_Enter () /0OS_|I NT_Leave() may not be available.

OS I NT_Cal | () must not be used when GS | NT_Enter () /0OS | NT_Leave() is available
Please refer to the CPU/compiler specific embOS manual.

voi d SysTi ck_Handl er (voi d) {
CS_INT_Call (_IsrTickHandl er);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

260 CHAPTER 12 Rules for interrupt handlers

12.3.4.2 OS_INT_CallNestable()

Description

Entry function for use in an embOS interrupt handler. Nestable interrupts are enabled.

Prototype
voi d OS_I NT_Cal | Nest abl e(void (*pRoutine)());
Parameters
Parameter Description
pRout i ne Pointer to a routine that should run on interrupt.

Additional information

OS I NT_Cal | Nest abl e() can be used as an entry function in an embQS interrupt handler,
when interruption by higher prioritized embOS interrupts should be allowed.

OS I NT_Cal | Nest abl e() does not alter the interrupt priority of the CPU, thus keeping all
interrupts with higher priority enabled.

Note

For some specific CPUs OS_| NT_Cal | Nest abl e() must be used to call an interrupt han-
dler because OGS | NT_Ent er Nest abl e() /OS_| NT_LeaveNest abl e() may not be avail-
able.

OS | NT_Cal | Nest abl e() must not be used when OS | NT_Ent er Nest abl e() /05 | N
T LeaveNest abl e() is available

Please refer to the CPU/compiler specific embOS manual.

Example

#pragma i nterrupt
voi d SysTi ck_Handl er (voi d) {

CS_ I NT_Cal | Nest abl e(_I srTi ckHandl er);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

261 CHAPTER 12 Rules for interrupt handlers

12.3.4.3 OS_INT_Enter()
Description
Informs embQS that interrupt code is executing.
Prototype
void OS_INT_Enter(void);

Additional information

Note

This function is not available in all ports.

If OS_INT_Enter() is used, it should be the first function to be called in the interrupt
handler. It must be paired with GS_|I NT_Leave() as the last function called. The use of this
function has the following effects:

e disables task switches
e keeps interrupts in internal routines disabled.

Example
Refer to the example of OS_I NT_Leave().

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

262 CHAPTER 12 Rules for interrupt handlers

12.3.4.4 OS_INT_EnterNestable()

Description

Re-enables interrupts and increments the embOS internal critical region counter, thus dis-
abling further task switches.

Prototype

voi d OS_| NT_Ent er Nest abl e(voi d);

Additional information

Note

This function is not available in all ports.

This function should be the first call inside an interrupt handler when nested interrupts are
required. The function OS_| NT_Ent er Nest abl e() is implemented as a macro and offers the
same functionality as OS | NT_Ent er () in combination with OS | NT_DecRI (), but is more
efficient, resulting in smaller and faster code.

Example
Refer to the example of OS_| NT_LeaveNest abl e() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

263 CHAPTER 12 Rules for interrupt handlers

12.3.4.5 OS_INT _InInterrupt()

Description

This function can be called to examine if the calling function is running in an interrupt
context. For application code, it may be useful to know if it is called from interrupt or task,
because some functions must not be called from an interrupt-handler.

Prototype
OS_BOOL CS_INT_Inlnterrupt(void);
Return value

=0 Code is not executed in an interrupt handler.
*0 Code is executed in an interrupt handler.

Additional information

Note

This function is not available in all ports.

The function delivers the interrupt state by checking the according CPU registers. It is
only implemented for those CPUs where it is possible to read the interrupt state from CPU
registers. In case of doubt please contact the embOS support.

Example

voi d foo() {
if (OS_INT_InInterrupt() == 1) {
/1 Do sonething within the ISR
} else {
printf("No interrupt context.\n")
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

264 CHAPTER 12 Rules for interrupt handlers

12.3.4.6 OS _INT_Leave()

Description

Informs embOS that the end of the interrupt routine has been reached; executes task
switching within ISR.

Prototype
void OS_| NT_Leave(void);

Additional information

Note

This function is not available in all ports.

If OS_| NT_Leave() is used, it should be the last function to be called in the interrupt handler.
If the interrupt has caused a task switch, that switch is performed immediately (unless the
program which was interrupted was in a critical region).

Example

void | SR_Tinmer(void) {
OS_INT_Enter();
OS_TASKEVENT_Set (1, &Task); // Any functionality could be here
OS_I NT_Leave();

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

265 CHAPTER 12 Rules for interrupt handlers

12.3.4.7 OS_INT_LeaveNestable()

Description

Disables further interrupts, then decrements the embOS internal critical region count, thus
re-enabling task switches if the counter has reached zero.

Prototype

voi d OS_| NT_LeaveNest abl e(voi d);

Additional information

Note

This function is not available in all ports.

This function is the counterpart of OS_| NT_Ent er Nest abl e(), and must be the last function
call inside an interrupt handler when nested interrupts have been enabled by GS | NT_En-
ter Nest abl e() .

The function OS_| NT_LeaveNest abl e() is implemented as a macro and offers the same
functionality as OS_| NT_Leave() in combination with OS_| NT_I ncDI (), but is more efficient,
resulting in smaller and faster code.

Example

_interrupt void ISR Tinmer(void) {
OS_I NT_Ent er Nest abl e() ;
OS_TASKEVENT_Set (1, &Task) ; /'l Any functionality could be here
OS_I NT_LeaveNest abl e();

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

266 CHAPTER 12 Interrupt control

12.4 Interrupt control

12.4.1 Enabling / disabling interrupts

During the execution of a task, maskable interrupts are normally enabled. In certain sec-
tions of the program, however, it can be necessary to disable interrupts for short periods
of time to make a section of the program an atomic operation that cannot be interrupted.
An example would be the access to a global volatile variable of type long on an 8/16 bit
CPU. To make sure that the value does not change between the two or more accesses that
are needed, interrupts must be temporarily disabled:

Bad example:

vol atile long |lvar;

voi d I ntHandl er(void) {
| var ++;

}

void routine (void) {
| var ++;

}
Good example:

vol atile long |lvar;

voi d | nt Handl er (voi
| var ++;

}

void routine (void) {
CS_INT_Di sabl e();
| var ++;
CS_|I NT_Enabl e();

}

The problem with disabling and re-enabling interrupts is that functions that disable/ enable
the interrupt cannot be nested.

Your C compiler offers two intrinsic functions for enabling and disabling interrupts. These
functions can still be used, but it is recommended to use the functions that embOS offers
(to be precise, they only look like functions, but are macros in reality). If you do not use
these recommended embOS functions, you may run into a problem if routines which require
a portion of the code to run with disabled interrupts are nested or call an OS routine.

We recommend disabling interrupts only for short periods of time, if possible. Also, you
should not call functions when interrupts are disabled, because this could lead to long
interrupt latency times (the longer interrupts are disabled, the higher the interrupt latency).
You may also safely use the compiler-provided intrinsics to disable interrupts but you must
ensure to not call embOS functions with disabled interrupts.

12.4.2 Global interrupt enable / disable

The embOS interrupt enable and disable functions enable and disable embOS interrupts
only. If a system is set up to support high and low priority interrupts and embOS is con-
figured to support “zero latency” interrupts, the embOS functions to enable and disable in-
terrupts affect the low priority interrupts only. High priority interrupts, called “zero latency
interrupts” are never enabled or disabled by embQS functions.

In an application it may be required to disable and enable all interrupts. Since version 3.90,
embOS has API functions which allow enabling and disabling all interrupts. These functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

267 CHAPTER 12

Interrupt control

have the suffix Al | and allow a “global” handling of the interrupt enable state of the CPU.
These functions affect the state of the CPU unconditionally and should be used with care.

12.4.3 Non-maskable interrupts (NMIs)

embQOS performs atomic operations by disabling interrupts. However, a non-maskable in-
terrupt (NMI) cannot be disabled, meaning it can interrupt these atomic operations. There-
fore, NMIs should be used with great care and are prohibited from calling any embOS rou-

tines.

12.4.4 API functions

Routine

Description

urew

Nsel
ds|

JETOINE

OS_| NT_DecRI ()

Decrements the counter and enables
interrupts if the counter reaches 0.

OS | NT_Di sabl e()

Disables interrupts. Does not change
the interrupt disable counter.

OS | NT_Enabl e()

Unconditionally enables interrupts.

OS_|I NT_Enabl eCondi ti onal ()

Restores the state of the interrupt
flag, based on the interrupt disable
counter.

OS_I NT_I ncDi ()

Increments the interrupt disable
counter (0S_d obal . Counters. Dl)
and disables interrupts.

OS | NT_Preserve()

Preserves the embQS interrupt
state.

OS | NT_Restore()

Restores the embOS interrupt state.

OS_| NT_Di sabl eAl | ()

Disable all interrupts (high and low
priority) unconditionally.

OS_| NT_PreserveAndDi sabl eAl | ()

Preserves the current interrupt en-
able state and then disables all in-
terrupts.

OS | NT_PreserveAl |l ()

Preserves the current interrupt en-
able state.

OS | NT_RestoreAl |l ()

Restores the interrupt enable state
which was preserved before.

OS_I NT_Enabl eAl'l ()

Enable all interrupts (high and low
priority) unconditionally.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

268 CHAPTER 12 Interrupt control

12.4.4.1 OS_INT_IncDI()/ OS_INT_DecRI()

Description

The following functions are actually macros defined in RTCS. h, so they execute very quickly
and are very efficient. It is important that they are used as a pair: first OS_ I NT_I ncDl (),
then OS_| NT_DecRI ().

12.4.4.1.1 OS_INT_IncDI()

Short for Increment and Disable Interrupts. Increments the interrupt disable counter
(CS_d obal . Count ers. DI) and disables interrupts.

12.4.4.1.2 OS_INT_DecRI()

Short for Decrement and Restore Interrupts. Decrements the counter and enables inter-
rupts if the disable counter reaches zero.

Additional information

OS_INT_I ncDI () increments the interrupt disable counter, interrupts will not be switched
on within the running task before the matching OS_| NT_DecRI () is executed. The counter
is task specific, a task switch may change the value, so if interrupts are disabled they could
be enabled in the next task and vice versa.

If you need to disable interrupts for a instant only where no routine is called, as in the
example above, you could also use the pair OS_I NT_Di sabl e() and OS_I NT_Enabl eCondi -
ti onal (). These are slightly more efficient because the interrupt disable counter GS_DI Cnt
is not modified twice, but only checked once. They have the disadvantage that they do not
work with functions because the status of OS_DI Cnt is not actually changed, and they should
therefore be used with great care. In case of doubt, use OS_| NT_IncDI () and OS_I NT_De-
cRI () . You can safely call embOS API between OS_I NT_I ncDI () and OS_I NT_DecRI () . The
embQOS API will not enable interrupts.

Example

vol atile long |lvar;

void routine (void) {
CS_INT_I ncDl();
| var ++;
OS_| NT_DecRI () ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

269 CHAPTER 12 Interrupt control

12.4.4.2 OS_INT_Disable()

OS_INT_Di sabl e() disables embQOS interrupts but does not change the interrupt disable
counter OS_d obal . Counters. Cnt. DI .

12.4.4.3 OS_INT _Enable()

OS_I NT_Enabl e() enables embOS interrupts but does not check the interrupt disable
counter CS_d obal . Count ers. Cnt. DI . Refrain from using this function directly unless you
are sure that the interrupt disable count has the value zero, because it does not take the
interrupt disable counter into account. OS_| NT_Di sabl e() / OS_| NT_Enabl e() can be used
when no embOS API functions are called between which could enable interrupts before the
actual call to OS_| NT_Enabl e() and the interrupt disable count is zero.

12.4.4.4 OS_INT_EnableConditional()

Restores the interrupt status, based on the interrupt disable counter. interrupts are only
enabled if the interrupt disable counter GS_d obal . Count ers. Cnt. DI is zero.

Example

vol atile long |lvar;

void routine (void) {
CS_INT_Di sabl e();
| var ++;
CS_| NT_Enabl eCondi ti onal ();
}

You cannot safely call embOS API between OS_ I NT_Di sabl e() and OS_| NT_Enabl e()/
OS_| NT_Enabl eCondi ti onal (). The embOS API might already enable interrupts because
OS_| NT_Di sabl e() does not change the interrupt disable counter. In that case please use
OS_INT_I ncDl () and OS_I NT_DecRI () instead.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

270 CHAPTER 12 Interrupt control

12.4.45 OS _INT_Preserve()

Description

This function can be called to preserve the current embOS interrupt enable state of the CPU.

Prototype
voi d OS_|I NT_Preserve(0OS_U32* pState);
Parameters
Parameter Description
Pointer to an OS_U32 variable that receives the interrupt
pSt at e state

Additional information

If the interrupt enable state is not known and interrupts should be disabled by a call of
OS I NT_Di sabl e(), the current embOS interrupt enable state can be preserved and re-
stored later by a call of OS_|I NT_Restore().

Example

voi d Sampl e(void) {
OS_U32 IntState;

OS_INT_Preserve(& ntState); // Renenber the interrupt enable state.
CS_INT_Di sabl e(); /1 Disable enbOS interrupts
Il

/| Execute any code that should be executed with enbOS interrupts disabled
Il

OS_INT_Restore(& ntState); /'l Restore the interrupt enable state

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

271 CHAPTER 12 Interrupt control

12.4.4.6 OS_INT_Restore()

Description

This function must be called to restore the embOS interrupt enable state of the CPU which
was preserved before.

Prototype

void OS I NT_Restore (0OS_U32* pState);

Parameters

Parameter Description

Pointer to an OS_U32 variable that holds the interrupt enable
state.

pSt at e

Additional information

Restores the embOS interrupt enable state which was saved before by a call of OS5 | N
T Preserve(). If embOS interrupts were enabled before they were disabled, the function
reenables them.

Example

voi d Sampl e(void) {
OS_U32 IntState;

OS_INT_Preserve(& ntState); // Renenber the interrupt enable state.
CS_INT_Di sabl e(); /1 Disable enbOS interrupts
Il

/| Execute any code that should be executed with enbOS interrupts disabled
Il

OS_INT_Restore(& ntState); /'l Restore the interrupt enable state

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

272 CHAPTER 12 Interrupt control

12.4.4.7 OS_INT_DisableAll()

Description

This function disables embOS and zero latency interrupts unconditionally.

Prototype

void OS_INT_Di sabl eAl | (voi d);

Additional information

OS I NT_Di sabl eAl | () disables all interrupts (including zero latency interrupts) in a fast
and efficient way. Note that the system does not track the interrupt state when calling the
function. Therefore the function should not be called when the state is unknown. Interrupts
can be re-enabled by calling OS_|I NT_Enabl eAl | (). After calling OS_I NT_Di sabl eAl | (),
no embOS function except the interrupt enable function OGS I NT_Enabl eAl | () should be
called, because the interrupt state is not saved by the function. An embOS API function
may re-enable interrupts. The exact interrupt enable behaviour depends on the CPU.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

273 CHAPTER 12 Interrupt control

12.4.4.8 OS_INT_PreserveAndDisableAll()

Description

This function preserves the current interrupt enable state of the CPU and then disables
embOS and zero latency interrupts.

Prototype
voi d OS_|I NT_PreserveAndDi sabl eAll (OS_U32* pState);
Parameters
Parameter Description
Pointer to an OS_U32 variable that receives the interrupt
pSt at e state

Additional information

The function store the current interrupt enable state into the variable pointed to by pSt at e
and then disables embOS and zero latency interrupts. The interrupt state can be restored
later by a corresponding call of OS | NT_RestoreAl | ().

The pair of function calls GS_| NT_Pr eserveAndDi sabl eAl | () and OS_| NT_RestoreAl |l ()
can be nested, as long as the interrupt enable state is stored into an individual variable on
each call of G5 I NT_PreserveAndDi sabl eAl | (). This function pair should be used when
the interrupt enable state is not known when interrupts shall be enabled.

Example

voi d Sampl e(void) {
OS_U32 IntState;

/'l Remenber the interrupt enable state and di sables interrupts.

OS_I NT_Pr eserveAndDi sabl eAl | (& ntState);

Il

/| Execute any code that should be executed with interrupts disabled
/'l No enbOS function should be called

Il

OS_INT_RestoreAll (& ntState); // Restore the interrupt enable state

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

274 CHAPTER 12 Interrupt control

12.4.4.9 OS_INT_PreserveAll()

Description

This function can be called to preserve the current interrupt enable state of the CPU.

Prototype

void OS_ I NT_PreserveAl|l (0OS_U32* pState);

Parameters

Parameter Description

Pointer to an OS_U32 variable that receives the interrupt

pState state.

Additional information

If the interrupt enable state is not known and interrupts should be disabled by a call of
OS I NT_Di sabl eAl | (), the current interrupt enable state can be preserved and restored
later by a call of OS_ I NT_RestoreAl |l (). Note that the interrupt state is not stored by
embOS. After disabling the interrupts using a call of 05 _| NT_Di sabl eAl | (), no embOS API
function should be called because embOS functions might re-enable interrupts.

Example

voi d Sampl e(void) {
OS_U32 IntState;

/'l Remenber the interrupt enable state.

OS_INT_PreserveAl | (& ntState);

OS_INT_Di sableAl I (); // Disable interrupts

Il

/| Execute any code that should be executed with interrupts disabled
/'l No enbOS function should be called

Il

OS_INT_RestoreAll (& ntState); // Restore the interrupt enable state

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

275 CHAPTER 12 Interrupt control

12.4.4.10 OS_INT_RestoreAll()

Description

This function must be called to restore the interrupt enable state of the CPU which was
preserved before.

Prototype
void OS_INT_RestoreAll (0OS_U32* pState);
Parameters
Parameter Description
Pointer to an OS_U32 variable that holds the interrupt enable
pSt at e state

Additional information

Restores the interrupt enable state which was saved before by a call of OS | NT_Pre-
serveAl | () or OS_ I NT_PreserveAndDi sabl eAl | (). If interrupts were enabled before they
were disabled globally, the function reenables them.

Example

voi d Sampl e(void) {
OS_U32 IntState;

/'l Remenber the interrupt enable state.

OS_INT_PreserveAl | (& ntState);

OS_INT_Di sableAl I (); // Disable interrupts

Il

/| Execute any code that should be executed with interrupts disabled
/'l No enbOS function should be called

Il

OS_INT_RestoreAll (& ntState); // Restore the interrupt enable state

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

276 CHAPTER 12 Interrupt control

12.4.4.11 OS_INT_EnableAll()

Description

This function enables high and low priority interrupts unconditionally.

Prototype

voi d OS_I NT_Enabl eAl | (voi d);

Additional information

This function re-enables interrupts which were disabled before by a call of G5 I NT_Di s-
abl eAl | (). The function re-enables embOS and zero latency interrupts unconditionally.
OS_I NT_Di sabl eAl | () and GS_|I NT_Enabl eAl | () should be used as a pair. The call cannot
be nested, because the state is not saved. This kind of global interrupt disable/enable should
only be used when the interrupt enable state is well known and interrupts are enabled.

Between OS_I NT_Di sabl eAl | () and OS_| NT_Enabl eAl | (), no function should be called
when it is not known if the function alters the interrupt enable state.

If the interrupt state is not known, the functions OS | NT_PreserveAl | () or CS_I NT_Pre-
serveAndDi sabl eAl | () and OS_|I NT_RestoreAl | () shall be used as decribed later on.

Example

voi d Sanpl e(void) ({
OS INT_DisableA | (); /1 Disable interrupts
I
/1l Execute any code that should be executed with interrupts disabled
/1 No embOS function should be called
I

OS_INT_EnableAll(); // Re-enable interrupts unconditionally

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 13

Critical Regions

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

278 CHAPTER 13 Introduction

13.1 Introduction

Critical regions are program sections during which preemptive task switches are disabled,
meaning that no task switch and no execution of software timers are allowed except in
situations where the running task must wait. Cooperative task switches are not affected
and will be executed in critical regions.

A typical example for a critical region would be the execution of a program section that
handles a time-critical hardware access (for example writing multiple bytes into an EEPROM
where the bytes must be written in a certain amount of time), or a section that writes data
into global variables used by a different task and therefore needs to make sure the data
is consistent.

A critical region can be defined anywhere during the execution of a task. Critical regions
can be nested; the scheduler will be switched on again after the outermost region is left.
Interrupts are still legal in a critical region. Software timers and interrupts are executed
as critical regions anyhow, so it does not hurt but does not do any good either to declare
them as such. If a task switch becomes due during the execution of a critical region, it will
be performed immediately after the region is left.

Example

voi d HPTask(void) {
OS_TASK_Ent er Regi on() ;
DoSomet hing(); // This code will not be interrupted by other tasks
OS_TASK LeaveRegion();

}

Note

Cooperative task switches will still be executed although preemptive task switches are
disabled in a critical section.

voi d HPTask(void) {
OS_TASK_Ent er Regi on() ;
OS_TASK Del ay(100); // OS_TASK Delay() will cause a cooperative task switch
OS_TASK LeaveRegi on();

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

279 CHAPTER 13 API functions

13.2 API functions

Routine Description

urew

Asel
dsl

JETT

Indicates to embOS the beginning of a critical

OS_TASK Ent er Regi on() region

OS _TASK LeaveRegi on() |Indicates to embOS the end of a critical region. |e | e | e | e

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

280 CHAPTER 13 API functions

13.2.1 OS_TASK_EnterRegion()

Description

Indicates to embOS the beginning of a critical region.

Prototype

voi d OS_TASK_Ent er Regi on(voi d);

Additional information

A critical region counter (OS_d obal . Count ers. Cnt . Regi on), which is zero by default, is
incremented so that critical regions can be nested. The counter will be decremented by
a call to the routine OS_TASK LeaveRegi on() . When this counter reaches zero again, the
critical region ends.

Interrupts are not disabled using OS_TASK Ent er Regi on(). However, preemptive task
switches are disabled in a critical region. If any interrupt triggers a task switch, the task
switch is delayed and kept pending until the final call of GS_TASK LeaveRegi on(). When
the counter reaches zero, any pending task switch is executed.

Cooperative task switches are not affected and will be executed in critical regions. When a
task is running in a critical region and calls any blocking embOS function, the task will be
suspended. When the task is resumed, the task-specific critical region counter is restored,
the task continues to run in a critical region until OS_TASK LeaveRegi on() is called.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

281 CHAPTER 13 API functions

13.2.2 OS_TASK_LeaveRegion()

Description

Indicates to embOS the end of a critical region. Decrements the critical region counter and
checks if a task switch is pending if the counter reaches 0.

Prototype

voi d OS_TASK LeaveRegi on(voi d);

Additional information

A critical region counter (OS_d obal . Count ers. Cnt . Regi on), which is zero by default, is
decremented. If this counter reaches zero, the critical region ends. A task switch which
became pending during a critical region will be executed in OS_TASK_Ent er Regi on() when
the counter reaches zero.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 14

Time Measurement

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

283

14.1 Introduction

CHAPTER 14

Introduction

embOS supports two basic types of run-time measurement which may be used for calcu-
lating the execution time of any section of user code. Low-resolution measurements are
based on system ticks, while high-resolution measurements are based on a time unit called
cycle. The length of a cycle depends on the timer clock frequency.

Example

CS_TI ME Benchnar kLoRes(voi d) {
OS_TIME t;
t = OS_TIME_GetTicks();

DoSonet hing(); // Code to be benchmarked

t = OS_TIME GetTicks() - t;
return t;

}

OS_U32 Benchmar kHi Res(voi d) {
CS TIMNG t;
CS_TI ME_St art Measur enent (&) ;

DoSonet hing(); // Code to be benchmarked

CS_TI ME_St opMeasur enent (&t) ;
return OS Tl ME_GetResul tus(&t);

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

284 CHAPTER 14 Low-resolution measurement

14.2 Low-resolution measurement

The global system time variable OS_d obal . Ti ne is measured in system ticks, which
typically equal milliseconds. The low-resolution functions OS_TI ME_Get Ti cks() and
OS_TI ME_Get Ti cks32() are used for returning the current contents of this variable. The
basic concept behind low-resolution measurement is quite simple: The system time is re-
turned once before the section of code to be timed and once after, and the first value is
subtracted from the second to obtain the time it took for the code to execute.

The term low-resolution is used because the time values returned are measured in com-
pleted system ticks. Consider the following: The global variable GS_d obal . Ti ne is incre-
mented with every system tick interrupt, with a default tick of one msec that means once
each msec. This means that the actual system time can potentially be later than the low-
resolution function returns (for example, if an interrupt actually occurs at system 1.4 ticks,
the system will assume only one tick having elapsed). The problem even gets worse when
concerning runtime measurement, because the system time must be measured twice. Since
each measurement can, potentially, be up to one tick less than the actual time, the differ-
ence between two measurements could theoretically be inaccurate by up to one tick.

The following diagram illustrates how low-resolution measurement works. We can see that
the section of code begins at 0.5 msec and ends at 5.2 msec, which means that its exact
execution time is 5.2 msec - 0.5 mesec = 4.7 msec. However, assuming one system tick per
msec, the first call to OS_TI ME_Get Ti cks() will return 0, while the second call will return
5. The measured execution time would therefore be returned as 5 system ticks - 0 system
ticks = 5 system ticks.

OS_TIME_GetTicks() => 0 0S_TIME_GetTicks() => 5

Code to be timed

¥

OS—T"“E 0.5 ms 52ms

0 ms 1ms 2ms 3ms 4ms 5ms 6 ms

For many applications, low-resolution measurement is sufficient for most of all cases. In
those cases, its ease of use as well as its faster computation time are clear benefits when
compared to high-resolution measurement. Still, high-resolution measurement may be nec-
essary when highly accurate measurements are mandatory.

14.2.1 API functions

Routine Description

urew

JAsel
dSl

JETINE

Returns the current system time in sytem ticks

O5_TI ME_Get Ti cks () as a native integer value.

Returns the current system time in system ticks

O5_TI ME_Get Ti cks32() as a 32 bit integer value.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

285 CHAPTER 14 Low-resolution measurement

14.2.1.1 OS_TIME_GetTicks()

Description

Returns the current system time in ticks as a native integer value.

Prototype
int OS_TIME_GetTicks(void);
Return value

The system variable OS_d obal . Ti ne as a 16 bit integer value on 8/16 bit CPUs, and as
a 32 bit integer value on 32 bit CPUs.

Additional information

The OS_d obal . Ti e variable is a 32 bit integer value. Therefore, if the return value is 32
bit, it holds the entire contents of the OS_Ad obal . Ti me variable. If the return value is 16
bit, it holds the lower 16 bits of the OS_d obal . Ti e variable.

Example

voi d PrintTask(void) {
int Tine;
Time = OS_TI ME_Get Ti cks();

printf("System Tine: %\n", Tine);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

286 CHAPTER 14 Low-resolution measurement

14.2.1.2 OS_TIME_GetTicks32()

Description

Returns the current system time in system ticks as a 32 bit integer value.

Prototype
OS_ 132 OS_TI ME_Get Ti cks32(voi d);

Return value

The system variable OS_d obal . Ti ne as a 32 bit integer value.

Additional information

This function always returns the system time as a 32 bit value. Because the OS_d ob-
al . Ti me variable is also a 32 bit value, the return value is simply the entire contents of
the OS_d obal . Ti ne variable.

Example

voi d PrintTask(void) {
Cs 132 Tine;

Time = OS_TI ME_Get Ti cks32();

printf("System Tine: %\n", Tine);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

287 CHAPTER 14 High-resolution measurement

14.3 High-resolution measurement

High-resolution measurement uses the same routines as those used in profiling builds of
embQsS, allowing fine-tuning of time measurement. While system resolution depends on
the CPU used, it is typically about one microsecond, making high-resolution measurement
1000 times more accurate than low-resolution calculations.

Instead of measuring the number of completed system ticks at a given time, an internal
count is kept of the number of cycles that have been completed at a given time. Please
refer to the illustration below, which measures the execution time of the same code that
was used during the low-resolution calculation. For this example, we assume that the CPU
has a timer running at 10 MHz and counts upwards. The number of cycles per tick therefore
equals (10 MHz / 1 kHz) = 10,000. This means that with each tick-interrupt, the timer
restarts at zero and counts up to 10,000.

t1 = 5,000 t2 = 52,000

/ /
/ / /
/

v

Cycles 52 ms

0 10,000 10,000 10,000 10,000 10,000 10,000

The call to Gs _TI ME_St art Measur enent () calculates the starting value at 5,000 cycles,
while the call to OS_TI ME_St opMeasur enent () calculates the ending value at 52,000 cycles
(both values are kept track of internally). The measured execution time of the code in this
example would therefore be (52,000 cycles - 5,000 cycles) = 47,000 cycles, which equals
4.7 msec.

Although the function OS_TI ME_Get Resul t () may be used for returning the execution time
in cycles as above, itis typically more common to use the function OS_TI ME_Get Resul t us(),
which returns the value in microseconds. In the above example, the return value would
be 4,700 usec.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

288

14.3.1 API functions

CHAPTER 14 High-resolution measurement

Routine

Description

urew
Asel
dsl
lawi

nment ()

OS_TIME_Start Measur e-

Marks the beginning of a code section to be
timed.

nent ()

OS_TI ME_St opMeasur e-

Marks the end of a code section to be timed. o o |00

OS_TI ME_Get Resul t ()

Returns the execution time of the code between
OS TIME Start Measurenment () and S TIME S |[e | e |e | @
t opMeasur enent () in timer cycles.

OS_TI ME_CGet Resul tus()

Returns the execution time of the code between
OS TIME Start Measurement () and S TIME S |[e e |e | @
t opMeasur ermrent () in microseconds.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

289 CHAPTER 14 High-resolution measurement

14.3.1.1 OS_TIME_StartMeasurement()

Description

Marks the beginning of a code section to be timed.

Prototype
void OS TIME_StartMeasurenent (CS_TI M NG pCycl e);
Parameters
Parameter Description
pCycl e Pointer to a data structure of type GS_TI M NG.

Additional information
This function must be used with OS_TI ME_St opMeasur enent () .

Example

Please refer to the Example on page 293.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

290 CHAPTER 14 High-resolution measurement

14.3.1.2 OS_TIME_StopMeasurement()

Description

Marks the end of a code section to be timed.

Prototype
voi d OS_TI ME_St opMeasurenent (OS_TI M NG pCycl e);
Parameters
Parameter Description
pCycl e Pointer to a data structure of type GS_TI M NG.

Additional information
This function must be used with OS_TI ME_St art Measur enent () .

Example

Please refer to the Example on page 293.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

291 CHAPTER 14 High-resolution measurement

14.3.1.3 OS_TIME_GetResult()

Description

Returns the execution time of the code between OS Tl ME StartMeasurenent() and
OS_TI ME_St opMeasur enent () in timer cycles.

Prototype
OS_U32 OS_TI ME_Get Resul t (OS_TI M N& pCycl e);
Parameters
Parameter Description
pCycl e Pointer to a data structure of type GS_TI M NG.

Return value

The execution time in timer cycles as a 32 bit integer value.

Additional information

Cycle length depends on the timer clock frequency.

Example

Please refer to the Example of OS_TI ME_Get Resul t us(), with the only difference that this
function returns cycles instead of microseconds.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

292 CHAPTER 14 High-resolution measurement

14.3.1.4 OS_TIME_GetResultus()

Description

Returns the execution time of the code between OS Tl ME StartMeasurenent() and
OS_TI ME_St opMeasur enent () in microseconds.

Prototype
0S_U32 OS_TI ME_Get Resul t us(OS_CONST_PTR OS_TI M NG *pCycl e) ;
Parameters
Parameter Description
pCycl e Pointer to a data structure of type GS_TI M NG.

Return value

The execution time in microseconds (usec) as a 32-bit integer value.

Example

Please refer to the Example on page 293.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

293

14.4 Example

CHAPTER 14

Example

The following sample demonstrates the use of low-resolution and high-resolution measure-
ment to return the execution time of a section of code:

#i ncl ude "RTCS. h"
#i ncl ude <stdio. h>

static OS_STACKPTR int Stack[1000];

static OS _TASK TCB;
static volatile int Dumy;
voi d User Code(void) {

for (Dummy=0; Durmmy < 11000; Dummy++);

t
/1

/] Task stacks

/| Task-control - bl ocks

/1 Measure the execution tine with |ow resol ution

I

i nt Benchmar kLoRes(voi d) {
CS_TIME t;
t = OS_TIME_GetTicks();

User Code(); /* Execute the user

t = OS_TIME GetTicks() - t;
return (int)t;

t
/1

/1l Measure the execution time with high resolution

I

OS_U32 Benchnmar kHi Res(voi d) {
CS TIMNG t;
OS_TI ME_St art Measur enent (&t);
User Code();
OS_TI ME_St opMeasur enment (&) ;

/| Execute the user

return OS Tl ME_Get Resul tus(&t);

}

voi d Task(void) {
int tLo;
CS_U32 tHi;
char ac[80];
while (1) {
tLo = Benchmar kLoRes();
tH = Benchmar kH Res();

sprintf(ac, "LoRes: %l systemticks\n", tLo);

OS_COM SendStri ng(ac);

sprintf(ac, "H Res: %l usec\n", tH);

OS_COM SendStri ng(ac);
}
}

int main(void) {
CS Init();
CS InitHW);

11
11

OS_TASK_CREATE(&TCB, "HP Task",

CS Start();
return O;

}

11

Initialize enbGS
Initialize hardware for
100, Task, Stack);
Start nultitasking

The output of the sample is as follows:

LoRes: 7 systemticks
H Res: 6641 usec

UMO01001 User Guide & Reference Manual for embOS

// Burn sone tine

code to be benchnmarked

code to be benchnmarked

enbCOS

© 1995-2018 SEGGER Microcontroller GmbH

294 CHAPTER 14 Microsecond precise system time

14.5 Microsecond precise system time

The following functions return the current system time in microsecond resolution. The func-
tion OS_TI ME_Confi gSysTi ner () sets up the necessary parameters.

14.5.1 APIfunctions

Routine Description

urew
JAsel
dsl
lawi

Configures the system time parameters
OS_TI ME_Confi gSysTiner() |for the functions OS Tl ME_Get us() and °
OS_TI ME_Get us64() .

0S_TI ME_Get us() Returns the current s_ystem time in mi- ololele
- — croseconds as a 32 bit value.

0S_TI ME_Get us64() Returns the current s_ystem time in mi- ol olele
- — croseconds as a 64 bit value.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

295 CHAPTER 14 Microsecond precise system time

14.5.1.1 OS _TIME_ConfigSysTimer()

Description

Configures the system time parameters for the functions OS TIME Getus() and
OS TI ME_CGetus64().
This function usually is called once from OGS | ni t HA() (implemented in RTOSInit.c).

Prototype
voi d OS_TI ME_Confi gSysTi mer (OS_CONST_PTR OS_SYSTI MER_CONFI G *pConfi g);
Parameters
Parameter Description
pConfi g Pointer to a data structure of type OS_SYSTI MER_CONFI G.

145.1.1.1 The OS_SYSTIMER_CONFIG struct
OS_TI ME_Confi gSysTi ner () uses the struct OS_SYSTI MER_CONFI G:

Member Description

Ti mer Fr eq Timer frequency in Hz

Ti ckFreq Tick frequency in Hz

0: for hardware timer which counts down

I sUpCount er 1: for hardware timer which counts up

Pointer to a function which returns the current

pf Get Ti mer Cycl es hardware timer count value

Pointer to a function which indicates whether the

pf Get Ti mer I nt Pendi ng hardware timer interrupt pending flag is set

pfGetTimerCycles()

Description

This callback function must be implemented by the user. It returns the current hardware
timer count value.

Prototype

unsi gned int (*pfGetTimerCycles)(void);
Return value
The current hardware timer count value.
pfGetTimerintPending()

Description

This callback function must be implemented by the user. It returns a value unequal to zero
if the hardware timer interrupt pending flag is set.

Prototype

unsi gned int (*pfGetTimerlntPending)(void);

Return value

=0 Hardware timer interrupt pending flag is not set.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

296 CHAPTER 14 Microsecond precise system time

0 The pending flag is set.

Example

#defi ne OS_FSYS 72000000u // 72 Mz CPU main clock

#define OS_PCLK_ TIMER (CS_FSYS) // HWtiner runs at CPU speed
#define OS_TICK FREQ 1000u /1 1 KHz => 1 nsc per systemtick

static unsigned int _OS Get HWIi nmer _Cycl es(void) {
return HW TI MER VALUE REG

}

static unsigned int _QOS _Get HWi nmer _| nt Pendi ng(void) {
return HWTIMER | NT_REG & (1uL << PENDI NG BI T);

}

const OS_SYSTI MER CONFI G Tick_Config = { PCLK_TI MER,

os_
0S_TI CK_FREQ
0,

_OS_Get HWIi mer _Cycl es
_OS_Get HWIi mer _I nt Pendi ng };

void OS_ | nitHWvoid) {
CS_TI ME_Confi gSysTi nmer (&Ti ck_Confi g);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

297 CHAPTER 14 Microsecond precise system time

14.5.1.2 OS _TIME_Getus()

Description

Returns the current system time in microseconds as a 32 bit value.

Prototype

OS_U32 OS_TI ME_Getus(void);

Return value

The current system time in microseconds (usec) as a 32-bit integer value.

Additional information

OS_TI ME_Getus() returns correct values only if OS_TI ME_Confi gSysTi mer () was called
during initialization. All embOS board support packages already call OS_TI ME_Conf i gSys-
Ti mer () . With this 32 bit value OS_TI ME_Get us() can return up to 4249 seconds or ~71

minutes.

Example

void PrintTine(void) {
0s_U32 Tine;

Time = OS_TI ME_Getus();

printf("System Tine: % usec\n", Tine);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

298 CHAPTER 14 Microsecond precise system time

14.5.1.3 OS _TIME_Getus64()

Description

Returns the current system time in microseconds as a 64 bit value.

Prototype

OS_U64 OS_TI ME_Get us64(voi d);

Return value

The current system time in microseconds (usec) as a 64-bit integer value.

Additional information

This function is unavailable for compilers that do not support a 64 bit data type (long long).
This is the case only for very rare older 8/16 bit compiler. All 32 bit compiler support a
64 bit data type.

OS_TI ME_Get us64() returns correct values only if OS_TI ME_Confi gSysTi mer () was called
during initialization. All embOS board support packages already call OS_TI ME_Conf i gSys-
Ti mer () . With this 64 bit value OS_TI ME_Get us64() can return up to 18446744073709
seconds or ~584942 years.

Example

voi d MeasureTi me(void) {
s Ue4 t0, t1;
OS_U32 delta;

t0 = OS_TI ME_Getus64();

DoSonet hi ng() ;

tl = OS_TI ME_Getus64();

delta = (0S_U32)(tl - t0);
printf("Delta: % usec\n", delta);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 15

Low Power Support

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

300 CHAPTER 15 Introduction

15.1 Introduction

embQOS provides several means to control the power consumption of your target hardware.
These include

The possibility to enter power save modes with the embOS function OS_| dl e() .
The embOS tickless support, allowing the microcontroller to remain in a power save
mode for extended periods of time.

e The embOS peripheral power control module, which allows control of the power
consumption of specific peripherals.

The following chapter explains each of these in more detail.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

301 CHAPTER 15 Starting power save modes in OS_ldle()

15.2 Starting power save modes in OS_Idle()

In case your controller supports some kind of power save mode, it is possible to use it with
embOS. To enter that mode, you would usually implement the respective functionality in
the function OS_I dl e(), which is located inside the embQOS source file RTOSI ni t . c.

0s_ | dl e() is executed whenever no task is ready for execution. With many embQOS start
projects it is preconfigured to activate a power save mode of the target CPU. Please note
that the available power save modes are hardware-dependant. For example with Cortex-M
CPUs, the wfi instruction is executed per default in OS_I dl e() to put the CPU into a power
save mode:

void OS_ldle(void) { // Idle loop: No task is ready to execute
while (1) {
_asn(" wi"); /'l Enter sleep node

}
}

For further information on OS_ |1 dl e(), please also refer to OS_ I dl e() on page 302.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

302 CHAPTER 15 Tickless support

15.3 Tickless support

The embOS tickless support stops the periodic system tick interrupt during idle periods.
Idle periods are periods of time when there are no tasks and no software timer ready
for execution and no interrupt request is pending. Stopping the system tick allows the
microcontroller to remain in a power save mode until an interrupt occurs.

The embOS tickless support comes with the functions OS_TI CKLESS_Get Nurd dl eTi cks(),
OS_TI CKLESS_Adj ust Ti me(), OS_TI CKLESS Start () and OS_TI CKLESS St op() . These can
be used to add tickless support to any embOQOS start project.

15.3.1 OS_Idle()

In order to use the tickless support the OS_Idl e() function needs to be modified. The
default Gs_I dl e() function is just an endless loop which starts a power save mode:

void OS Idle(void) {
while (1) {
_Ent er LowPower Mode() ;
}
}

The tickless OS | dl e() function depends on the hardware:

void OGS Idle(void) {
CS_TI ME | dl eTi cks;
CS_INT_Di sabl e();
I dl eTi cks = OS_TI CKLESS Get Numi dl eTi cks();
if (1dleTicks > 1) {
if ((0s_U32)IdleTicks > TI MERL_MAX_TI CKS) {
| dl eTi cks = TI MERL_MAX_TI CKS;
}
OS_TI CKLESS Start (IdleTicks, & EndTi ckl essMode);
_Set HWIi mer (1 dl eTi cks);

}
OS_I NT_Enabl e();
while (1) {
_Ent er LowPower Mode() ;
}
}

The following description explains the tickless CS_|dl e() function step by step:

void OS Idle(void) {
OS _TI ME I dl eTi cks;
OS_INT_Di sabl e();

Interrupts are disabled to avoid a timer interrupt.

I dl eTi cks = OS_TI CKLESS Get Numi dI eTi cks();
if (1dleTicks > 1) {

The OS_Idl e() function evaluates the number of idle system ticks by calling CS_TI CK-
LESS_Get Numl dl eTi cks() . The tickless mode is only used when there is more than one idle
system tick: If there is one (or none) idle system tick only, the scheduler will be executed
with the next system tick, hence it makes no sense to enter the tickless mode in that case.

if ((0S_U32)1dleTicks > TIMER_MAX_TI CKS) {
I dl eTi cks = TI MER_MAX_TI CKS;
}

If it is not possible to generate the timer interrupt at the specified time, e.g. due to hardware
timer limitations, the idle system ticks can be reduced to any lower value. For example, if

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

303 CHAPTER 15 Tickless support

OS_TI CKLESS_Get Num dl eTi cks() returns 200 idle system ticks, but the hardware timer’s
duration is limited to 100 ticks maximum, the variable IdleTicks will initially be set to 100
system ticks. The system will then wake up after 100 system ticks, OS_Idl e() will be
executed once more and OS_TI CKLESS_Get Numl dlI eTi cks() now returns the remaining 100
idle systems ticks, for which tickless mode is entered once again. This means that the
system wakes up two times for the entire 200 idle system ticks.

if (IdleTicks > 1) {

OS_TI CKLESS Start (1dl eTicks, & EndTi ckl esshbde);
_Set HWIi mer (1 dl eTi cks);

}

OS _TICKLESS Start () sets theidle system ticks and the callback function. IdleTicks is later
used in the callback function, which is described in more detail below. _Set HWIi ner () is
a hardware-dependent function that reprograms the hardware timer to generate a system
tick interrupt at the time defined by IdleTicks.

OS_| NT_Enabl e();
while (1) {
_Ent er LowPower Mode() ;
}
}

Interrupts are reenabled and the CPU continually enters power save mode. _Ent er LowPow-
er Mode() is a hardware-dependent function that activates the power save mode.

15.3.2 Callback Function

The callback function calculates how long the processor slept in power save mode and
corrects the system time accordingly.

static void _EndTi ckl essMode(voi d) {
OS _U32 Nunfli cks;

if (OS_d obal.Tickl essExpired) {

OS_TI CKLESS_Adj ust Ti ne(OS_d obal . Ti ckl essFactor);
} else {

NunTi cks = _Get LowPower Ti cks();

OS_TI CKLESS_Adj ust Ti ne(Nunili cks) ;

}
_Set HWIi mer (OS_TI MER_RELQAD) ;

}
The following description explains the callback function step by step:

static void _EndTi ckl essMode(voi d) {
OS_U32 NunTi cks;

if (OS_d obal.TicklessExpired) {
OS_TI CKLESS_Adj ust Ti ne(OS_d obal . Ti ckl essFactor);

If the hardware timer expired and the system tick interrupt was executed the flag OS_Q ob-
al . Ti ckl essExpi r ed is set. This can be used to determine if the system slept in power save
mode for the entire idle time. If this flag is set we can use the value in OS_d obal . Ti ck-
| essFact or to adjust the system time.

} else {
NunTi cks = _Get LowPower Ti cks();
OS_TI CKLESS_Adj ust Ti me(Nunili cks) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

304

CHAPTER 15

_Set HWIi mer (OS_TI MER_RELQAD) ;
}

15.3.3 API functions

Tickless support

_Get LowPower Ti cks() is a hardware-dependent function which returns the expired idle
ticks if the power save mode was interrupted by any other interrupt than the system tick.
We use that value to adjust the system time.

_Set HWIi mer () is a hardware-dependent function which reprograms the hardware timer
to its default value for one system tick.

Routine

Description

urew

SE
dS|

JETTTIN
9|pI

OS_TI CKLESS Adj ust Ti ne()

Adjusts the embOS internal time
variable by the specified amount of
system ticks.

OS_TI CKLESS_Get Nuni dI eTi cks()

Retrieves the number of embOS
embOS system ticks until the next
time-scheduled action will be start-
ed.

OS_TI CKLESS_Start ()

Start the tickless mode.

OS_TI CKLESS St op()

Prematurely stops the tickless
mode.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

305 CHAPTER 15 Tickless support

15.3.3.1 OS _TICKLESS AdjustTime()

Description

Adjusts the embOS internal time variable by the specified amount of system ticks.

Prototype
voi d OS_TI CKLESS_Adj ust Ti ne(OS_TI ME Ti ne) ;
Parameters
Parameter Description
Ti e The amount of time which should be added to the embOS in-
ternal time variable.

Additional information

The function may be useful when the embOS system timer was halted for any interval
of time with a well-known duration. When the embOS timer is subsequently re-started,
the internal time variable must be adjusted to that duration in order to guarantee time-
scheduled actions are performed accuratetely.

Example

Please refer to the example described in OS_I dl e() on page 302.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

306 CHAPTER 15 Tickless support

15.3.3.2 OS _TICKLESS GetNumldleTicks()

Description

Retrieves the number of embOS embOS system ticks until the next time-scheduled action
will be started.

Prototype

OS_TI ME OS_TI CKLESS_Get Num dl eTi cks(voi d);

Return value

>0 Number of system ticks until next time scheduled action.
=0 A time scheduled action is pending.

Additional information

The function may be useful when the embQOS timer and CPU shall be halted by the appli-
cation and restarted after the idle time to save power. This works when the application has
its own time base and a special interrupt that can wake up the CPU.

When the embOS timer is started again the internal time must be adjusted to guarantee
time-scheduled actions to be executed. This can be done by a call of OS_TI CKLESS_Ad-
justTime().

Example
Please refer to the example described in CS_| dl e() on page 302.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

307 CHAPTER 15 Tickless support

15.3.3.3 OS_TICKLESS_ Start()

Description

Start the tickless mode. It sets the sleep time and the user callback function which is called
from the scheduler after wakeup from power save mode.

Prototype
voi d OS_TI CKLESS Start (OS_TI ME Ti ne,
voi dRout i ne* Cal | back);
Parameters
Parameter Description
Ti me Ti me in ticks which will be spent in power save mode.
Cal | back Cal | back function to stop the tickless mode.

Additional information
It must be called before the CPU enters a power save mode.

The callback function must stop the tickless mode. It must calculate how many system ticks
are actually spent in lower power mode and adjust the system time by calling OS_TI CK-
LESS Adj ust Ti ne() . It also must reset the system tick timer to it's default tick period.

Example

Please refer to the example described in OS_I dl e() on page 302.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

308 CHAPTER 15 Tickless support

15.3.3.4 OS_TICKLESS_Stop()

Description

Prematurely stops the tickless mode.

Prototype
voi d OS_TI CKLESS_St op(voi d);

Additional information

The tickless mode is stopped immediately even when no time-scheduled action is due.
OS_TI CKLESS St op() calls the callback function registered when tickless mode was en-

abled.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

309 CHAPTER 15 Tickless support

15.3.4 Frequently Asked Questions

Q: Can I use embOS without tickless support?
A: Yes, you can use embOS without tickless support. No changes to your project are
required.

Q: What hardware-dependent functions must be implemented and where?

A: OGS Idle() must be modified and the callback function must be implemented.
0s 1 dl e() is part of the RTCSI ni t. ¢ file. We suggest to implement the callback function
in the same file.

: What triggers the callback function?
The callback function is executed once from the scheduler when the tickless operation
ends and normal operation resumes.

ZQ

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

310 CHAPTER 15 Peripheral power control

15.4 Peripheral power control

The embQOS peripheral power control is used to determine if a peripheral’s clock or its power
supply can be switched off to save power.

It includes three functions: OS_PONER Get Mask(), OS_POMER Usagel nc() and OS_POM

ER UsageDec() . These functions can be used to add peripheral power control to any em-
bOS start project.

If a peripheral gets initialized a call to OS_POAER _Usagel nc() increments a specific entry in
the power management counter to signal that it is in use. When a peripheral is no longer
in use, a call to GS_PONER_UsageDec() decrements this counter. Within GS_| dl e() a call of
OS_POAER _Get Mask() generates a bit mask which describes which clock or power supply is
in use, and which is not and may therefore be switched off.

15.4.1 APIfunctions

Routine Description

urew

Nsel
dsl

JEYI
3Pl

OS_POVNER Get Mask() Retrieves the power management counter.

Decrements the power management
05_POMER_UsageDec() | cotrcil ™ P 9

OS_PONER Usagel nc() | Increments the power management counter(s). (e (e | o (o | @

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

311 CHAPTER 15 Peripheral power control

15.4.1.1 OS_POWER_GetMask()

Description

Retrieves the power management counter.

Prototype

OS_UI NT OS_POWER Get Mask(voi d) ;

Return value

A bit mask which describes whether a peripheral is in use or not.

Additional information

This function generates a bit mask from the power management counter it retrieves. The
bit mask describes which peripheral is in use and which one can be turned off. Switching
off a peripheral can be done by writing this mask into the specific register. Please refer to
the Example for additional information.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

312 CHAPTER 15 Peripheral power control

15.4.1.2 OS _POWER_UsageDec()

Description

Decrements the power management counter(s).

Prototype

voi d OS_PONER UsageDec(OS_UI NT | ndex) ;

Parameters

Parameter Description
Contains a mask with bits set for those counters which
| ndex should be updated. (Bit 0 => Counter 0) The debug version

checks for underflow, overflow and undefined counter num-
ber.

Additional information

When a peripheral is no longer in use this function is called to mark the peripheral as unused
and signal that it can be switched off.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

313 CHAPTER 15 Peripheral power control

15.4.1.3 OS_POWER_Usagelnc()

Description

Increments the power management counter(s).

Prototype

voi d OS_POWNER Usagel nc(OS_Ul NT | ndex) ;

Parameters

Parameter Description
Contains a mask with bits set for those counters which
| ndex should be updated. (Bit 0 => Counter 0) The debug version

checks for underflow, overflow and undefined counter num-
ber.

Additional information

When a peripheral is in use this function is called to mark the peripheral as in use.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

314 CHAPTER 15 Peripheral power control

15.4.2 Example

This is an example for the peripheral power control. As it depends on the used hardware,
its implementation is fictional: A, B and C are used to represent arbitrary peripherals.

#define OS_PONER USE A (1 << 0) [// peripheral "A"
#define OS_PONER USE B (1 << 1) // peripheral "B"
#define OS_PONER USE C (1 << 2) [// peripheral "C'
#define OS_PONER_USE ALL (OS_PONER USE A | OS PONER USE B | OS_POWER_USE_C)

In the following function the peripherals A and C have been initialized and were marked in-
use by a call to OS_PONER Usagel nc() :

void _InitAC(void) {

OS_POVER _Usagel nc(OS_PONER _USE_A); // Mark "A" as used
OS_PONER _Usagel nc(OS_POAER_USE _C); // Mark "C' as used

}

After some time, C will not be used any more and can therefore be marked as unused by
a call to GS_PONER_UsageDec() :

void _WrkDone(void) {
OS_POAER_UsageDec(OS_POANER _USE C); // Mark "C' as unused
}

While in OS_Idle(), a call to S POAER Get Mask() retrieves a bit mask from the power
management counter. That bitmask subsequently is used to modify the corresponding bits
of a control register, leaving only those bits set that represent a peripheral which is in-use.

void OS Idle(void) { // Idle loop: No task is ready to execute
OS_UI NT Power Mask;
OS_Ul6 dkControl;
Il
Il Initially disable interrupts
Il
OS_INT_I ncDI ();
Il
/| Exam ne whi ch peripherals may be switched off
Il
Power Mask = OS_POWER_Get Mask() ;
Il
Il Store the content of CTRLREG and clear all OS _POMNER USE related bits
Il
Cl kControl = CTRLREG & ~0OS_POAER_USE_ALL;
Il
/1 Set only bits for used peripherals and wite themto the specific register
/'l In this case only "A" is marked as used, so "C' gets sw tched of f
Il
CTRLREG = Cl kControl | Power Mask;
Il
/!l Re-enable interrupts
Il
OS_I NT_DecRI () ;
for () {
_do_not hi ng();
Ji 5

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 16

Heap Type Memory
Management

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

316

CHAPTER 16 Introduction

16.1 Introduction

ANSI C offers some basic dynamic memory management functions. These are malloc, free,
and realloc. Unfortunately, these routines are not thread-safe, unless a special thread-safe
implementation exists in the compiler runtime libraries; they can only be used from one
task or by multiple tasks if they are called sequentially. Therefore, embOS offer thread
safe variants of these routines. These variants have the same names as their ANSI coun-
terparts, but are prefixed OS_HEAP_; they are called CS_HEAP_mal | oc(), OS_HEAP free(),
OS_HEAP_real | oc() . The thread-safe variants that embOS offers use the standard ANSI
routines, but they guarantee that the calls are serialized using a mutex.

If heap memory management is not supported by the standard C libraries, embQOS heap
memory management is not implemented.

Heap type memory management is part of the embQOS libraries. It does not use any re-
sources if it is not referenced by the application (that is, if the application does not use any
memory management API function).

Note that another aspect of these routines may still be a problem: the memory used for
the functions (known as heap) may fragment. This can lead to a situation where the total
amount of memory is sufficient, but there is not enough memory available in a single block
to satisfy an allocation request.

This API is not available in embOS library mode OS_LI BMODE_SAFE.

Example

voi d HPTask(void) {
0s_U32* p;

while (1) {
p = (0S_U32*) OS_HEAP_nal | oc(4);
*p = 42;
CS_HEAP free(p);
}
}

voi d LPTask(void) {
Cs_U16* p;

while (1) {
p = (OS_U16*) OS_HEAP_nal | oc(2);
*p - O;
CS_HEAP free(p);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

317 CHAPTER 16 API functions

16.2 API functions

: e 3 |d|= |2
Routine Description o |8 %’ 3
= @
OS _HEAP free() Frees a block of memory previously allocated. oo
OS_HEAP_nmal | oc() Allocates a block of memory on the heap. °
OS_HEAP_ real |l oc() | Changes the allocation size. oo

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

318

CHAPTER 16

16.2.1 OS_HEAP_free()

Description

Frees a block of memory previously allocated.
This is the thread safe free() variant.

API functions

Prototype
voi d OS_HEAP_free(voi d* pMenBl ock);
Parameters
Parameter Description
oMenBl ock (Plgi_nljgptfnilnl‘\ﬁggr.y block previously allocated with
Example

voi d UseHeapMem(voi d) {
char* sText;

sText = (char*)0OS_HEAP_mal | oc(20);
strcpy(sText, "Hello World");

printf(sText);
CS_HEAP free(p);

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

319 CHAPTER 16 API functions

16.2.2 OS HEAP_ _malloc()

Description

Allocates a block of memory on the heap.
This is the thread safe malloc() variant.

Prototype
voi d *OS_HEAP_mal | oc(unsi gned int Size);
Parameters
Parameter Description
Si ze Si ze of the requested memory block in bytes.

Return value

Upon successful completion with size not equal zero, GS_ HEAP_mal | oc() returns a pointer
to the allocated space. Otherwise, it returns a NULL pointer.

Example

voi d UseHeapMen(void) {
char* sText;

sText = (char*)OS_HEAP_mal | oc(20);
strcpy(sText, "Hello World");
printf(sText);

OS_HEAP free(p);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

320

CHAPTER 16 API functions

16.2.3 OS_HEAP_realloc()

Description

Changes the allocation size.

This is the thread safe realloc() variant.

Prototype
voi d *OS_HEAP_real | oc(voi d* pMenBl ock,
unsi gned int NewSize);
Parameters
Parameter Description
Pointer to a memory block previously allocated with

pNenBl ock 0S HEAP mal | oc() .

NewSi ze New size for the memory block in bytes.

Return value

Upon successful completion,

OS_HEAP real | oc() returns a pointer to the reallocated mem-

ory block. Otherwise, it returns a NULL pointer.

Example

voi d UseHeapMem(void) {
char* sText;

sText = (char*)OS_HEAP_

strcpy(sText, "Hello");
printf(sText);

sText = (char*)OS_HEAP_

mal | oc(10);

real | oc(sText, 20);

strcpy(sText, "Hello World");

printf(sText);
CS_HEAP free(p);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 17

Fixed Block Size Memory Pool

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

322

CHAPTER 17 Introduction

17.1 Introduction

Fixed b

lock size memory pools contain a specific number of fixed-size blocks of memory.

The location in memory of the pool, the size of each block, and the number of blocks are
set at runtime by the application via a call to the GS_MEMPOOL_Cr eat e() function. The
advantage of fixed memory pools is that a block of memory can be allocated from within

any task in a very short, determined period of time.
Example
#i ncl ude "RTCS. h"
#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#def i ne BLOCK_SI ZE (16)
#def i ne NUM_BLOCKS (16)
#defi ne POOL_SI ZE (BLOCK_SI ZE * NUM BLOCKS)
static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task-control -bl ocks
static OS_MEMPOOL VEMF;
static OS_U8 aPool [POOL_SI ZE + OS_MEMPOOL_SI ZEOF_BLOCKCONTROL] ;
static void HPTask(void) {
char* a;
while (1) {
11
/'l Request one nenory bl ock
11
a = OS_MEMPOOL_AI | ocBl ocked(&VEMF) ;
11
/Il Work with menory bl ock
11
strcpy(a, "Hello Wrld\n");
printf(a);

OS_MEMPOOL_FreeEx(&VEMF, a); // Release nenory bl ock
OS_TASK Del ay (10);

}
}

static
char

whi |
Il
Il
Il
b
if

}

voi d LPTask(void) {
* b;

e (1) {
Request one nmenory bl ock when avail able in nax. next 10 systemticks

= OS_MEMPOOL_AI | ocTi ned(&VEMF, 10);
(b 1=0) {

11

/1l Work with menory bl ock

11
b[0]
b[1]
11
/'l Rel eae nenory bl ock

11

OS_MEMPOOL_Fr eeEx(&VEMF, b) ;

0x12;
0x34;

OS_TASK Del ay (50);

}
}

int mai n(void) {

s |

nit(); /1 Initialize enhCS

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

323

CHAPTER 17 Introduction

CS I nitHW); /1 Initialize hardware for enbCs
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

/1

/1l Create [NUM BLOCKS] blocks with a size of [BLOCK SIZE] each

/1

OS_MEMPOCOL_Cr eat e(&VEMF, aPool, NUM BLOCKS, BLOCK Sl ZE);

CS Start(); /1 Start mnultitasking

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

324 CHAPTER 17

17.2 API functions

API functions

Routine

Description

urew

Nsel

dSi
JETT

0S_MEMPOOL_AI | oc()

Requests allocation of a memory
block.

OS_ MEMPOOL_Al | ocBl ocked()

Allocates a memory block from pool.

OS_MEMPOOL_Al | ocTi med()

Allocates a memory block from pool
with a timeout.

OS_MEMPOCOL_Creat e()

Creates and initializes a fixed block
size memory pool.

OS_MEMPOOL_Del et e()

Deletes a fixed block size memory
pool.

OS_MEMPOOL_Free()

Releases a memory block that was
previously allocated.

OS_MEMPOOL_FreeEx()

Releases a memory block that was
previously allocated.

OS_MEMPOOL_Get Bl ockSi ze()

Returns the size of a single memory
block in the pool.

0S_MEMPOOL_Get MaxUsed()

Returns maximum number of blocks in
a pool that have been used simultane-

ously since creation of the pool.

OS MEMPOOL_Get NunBI ocks()

Returns the total number of memory
blocks in the pool.

OS_MEMPOOL_CGet Nunfr eeBl ocks()

Returns the number of free memory
blocks in the pool.

OS_MEMPOCL_| sl nPool ()

Information routine to examine
whether a memory block reference

pointer belongs to the specified mem-

ory pool.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

325 CHAPTER 17 API functions

17.2.1 OS_MEMPOOL_Alloc()

Description

Requests allocation of a memory block. Continues execution without blocking.

Prototype
voi d *OS_MEMPOCOL_Al | oc(OS_MEMPOOL* pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.

Return value

NULL Pointer to the allocated block.
= NULL If no block has been allocated.

Additional information

The calling task is never suspended by calling OS_ MEMPOOL_Al | oc() . The returned pointer
must be delivered to GS_MEMPOOL_Fr eeEx() as parameter to free the memory block. The
pointer must not be modified.

Example

static OS_MEMPOOL _MenPool ;

voi d Task(void) {
voi d* pDat a;

pData = OS_MEMPOCOL_Al | oc(& MenPool , 0);
if (pData != NULL) {
/1 Success: Wirk with the allocated nenory.
} else {
/1 Failed: Do sonething else.
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

326 CHAPTER 17 API functions

17.2.2 OS_MEMPOOL_AllocBlocked()

Description

Allocates a memory block from pool. Suspends until memory is available.

Prototype
voi d *OS_MEMPOCL_AI | ocBl ocked(OS_MEMPOOL* pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.

Return value

Pointer to the allocated memory block.

Additional information

If there is no free memory block in the pool, the calling task is suspended until a memory
block becomes available. The retrieved pointer must be delivered to S MEMPOCOL_Fr eeEx()
as a parameter to free the memory block. The pointer must not be modified.

Example

Please refer to the example in the Introduction on page 322.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

327 CHAPTER 17 API functions

17.2.3 OS_MEMPOOL_AllocTimed()

Description

Allocates a memory block from pool with a timeout. Suspends until memory is available
or a timeout occurs.

Prototype
voi d *OS_MEMPOOL_Al | ocTi med(OS_MEMPOOL* pMEMF,
CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.
. Time limit before timeout, given in ticks. Zero or negative

Ti meout ;

values are permitted.

Return value

= NULL No memory block could be allocated within the specified time.
NULL Pointer to the allocated memory block.

Additional information

If there is no free memory block in the pool, the calling task is suspended until a memory
block becomes available or the timeout has expired. The returned pointer must be delivered
to OS_MEMPOCOL_FreeEx() as parameter to free the memory block. The pointer must not
be modified.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the memory block becomes available after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the memory block was not available within the requested time.

Example

static OS_MEMPOOL _MenPool ;

voi d Task(void) {
voi d* pDat a;

pData = OS_MEMPOCOL_AI | ocTi med(& MenmPool , 20, 0);
if (pData != NULL) {
/1 Success: Wrk with the allocated nenory.
} else {
/1 Failed: Do sonething else.
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

328 CHAPTER 17 API functions

17.2.4 OS _MEMPOOL_Create()

Description

Creates and initializes a fixed block size memory pool.

Prototype
voi d OS_MEMPOOL_Cr eat e(OS_MEMPOOL* pMEMF,
voi d* pPool ,
OS_UI NT NunBl ocks,
OS_UI NT Bl ockSi ze) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.
Pointer to memory to be used for the memory pool. Required
pPool size is: NunBl ocks * (Bl ockSi ze + OS_MEMPOOL_SI ZE-
OF_BLOCKCONTRCL).
NunBl ocks Number of blocks in the pool.
Bl ockSi ze Size in bytes of one block.

Additional information

OS_MEMPOOL_SI ZEOF_BLOCKCONTRCL gives the number of bytes used for control and debug
purposes. It is guaranteed to be zero in release or stack-check builds. Before using any
memory pool, it must be created. A debug build of libraries keeps track of created and
deleted memory pools. The release and stack-check builds do not. The maximum num-
ber of blocks and the maximum block size is for 16Bit CPUs 0x7FFF and for 32Bit CPUs
0x 7FFFFFFF.

Example

#def i ne NUM_BLOCKS (16)
#def i ne BLOCK_SI ZE (16)
#define POOL_SIZE (NUM BLOCKS * (BLOCK_SIZE + OS_MEMPOOL_SI ZEOF_BLOCKCONTROL))

S _u8 aPool [POOL_SI ZE] ;
OS_MEMPOOL My MEMNF,

void Init(void) {
/[l Create 16 Blocks with size of 16 Bytes
OS_MEMPOOL_Cr eat e(&/MEMF, aPool, NUM BLOCKS, BLOCK Sl ZE);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

329 CHAPTER 17 API functions

17.2.5 OS_MEMPOOL_Delete()

Description

Deletes a fixed block size memory pool. After deletion, the memory pool and memory blocks
inside this pool can no longer be used.

Prototype
voi d OS_MEMPOOL_Del et e(OS_MEMPOOL* pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.

Additional information

This routine is provided for completeness. It is not used in the majority of applications
since there is no need to dynamically create/delete memory pools. For most applications,
it is suggested to have a static memory pool design: memory pools are created at startup
(before calling OS_Start ()) and never get deleted. A debug build of embOS will explicitly
mark a memory pool as deleted.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

330 CHAPTER 17 API functions

17.2.6 OS_MEMPOOL_Free()

Description

Releases a memory block that was previously allocated. The memory pool does not need
to be denoted.

Prototype
voi d OS_MEMPOOL_Free(voi d* pMenBl ock) ;
Parameters
Parameter Description
pMenBl ock Pointer to the control data structure of the memory pool.

Additional information

This function may be used instead of 0S8 MEMPOOL_Fr eeEx() . It has the advantage that only
one parameter is needed since embOS will automatically determine the associated memory
pool. The memory block becomes available for other tasks waiting for a memory block from
the associated pool, which may cause a subsequent task switch.

Example

voi d Task(void) {
voi d* pMem

OS_MEMPOCOL_Free(pMem ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

331 CHAPTER 17 API functions

17.2.7 OS_MEMPOOL_FreeEx()

Description

Releases a memory block that was previously allocated.

Prototype
voi d OS_MEMPOOL_Fr eeEx(OS_MEMPOOL* pMEMF,
voi d* pMenBl ock) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.
pMenBl ock Pointer to memory block to free.

Additional information

The memory block becomes available for other tasks waiting for a memory block from the
associated pool, which may cause a subsequent task switch.

Example

Please refer to the example in the Introduction on page 322.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

332 CHAPTER 17 API functions

17.2.8 OS_MEMPOOL_GetBlockSize()

Description

Returns the size of a single memory block in the pool.

Prototype
int OS_MEMPOOL_Get Bl ockSi ze(OS_CONST_PTR OS_MEMPOOL * pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.

Return value

Size in bytes of a single memory block in the specified memory pool. This is the value of
the parameter when the memory pool was created.

Example

static OS_MEMPOOL _MenPool ;

voi d PrintBl ockSi ze(void) {
int Size;

Size = OS_MEMPOOL_Get Bl ockSi ze(& MenPool) ;
printf("Block Size: %l\n", Size);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

333 CHAPTER 17

17.2.9 0OS MEMPOOL_GetMaxUsed()

Description

API functions

Returns maximum number of blocks in a pool that have been used simultaneously since

creation of the pool.

Prototype
int OS_MEMPOOL_Get MaxUsed(OS_CONST_PTR OS_MEMPOOL * pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.

Return value

Maximum number of blocks in the specified memory pool that were used simultaneously

since the pool was created.

Example

static OS_MEMPOOL _MenPool ;

voi d Print MenoryUsagePeak(void) {
int BlockCnt, UsedBl ocks, ;
voi d* pDat a;

pData = OS_MEMPOCL_AI | ocBl ocked(& MenPool ,
Bl ockCnt

if (UsedBlocks !'= 0) {
printf("Max used Menory: %%®An", (int)
(((float)UsedBl ocks / BlockCnt) * 100));
} else {
printf("Max used Menory: 0%%);
}
}

UMO01001 User Guide & Reference Manual for embOS

= OS_MEMPOOL_Get NumBIl ocks(& MenPool) ;
UsedBl ocks = OS_MEMPOOL_Get MaxUsed(& MenPool) ;

© 1995-2018 SEGGER Microcontroller GmbH

334 CHAPTER 17

API functions

17.2.10 OS_MEMPOOL_GetNumBlocks()

Description

Returns the total number of memory blocks in the pool.

Prototype
int OS_MEMPOOL_Get NunBl ocks(OS_CONST_PTR OS_MEMPOOL * pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of memory pool.

Return value

Returns the number of blocks in the specified memory pool. This is the value that was given

as parameter during creation of the memory pool.

Please refer to the example of 08 MEMPOOL_Get MaxUsed() or OS_MEMPOOL_Get Nunfr ee-

Bl ocks() .

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

335

CHAPTER 17 API functions

17.2.11 OS_MEMPOOL_GetNumFreeBlocks()

UMO01001 User Guide & Reference Manual for embOS

Description

Returns the number of free memory blocks in the pool.

Prototype
i nt OS_MEMPOOL_Get Nunfr eeBl ocks(OS_CONST_PTR OS_MEMPOOL * pMEMF) ;
Parameters
Parameter Description
pMEMF Pointer to the control data structure of the memory pool.

Return value

The number of free blocks currently available in the specified memory pool.

Example

static OS_MEMPOOL _MenPool ;

voi d PrintMenoryUsage(void) {
i nt Bl ockCnt;
i nt UnusedBl ocks;
voi d* pDat a;

pData = OS_MEMPOCOL_AI | ocBl ocked(& MenPool , 0);

Bl ockCnt = OS_MEMPOOL_Get NumBIl ocks(& MenPool) ;
UnusedBl ocks = OS_MEMPOOL_Get Nunfr eeBl ocks(& MenPool) ;
i f (UnusedBlocks !'= 0) {
printf("Used Menory: %@%An", 100 - (int)
(((float)UnusedBl ocks / BlockCnt) * 100));
} else {
printf("Used Menory: 09%%);
}
}

© 1995-2018 SEGGER Microcontroller GmbH

336 CHAPTER 17 API functions

17.2.12 OS_MEMPOOL_IsInPool()

Description

Information routine to examine whether a memory block reference pointer belongs to the
specified memory pool.

Prototype

0S_BOOL OS_MEMPOOL_| sl nPool (OS_CONST_PTR OS_MEMPOOL * pMVENF,
OS_CONST_PTR voi d *pMenBl ock) ;

Parameters

Parameter Description
pMEMF Pointer to the control data structure of the memory pool.
pMenBl ock Pointer to a memory block that should be checked.

Return value

0 Pointer does not belong to the specified memory pool.
1 Pointer belongs to the specified memory pool.
Example

static OS_MEMPOOL _MenPool ;

voi d CheckPoi nt erLocati on(0Os_MEMPOOL* pMEMF, voi d* Pointer) {
i f (OS_MEMPOOL_I sl nPool (pMEMF, Pointer) == 0) {
printf("Pointer doesn't belong to the specified menory pool.\n");
} else {
printf("Pointer belongs to the specified nmenory pool.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 18

System Tick

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

338

CHAPTER 18 Introduction

18.1 Introduction

This chapter explains the concept of the system tick, which is used as a time base for
embOS.

Typically, a hardware timer is used to generate periodic interrupts which are then utilized
as a time base for embOS. To do so, the timer’s according interrupt service routine must
call one of the embOS tick handlers.

embOS offers different tick handlers with different functionality, and also provides the
means to optionally call a user-defined hook function from within these tick handlers.

The used hardware timer usually is initialized within GS_I ni t HA() , which is delivered with
the respective embOS start project’s RTGSI ni t. c. This also includes the interupt handler
that is called by the hardware timer interrupt. Modifications to this initialization and the
respective interrupt handler are required when a different hardware timer should be used
(see Using a different timer to generate tick interrupts for embOS on page 458).

Tick handler

The interrupt service routine used as a time base must call one of the embOS tick handlers.
The reason why there are different tick handlers is simple: They differ in capabilities, code
size and execution speed. Most applications use the standard tick handler OS_TI CK_Han-
dl e(), which increments the tick count by one each time it is called. This tick handler is
small and efficient, but it cannot handle situations in which the interrupt rate differs from
the tick rate. OS_TI CK_Handl eEx() is capable of handling even fractional interrupt rates,
such as 1.6 interrupts per tick.

18.2 API functions

: - 3\ 7|5
Routine Description % o |3 (_32
OS _TI CK _Config() Configures the tick to interrupt ratio. oo
OS_TI CK_Handl e() Default embOS timer tick handler. °

Alternate tick handler that may be used instead
O5_TI CK_Handl eEx() of the default tick handler. .

05_TI CK_Hand! eNoHook() Speed-optimized embOS timer tick handler .
- - without hook functionality.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

339 CHAPTER 18 API functions

18.2.1 OS_TICK_Config()

Description

Configures the tick to interrupt ratio. The default tick handler, OS_TI CK_Handl e() , assumes
a 1:1 ratio, meaning one interrupt increments the tick count (0S_d obal .Time) by one.
For other ratios, GS_TI CK_Handl eEx() must to be used instead of the default handler and
the tick to interrupt ratio must be configured through a call to OS_TI CK_Confi g() . Since this
must be done before the embOS timer is started, it is suggested to call GS_TI CK_Confi g()
during GS_ I ni t HW() .

Prototype

voi d OS_TI CK_Config(unsigned FractPerlnt,
unsi gned Fract Per Ti ck);

Parameters

Parameter Description
Fract Per | nt Number of fractions per interrupt.
Fract Per Ti ck Number of fractions per tick.

Additional information
Fract Per | nt /Fract Per Ti ck = Time between two tick interrupts/Time for one tick.

Fractional values are supported. For example, a 1 msec tick can be used even when an
interrupt is generated every 1.6 msec only. In that case, Fract Per I nt and Fract Per Ti ck
must be:

FractPerlnt = 16;
Fract Per Ti ck = 10;

or

Fract Perlnt = 8;
Fract PerTick = 5;

Example

OS TICK Config(2, 1); /1 500 Hz interrupts (2 nsec), 1 nsec tick
OS_TI CK _Config(8, 5); /1 Interrupts once per 1.6 nsec, 1 nsec tick
OS_TI CK Config(1, 10); /1 10 kHz interrupts (0.1 nsec), 1 nsec tick
OS TICK Config(1l, 1); /1 10 kHz interrupts (0.1 nsec), 0.1 nsec tick

OS TICK Config(1l, 100); // 10 kHz interrupts (0.1 nsec), 1 usec tick

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

340 CHAPTER 18 API functions

18.2.2 0OS_TICK_ Handle()

Description

Default embOS timer tick handler. It assumes a 1:1 tick to interrupt ratio, i.e. one interrupt
increments the tick count by one.

Prototype

voi d OS_TI CK_Handl e(voi d);

Additional information

The embOS tick handler must not be called by the application, but must be called from the
hardware timer interrupt handler. OS_| NT_Enter () or OS_| NT_Ent er Nest abl e() must be
called before calling the embOS tick handler.

If any tick hook functions have been added by the application (see Hooking into the system
tick on page 343), these will be called by OS_TI CK_Handl e() .

Example

__interrupt void SysTick_Handl er(void) {
OS_|I NT_Ent er Nest abl e() ;
OS_TI CK_Handl e();
OS_|I NT_LeaveNest abl e();

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

341 CHAPTER 18 API functions

18.2.3 OS_TICK_HandleEx()

Description
Alternate tick handler that may be used instead of the default tick handler. It may be used
in situations in which the interrupt rate differs from the tick rate.

Prototype

voi d OS_TI CK_Handl eEx(voi d);

Additional information

The embOS tick handler must not be called by the application, but must be called from the
hardware timer interrupt handler. OS_| NT_Enter () or OS_| NT_Ent er Nest abl e() must be
called before calling the embOS tick handler.

If any tick hook functions have been added by the application (see Hooking into the system
tick on page 343), these will be called by GS_TI CK_Handl eEx() .

Refer to OS_TI CK_Confi g() for information on how to configure the tick to interrupt ratio
for OS_TI CK_Handl eEx() .

Example

__interrupt void SysTick_Handl er(void) {
OS_|I NT_Ent er Nest abl e() ;
OS_TI CK_Handl eEx();
OS_|I NT_LeaveNest abl e();

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

342 CHAPTER 18 API functions

18.2.4 0OS_TICK_HandleNoHook()

Description

Speed-optimized embOS timer tick handler without hook functionality.

Prototype

voi d OS_TI CK_Handl eNoHook(voi d) ;

Additional information

The embOS tick handler must not be called by the application, it is only called from the
system tick interrupt handler. 05 _| NT_Ent er () or OS_|I NT_Ent er Nest abl e() must be called
before calling the embQOS tick handler.

OS_TI CK_Handl eNoHook() will not call any tick hook functions that may have been added
by the application (see Hooking into the system tick on page 343).

Example

__interrupt void SysTick_Handl er(void) {
OS_|I NT_Ent er Nest abl e() ;
OS_TI CK_Handl eNoHook() ;
OS_|I NT_LeaveNest abl e();

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

343 CHAPTER 18 Hooking into the system tick

18.3 Hooking into the system tick

There are various situations in which it can be desirable to call a function from the tick
handler. Some examples are:

e Watchdog update
e Periodic status check
e Periodic I/O update

The same functionality can be achieved with a high-priority task or a software timer with
one-tick period time.

Advantage of using a hook function

Using a hook function is much faster than performing a task switch or activating a software
timer because the hook function is directly called from the embQOS timer interrupt handler
and does not cause a context switch.

18.4 API functions

: . 3 |4 |= |2
Routine Description o |8 C;’U’ 3
S| = @
OS_TI CK_AddHook() Adds a tick hook handler. oo
OS_TI CK_RenpveHook() Removes a tick hook handler. °

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

344 CHAPTER 18 API functions

18.4.1 OS_TICK_AddHook()

Description
Adds a tick hook handler.

Prototype
voi d OS_TI CK_AddHook(OS_TI CK_HOOK* pHook,
OS_TI CK_HOOK_ROUTI NE* pf User);
Parameters
Parameter Description
pHook Pointer to a structure of OS_TI CK_HOK.
pf User Pointer to an OS_TI CK_HOOK_ROUTI NE function.

Additional information

The hook function is called directly from the interrupt handler. The function therefore should
execute as quickly as possible. The function called by the tick hook must not re-enable
interrupts.

Example

static OS_TI CK_HOOK _Hook;

voi d HookRout i ne(void) {
/1 Do sonething...

}
int main(void) {

OS_TI CK_AddHook(& Hook, HookRouti ne);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

345 CHAPTER 18 API functions

18.4.2 OS_TICK_RemoveHook()

Description

Removes a tick hook handler.

Prototype
voi d OS_TI CK_RenpveHook(OS_CONST_PTR OS_TI CK_HOOK *pHook) ;
Parameters
Parameter Description
pHook Pointer to a structure of OS_TI CK_HOK.

Additional information

The function may be called to dynamically remove a tick hook function installed by a call
to OS_TI CK_AddHook() .

Example
static OS_TI CK_HOOK _Hook;
voi d Task(void) {

OS_TI CK_RenmpveHook(& Hook) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

346 CHAPTER 18 Disabling the system tick

18.5 Disabling the system tick

With many MCUs, power consumption may be reduced by using the embQS tickless support.
Please refer to Tickless support on page 302 for further information.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 19

Debugging

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

348 CHAPTER 19 Runtime application errors

19.1 Runtime application errors

Many application errors can be detected during runtime.
These are for example:

Invalid usage of embOS API

Usage of uninitialized embOS data structures
Invalid pointers

Stack overflow

Which runtime errors can be detected depends on how many checks are performed. Un-
fortunately, additional checks cost memory and performance (it is not that significant, but
there is a difference). Not all embOS library modes include the debug and stack check code.
For example OS_LI BMODE_DP includes the debug and stack check, whereas OS_LI BMODE_R
does not contain any debug or stack check code.

Note

If an application error is detected and GS Error () is called, do not switch to another
embOS library mode which does not contain the debug checks. While doing so avoids
calls to S Error (), it does not fix the original application error.

When embOS detects a runtime error, it calls the following routine:

voi d OS_Error (OS_STATUS Err Code) ;

This routine is shipped as source code as part of the module OS _Error. c. Although this
function is named OS Error (), it does not show embOS erros but application errors. It
simply disables further task switches and then, after re-enabling interrupts, loops forever
as follows:

Example

Il
/1 Run tine error reaction
Il
voi d OS_Error (OS_STATUS ErrCode) {
OS_TASK_Ent er Regi on() ; /1 Avoid further task switches
OS_d obal . Counters.Dl = Qu; // Allow interrupts so we can comuni cate
OS_I NT_Enabl e();
OS_Status = ErrCode;
while (OS_Status) {
/'l Endless loop nay be left by setting OS Status to O
}

}
If you are using embOSView, you can see the value and meaning of OS_St atus in the

system variable window.

When using a debugger, you should set a breakpoint at the beginning of this routine or
simply stop the program after a failure. The error code is passed to the function as a
parameter. You should add OS_St at us to your watch window.

You can modify the routine to accommodate to your own hardware; this could mean that
your target hardware sets an error-indicating LED or shows a small message on the display.

Note

When modifying the GS_Error () routine, the first statement needs to be the disabling
of the scheduler via OS_TASK_Ent er Regi on(); the last statement needs to be the
infinite loop.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

349 CHAPTER 19

Runtime application errors

If you look at the GS_Error () routine, you will see that it is more complicated than neces-
sary. The actual error code is assigned to the global variable CS_St at us. The program then
waits for this variable to be reset. Simply reset this variable to 0 using your debugger, and
you can easily step back to the program sequence causing the problem. Most of the time,
looking at this part of the program will make the problem clear.

OS_DEBUG_LEVEL

The preprocessor symbol OS DEBUG LEVEL defines the embOS debug level. The default
value is 1. With higher debug levels more debug code is included. This define can be changed

with the embQOS source code only.

19.1.1 List of error codes

Value Define Explanation
0 oS K No error, everything ok.
Index value out of bounds during interrupt
100 OS_ERR | SR | NDEX controller initialization or interrupt installa-
tion.
101 0S ERR | SR VECTOR Default mterrup_t hgndler called, but inter-
- == rupt vector not initialized.
102 OCS_ERR ISR PRI O Wrong interrupt priority.
103 0OS_ERR WRONG_STACK Wrong stack used before main().
104 0S_ERR | SR_NO HANDLER !\lo interrupt handler was defined for this
interrupt.
105 S ERR TLS INI T OS TLS Init() called multiple times from
- = = one task.
For 16bit CPUs, the maximum buffer size
106 O5_ERR_MB_BUFFER_SI ZE for a mailbox (64KB) exceeded.
116 05 ERR_EXTEND CONTEXT @_ExtendTaskCont ext () called multiple
times from one task.
118 0S_ERR_| NTERNAL OS_ChangeTask() caII_ed without Region
Counter set (or other internal error).
119 OS_ERR | DLE_RETURNS OS | dl e() must not return.
120 0S_ERR_STACK Task stack overflow or invalid task stack.
121 OS_ERR_SEMAPHORE_OVERFLOW| Semaphore value overflow.
122 0S ERR POWER OVER Counter overflows when calling CS_POWM
- = - ER Usagel nc() .
Counter underflows when calling CS_POW
123 OS_ERR_POWER_UNDER ER UsageDec() .
Index to high, exceeds (Cs_POW
124 OS_ERR_POWER_| NDEX ER NUM COUNTERS - 1),
125 OS_ERR _SYS STACK System stack overflow.
126 OS_ERR_| NT_STACK Interrupt stack overflow.
128 S ERR | N\V TASK Task co_ntrol block invalid, not initialized or
- - - overwritten.
129 S ERR | NV Tl MER Timer con_trol block invalid, not initialized
- - - or overwritten.
130 05 ERR | N\V_MAI LBOX Mailbox cgntrol block invalid, not initialized
or overwritten.
132 05 _ERR | NV_SENAPHORE _C(_)r_1tr_ol block for semaphore invalid, not
initialized or overwritten.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

350

CHAPTER 19 Runtime application errors

Value

Define

Explanation

133

0S_ERR_| N\V_MJUTEX

Control block for mutex invalid, not initial-
ized or overwritten.

135

0S_ERR_MAI LBOX_NOT1

One of the following 1-byte mailbox func-
tions has been used on a multibyte mail-
box: OS_MAI LBOX_ Get 1(), OS_MAI L-
BOX_Get Bl ocked1(), OS_MAI LBOX_Get -

Ti med1(), OS_MAI LBOX_Put 1(), OS_MAI L-
BOX_Put Bl ocked1(), OS_MAI LBOX_Put -
Front 1(), OS_MAI LBOX Put Front -

Bl ocked1() or OS_MAI LBOX Put Ti ned1() .
e (OS_MAILBOX Get1()

OS_MAI LBOX_Get Bl ocked1()

OS_MAI LBOX_Get Ti med1()

OS_MAI LBOX_Put 1()

OS_MAI LBOX_Put Bl ocked1()

OS_MAI LBOX_Put Front 1()

OS_MAI LBOX _Put Front Bl ocked1()
OS_MAI LBOX_Put Ti med1()

136

0S_ERR_MAI LBOX_DELETE

OS_MAI LBOX Del et e() was called on a
mailbox with waiting tasks.

137

0S_ERR_SEMAPHORE_DELETE

OS_SEMAPHORE Del et e() was called on a
semaphore with waiting tasks.

138

0S_ERR_MUTEX_DELETE

OS_MUTEX_Del et e() was called on a mutex
which is claimed by a task.

140

OS_ERR_MAI L-
BOX_NOT | N_LI ST

The mailbox is not in the list of mail-boxes
as expected. Possible reasons may be that
one mailbox data structure was overwrit-
ten.

142

0S_ERR_TASKL| ST_CORRUPT

The OS internal task list is destroyed.

143

OS_ERR_QUEUE_I| NUSE

Queue in use.

144

0S_ERR_QUEUE_NOT_| NUSE

Queue not in use.

145

0S_ERR_QUEUE_| NVALI D

Queue invalid.

146

0S_ERR_QUEUE_DELETE

A queue was deleted by a call of
OS_QUEUE_Del et e() while tasks are wait-
ing at the queue.

147

0S_ERR_MB_| NUSE

Mailbox in use.

148

0S_ERR_MB_NOT_| NUSE

Mailbox not in use.

149

0S_ERR_MESSAGE_SI ZE_ZERO

Attempt to store a message with size of
zero.

150

0S_ERR_UNUSE_BEFORE_USE

OS_MUTEX _Unl ock() has been called on a
mutex hasn’t been locked before.

151

0S_ERR_LEAVEREG ON_BE-
FORE_ENTERREG ON

0S5 _TASK LeaveRegi on() has been called
before OS_TASK_Ent er Regi on() .

152

0OS_ERR_LEAVEI NT

Error in OS_I NT_Leave() .

153

OS_ERR_DI CNT

The interrupt disable counter (OS_d ob-
al .Counters.Cnt.DI) is out of range
(0-15). The counter is affected by the fol-
lowing API calls:

e OS_INT_IncDi()

e OS_INT_DecRI()

e OS INT Enter()

e (OS INT Leave()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

351 CHAPTER 19 Runtime application errors
Value Define Explanation
OS_TASK_Del ay() or OS_TASK_Del ayUn-
154 OS_ERR | NTERRUPT_DI SABLED |ti | () called from inside a critical region
with interrupts disabled.
O5_ER Task routine returns without 0S_TASK_Ter -
155 R_TASK_ENDS_W THOUT_TER- | =" 0 — -
M NATE)
156 S ERR RESOURCE OWNER %_I\/UTEX__UnI ock() has been called from
- = - a task which does not own the mutex.
157 OS_ERR_REG ONCNT The Region counter overflows (>255).
158 OS_ERR DELAYUS | NTERRUP- | OS_TASK Del ayus() called with interrupts
T_DI SABLED disabled.
Illegal function call in an interrupt service
routine: A routine that must not be called
160 O5_ERR I LLEGAL_INLT SR from within an ISR has been called from
within an ISR.
Illegal function call in a software timer: A
161 0S ERR | LLEGAL | N TI MER _routlne that m!.lst not be called from with-
- = - = in a software timer has been called from
within a timer.
162 OS_ ERR | LLEGAL_QUT_I SR Not a legal API outside interrupt.
163 05 ERR_NOT I N I SR _OS_I N'_I'_Ent er () has been called, but CPU
is not in ISR state.
OS I NT_Ent er () has not been called, but
164 OE_ERR_I NLI SR CPU is in ISR state.
165 CS ERR I NI T_NOT_CALLED OS I nit() was not called.
OS_ERR CPU STATE I SR I L- | embOS API called from ISR with high pri-
166 .
LEGAL ority.
167 OS_ERR CPU_STATE | LLEGAL | CPU runs in illegal mode.
168 S ERR CPU STATE UNKNOWN CPU runs in unknown mode or mode could
- =7 = - not be read.
170 S ERR 2USE TASK Tasl_< control block ha_s beer? initialized by
- = - calling a create function twice.
171 S ERR 2USE Tl MER T|m_er control block h.as begn initialized by
- = - calling a create function twice.
172 S ERR 2USE MAI LBOX Mallbo?< control block ha_s beeq initialized
- = = by calling a create function twice.
174 S ERR 2USE SEMAPHORE Semaphore _has be_zen initialized by calling a
- = - create function twice.
175 S ERR 2USE MUTEX Mutex ha_s beer_1 initialized by calling a cre-
- = - ate function twice.
176 S ERR 2USE MEME _leed size memory pool has l_)een |p|t|al-
- = - ized by calling a create function twice.
177 05 ERR 2USE_QUEUE Queue ha)s been initialized by calling a cre-
ate function twice.
178 S ERR 2USE EVENT Event object h_as be_en initialized by calling
- = - a create function twice.
179 S ERR 2USE WATCHDOG Watchdog h_as bee_n initialized by calling a
- = - create function twice.
180 S ERR NESTED RX | NT OS_Rx mtgrrupt handler f<_3r embOSView is
- = - = nested. Disable nestable interrupts.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

352 CHAPTER 19 Runtime application errors
Value Define Explanation
Invalid core ID specified for accessing a
185 OS_ERR_SPI NLOCK_| NV_CORE 05 SPI NLOCK_SWstruct.
190 S ERR MEME | NV Fixed size memory block control structure
- = - not created before use.
191 S ERR MEME | NV PTR Pointer to memory block does not belong
- = - = to memory pool on Release.
Pointer to memory block is already free
192 OS_ERR _MEMF_PTR_FREE when calling OS_ MEMPOOL_Rel ease() . Pos-
sibly, same pointer was released twice.
OS_MEMPOOL_Rel ease() was called for a
193 0S_ERR MEMF_RELEASE memory pool, the_lt had no memory block
allocated (all available blocks were already
free before).
OS_MEMPOOL_Creat e() was called with a
194 OS_ERR MEMF_POOLADDR memory pool base address which is not lo-
cated at a word aligned base address.
OS_MEMPOOL_Creat e() was called with a
195 OS_ERR_MEMF_BLOCKSI ZE data block size which is not a multiple of
processors word size.
Nested call of OS_TASK Suspend() exceed-
200 05_ERR_SUSPEND_TQO_OFTEN | | O5_MAX_SUSPEND. CNT,
201 OS_ERR _RESUME BE- 0S_TASK Resune() called on a task that
FORE_SUSPEND was not suspended.
OS _TASK Create() was called with a task
priority which is already assigned to an-
202 OS_ERR TASK PRI ORI TY other task. This error can only occur when
embOS was compiled without round robin
support.
203 O6_ERR TASK_PRICRITY_I N- The value 0 was used as task priority.
VALI D
205 OS_ERR_TI MER_PERI OD_I N The value 0 was used as timer period.
VALI D
210 0S_ERR_EVENT | NVALI D An OS_EVENT object was used before it was
created.
212 S ERR EVENT DELETE _An OS_EVENT object was deleted with wait-
- = - ing tasks.
220 0S_ERR WA TLI ST_RI NG This error should not occur. Please contact
the support.
221 S ERR WAl TLI ST PREV This error should not occur. Please contact
- = - the support.
222 S ERR WAl TLI ST NEXT This error should not occur. Please contact
- = - the support.
223 OS_ERR_TI CKHOOK_| NVALI D | Invalid tick hook.
224 OE_ERR_TI CKHOOK_FUNC_I N Invalid tick hook function.
VALI D
295 S ERR NOT | N REG ON A function was caIIed.W|thout declaring the
- === necessary critical region.
226 OS_ ERR | LLEGAL_I N_MAI N Not a legal API call from main().
227 OS_ERR | LLEGAL_I N_TASK Not a legal API after OS_Start ().
228 ?&%RRJ LLEGAL_AFTER CSS- Not a legal API after CS_Start ().

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

353 CHAPTER 19 Runtime application errors

Value Define Explanation
230 OS_ERR _NON_ALI GNED_I N- Cache invalidation needs to be cache line
VALI DATE aligned.
234 0S_ERR_HW NOT_AVAI LABLE gslreddware unit is not implemented or en-
Callback function for timer counter
235 gLSEEREfj@_Tl VERCY- value has not been set. Required by
- OS TI ME_Getus().
S ERR NON T MERI NT- _CaIIback function for timer mter_rupt pend-
236 PENDI NG FUNC ing flag has not been set. Required by
- OS_TI ME_Getus() .
240 OS_ERR_MPU_NOT_PRESENT MPU unit not present in the device.
241 OS_ERR _MPU_| NVALI D_REG ON | Invalid MPU region index number.
242 CS_ERR_MPU | NVALI D_SI ZE Invalid MPU region size.
OS_ERR_MPU_I NVALI D_PER- . . .
243 M SSI ON Invalid MPU region permission.
244 OS_ERR_MPU_I WVALI D_ALT G\ Invalid MPU region alignment.
MENT
245 S ERR MPU | NVALI D OBJECT 0s obJe_ct is directly accessible from the
- = = - task which is not allowed.
250 0S_ERR_CONFI G_CSSTOP @_St op() is called without using GS_Con-
figStop() before.
251 S ERR OSSTOP BUFEER Buf_fer is too small to hold a copy of the
- = - main() stack.
OS library and RTOS have different version
253 OS_ERR VERSI ON_M SNVATCH numbers. Please ensure both are from the
same embQOS shipment.

19.1.2 Application defined error codes

The embOS error codes begin at 100. The range 1 - 99 can be used for application defined
error codes. With it you can call OS Error () with your own defined error code from your
application.

Example

#define OS_ERR APPL (0x02u)

voi d User AppFunc(void) {
int r;
r = DoSonet hi ng()
if (r == 0) {
OS_Error (OS_ERR_APPL)
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

354

CHAPTER 19 Human readable object identifiers

19.2 Human readable object identifiers

embOS objects like mailbox or semaphore are handled via separate control structures. Each
OS object is identified by the address of the according control structure. For debugging
purpose this address is displayed in external tools like embOSView or IDE RTOS plugins.

Tasks always have a human readable task name (except in OS_LI BMODE_XR) which is set
at task creation. It can be helpful to have human readable identifiers for other OS objects,

as well.

Example

static OS_MAI LBOX Mail box;
static OS_OBINAME Mai | boxNane;
static char Buf fer[100] ;

OS_MAI LBOX_Cr eat e(&Whi | box, 10, 10, &Buffer);
OS_DEBUG_Set Obj Nanme(&Whi | boxNane, &Mail box, "My Mail box");

With the following API you can easily add human readable identifiers to an unlimited amount
of OS objects. Human readable object identifiers are not supported in embOS library mode

OS_LI BVMODE_XR.

19.2.1 API functions

. . T e I P e
Routine Description SRV RERE!
S |=|® @
OS_DEBUG Set Obj Nane() | Sets an OS object name. oo
OS_DEBUG_Get Onj Nane() | Returns the name of an OS object. °

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

355 CHAPTER 19 Human readable object identifiers

19.2.2 0OS DEBUG_SetObjName()

Description

Sets an OS object name.

Prototype

voi d OS_DEBUG Set Obj Nanme(OS_OBJNAME* pOhj Nane,
OS_CONST_PTR voi d *pOSObj | D,
OS_CONST_PTR char *sNane);

Parameters
Parameter Description
pQbj Name Pointer to a OS_OBJNAME control structure.
pOSoj | D ID of the OS object.
sNane Name of the OS object.

Additional information

With OS_DEBUG_Set Obj Nane() every OS object like mailbox can have a hame. This name
can be shown in debug tools like IDE RTOS plug-ins. Every object name needs a control
structure of type GS_OBJNAME. This function is not available in OS_LI BMODE_XR.

Example

#i ncl ude "RTCS. h"
#i ncl ude <stdio. h>

static OS_STACKPTR int StackHP[128];

static OS _TASK TCBHP;
static OS_MAI LBOX Mai | box;
static OS_OBINAME Mai | boxNane;
static char Buf f er [100] ;

static void HPTask(void) {
const char* s;
s = OS_DEBUG Get Obj Name(&Vhai | box) ;

printf(s);
while (1) {
OS_TASK_Del ay(50);
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_MAI LBOX_Cr eat e(&Vhi | box, 10, 10, &Buffer);

OS_DEBUG_Set Cbj Nanme(&Whi | boxNane, &Mail box, "My Mail box");
CS Start(); /1 Start enmbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

356 CHAPTER 19 Human readable object identifiers

19.2.3 0OS DEBUG_GetObjName()

Description

Returns the name of an OS object.

Prototype
char *0OS_DEBUG_Get Cbj Name(GS_CONST_PTR voi d *pOSChj | D) ;
Parameters

Parameter Description
pOShj | D Pointer to the OS object.

Return value

= NULL Name was not set for this object.
NULL Pointer to the OS object name.

Additional information

OS_DEBUG_Get Onj Nane() returns the object name which was set before with OS_DEBUG_Se-
t Gbj Nane() . This function is not available in OS_LI BMODE_XR.

Example
For an example, see OS_DEBUG_Set Cbj Nane() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 20

Profiling

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

358 CHAPTER 20 Introduction

20.1 Introduction

This chapter explains the profiling functions that can be used by an application.
In software engineering, profiling (“program profiling”, “software profiling”) is a form of
dynamic program analysis that measures, for example, the time complexity of a program

and duration of function calls.
Example

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int StackHP[128], StackLP[128], StackSanpl e[128];

static OS_TASK TCBHP, TCBLP, TCBSanpl €;
static void HPTask(void) {
while (1) {
OS_TASK Del ayus(500); /1 Do sonething.
OS_TASK Del ay(1); /'l Gve other tasks a chance to run.
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ayus(250); /1 Do sonething.
OS_TASK Del ay(1); /'l G ve other tasks a chance to run.
}
}
static void Sanpl eTask(void) {
while (1) {
CS_STAT_Sanpl e(); /'l Cal cul ate CPU | oad.
printf("CPU usage of HP Task: %\ n", OS_STAT_Get Load(&TCBHP)) ;
printf("CPU usage of LP Task: %\n\n", OS_STAT_GetLoad(&TCBLP));
OS_TASK Del ay(1000); /1l Wait for at least 1 second before next sanpling.
}
}
int mai n(void) {
CS Init(); /[l Initialize enbQCS
CS I nitHW); /1 Initialize the hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, , StackHP):
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, , StackLP):
OS_TASK_CREATE(&TCBSanpl e, "Sanpl e Task", 1, Sanpl eTask, StackSanple);
Os _Start(); /1 Start multitasking
return O;
}
Output

CPU usage of HP Task: 520
CPU usage of LP Task: 268

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

359

20.2 API functions

CHAPTER 20

API functions

Routine

Description

urew
Asel

dSi
JETT

OS_STAT_AddLoadMeasur enent ()

Initializes the periodic CPU load mea-
surement.

OS_STAT_Di sabl e()

Disables the kernel profiling.

OS_STAT_Enabl e()

Enables the kernel profiling (for an in-
definite time).

OS_STAT_Get ExecTi me()

Returns the total task execution time.

OS_STAT_Get LoadMeasur enent ()

Retrieves the result of the CPU load
measurement.

OS_STAT_Get Load()

Calculates the current task’s CPU load in
permille.

OS_STAT_Sanpl e()

Starts the kernel profiling and calculates
the absolute task run time since the last
call to OS_STAT Sanpl e() .

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

360

CHAPTER 20 API functions

20.2.1 OS_STAT_AddLoadMeasurement()

Description

Initializes the periodic CPU load measurement. May be used to start the calculation of the
total CPU load of an application.

Prototype

voi d OS_STAT_AddLoadMeasur enent (i nt Peri od,
OS_U8 Aut oAdj ust,
CS_| 32 Def aul t MaxVal ue) ;

Parameters

Parameter Description
Peri od Measurement period in embOS embOS system ticks.
Aut 0Adj ust If not zero, the measurement is autoadjusted once initially.

Def aul t MaxVal ue May be used to set a default counter value when Aut oAdj ust

is not used. (See additional information)

The CPU load is the percentage of CPU time that was not spent in OS_| dl e() . To measure
it, OS_STAT_AddLoadMeasur enment () creates a task running at highest priority. This task
periodically suspends itself by calling OS_TASK Del ay(Peri od). Each time it is resumed, it
calculates the CPU load through comparison of two counter values.

For this calculation, it is required that OS_I dl e() gets executed and increments a counter
by calling GS_I NC_| DLE_CNT() . Furthermore, the calculation will fail if OS_I dl e() starts a
power save mode of the CPU. OS_I dl e() must therefore be similar to:

void OS_Idle(void) {
while (1) {
CS_I NC_|I DLE_CNT();
}
}

The maximum value of the idle counter is stored once at the beginning and is subsequently
used for comparison with the current value of the counter each time the measurement task
gets activated. For this comparison, it is assumed that the maximum value of the counter
represents a CPU load of 0%, whereas a value of zero represents a CPU load of 100%. The
maximum value of the counter can either be examined automatically, or may else be set
manually. When Aut 0Adj ust is non-zero, the task will examine the maximum value of the
counter automatically. To do so, it will initially suspend all other tasks for the Peri od-time
and will subsequently call OS_TASK Del ay(Peri od) . This way, the entire period is spent in
GS Idl e() and the counter incremented in GS_1dl e() reaches its maximum value, which
is then saved and used for comparisons. Especially when the initial suspension of all tasks
for the Peri od-time is not desired, the maximum counter value may also be configured
manually via the parameter Def aul t MaxVal ue when Aut 0Adj ust is zero.

20.2.1.1 OS_l|dleCnt

Description

This global variable holds the counter value used for CPU load measurement. It may be
helpful when examining the appropiate Def aul t MaxVal ue for the manual configuration of
OS_STAT_AddLoadMeasur enent () .

Declaration

volatile OS 132 Cs IdleCnt;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

361 CHAPTER 20 API functions

Additional information

The appropiate Def aul t MaxVal ue may, for example, be examined prior to creating any
other task, similar to the given sample below:

voi d Mai nTask(void) {
OS | 32 Def aul t Max;
OS_TASK_Del ay(100);

DefaultMax = OS IdleCnt; /* This value can be used as Defaul t MaxVal ue. */
/* Now ot her tasks can be created and started. */

}

This function is not available in OS_LI BMODE_SAFE.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

362 CHAPTER 20 API functions

20.2.2 OS_STAT Disable()

Description
Disables the kernel profiling.

Prototype
voi d OS_STAT_Di sabl e(voi d);

Additional information
The function OS_STAT_Enabl e() may be used to start profiling.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

363 CHAPTER 20 API functions

20.2.3 OS_STAT Enable()

Description

Enables the kernel profiling (for an indefinite time).

Prototype
voi d OS_STAT_Enabl e(voi d);

Additional information
The function OS_STAT_Di sabl e() may be used to stop profiling.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

364 CHAPTER 20 API functions

20.2.4 OS_STAT GetExecTime()

Description

Returns the total task execution time.

Prototype
0S_U32 OS_STAT_Get ExecTi me(OS_CONST_PTR OS_TASK *pTask) ;
Parameters

Parameter Description
pTask Pointer to a task control block.

Return value

The total task execution time in timer cycles.

Additional information

This function only returns valid values when profiling was enabled before by a call to C5_S-
TAT_Enabl e() . If pTask is a NULL pointer, the function returns the total task execution
time of the currently running task. If pTask does not specify a valid task, a debug build
of embOS calls GS Error ().

Example

OS U32 ExecTi ne;

void MyTask(void) ({
OS_STAT_Enabl e();
while (1) {
ExecTi ne = OS_STAT_Get ExecTi ne(NULL) ;
OS_TASK_Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

365

CHAPTER 20 API functions

20.2.5 OS_STAT _GetLoadMeasurement()

Description

Retrieves the result of the CPU load measurement.

Prototype

i nt OS_STAT_Get LoadMeasur enent (voi d);

Return value

The total CPU load in percent.

Additional information

OS_STAT_Get LoadMeasur enment () delivers correct results if

the CPU load measurement was started before by calling
OS_STAT_AddLoadMeasur enent () with auto-adjustment or else with a correct default
value, and

OS 1 dl e() updates the measurement by calling GS | NC | DLE_CNT() .

20.2.5.1 OS_CPU_Load

Description

The global variable GS_CPU_Load holds the total CPU load as a percentage. It may prove
helpful to monitor the variable in a debugger with live-watch capability during development.

Declaration

vol atile OS INT OS CPU Load;

Additional information

This variable will not contain correct results unless the CPU load measurement was started
by a call to OS_STAT_AddLoadMeasur enent () . This function is not available in OS_LI BMOD-
E_SAFE.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

366 CHAPTER 20 API functions

20.2.6 OS_STAT GetLoad()

Description

Calculates the current task’s CPU load in permille.

Prototype
int OS_STAT_Get Load(OS_CONST_PTR OS_TASK *pTask) ;
Parameters

Parameter Description
pTask Pointer to a task control block.

Return value

The current task’s CPU load in permille.

Additional information

OS_STAT _Get Load() requires OS_STAT_Sanpl e() to be periodically called by the task for
which to measure the CPU load.

OS_STAT_Get Load() cannot be used from multiple tasks simultaneously for it uses a global
variable.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

367 CHAPTER 20 API functions

20.2.7 OS_STAT Sample()

Description

Starts the kernel profiling and calculates the absolute task run time since the last call to
OS_STAT_Sanpl e() .

Prototype

voi d OS_STAT_Sanpl e(voi d);

Additional information

OS_STAT_Sanpl e() enables profiling for five consecutive seconds. The next call to GS_S-
TAT_Sanpl e() must be performed within these five seconds. To retrieve the calculated CPU
load in permille, use the embOS function OS_STAT_ GCet Load() . OS_STAT_Sanpl e() cannot
be used from multiple tasks simultaneously because it uses a global variable.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 21
embOSView

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

369

21.1 Overview

The embOSView utility is a helpful tool for the analysis of the running target application. It
is shipped as enb0SVi ew. exe with embOS and runs on Windows.

it embOSView V4.24

CHAPTER 21

Eile View Setup Trace Window 2

Overview

s Task list

Prio | Id | Mame | Status | Da13| 'I'|meout| Siackl CPULoad | Run countl Time slice
230 Ox2002C4DC WMNC Serwver Wait Event object 0Ox2002C420 296 / 4000 @ Ox2002853C 0.00% 1 02
115 0x20005214 Trialwindow Delay 2279 (151878) 224 [2048 @ 0x20004A14 0.00% 15 02
113 0x20005768 IP_Task Wait Task event Ox0 7(145719) 556 [1280 @ 020005268 0.50% 14356 02
108 0x20026EC4 MainTask Delay 3(149828) 1748 /3072 @ Ox200262C4 1.94% 23958 02
106 O0x20007C64 USBMSDTask Delay 45 (143993) 772 [4096 @ 0x20006C64 0.04% 3818 02
105 0x20005FBC IP_WebServer WaitEventobject 0x20005E98 630 / 2048 @ 0x200057BC 0.00% 2 a2
101 0x20006C10 IP_FTP_Server WaitEventobject 0x20006EB18 356 [3072 @ 0x20006010 0.00% 2 a2

o o
MName | Value |
0S5_WERSIOM 4.24
CPU GCC Cortex M4F
LibMode (Trial) vZwLDP
05_Time 149232
05_MNumTasks 7
05_Status QK
O5_pActiveTask 0000
05_pCurrentTask 0000
SysStack 260 f 1024 @ 0x2002FC00
IntStack nfa
TraceBuffer ofo {Off)
[ready [Bytes: 15130 / 42585 Packets: 1445 / 1445 |(Mem) SWD speed: 2000 p

Most often, a serial interface (UART) is used for the communication with the target hard-
ware. Alternative communication channels include Ethernet, memory read/write for Cor-
tex-M and RX CPUs, and DCC for ARM7/9 and Cortex-A CPUs. The hardware dependent
routines and defines available for communication with embOSView are implemented inside
the source file RTOSI ni t. c¢. Details on how to modify this file are also included in How to
change settings on page 458.

The communication API is not available in embOS library mode OS_LI BMODE_SAFE.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

370

CHAPTER 21

21.2 Task list window

embOSView shows the state of every task created by the target application in the Task list
window. The information shown depends on the library used in your application.

Task list window

Item Description Builds

Prio Current priority of task. All

Id Task ID, which is the address of the task con- All

trol block.

Name Name assigned during creation. All

Status Eeuargggtfsiagssgl; Eassilgn()r.eady, executing, delay, All

Data Depends on status. All

Timeout Time of next activation. All

Stack Used stack size/max. stack size/stack location. |S, SP, D, DP, DT
CPULoad Percentage CPU load caused by task. SP, DP, DT
Run Count Number of activations since reset. SP, DP, DT
Time slice Round robin time slice All

The Task list window is helpful in analysis of stack usage and CPU load for every running

task.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

CHAPTER 21

21.3 System variables window

System variables window

embOSView shows the state of major system variables in the System variables window.
The information shown also depends on the library used by your application:

Item Description Builds
OS_VERSI ON Current version of embOS. All
CPU Target CPU and compiler. All
LibMode Library mode used for target application. All
OS Time Current system time in system ticks. All
OS_Nunirasks Current number of defined tasks. All
CS_Status Current error code (or O.K.). All

OS_pActi veTask

Active task that should be running.

SP, D, DP, DT

CS_pCurrent Task

Actual currently running task.

SP, D, DP, DT

Used size/max. size/location of system

SysStack stack. SP, DP, DT

IntStack Used size/max. size/location of interrupt SP, DP, DT
stack.

TraceBuffer Current count/maximum size and current All trace builds

state of trace buffer.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

372 CHAPTER 21 Sharing the SIO for terminal 1/0

21.4 Sharing the SIO for terminal 1/0

The serial input/output (SIO) used by embOSView may also be used by the application at
the same time for both input and output. Terminal input is often used as keyboard input,
where terminal output may be used for outputting debug messages. Input and output is
done via the Terminal window, which can be shown by selecting View/Terminal from
the menu.

To ensure communication via the Terminal window in parallel with the viewer functions,
the application uses the function OS_COM SendStri ng() for sending a string to the Termi-
nal window and the function OS_COM Set RxCal | back() to hook a reception-routine that

receives one byte.

21.4.1 API functions

. L 3|4 (=
Routine Description SRV RERE!
S |x | P @
0S_COM SendSt ri ng() VSVelzrr]\Ccl:lsv\? string to the embOSView terminal ol e
0S_COM Set RxCal | back() Sets a callback hook to a rou_tlne for receiving ol e .
one character from embOSView.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

373 CHAPTER 21 Sharing the SIO for terminal 1/0

21.4.1.1 OS _COM_SendsString()

Description

Sends a string to the embOSView terminal window.

Prototype
voi d OS_COM SendString(const char* s);
Parameters
Parameter Description
S Pointer to a null-terminated string that should be sent to the
terminal window.

Additional information
This function utilizes the target-specific function OGS _COM Send1() (see OS_COM Sendi()).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

374 CHAPTER 21 Sharing the SIO for terminal 1/0

21.4.1.2 0OS_COM_SetRxCallback()

Description

Sets a callback hook to a routine for receiving one character from embOSView.

Prototype
0S_RX_CALLBACK *(OS_COM Set RxCal | back(0S_RX_CALLBACK* cb);
Parameters
Parameter Description
cb Pointer to the application routine that should be called when
one character is received over the serial interface.

Return value

This is the pointer to the callback function that was hooked before the call.

Additional information

The user function is called from embOS. The received character is passed as parameter.
See the example below.

The callback function is defined as:

typedef void OS_RX CALLBACK (Os_U8 Data);

Example

void GUI _X OnRx(0OS_U8 Data); /* Callback ... called fromRx-interrupt */
void GUI _X_Init(void) {

OS_COM Set RxCal | back(&GUI _X_OnRx) ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

375 CHAPTER 21 Enable communication to embOSView

21.5 Enable communication to embOSView

The communication to embOSView can be enabled by setting the compile time switch
OS_VI EW | FSELECT to an interface define which may be defined in the project settings orin
the configuration file OS_Confi g. h. If 0S_VI EW | FSELECT is defined as OS_VI EW DI SABLED,
the communication is disabled. In the RTOSInit files the OS_VI EW | FSELECT switch is set
to a specific interface if not defined as project option.

The Os Config.h file sets the compile time switch OS VIEWIFSELECT to
OS_VI EW DI SABLED when DEBUG=1 is not defined. Therefore, in the embOS start projects,
the communication is enabled per default when using the Debug configuration, and is dis-
abled when using the Release configuration.

OS_VI EW | FSELECT Communication interface
OS_VI EW DI SABLED Disabled
OS_VI EW.| F_UART UART
OS VIEWI F_JLI NK J-Link
OS_VI EW. | F_ETHERNET Ethernet

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

376 CHAPTER 21 Select the communication channel

21.6 Select the communication channel

When the communication to embOSView is enabled by setting the compile time switch
OS_VI EW | FSELECT, the communication can be handled via UART, J-Link or ethernet.

21.6.1 Select a UART for communication

Set the compile time switch OS_VI EW | FSELECT to OS_VI EW | F_UART by project option/com-
piler preprocessor or in RTOSI ni t . ¢ to enable the communication via UART.

21.6.2 Select J-Link for communication

Per default, J-Link is selected as communication device in most embOS start projects, if
available.

The compile time switch OS_VI EW | FSELECT is predefined to S _VI EW | F_JLI NKin the CPU
specific RTCSI nit. ¢ files, thus J-Link communication is selected per default unless over-
written by project / compiler preprocessor options.

21.6.3 Select Ethernet for communication

Set the compile time switch GS_VI EW | FSELECT to OS_VI EW | F_ETHERNET by project / com-
piler preprocessor options or in RTCSI ni t . ¢ to switch the communication to Ethernet.
This communication mode is only available when embOS/IP or a different TCP/IP stack is
included with the project. Also, the file UDP_Process. ¢ must be added to your project and
the file UDPCOM h to your Start\ | nc folder. These files are not shipped with embOS, but
are available on request.

Using a different TCP/IP stack than embQS/IP requires modifications to UDP_Pr ocess. c.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

377

CHAPTER 21 Setup embOSView for communication

21.7 Setup embOSView for communication

When the communication to embOSView is enabled in the target application, embOSView
can be used to analyze the running application. The communication channel of embOSView
has to be setup according to the communication channel which was selected in the project.

21.7.1 Select a UART for communication

Start embOSView and chose menu Setup:

UMO01001 User Guide & Reference Manual for embOS

S embOSView V4.10a

File ¥ew GSetup Trace Window 2

Gk Task list

Prio | Id Name | Status | Data | Timeout I Stack | CPULoad | Run cuuntI Time slice |

255 w200074E0 MainTa g — T — 0.00% 9286 02
— TIXN o11% 180268 0/2

150 020007534 IP_Task

MNarme I

Q35_VERSION
CPU

LibMode

05 Time
0O5_MNumTasks
05_Status
05_pActiveTask
05_pCurrentTask

Communication | General | Trace | CPU View |

T ART

Host interface

Baudiate F=a0 "I
LComPort ComM27 'I

SysStack 220 /102
IntStack
TraceBuffer
oK | Cancel Apply
Ready Bytes: 20246 / 76970 Packets: 3011 / 3010 (Mem) JTAG speed: 200 i

In the Communication tab, choose UART in the Type selection listbox.

In the Host interface box, select the baud rate for communication and the COM port of the
PC which should be connected to the target board. The default baud rate of all projects is
38,400. The COM port list box lists all currently available COM ports of the PC.

The serial communication will work when the target is running stand-alone or during a
debug session, when the target is connected to a debugger.

The serial connection can be used when the target board has a spare UART port and the
UART functions are included in the application.

© 1995-2018 SEGGER Microcontroller GmbH

378

CHAPTER 21

Setup embOSView for communication

21.7.2 Select J-Link for communication

embOS supports communication channel to embOSView which uses J-Link to communicate
with the running application. embOSView version 3.82g or higher and a J-Link DLL is re-
quired to use J-Link for communication.
To select this communication channel, start embOSView and open the Setup menu:

% embOSView V4.10a

File Wiew Setup Trace Window 2

Prio | Id Mame | Status | Data | Tlmu:lutl Stackl CPULuud| Run cuuntl Time slic:l
255 (w200074ED0 MainTa:g — e e 0.00% 9286 /2
150 (20007534 1P Task kel LRIXN 0115 180288 0/2

Communication | General | Trace | CPU View |
Cesg|
Host intesface Tanget nledace
— I @ [Devicst =] || 00k =]
0} Je - | 200 -

05 _VERSION Use Device 0 Speed | 200 kHz

CPu { | o) -

LibMade TCRAR v JTAG SwD

05_Time ;

0O5_NumTasks Lag File

05_Status ™ Wite J-Link log-file r

05_pActiveTask

05 _pCurrentTask | —I

SysStack @®»?/Mmo |

IntStack JTAG Chain

TraceButfer Posiion |2 -] RLlen [2

oK l Cancel

Ready Bytes: 20246 / 76570 Packets: 3011 / 3010 (Mem) JITAG speed: 200 i

In the Communication tab, choose J-Link Cortex-M (memory access), J-Link RX (memory
access) or J-Link ARM7/9/11 (DCC) in the Type selection listbox.
In the Host interface box, select the USB or TCP/IP channel used to communicate with

your J-Link.

In the Target interface box, select the communication speed of the target interface and the
physical target connection, which may be a JTAG, SWD or FINE connection.
In the Log File box, choose whether a log file should be created and define its file name

and location.

The JTAG Chain box allows the selection of a specific device in a JTAG scan chain with
multiple devices. Currently, up to eight devices in the scan chain are supported. Two values
must be configured: the position of the target device in the scan chain and the total number
of bits in the instruction registers of the devices before the target device (IR len). Target
position is numbered in descending order, which means the target that is closest to J-Link’s
TDI is in the highest position (max. 7), while the target closest to J-Link’s TDO is in the
lowest position (which is always 0). Upon selecting the position, the according IR len is
determined automatically, which should succeed for most target devices. IR len can also
be written manually, which is mandatory in case automatic detection was not successful.
For further information, please refer to the J-Link / J-Trace User Guide (UM08001, Chapter

5.3 "JTAG interface”).

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

379 CHAPTER 21

Setup embOSView for communication

21.7.3 Select Ethernet for communication

embOS supports communication channel to embOSView which uses Ethernet to communi-
cate with the running application. embOS/IP, or a different TCP/IP stack, is required to use

Ethernet for communication.

To select this communication channel, start embOSView and open the Setup menu:

% embOSView V4.10a

File ¥ew GSetup Trace Window 2

Prio | Id MName | Status | Data | Timeout I Stack | CPULoad | Run cuuntl Time slice |
255 w200074E0 MainTa g — i EE—— 0.00% 9286 02
150 (20007534 1P Task lsskield LRIXN 0115 180288 0/2

Communication | General | Trace | CPU View |

Etheinet

Host interface

IP: Port |192.163.1.1:50021

MNarme I

O5_VERSION
CPU

LibMade

05 _Time
0O5_NumTasks
05_Status
05_pActiveTask
05 _pCurrentTask

SysStack 220 /102
IntStack
TraceBuffer
oK l Cancel Apply
Ready Bytes: 20246 / 76570 Packets: 3011 / 3010 (Mem) JITAG speed: 200 i

In the Communication tab, choose Ethernet in the Type selection listbox.
In the Host interface box, select the IP address of your target and the port number 50021.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

380 CHAPTER 21 Setup embOSView for communication

21.7.4 Use J-Link for communication and debugging in paral-
lel

J-Link can be used to communicate with embOSView during a running debug session that
uses the same J-Link as debug probe. To avoid potential incompatibilites, the target inter-
face settings for J-Link should be the same in the debugger settings and in the embOSView
Target interface settings.

To use embOSView during a debug session, proceed as follows:

e Examine the target interface settings in the Debugger settings of the project.

e Before starting the debugger, start embOSView and set the same target interface as
found in the debugger settings.

¢ (Close embOSView.
Start the debugger.
Restart embOSView.

J-Link will now communicate with the debugger and embOSView will simultaneously com-
municate with embOS via J-Link.

21.7.5 Restrictions for using J-Link with embOSView

With the current version of embOSView, J-Link communication with Cortex-M (memory
access) can only be used when the Cortex-M vector table of the target application is located
at address 0x0.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

381 CHAPTER 21 Using the API trace

21.8 Using the APl trace

embOS contains a trace feature for API calls. This requires the use of the trace build libraries
in the target application.

The trace build libraries implement a buffer for 100 trace entries. Tracing of API calls can be
started and stopped from embOSView via the Trace menu, or from within the application
by using the functions OS_TRACE_Enabl e() and OS_TRACE_Di sabl e() . Individual filters may
be defined to determine which API calls should be traced for different tasks or from within
interrupt or timer routines. Once the trace is started, the API calls are recorded in the trace
buffer, which is periodically read by embOSView. The result is shown in the Trace window:

=10] %]
Trace I Tirne I Taskld I TaskMame I APIMame I -
]] (ne20000EAC HPFTask O5_TASK_AddTerminateHook({void)
1] (ne20000EAC HPFTask 05 _TASK_Delay(l)
2 0 ac20000EAC HPTazk Task deactivation(void)
3 0 (ac20000F0E LP Taszk Task activation(void)
4] 0uc20000F08 LP Task 05 _TASK_Delay(10)
5 0 (ac20000F0E LP Taszk Task deactivation(void)
] 1 ac20000EAC HPTazk Task activation(void)
7 1 (ne20000EAC HPFTask 05 _TASK_DelayUntil(10)
& 1 ac20000EAC HPTazk Task deactivation(void)
9 10 ac20000EAC HPTazk Task activation(void)
10 10 (ne20000EAC HPFTask 05 _TASK_Delayus(10]
11 10 (ne20000EAC HPFTask O5_TASK_GetMumTasks(void)
12 10 (ne20000EAC HPFTask O5_TASK_GetPrio(void]
13 10 (e ?0000F AT HPTazk 0% TASK GetSusnendCntivoicd) j

Every entry in the Trace list is recorded with the actual system time. In case of calls
or events from tasks, the task ID (Taskld) and task name (TaskName) (limited to 15
characters) are also recorded. Parameters of API calls are recorded if possible, and are
shown as part of the APIName column. In the example above, this can be seen with
OS_TASK Del ay(10) . Once the trace buffer is full, trace is automatically stopped. The Trace
list and buffer can be cleared from embOSView.

21.8.1 Settings up trace from embOSView

Three different kinds of trace filters are defined for tracing. These filters can be set up from
embOSView via the menu Options/Setup/Trace.

Filter 0 is not task-specific and records all specified events regardless of the task. As the
Idle loop is not a task, calls from within the idle loop are not traced.

Filter 1 is specific for interrupt service routines, software timers and all calls that occur
outside a running task. These calls may come from the idle loop or during startup when
no task is running.

Filters 2 to 4 allow trace of API calls from named tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

382 CHAPTER 21 Using the API trace

Options |

Communication I General Trace | CPL Wiew I Log I
— Filter
Task Mame [Filter 2 ta 4]
| MainTask [Filter 4 Enable
| [~ Fiter 3Enable
| [~ Fiter 2Enable
ISP or Siw-Timer ¥ Filter 1 Enable
T AnyTask ¥ Filter 0 Enable
LTI T ask deactivated -
| I W T ask activated
1 W Timer callback,
WAL 105 Delay
I O5_Delayl il
| I 05 SetPriority
[IE I 05 wiakeT azk Select all
I ECIC] 05 CreateT ask —
[IEECIC 05 _Terminate Desel I
0000 05 watE vent x| Desslecta
k. I Cancel | Apply

To enable or disable a filter, simply check or uncheck the corresponding checkboxes labeled
Filter 4 Enable to Filter 0 Enable. For any of these five filters, individual API functions can
be enabled or disabled by checking or unchecking the corresponding checkboxes in the list.
To speed up the process, there are two buttons available:

e Select all - enables trace of all API functions for the currently enabled (checked) filters.
o Deselect all - disables trace of all API functions for the currently enabled (checked)
filters.

Filter 2, Filter 3, and Filter 4 allow tracing of task-specific API calls. A task name can
therefore be specified for each of these filters. In the example above, Filter 4 is configured
to trace calls of OS_TASK Del ay() from the task called Mai nTask. After the settings are
saved (via the Apply or OK button), the new settings are sent to the target application.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

383 CHAPTER 21 Trace filter setup functions

21.9 Trace filter setup functions

Tracing of API or user function calls can be started or stopped from embOSView. By default,
trace is initially disabled in an application program. It may be helpful to control recording
of trace events directly from the application, using the following functions.

21.9.1 APIfunctions

) o 3|4 (=

Routine Description 28193

S|~ @

OS_TRACE_Enabl e() Enables tracing of filtered API calls. o/ oo |e
Sets up Filter 0 (any task), enables trac-

OS_TRACE_Enabl eAl | () ing of all API calls and then enables the ojo|o e

trace function.

Sets the specified ID value in Filter 0
(any task), thus enabling trace of the
specified function, but does not start
trace.

OS_TRACE Enabl el d()

Sets the specified ID value in the spec-
ified trace filter, thus enabling trace of
the specified function, but does not start
trace.

OS_TRACE Enabl eFilterld()

Disables tracing of filtered API and user

OS_TRACE_Di sabl e() function calls.

Sets up Filter 0 (any task), disables
OS_TRACE _Di sabl eAl | () tracing of all API calls and also disables ojo|o e
trace.

Resets the specified ID value in Filter O
(any task), thus disabling trace of the
specified function, but does not stop
trace.

OS_TRACE Di sabl el d()

Resets the specified ID value in the spec-
ified trace filter, thus disabling trace of
the specified function, but does not stop
trace.

OS_TRACE Di sabl eFilterld()

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

384 CHAPTER 21 Trace filter setup functions

21.9.1.1 OS_TRACE_Enable()

Description
Enables tracing of filtered API calls.

Prototype
voi d OS_TRACE Enabl e(voi d);

Additional information

The trace filter conditions must be set up before calling this function. This functionality
is available in trace builds only. In non-trace builds, the API call is removed by the pre-

processor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

385 CHAPTER 21 Trace filter setup functions

21.9.1.2 OS_TRACE_EnableAll()

Description

Sets up Filter 0 (any task), enables tracing of all API calls and then enables the trace
function.

Prototype
voi d OS_TRACE_Enabl eAl | (voi d);

Additional information

The trace filter conditions of all the other trace filters are not affected. This functionality
is available in trace builds only. In non-trace builds, the API call is removed by the pre-
processor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

386 CHAPTER 21 Trace filter setup functions

21.9.1.3 OS_TRACE_Enableld()

Description

Sets the specified ID value in Filter 0 (any task), thus enabling trace of the specified func-
tion, but does not start trace.

Prototype

voi d OS_TRACE Enabl el d(OS_U8 id);

Parameters

Parameter Description

ID value of API call that should be enabled for trace:

i d 0<id< 255

Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To enable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTCS. h. This function may also enable trace of
your own functions. This functionality is available in trace builds only. In non-trace builds,
the API call is removed by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

387 CHAPTER 21 Trace filter setup functions

21.9.1.4 OS _TRACE_EnableFilterid()

Description

Sets the specified ID value in the specified trace filter, thus enabling trace of the specified
function, but does not start trace.

Prototype
voi d OS_TRACE Enabl eFilterld(OS_U3 Filterlndex,
oS U8 id);
Parameters
Parameter Description
Index of the filter that should be affected:
Filterl ndex O<Filterlndex <4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
id 0<id< 255
Values from 0 to 99 are reserved for embOS.

Additional information

To enable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTCS. h. This function may also be used for
enabling trace of your own functions. This functionality is available in trace builds only. In
non-trace builds, the API call is removed by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

388 CHAPTER 21 Trace filter setup functions

21.9.1.5 OS TRACE Disable()

Description

Disables tracing of filtered API and user function calls.

Prototype
voi d OS_TRACE_Di sabl e(voi d);

Additional information

This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

389 CHAPTER 21 Trace filter setup functions

21.9.1.6 OS_TRACE_DisableAll()

Description
Sets up Filter 0 (any task), disables tracing of all API calls and also disables trace.

Prototype
voi d OS_TRACE Di sabl eAl | (voi d);

Additional information
The trace filter conditions of all the other trace filters are not affected, but tracing is stopped.

This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

390 CHAPTER 21 Trace filter setup functions

21.9.1.7 OS_TRACE_Disableld()

Description

Resets the specified ID value in Filter 0 (any task), thus disabling trace of the specified
function, but does not stop trace.

Prototype
voi d OS_TRACE Di sabl el d(0Os_U8 id);
Parameters
Parameter Description
ID value of API call that should be enabled for trace:
i d 0<id< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To disable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTCS. h. This function may also be used for
disabling trace of your own functions. This functionality is available in trace builds only. In
non-trace builds, the API call is removed by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

391 CHAPTER 21 Trace filter setup functions

21.9.1.8 OS TRACE_DisableFilterid()

Description

Resets the specified ID value in the specified trace filter, thus disabling trace of the specified
function, but does not stop trace.

Prototype
void OS_TRACE DisableFilterld(OS_U3 Filterlndex,
o5 W8 id);
Parameters
Parameter Description
Index of the filter that should be affected:
Filterl ndex O<Filterlndex <4

0 affects Filter 0 (any task) and so on.

ID value of API call that should be enabled for trace:
id 0<id< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

To disable trace of a specific embOS API function, you must use the correct Id value. These
values are defined as symbolic constants in RTCS. h. This function may also be used for
disabling trace of your own functions. This functionality is available in trace builds only. In
non-trace builds, the API call is removed by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

392 CHAPTER 21 Trace record functions

21.10 Trace record functions

The following functions write data into the trace buffer. As long as only embOS API calls
should be recorded, these functions are used internally by the trace build libraries. If, for
some reason, you want to trace your own functions with your own parameters, you may
call one of these routines.

All of these functions have the following points in common:

e To record data, trace must be enabled.

e An ID value in the range 100 to 127 must be used as the ID parameter. ID values from
0 to 99 and 128 to 255 are internally reserved for embQOS.

e The events specified as ID must be enabled in trace filters.

e Active system time and the current task are automatically recorded together with the
specified event.

21.10.1 API functions

Routine Description

urew

Asel
dsl

JET

Writes an entry with ID and an integer as para-

O5_TRACE_Dat a() meter into the trace buffer.

Writes an entry with ID, an integer, and a pointer

O5_TRACE_Dat aPtr () as parameter into the trace buffer.

Writes an entry with ID and a pointer as parame-
ter into the trace buffer.

Writes an entry with ID, a 32 bit unsigned inte-
OS_TRACE_U32Ptr () ger, and a pointer as parameter into the trace oo |o 0
buffer.

Writes an entry identified only by its ID into the
trace buffer.

OS_TRACE_Ptr ()

OS_TRACE_Voi d()

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

393 CHAPTER 21 Trace record functions

21.10.1.1 OS_TRACE_Data()

Description

Writes an entry with ID and an integer as parameter into the trace buffer.

Prototype
voi d OS_TRACE Data(0S_U8 id,
int v);
Parameters
Parameter Description
ID value of API call that should be enabled for trace:
i d 0<id< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.
v Any integer value that should be recorded as parameter.

Additional information

The value passed as parameter will be displayed in the trace list window of embOSView. This
functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

394 CHAPTER 21 Trace record functions

21.10.1.2 OS_TRACE_DataPtr()

Description

Writes an entry with ID, an integer, and a pointer as parameter into the trace buffer.

Prototype
voi d OS_TRACE DataPtr (Os_u8 id,
int v,
vol atil e OS_CONST_PTR void *p);
Parameters
Parameter Description
ID value of API call that should be enabled for trace:
id 0<id=< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.
v Any integer value that should be recorded as parameter.
p Any void pointer that should be recorded as parameter.

Additional information

The values passed as parameters will be displayed in the trace list window of embOSView.
This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

395 CHAPTER 21 Trace record functions

21.10.1.3 OS_TRACE_Ptr()

Description

Writes an entry with ID and a pointer as parameter into the trace buffer.

Prototype
voi d OS_TRACE Ptr(oS U8 id,
vol atil e OS_CONST_PTR void *p);
Parameters
Parameter Description
ID value of API call that should be enabled for trace:
id 0<id< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.
p Any void pointer that should be recorded as parameter.

Additional information

The pointer passed as parameter will be displayed in the trace list window of embOSView.
This functionality is available in trace builds only. In non-trace builds, the API call is removed
by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

396 CHAPTER 21 Trace record functions

21.10.1.4 OS_TRACE_U32Ptr()

Description

Writes an entry with ID, a 32 bit unsigned integer, and a pointer as parameter into the
trace buffer.

Prototype
voi d OS_TRACE U32Ptr (oS _Us id,
0sS_U32 po,
vol atile OS_CONST_PTR void *pl);
Parameters
Parameter Description
ID value of API call that should be enabled for trace:
id 0<id=< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.
0 Any unsigned 32 bit value that should be recorded as para-
P meter.
pl Any void pointer that should be recorded as parameter.

Additional information

This function may be used for recording two pointers. The values passed as parameters will
be displayed in the trace list window of embOSView. This functionality is available in trace
builds only. In non-trace builds, the API call is removed by the preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

397 CHAPTER 21 Trace record functions

21.10.1.5 OS_TRACE_Void()

Description
Writes an entry identified only by its ID into the trace buffer.

Prototype
voi d OS_TRACE Voi d(0S_U8 id);
Parameters
Parameter Description
ID value of API call that should be enabled for trace:
i d 0<id< 255
Values from 0 to 99 and 128 to 255 are reserved for embOS.

Additional information

This functionality is available in trace builds only, and the API call is not removed by the
preprocessor.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

398 CHAPTER 21 Application-controlled trace example

21.11 Application-controlled trace example

As described in the previous section, the user application can enable and set up the trace
conditions without a connection or command from embOSView. The trace record functions
can also be called from any user function to write data into the trace buffer, using ID
numbers from 100 to 127.

Controlling trace from the application can be useful for tracing API and user functions just
after starting the application, when the communication to embOSView is not yet available
or when the embOSView setup is not complete.

The example below shows how a trace filter can be set up by the application. The func-
tion OS_TRACE_Enabl el D() sets trace filter 0 which affects calls from any running task.
Therefore, the first call to Set State() in the example would not be traced because there
is no task running at that moment. The additional filter setup routine OS_TRACE_Enabl e-
Filterld() is called with filter 1, which results in tracing calls from outside running tasks.

Example code

#i ncl ude "RTCS. h"
#define APP_TRACE | D SETSTATE 100 // Application specific trace id
char Mai nSt at e;

void Set State(char* pState, char Val ue) {
#1f (OS_TRACE != 0)

OS_TRACE_Dat aPt r (APP_TRACE_| D_SETSTATE, Val ue, pState);
#endi f

*pState = Val ue;

}
int main(void) {
CS Init();
CS InitHW);
#1f (OS_TRACE != 0)
OS_TRACE Di sabl eAl'l (); /1 Disable all APl trace calls
OS_TRACE_Enabl el d(APP_TRACE_I| D_SETSTATE) ; /1l User trace

OS_TRACE Enabl eFilterld(0, APP_TRACE |D SETSTATE); // User trace
OS_TRACE_Enabl e();

#endi f
Set St at e(&Vhi nState, 1);
OS_TASK_CREATE(&TCBMai n, "Mai nTask", 100, Mai nTask, MainStack);
OS Start(); // Start multitasking
return O;

}
By default, embOSView lists all user function traces in the trace list window as Routine,
followed by the specified ID and two parameters as hexadecimal values. The example above
would result in the following:

Rout i ne100(Oxabcd, 0x01)

where Oxabcd is the pointer address and 0x01 is the parameter recorded from
OS_TRACE DataPtr ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

399 CHAPTER 21

21.12 User-defined functions

User-defined functions

To use the built-in trace (available in trace builds of embOS) for application program user
functions, embOSView can be customized. This customization is done in the setup file em

bGCs. i ni .

This setup file is parsed at the startup of embOSView. It is optional; you will not see an

error message if it cannot be found.

To enable trace setup for user functions, embOSView needs to know an ID number, the
function name and the type of two optional parameters that can be traced. The format is

explained in the following sample enbCS. i ni file:

Example code

File: enbCS. ini

embOSVi ew Setup file

directory as the executable itself.

if the contents of the file are invalid.

Define add. APl functions.

I ndex: Integer, between 100 and 127
Valid paraneters are:

i nt
ptr

HHFHHFHHFHHFHFEHFHHFHEHFHHFHR

API (100, "Routinel00")
APl (101, "Routinel0l", int)
APl (102, "Routinel02", int, ptr)

UMO01001 User Guide & Reference Manual for embOS

embOSVi ew | oads this file at startup. It nust

reside in the sane

Note: The file is not required to run enbOSView. You will not get

an error nessage if it is not found. However, you will get an error nessage

Syntax: API(<lndex> <Routinenane> [paraneters])

Routi nenane: Identifier for the routine. Should be no nmore than 32 characters
parameters: Optional paranters. A max. of 2 paraneters can be specified.

Every paraneter nust be placed after a col on.

© 1995-2018 SEGGER Microcontroller GmbH

Chapter 22

MPU - Memory Protection

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

401

CHAPTER 22 Introduction

22.1 Introduction

This chapter describes embOS-MPU. embOS-MPU is a separate product which adds memory
protection to embOS.

Memory protection is a way to control memory access rights, and is a part of most modern
processor architectures and operating systems. The main purpose of memory protection is
to prevent a task from accessing memory that has not been allocated to it. This prevents
a bug or malware within a task from affecting other tasks, or the operating system itself.

embOS-MPU uses the hardware MPU and additional checks to avoid that a task affects the
remaining system. Even if a bug in one task occurs all other tasks and the OS continue
execution. The task which caused the issue is terminated automatically and the application
is informed via an optional callback function.

Since a hardware MPU is required embOS MPU support is unavailable for some embOS
ports. The MPU support is included in separate embOS ports and is not part of the general
embOS port.

22.1.1 Privilege states

Application tasks which may affect other tasks or the OS itself must not have the permission
to access the whole memory, special function registers or embOS control structures. Such
application code could be e.g. unreliable software from a third party vendor.

Therefore, those application tasks do not run on the same privileged state like the OS. The
OS runs in privileged state which means that it has full access to all memory, peripherals
and CPU features. Application tasks, on the other hand, run in unprivileged state and have
restricted access only to the memory. To access peripherals and memory from unprivileged
tasks, additional API and specific device drivers may be used.

State Description
Privileged Full access to memory, peripheral and CPU features
L Only restricted access to memory, no direct access to pe-
Unprivileged .
ripherals, no access to some CPU features

22.1.2 Code organization

embOS-MPU assumes that the application code is divided into two parts. The first part runs
in privileged state: it initializes the MPU settings and includes the device driver. It contains
critical code and must be verified for full reliability by the responsible developers. Usually,
this code consists of only a few simple functions which may be located in one single C file.

The second part is the application itself which doesn’t need to or in some cases can’t be
verified for full reliability. As it runs in unprivileged state, it can’t affect the remaining
system. Usually, this code is organized in several C files. This can e.g. simplify a certification.

Part Description
Task and MPU initialization
1st part . .
Device drivers
2nd part Application code from e.g. third party vendor

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

402 CHAPTER 22 Memory Access permissions

22.2 Memory Access permissions

All privileged tasks have full access to the whole memory. An unprivileged task, however,
can have access to several memory regions with different access permissions. Access per-
missions for RAM and ROM can be used combined, e.g. a ROM region could be readable
and code execution could be allowed. In that case the permission defines would be used
as OS_MPU_READONLY | OS_MPU_EXECUTI ON_ALLOWED.

The following memory access permissions exist:

Permission Description
OS_MPU_NQACCESS No access to a memory region
OS_MPU_READONLY Read only access to a memory region
OS_MPU_READWRI TE Read and write access to a memory region

Permission Description
OS_MPU_EXECUTI ON_ALLOWED Code execution is allowed
OS_MPU_EXECUTI ON_DI SALLOWED Code execution is not allowed

22.2.1 Default memory access permissions

A newly created unprivileged task has per default only access to the following memory

regions:

Region Permissions
ROM OS_MPU_READONLY, OS_MPU_EXECUTI ON_ALLOWED
RAM OS_MPU_READONLY, OS_MPU_EXECUTI ON_ALLOWED
Task stack OS_MPU_READWRI TE, OS_MPU_EXECUTI ON_ALLOWED

An unprivileged task can read and execute the whole RAM and ROM. Write access is re-
stricted to its own task stack. More access rights can be added by embOS API calls.

22.2.2 Interrupts

Interrupts are always privileged and can access the whole memory.

22.2.3 Access to additional memory regions

An unprivileged task can have access to additional memory regions. This could be necessary
e.g when a task needs to write LCD data to a frame buffer in RAM. Using a device driver
could be too inefficient. Additional memory regions can be added with the API function
0s_MPU_AddRegi on() . It is CPU specific if the region has to be aligned. Please refer to the
according CPU/ compiler specific embOS manual for more details.

22.2.4 Access to OS objects

An unprivileged task has no direct write access to embOS objects. It also has per default
no access via embOS API functions. Access to OS objects can be added with GS_MPU_Se-
t Al | onedbj ect s() . The object list must be located in ROM memory. The OS object must
be created in the privileged part of the task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

403 CHAPTER 22 ROM placement of embOS

22.3 ROM placement of embOS

embOS must be placed in one memory section. embOS-MPU needs this information to e.g.
check that supervisor calls are made from embOS API functions only. The address and the
size of this section must be passed to embOS with GS_MPU ConfigMen{). __os_start__
and __os_si ze__ are linker symbols which are defined in the linker file.

Example
This example is for the GCC compiler and linker.
Linker file:

__0s_load_start__ = ALIG\(__text_end__ , 4);
.08 ALIGN(__text_end__ , 4) : AT(ALIGN(__text_end__ , 4))
{
__os_start__ = .;
(.0s .0s.%)
}
__os_end__ = __os_start__ + SIZEO(.o0s);
__0s_size__ = SIZEOF(.o0s);
__os load_ end = _os_end_;
C Code:
void CS_ InitHW) {
OS_MPU_Confi gMem(0x08000000u, 0x00100000u, /'l ROM base address and size
0x20000000u, 0x00020000u, /1 RAM base address and size
__os_start__, __os_size__); [/l OS base address and size

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

404

CHAPTER 22

Allowed embOS API in unprivileged tasks

22.4 Allowed embOS APl in unprivileged tasks

Not all embOS API functions are allowed to be called from an unprivileged task. Only the

UMO01001 User Guide & Reference Manual for embOS

following API is allowed in unprivileged task:

Allowed embOS API

General API

OS_I sRunni ng()

Task API

OS_TASK Del ay()

OS_TASK_Del ayUnti | ()

OS_TASK_Del ayus()

0S_TASK_Get | I()

0S_TASK_Get Nane()

OS_TASK_ Get Nunmirasks()

OS_TASK GetPriority()

OS_TASK_Get SuspendCnt ()

OS TASK CGet Ti neSli ceRem()

OS_TASK | sTask()

OS_TASK_I| ndex2Ptr ()

OS_TASK _Resune()

OS_TASK Suspend()

0S_TASK_Wake()

OS_TASK_Yi el d()

Software timer API

OS_TI MER Get Peri od()

OS_TI MER_Cet Renai ni ngPer i od()

OS_TI MER_Cet St at us()

OS Tl MER Get Current ()

OS _TI MER Restart()

OS_TI MER _Set Peri od()

OS_TIMER Start ()

OS_TI MER_St op()

OS_TI MER Trigger()

OS_TI MER_Cet Per i odEXx()

OS_TI MER_Cet Remai ni ngPer i odEXx()

OS_TI MER_Get St at usEx()

OS_TI MER Get Current Ex()

OS_TI MER_Rest art Ex()

OS_TI MER_Set Per i odEXx()

OS_TI MER St ar t Ex()

OS_TI MER _St opEX()

OS_TI MER _Tri gger Ex()

Task events API

OS_TASKEVENT_d ear ()

OS_TASKEVENT_Cl ear Ex()

© 1995-2018 SEGGER Microcontroller GmbH

405

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 22

Allowed embOS API in unprivileged tasks

Allowed embOS API

OS_TASKEVENT Get ()

OS_TASKEVENT_Set ()

OS_TASKEVENT_Cet Bl ocked()

OS_TASKEVENT_Get Si ngl eBl ocked()

OS_TASKEVENT_Get Ti med()

OS_TASKEVENT_Get Si ngl eTi med()

Event objects API

OS_EVENT_Get ()

OS_EVENT_Get Bl ocked()

OS_EVENT_Get Ti med()

OS_EVENT_Get Mask()

OS_EVENT_Get MaskBl ocked()

OS_EVENT_Get MaskTi med()

OS_EVENT_Get MaskMode()

OS_EVENT_GCet Reset Mode()

OS_EVENT_Pul se()

OS_EVENT_Reset ()

OS_EVENT_Set ()

OS_EVENT_Set Mask()

OS_EVENT_Set MaskMode()

OS_EVENT_Set Reset Mbde()

Mutex API

OS_MUTEX Get Val ue()

OS_MUTEX_Get Oner ()

OS_MUTEX_Lock()

OS_MUTEX LockBIl ocked()

OS_MUTEX LockTi nmed()

OS_MJTEX_Unl ock()

Semaphore API

0S_SEMAPHORE_Get Val ue()

OS_SEMAPHORE G ve()

OS_SEMAPHORE_G veMax()

OS_SEMAPHORE_Set Val ue()

OS_SEMAPHORE_Take()

OS_SEMAPHORE TakeBl ocked()

OS_SEMAPHORE_TakeTi med()

Mailbox API

OS_MAI LBOX _C ear ()

OS_MAI LBOX_Get ()

OS_MAI LBOX_Get 1()

OS_MAI LBOX_Get Bl ocked()

OS_MAI LBOX_Get Bl ocked1()

OS_MAI LBOX CGet MessageCnt ()

© 1995-2018 SEGGER Microcontroller GmbH

406

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 22

Allowed embOS API in unprivileged tasks

Allowed embOS API

OS_MAI LBOX_Get Ti med()

OS_MAI LBOX_Get Ti med1()

OS_MAI LBOX_Get Pt r ()

OS_MAI LBOX _CGet Pt r Bl ocked()

OS_MAI LBOX_Peek()

OS_MAI LBOX_Pur ge()

OS_MAI LBOX_Put ()

OS_MAI LBOX_Put 1()

OS_MAI LBOX_Put Bl ocked()

OS_MAI LBOX_Put Bl ocked1()

OGS _MAI LBOX _Put Front ()

OS_MNAI LBOX_Put Front 1()

OS_MAI LBOX_Put Fr ont Bl ocked()

OS_MAI LBOX_Put Front Bl ocked1()

OS_MAI LBOX_Put Ti med()

OS_MAI LBOX_Put Ti med1()

OS_MAI LBOX_ Wi t Bl ocked()

OS_MAI LBOX_ Wi t Ti med()

Queue API

OS QUEUE d ear ()

OS_QUEUE_| sl nUse()

OS _QUEUE_Get MessageCnt ()

OS QUEUE Get MessageSi ze()

OS_QUEUE_Get Ptr ()

OS_QUEUE_Get Pt r Bl ocked()

OS_QUEUE_Get Pt r Ti med()

OS_QUEUE PeekPtr ()

OS_QUEUE_Pur ge()

0S_QUEUE_Put ()

0S_QUEUE_Put Ex()

OS_QUEUE_Put Bl ocked()

OS_QUEUE_Put Bl ockedEx()

OS_QUEUE_Put Ti med()

OS_QUEUE_Put Ti medEx()

Watchdog

OGS WD Trigger ()

Interrupt API

CS INT_Inlnterrupt()

Timing API

OS_TI ME_Get Ti cks()

OS_TI ME_Get Ti cks32()

CS_TI ME_Start Measur enent ()

OS_TI ME_St opMeasur enent ()

© 1995-2018 SEGGER Microcontroller GmbH

407

CHAPTER 22

Allowed embOS API in unprivileged tasks

Allowed embOS API

OS_TI ME_Get Resul t ()

OS_TI ME_Get Resul tus()

OS TI ME_Getus()

OS_TI ME_Get us64()

OS_Convert Cycl es2us()

Low power API

0S_POWER _Get Mask()

OS_PONER Usagel nc()

OS_POWER_UsageDec()

Fixed block size memory pool API

Os MEMPOOL_Al 'l oc()

OS_MEMPOOL_Al | ocBl ocked()

0S_MEMPOOL_Al | ocTi med()

OS_MEMPOCOL | sl nPool ()

OS_MEMPOOL_FreeEXx()

OS_MEMPOOL_Free()

OS_MEMPOOL_Get Bl ockSi ze()

0S_MEMPOOL_Get MaxUsed()

OS_ MEMPOOL_Get NumBI ocks()

OS_MEMPOOL_Get Nunfr eeBl ocks()

Debug API

0S_DEBUG_Get Obj Nare()

OS_COM _SendString()

Info routines API

0S_| NFO_Get CPU()

0S_I NFO_Get Li bvbde()

0S_I NFO_Get Li bName()

0S_| NFO_Get Model ()

OS_| NFO_Cet Ver si on()

Stack info API

OS_STACK Get TaskSt ackBase()

OS_STACK Get TaskSt ackSi ze()

OS_STACK Cet TaskSt ackSpace()

OS_STACK Get TaskSt ackUsed()

OS_STACK Get SysSt ackBase()

OS_STACK Get SysSt ackSi ze()

OS_STACK Cet SysSt ackSpace()

OS_STACK Get SysSt ackUsed()

OS_STACK Get I nt St ackBase()

OS_STACK Get I nt St ackSi ze()

OS_STACK Cet I nt St ackSpace()

OS_STACK Get I nt St ackUsed()

OS_STACK_Get CheckLi it ()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

408 CHAPTER 22 Allowed embOS APl in unprivileged tasks

Allowed embOS API
MPU API

OS_MPU Cal | Devi ceDri ver ()
OS MPU Get ThreadSt at e()
OS_MPU _Sani t yCheck()

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

409

22.5

CHAPTER 22

Device driver

22.5.1 Concept

An unprivileged task has no access to any peripheral. Thus a device driver is necessary to

use peripherals like UART, SPI or port pins.

Device driver

A device driver consists of two parts, an unprivileged part and a privileged part. embOS
ensures there is only one explicit and safe way to switch from the unprivileged part to the
privileged part. The application must call driver functions only in the unprivileged part. The
actual peripheral access is performed in the privileged part only.

OS_MPU_Cal | Devi ceDri ver () is used to call the device driver. The first parameter is the
index of the device driver function. Optional parameters can be passed to the device driver.

Note

Example

You must not call any embOS API from a device driver.

A device driver for a LED should be developed. The LED driver can toggle a LED with a
given index number. The function BSP_Toggl e_LED() is the unprivileged part of the driver.

It can be called by the unprivileged application.

typedef struct BSP_LED PARAM STRUCT {
BSP_LED DRI VER APl Action;

}

OS_U32 I ndex;
BSP_LED PARAM

voi d BSP_Toggl eLED(i nt | ndex) {

}

BSP_LED _PARAM p;

p. Acti on = BSP_LED TOGGLE;

p.l ndex = |ndex;

OS_MPU_Cal | Devi ceDri ver (Ou, &p);

The device driver itself runs in privileged state and accesses the LED port pin.

voi d BSP_LED Devi ceDriver(voi d* Paranm {

BSP_LED PARAM p;
p = (BSP_LED PARAM) Par am
switch (p->Action) {
case BSP_LED SET:
BSP_Set LED_SVC(p- >I ndex) ;
br eak;
case BSP_LED CLR
BSP_Cl r LED_SVC(p- >I ndex) ;
br eak;
case BSP_LED TOGG.E:
BSP_Toggl eLED_SVC(p- >I ndex) ;
br eak;
defaul t:
br eak;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

410 CHAPTER 22 Device driver

All device driver addresses are stored in one const list which is passed to embOS-MPU with
OS_MPU_Set Devi ceDri verLi st ().

static const OS_MPU DEVI CE_DRI VER_FUNC _Devi ceDriverList[] =
{ BSP_LED Devi ceDri ver,
NULL }; // Last item nmust be NULL
void BSP_Init(void) {
OS_MPU_Set Devi ceDri ver Li st (_Devi ceDri verList);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

411

CHAPTER 22

22.6 API functions

API functions

Routine

Description

urew
)sel Alid
ysel Audun

Sl

d3aNIL

OS_MPU_AddRegi on()

Adds an additional memory region
to which the task has access.

OS_MPU Cal | Devi ceDri ver ()

Calls a device driver.

OGS _MPU_Confi gvem()

Configures basic memory informa-
tion.

OS_MPU _Enabl e()

Initializes the MPU hardware with
the default MPU API list and en-
ables it.

OS_MPU_Enabl eEx()

Initializes the MPU hardware with
the specified MPU API list and en-
ables it.

OS_MPU_Ext endTaskCont ext ()

Extends the task context for the
MPU registers.

OS MPU Get ThreadSt at e()

Returns the current privileged
task state.

OS_MPU_Set Al | owedObj ect s()

Sets a task specific list of objects
to which the task has access via
embQOS API functions.

OS_MPU_Set Devi ceDri ver Li st ()

Sets the device driver list.

OS_MPU _Set Error Cal | back()

Sets the MPU error callback func-
tion.

OS MPU Swi t chToUnprivState()

Switches a task to unprivileged
state.

OS_MPU _Swi t chToUnpri vSt at eEx()

Switches a task to unprivileged
state and calls a task function
which runs on a separate task
stack.

OS_MPU_Set Sani t yCheckBuf fer ()

Sets the pointer in the task con-
trol block to a buffer which holds a
copy of the MPU register for sanity
check.

OS_MPU _Sani t yCheck()

Performs an MPU sanity check
which checks if the MPU register
still have the correct value.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

412

CHAPTER 22

22.6.1 OS_MPU_AddRegion()

Description

Adds an additional memory region to which the task has access.

Prototype
voi d OS_MPU_AddRegi on(OS_TASK* pTask,
os_u32 BaseAddr,
OS_U32 Si ze,
os_u32 Per m ssi ons,
os_u32 Attributes);
Parameters
Parameter Description
pTask Pointer to a task control block.
BaseAddr Region base address.
Si ze Region size.
Per m ssi ons Access permissions.
Attributes Additional core specific memory attributes.

Additional information

This function can be used if a task needs access to additional RAM regions. This RAM region
can be e.g. a LCD frame buffer or a queue data buffer. It is CPU specific if the region has
to be aligned. Please refer to the according CPU/compiler specific embOS manual for more

details.

A memory region can have the following access permissions:

Permission

Description

OS_MPU_NOACCESS

No access to memory region

OS_MPU_READONLY

Read only access to memory region

0S_MPU_READVRI TE

Read and write access to memory region

OS_MPU_EXECUTI ON_ALLOWED

Code execution is allowed

OS_PU_EXECUTI ON_DI SALLOWED

Code execution is not allowed

Access permissions for data and code execution can be jointly set for one region. A region
can for example be set to read only and code execution can be disabled (0S_MPU_READONLY
| OS_MPU_EXECUTI ON_DI SALLOWED). Per default an unprivileged task has only access to the

following memory regions:

Region Permission
ROV Read and execution access for complete ROM
Read only and and execution access for complete
RAM
RAM
Read and write and execution access to the task
Task stack
stack
Example

static void HPTask(void) {

OS_MPU_AddRegi on(&TCBHP, (OS_U32) MyQBuffer,

}

UMO01001 User Guide & Reference Manual for embOS

512, OS_MPU_READWRI TE, Ou);

API functions

© 1995-2018 SEGGER Microcontroller GmbH

413 CHAPTER 22 API functions

22.6.2 OS_MPU_CallDeviceDriver()

Description

Calls a device driver.

Prototype

void OS_MPU_Cal | Devi ceDri ver (OS_U32 | ndex,
voi d* Paran;

Parameters

Parameter Description
| ndex I ndex of device driver function.
Par am Parameter to device driver.

Additional information

Unprivileged tasks have no direct access to any peripherals. A device driver is instead
necessary. OS_MPU Cal | Devi ceDri ver () is used to let embQOS call the device driver which
then runs in privileged state. Optional parameter can be passed to the driver function. The
device driver is called e.g. for Cortex-M via SVC call.

Example

t ypedef struct BSP_LED PARAM STRUCT {
BSP_LED DRI VER APl Acti on;
oS _U32 | ndex;

} BSP_LED PARAM

static const OS_MPU _DEVI CE_DRI VER_FUNC _DeviceDriverList[] =
{ BSP_LED Devi ceDri ver,
NULL }; // Last item nmust be NULL

voi d BSP_LED Devi ceDriver(voi d* Param {
BSP_LED PARAM* p;

p = (BSP_LED PARAM) Par am
switch (p->Action) {
case BSP_LED_ SET:
BSP_Set LED_SVC(p- >I ndex) ;
br eak;
case BSP_LED CLR
BSP_Cl r LED_SVC(p- >l ndex) ;
br eak;
case BSP_LED TOGGLE:
BSP_Toggl eLED_SVC(p- >I ndex) ;
br eak;
defaul t:
br eak;
}
}

voi d BSP_Toggl eLED(i nt | ndex) ({
BSP_LED PARAM p;

p. Action = BSP_LED TOGGLE;

p. I ndex = Index;
OS_MPU_Cal | Devi ceDri ver (0u, &p);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

414 CHAPTER 22 API functions

22.6.3 0OS_MPU_ConfigMem()

Description

Configures basic memory information. 0S_MPU_Confi gMem() tells embOS where ROM, RAM
and the embOS code is located in memory. This information is used to setup the default
task regions at task creation.

Prototype

voi d OS_MPU_Confi gMenm(OS_U32 ROM BaseAddr,
0S_U32 ROM Si ze,
OS_U32 RAM BaseAddr,
0S_U32 RAM Si ze,
OS_U32 OS_BaseAddr,
OS_U32 OS_Size);

Parameters
Parameter Description
ROM BaseAddr ROM base addr.
ROM Si ze ROM size.
RAM BaseAddr RAM base addr.
RAM Si ze RAM size.
OS_BaseAddr embOS ROM region base address.
Cs_Size embOS ROM region size.

Additional information

This function must be called before any unprivileged task is created.

Example

voi d mai n(void) {

Cs_MPU_Conf i gMen{ 0x08000000u,
0x00100000u,
0x20000000u,
0x00020000u,
__os_start__,
__0s_size_);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

415 CHAPTER 22 API functions

22.6.4 OS_MPU_Enable()

Description
Initializes the MPU hardware with the default MPU API list and enables it.

Prototype
voi d OS_MPU_Enabl e(voi d);

Additional information

This function must be called before any embOS-MPU related function is used or any task
is created.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

416 CHAPTER 22 API functions

22.6.,5 OS_MPU_EnableEx()

Description
Initializes the MPU hardware with the specified MPU API list and enables it.

Prototype
voi d OS_MPU_Enabl eEx(OS_CONST_PTR OS_MPU_API _LI ST *pAPI Li st);
Parameters
Parameter Description
PAPI Li st Pointer to core specific MPU API list.

Additional information

This function must be called before any embOS-MPU related function is used or any task
is created.

Example

voi d mai n(void) ({
0S_MPU_Enabl eEx(&S _ARM/7TM MPU_API) ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

417

CHAPTER 22 API functions

22.6.6 OS_MPU_ExtendTaskContext()

Description

Extends the task context for the MPU registers.

Prototype

voi d OS_MPU_Ext endTaskCont ext (voi d) ;

Additional information

It is device dependent how many MPU regions are available. This function makes it possible
to use all MPU regions for every single task. Otherwise the tasks would have to share the
MPU regions. To do so the MPU register must be saved and restored with every context
switch.

This function allows the user to extend the task context for the MPU registers. A major
advantage is that the task extension is task-specific. This means that the additional MPU
register needs to be saved only by tasks that actually use these registers. The advantage is
that the task switching time of other tasks is not affected. The same is true for the required
stack space: Additional stack space is required only for the tasks which actually save the
additional MPU registers. The task context can be extended only once per task. The function
must not be called multiple times for one task.

OS_MPU_Ext endTaskCont ext () is not available in OS_LI BMODE_XR.

0S_Set Def aul t Cont ext Ext ensi on() can be used to automatically add MPU register to the
task context of every newly created task.

Example

static void HPTask(void) {
OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Swi t chToUnpri vState();
while (1) {
OS_TASK_Del ay(50);
}
}

static void HPTask(void) {
OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Swi t chToUnpri vState();
while (1) {
OS_TASK_Del ay(200);
}
}

Note

If you run more than one unprivileged task you must use OS_MPU_Ext endTaskCon-
text () in order to save and restore the MPU register for each unprivileged task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

418 CHAPTER 22 API functions

22.6.7 OS_MPU_GetThreadState()

Description

Returns the current privileged task state.

Prototype
OS_MPU_THREAD _STATE OS_MPU_Get Thr eadSt at e(voi d) ;

Return value

0 Privileged state (OS_MPU_THREAD_STATE_PRI VI LEGED).
1 Unprivileged state (OS_MPU_THREAD_STATE_UNPRI VI LEGED).

Additional information

A new created task has the task state OS_MPU THREAD STATE PRI VI LEGED. It can be
set to OS_MPU_THREAD STATE_UNPRI VI LEGED with the API function OS_MPU Swi t chToUn-
privState(). A task can never set itself back to the privileged state OS_MPU THREAD S-
TATE_PRI VI LEGED.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

419 CHAPTER 22 API functions

22.6.8 0OS_MPU_SetAllowedObjects()

Description

Sets a task specific list of objects to which the task has access via embOS API functions.

Prototype
voi d OS_MPU_Set Al | owedObj ect s(OS_TASK* pTask,
OS_CONST_PTR OS_MPU_OBJ *pQbj Li st);
Parameters
Parameter Description
pTask Pointer to a task control block.
pQoj Li st Pointer to a list of allowed objects.

Additional information

Per default a task has neither direct nor indirect write access via embOS API functions to
any embOS object like a task control block. Even if the object is in the list of allowed objects
a direct write access to a control structure is not possible. But if an object is in the list the
task can access the object via embOS API functions. This can be e.g. the own task control
block, a mailbox control structure which is mutual used by different task or even the task
control block of another task. It is the developer responsibility to only add objects which
are necessary for the unprivileged task. The list is null-terminated which means the last
entry must always be: {NULL, OS_MPU_COBJTYPE_I| NVALI D} .

The following object types exist:

0S_MPU_OBJTYPE_TASK
0S_MPU_OBJTYPE_MUTEX
0S_MPU_OBJTYPE_SEMA
0S_MPU_OBJTYPE_EVENT
0S_MPU_OBJTYPE_QUEUE
0S_MPU_OBJTYPE_MAI LBOX
0S_MPU_OBJTYPE_SWII MER
0S_MPU_OBJTYPE_MEMPOOL
0S_MPU_OBJTYPE_WATCHDOG

Example

static const OS MPU OBJ _njList[] = {{(0S_U32)&TCBHP, OS_MPU OBJTYPE TASK},
{(0CS_U32)NULL, OS_MPU OBJTYPE | NVALI D} };
static void _Unpriv(void) {
OS_TASK_Set Nane(&TCBHP, " Segger");
while (1) {
OS_TASK Del ay(10);
}

}
static void HPTask(void) {

OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Set Al | owedObj ect s(&TCBHP, _Obj Li st);
OS_MPU_Swi t chToUnprivState();
_Unpriv();
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

420 CHAPTER 22 API functions

22.6.9 0OS_MPU_SetDeviceDriverList()

Description

Sets the device driver list.

Prototype
voi d OS_MPU_Set Devi ceDri ver Li st (OS_CONST_PTR OS_MPU_DEVI CE_DRI VER_FUNC *pLi st);
Parameters
Parameter Description
pLi st Pointer to device driver function address list.

Additional information

All device driver function addresses are stored in one list. The last item must be NULL. A
device driver is called with the according index to this list.

Example

static const OS_MPU _DEVI CE_DRI VER_FUNC _DeviceDriverList[] =
{ BSP_LED Devi ceDri ver,
NULL }; /1 Last item nmust be NULL

void BSP_lnit(void) {

OS_MPU_Set Devi ceDri ver Li st (_Devi ceDri verList);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

421

CHAPTER 22 API functions

22.6.10 OS MPU_SetErrorCallback()

Description

Sets the MPU error callback function. This function is called when a task is suspended due

to an MPU fault.

Prototype
voi d OS_MPU_Set Error Cal | back(OS_MPU_ERROR_CALLBACK pFunc);
Parameters
Parameter Description
pFunc Pointer to callback function.

Additional information

embOS suspends a task when it detects an invalid access. The internal error function GS_M
PU Error () calls the user callback function in order to inform the application. The applica-
tion can e.g. turn on an error LED or write the fault into a log file.

The callback function is called with the following parameter:

Parameter type

Description

Pointer to task control block of the unprivileged task which

O5_TASK caused the MPU error.
OS_MPU_ERRORCCDE Error code which describes the cause for the MPU error.
Example

static void _ErrorCall back(OS_TASK* pTask, OS _MPU ERRCRCODE Error Code) {
printf("% has been stopped due to error %\ n",

pTask- >Nane,
Er r or Code) ;
}

int main(void) {

OS_MPU_Set Error Cal | back(& ErrorCal | back);

}

embOS-MPU error codes

Define

Explanation

OS_MPU_ERROR | NVALI D_REG ON

The OS object address is within an allowed task re-
gion. This is not allowed. This can for example hap-
pen when the object was placed on the task stack.

OS_MPU_ERROR_| NVALI D_OBJECT

The unprivileged task is not allowed to access this
OS object.

OS_MPU_ERROR | NVALI D_API

The unprivileged task tried to call an embOS API
function which is not valid for an unprivileged
task. For example unprivileged tasks must not call
OS_TASK Ent er Regi on() .

0S_MPU_ERROR_HARDFAULT

Indicates that the task caused a hardfault.

OS_MPU_ERROR MEMFAULT

An illegal memory access was performed. A unprivi-
leged task tried to write memory without having the
access permission.

OS_MPU_ERROR_BUSFAULT

Indicates that the task caused a bus fault.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

422

CHAPTER 22 API functions

Define

Explanation

OS_MPU_ERROR_USAGEFAULT

Indicates that the task caused an usage fault.

OS_MPU_ERROR_SVC

The supervisor call was not made within an embOS
API function. This is not allowed.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

423 CHAPTER 22 API functions

22.6.11 OS MPU_SwitchToUnprivState()

Description

Switches a task to unprivileged state.

Prototype

void OS_MPU_Swi tchToUnpri vSt ate(void);

Additional information

The task code must be split into two parts. The first part runs in privileged state and ini-
tializes the embOS MPU settings. The second part runs in unprivileged state and is called
after the privileged part switched to the unprivileged state with O5_MPU_Swi t chToUnpri vS-
tate().

Example

static void _Unsecure(void) {
while (1) {
OS_TASK_Del ay(10);
}
}

static void HPTask(void) {
Il
/1 Initialization, e.g. add nenory regions
Il
OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Swi t chToUnpri vState();
_Unsecure();

Note

If you run more than one unprivileged task you must use OS_MPU_Ext endTaskCon-
text () in order to save and restore the MPU register for each unprivileged task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

424 CHAPTER 22 API functions

22.6.12 OS_MPU_SwitchToUnprivStateEx()

Description

Switches a task to unprivileged state and calls a task function which runs on a separate
task stack. This is an extended handling which is used with ARMv8M only.

Prototype
void OS_MPU_Swi t chToUnpri vSt at eEx(voi dRout i ne* pRouti ne,
voi d 0S_STACKPTR *pSt ack,
CS_UI NT St ackSi ze) ;
Parameters
Parameter Description
pRout i ne Pointer to a function that should run in unprivileged state.
Pointer to the task stack which should be used in unprivi-
pSt ack
leged state.
St ackSi ze Size of the task stack.

Additional information

The task code must be split into two parts. The first part runs in privileged state and initial-
izes the embOS MPU settings. The second part runs in unprivileged state and is called after
the privileged part switched to the unprivileged state with OS_MPU_Swi t chToUnpri vSt at e-
Ex() . You must use OS_MPU_Swi t chToUnpri vSt at eEx() with ARMv8M only.

Example

static unsigned char _Stack[512];

static void _Unsecure(void) { // Runs on the stack _Stack
while (1) {
OS_TASK_Del ay(10);
}
}

static void HPTask(void) {
I
/[l Initialization, e.g. add nenory regions
I
OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Swi t chToUnpri vSt at eEx(_Unsecure, _Stack, 512);

Note

If you run more than one unprivileged task you must use OS_MPU_Ext endTaskCon-
text () in order to save and restore the MPU register for each unprivileged task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

425 CHAPTER 22 API functions

22.6.13 OS _MPU_SetSanityCheckBuffer()

Description

Sets the pointer in the task control block to a buffer which holds a copy of the MPU register
for sanity check. The buffer size needs to be the size of all MPU register.

Prototype
voi d OS_MPU_Set Sani t yCheckBuf f er (OS_TASK* pTask,
voi d* p);
Parameters
Parameter Description
pTask Pointer to the task control block.
p Pointer to the MPU register buffer.

Additional information

OS_MPU_Set Sani t yCheckBuf fer () is only available in OS_LI BMODE_SAFE which is used in
the certified embOS-MPU. Due to e.g. a hardware failure, a MPU register content could
change. A copy of all relevant MPU register is held in the buffer. 0S_MPU _Sani t yCheck()
compares this copy to the actual MPU register and returns whether the register still have
the same value.

OS_MPU_Set Sani t yCheckBuffer () must be used prior to calling GS_MPU Swi t chToUn-
privState() only.

It must be called before OS_MPU Sani t yCheck() is used for the first time. The size of the
buffer depends on the used hardware MPU. Appropiate defines are provided, e.g. OS_AR-
M V7M MPU_REGS_SI ZE.

Example

static OS_US HPBuffer[0S_ARM V7M MPU_REGS_ S| ZF] ;

static void HPTask(void) {
OS_BOCL r;

OS_MPU_Set Sani t yCheckBuf f er (&TCBHP, HPBuffer);
OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Swi t chToUnprivState();
while (1) {
r = OS_MPU_Sani tyCheck();
if (r == 0) {
while (1) { // MPU register value invalid
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

426 CHAPTER 22 API functions

22.6.14 OS_MPU_SanityCheck()

Description

Performs an MPU sanity check which checks if the MPU register still have the correct value.

Prototype

OS_BOOL OS_MPU_Sani t yCheck(voi d);
Return value

0 Failure, at least one register has not the correct value.
1 Success, all registers have the correct value.

Additional information

OS_MPU_Sani t yCheck() is only available in OS_LI BMODE_SAFE which is used in the certified
embOS-MPU. Due to e.g. a hardware failure, an MPU register content could change. A copy
of all relevant MPU register is held in a buffer and a pointer to this buffer is stored in the
according task control block. S _MPU_Sani t yCheck() compares this copy to the actual MPU
register and returns whether the register still have the same value.

OS_MPU_Sani t yCheck() must be used in unprivileged tasks after the call to G5 M
PU_Swi t chToUnpri vState() only.

OS_MPU_Set Sani t yCheckBuf fer () must be called before OS_ MPU_Sani t yCheck() is used
for the first time. If the buffer is not set, 0S_MPU_Sani t yCheck() will return 0.

Example

static OS_US HPBuffer[OS_ARM V7M MPU_REGS_SI ZF] ;

static void HPTask(void) {
OS BOOL r;

OS_MPU_Set Sani t yCheckBuf f er (&TCBHP, HPBuffer);
OS_MPU_Ext endTaskCont ext () ;
OS_MPU_Swi t chToUnpri vState();
while (1) {
r = OS_MPU_Sani t yCheck();
if (r ==0) {
while (1) { // MPU register value invalid
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 23

Stacks

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

428

CHAPTER 23 Introduction

23.1 Introduction

The stack is the memory area used for storing the return address of function calls, para-
meters, and local variables, as well as for temporary storage. Interrupt routines also use
the stack to save the return address and flag registers, except in cases where the CPU has a
separate stack for interrupt functions. Refer to the CPU & Compiler Specifics manual of em-
bOS documentation for details on your processor’s stack. A “normal” single-task program
needs exactly one stack. In a multitasking system, every task must have its own stack.

The stack needs to have a minimum size which is determined by the sum of the stack
usage of the routines in the worst-case nesting. If the stack is too small, a section of the
memory that is not reserved for the stack will be overwritten, and a serious program failure
is most likely to occur. Therefore, the debug and stack-check builds of embOS monitor the
stack size (and, if available, also interrupt stack size) and call GS_Error () if they detect
stack overflows.

To detect a stack overflow, the stack is filled with control characters upon its creation,
thereby allowing for a check on these characters every time a task is deactivated. However,
embOS does not guarantee to reliably detect all stack overflows. A stack that has been
defined larger than necessary, on the other hand, does no harm; even though it is a waste
of memory.

23.1.1 System stack

Before embOS takes control (before the call to OS_Start ()), a program uses the socalled
system stack. This is the same stack that a non-embOS program for this CPU would use.
After transferring control to the embOS scheduler by calling CS_St art (), the system stack
is used for the following (when no task is executing):

e embOS scheduler
e embOS software timers (and the callback).

For details regarding required size of your system stack, refer to the CPU & Compiler
Specifics manual of embOS documentation.

23.1.2 Task stack

Each embOS task has a separate stack. The location and size of this stack is defined when
creating the task. The minimum size of a task stack depends on the CPU and the compiler.
For details, see the CPU & Compiler Specifics manual of embOS documentation.

23.1.3 Interrupt stack

To reduce stack size in a multitasking environment, some processors use a specific stack
area for interrupt service routines (called a hardware interrupt stack). If there is no interrupt
stack, you will need to add stack requirements of your interrupt service routines to each
task stack.

Even if the CPU does not support a hardware interrupt stack, embOS may support a separate
stack for interrupts by calling the function OS_| NT_Ent er | nt St ack() at beginning of an
interrupt service routine and OS_| NT_Leavel nt St ack() at its very end. In case the CPU
already supports hardware interrupt stacks or if a separate interrupt stack is not supported
at all, these function calls are implemented as empty macros.

We recommend using OS | NT_Enter|ntStack() and OS_| NT_Leavel nt St ack() even if
there is currently no additional benefit for your specific CPU, because code that uses them
might reduce stack size on another CPU or a new version of embQOS with support for an
interrupt stack for your CPU. For details about interrupt stacks, see the CPU & Compiler
Specifics manual of embOS documentation.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

429 CHAPTER 23 Introduction

23.1.4 Stack size calculation

embOS includes stack size calculation routines. embOS fills the task stacks and also the
system stack and the interrupt stack with a pattern byte. embOS checks at runtime how
many bytes at the end of the stack still include the pattern byte. With it the amount of used
and unused stack can be calculated.

23.1.5 Stack-check

embOS includes stack-check routines. embOS fills the task stacks and also the system stack
and the interrupt stack with a pattern byte. embOS periodically checks whether the last
pattern byte at the end of the stack was overwritten and calls GS_Error () when it was.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

430

23.2 API functions

CHAPTER 23

API functions

Routine

Description

urew

Nsel

dSi
JETT

OS_STACK Get I nt St ackBase()

Returns the base address of the inter-
rupt stack.

OS_STACK Get I nt St ackSi ze()

Returns the size of the interrupt stack.

OS_STACK GCet I nt St ackSpace()

Returns the amount of interrupt stack
which was never used (Free interrupt
stack space).

OS_STACK Get I nt St ackUsed()

Returns the amount of interrupt stack
which is actually used.

OS_STACK Get TaskSt ackBase()

Returns a pointer to the base of a task
stack.

OS_STACK Get TaskSt ackSi ze()

Returns the total size of a task stack.

OS_STACK Cet TaskSt ackSpace()

Returns the amount of task stack which
was never used by the task (Free stack
space).

OS_STACK Get TaskSt ackUsed()

Returns the amount of task stack which
is actually used by the task.

OS_STACK Get SysSt ackBase()

Returns the base address of the system
stack.

OS_STACK Get SysSt ackSi ze()

Returns the size of the system stack.

OS_STACK Get SysSt ackSpace()

Returns the amount of system stack
which was never used (Free system
stack space).

OS_STACK Get SysSt ackUsed()

Returns the amount of system stack
which is actually used.

OS_STACK Set CheckLimt()

Sets the stack check limit to a percent-
aged value of the stack size.

OS_STACK_Get CheckLi it ()

Returns the stack check limit in percent.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

431 CHAPTER 23 API functions

23.2.1 OS_STACK_GetIntStackBase()

Description

Returns a pointer to the base of the interrupt stack.

Prototype

voi d* OS_STACK Get I nt St ackBase(voi d);

Return value

The pointer to the base address of the interrupt stack.

Additional information

This function is only available when an interrupt stack exists.
Example

voi d Checkl nt St ackBase(voi d) {
printf("Addr Interrupt Stack %", OS_STACK GetlntStackBase());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

432 CHAPTER 23 API functions

23.2.2 0OS_STACK_GetIntStackSize()

Description

Returns the size of the interrupt stack.

Prototype
unsigned int OS_STACK Getlnt StackSi ze(void);

Return value

The size of the interrupt stack in bytes.

Additional information

This function is only available when an interrupt stack exists.
Example

voi d Checkl nt St ackSi ze(voi d) {
printf("Size Interrupt Stack %", OS_STACK GetlntStackSize());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

433 CHAPTER 23 API functions

23.2.3 0OS_STACK_GetIntStackSpace()

Description

Returns the amount of interrupt stack which was never used (Free interrupt stack space).

Prototype
unsi gned int OS_STACK Getl nt St ackSpace(void);

Return value

Amount of interrupt stack which was never used in bytes.

Additional information

This function is only available in the debug and stack-check builds and when an interrupt
stack exists.

Note

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

voi d Checkl nt St ackSpace(voi d) {
printf("Unused Interrupt Stack %", OS_STACK Cetl nt StackSpace());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

434 CHAPTER 23 API functions

23.2.4 0OS_STACK_GetIntStackUsed()

Description

Returns the amount of interrupt stack which is actually used.

Prototype
unsigned int OS_STACK Getlnt StackUsed(void);

Return value

Amount of interrupt stack which is actually used in bytes.

Additional information

This function is only available in the debug and stack-check builds and when an interrupt
stack exists.

Note

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

voi d Checkl nt St ackUsed(voi d) {
printf("Used Interrupt Stack %", OS_STACK GetlntStackUsed());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

435 CHAPTER 23 API functions

23.2.5 O0OS_STACK GetTaskStackBase()

Description
Returns a pointer to the base of a task stack. If pTask is NULL, the currently executed task
is checked.
Prototype
voi d OS_STACKPTR *OS_STACK_Get TaskSt ackBase(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
The task whose stack base should be returned. NULL denotes
pTask
the current task.

Return value

Pointer to the base address of the task stack.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

This function is only available in the debug and stack-check builds of embOS, because only
these builds initialize the stack space used for the tasks.

Example

voi d CheckSt ackBase(void) {
printf("Addr Stack[0] %", OS_STACK Get TaskStackBase(&TCB[O0]);
OS_TASK_Del ay(1000);
printf("Addr Stack[1l] %", OS_STACK Get TaskStackBase(&TCB[1]);
OS_TASK_Del ay(1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

436 CHAPTER 23 API functions

23.2.6 OS_STACK_ GetTaskStackSize()

Description

Returns the total size of a task stack.

Prototype
unsi gned int OS_STACK Get TaskSt ackSi ze(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
The task whose stack size should be checked. NULL means
pTask
current task.

Return value

Total size of the task stack in bytes.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

This function is only available in the debug and stack-check builds of embOS, because only
these builds initialize the stack space used for the tasks.

Example

voi d CheckSt ackSi ze(voi d) {
printf("Size Stack[0] %", OS_STACK Get TaskStackSi ze(&TCB[O0]);
OS_TASK_Del ay(1000);
printf("Size Stack[1l] %", OS_STACK Get TaskStackSi ze(&TCB[1]);
OS_TASK_Del ay(1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

437 CHAPTER 23 API functions

23.2.7 OS_STACK_ GetTaskStackSpace()

Description

Returns the amount of task stack which was never used by the task (Free stack space). If
no specific task is addressed, the current task is checked.

Prototype
unsi gned int OS_STACK Get TaskSt ackSpace(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
The task whose stack space should be checked. NULL de-
pTask
notes the current task.

Return value

Amount of task stack which was never used by the task in bytes.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

In most cases, the stack size required by a task cannot be easily calculated because it takes
quite some time to calculate the worst-case nesting and the calculation itself is difficult.

However, the required stack size can be calculated using the function OS_STACK Get TaskS-
t ackSpace(), which returns the number of unused bytes on the stack. If there is a lot of
space left, you can reduce the size of this stack. This function is only available in the debug
and stack-check builds of embOS.

Note

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

voi d CheckSt ackSpace(void) {
printf("Unused Stack[0] %", OS_STACK Get TaskStackSpace(&TCB[O0]);
OS_TASK Del ay(1000);
printf("Unused Stack[1l] %", OS_STACK Get TaskStackSpace(&TCB[1]);
OS_TASK Del ay(1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

438 CHAPTER 23 API functions

23.2.8 0OS_STACK GetTaskStackUsed()

Description

Returns the amount of task stack which is actually used by the task. If no specific task is
addressed, the current task is checked.

Prototype
unsi gned int OS_STACK Get TaskSt ackUsed(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
The task whose stack usage should be checked. NULL de-
pTask
notes the current task.

Return value

Amount of task stack which is actually used by the task in bytes.

Additional information

If NULL is passed for pTask, the currently running task is used. However, NULL must not be
passed for pTask from main(), a timer callback or from an interrupt handler. A debug build
of embOS will call S Error () in case pTask does not indicate a valid task.

In most cases, the stack size required by a task cannot be easily calculated, because it takes
quite some time to calculate the worst-case nesting and the calculation itself is difficult.

However, the required stack size can be calculated using the function OS_STACK Get TaskS-
tackUsed(), which returns the number of used bytes on the stack. If there is a lot of space
left, you can reduce the size of this stack. This function is only available in the debug and
stack-check builds of embOS.

Note

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

voi d CheckStackUsed(void) {
printf("Used Stack[0] %", OS_STACK Get TaskStackUsed(&TCB[O0]);
OS_TASK Del ay(1000);
printf("Used Stack[1] %", OS_STACK Get TaskStackUsed(&TCB[1]);
OS_TASK Del ay(1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

439 CHAPTER 23 API functions

23.2.9 O0OS_STACK_GetSysStackBase()
Description
Returns a pointer to the base of the system stack.

Prototype

voi d* OS_STACK GCet SysSt ackBase(voi d);

Return value

The pointer to the base address of the system stack.

Example

voi d CheckSysStackBase(void) {
printf("Addr System Stack %", OS_STACK Get SysSt ackBase());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

440 CHAPTER 23 API functions

23.2.10 OS _STACK_ GetSysStackSize()
Description
Returns the size of the system stack.

Prototype

unsi gned int OS_STACK Get SysStackSi ze(void);

Return value

The size of the system stack in bytes.

Example

voi d CheckSysStackSi ze(void) {
printf("Size System Stack %", OS _STACK Get SysSt ackSi ze());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

441 CHAPTER 23 API functions

23.2.11 OS STACK_ GetSysStackSpace()

Description

Returns the amount of system stack which was never used (Free system stack space).

Prototype
unsi gned int OS_STACK Get SysSt ackSpace(voi d);

Return value

Amount of unused system stack, in bytes.

Additional information
This function is only available in the debug and stack-check builds of embOS.

Note

This routine does not reliably detect the amount of stack space left, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

voi d CheckSysStackSpace(void) {
printf("Unused System Stack %", OS_STACK Get SysStackSpace());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

442 CHAPTER 23 API functions

23.2.12 0OS STACK_ GetSysStackUsed()

Description

Returns the amount of system stack which is actually used.

Prototype
unsi gned int OS_STACK Get SysStackUsed(void);

Return value

Amount of used system stack, in bytes.

Additional information
This function is only available in the debug and stack-check builds of embOS.

Note

This routine does not reliably detect the amount of stack space used, because it can
only detect modified bytes on the stack. Unfortunately, space used for register storage
or local variables is not always modified. In most cases, this routine will detect the
correct amount of stack bytes, but in case of doubt, be generous with your stack space
or use other means to verify that the allocated stack space is sufficient.

Example

voi d CheckSysStackUsed(void) {
printf("Used System Stack %", OS_STACK Get SysStackUsed());

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

443 CHAPTER 23 API functions

23.2.13 OS_STACK_SetCheckLimit()

Description

Sets the stack check limit to a percentaged value of the stack size.

Prototype
voi d OS_STACK Set CheckLimit(OS_ U8 Limit);
Parameters
Parameter Description
Limit Stack check limit in percent. Valid values are 0..100%.
Values above 100% are trimmed to 100%.

Additional information

This function is only available in safety builds of embQOS (OS_LI BMODE_SAFE). In all other
embOS builds the stack check limit is fixed to 100%. It can be used to set the stack check
limit to a value which triggers the error condidition before the stack is filled completely. With
the safety build of embOS the application can react before the stack actually overflows.

Note

This routine must only be called from main() or privileged tasks. This setting is jointly
used for the system stack, the interrupt stack and all task stacks. The best practice
is to call it in main() before CS _Start ().

Example

int main(void) {
s Init();
S InitHW);
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS_STACK Set CheckLimt(70); // Set the stack check limt to 70%
CS Start();

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

444 CHAPTER 23 API functions

23.2.14 OS_STACK_GetCheckLimit()

Description

Returns the stack check limit in percent.
Prototype
0S_U8 OS_STACK_Get CheckLi mi t (voi d);

Return value

The stack check limit as a percentaged value of the stack size.

Additional information

This function is only available in safety builds of embOS (GS_LI BMODE_SAFE). In all other
embOS builds the stack check limit is fixed to 100%.

Note

This routine must only be called from main() or privileged tasks. This setting is jointly
used for the system stack, the interrupt stack and all task stacks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 24

Board Support Packages

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

446

CHAPTER 24 Introduction

24.1 Introduction

This chapter explains the target system specific parts of embOS, called BSP (board support
package). If the software is up and running on your target system, there is no need to
read this chapter.

In general, no configuration is required to get started with embQOS: The start projects
supplied with your embQOS shipment will execute on your system. Small modifications to
the configuration might be necessary at a later point, for example to configure a different
system frequency or in order to enable a UART for the optional communication with em-
bOSView.

All hardware-specific routines that may require modifications are located in one of two
source files delivered with embQS. The file RTOSI ni t. ¢ is provided in source code and con-
tains most of the functions that may require modifications to match your target hardware.

Furthermore, the file BSP. c is provided in source code as well and may contain routines to
initialize and control LEDs, which may require further modifications to match your target
hardware.

The sole exception to this rule is that some ports of embOS require an additional interrupt
vector table file. Further details on these are available with the CPU & Compiler Specifics
manual of the embOS documentation.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

447 CHAPTER 24 Hardware-specific routines

24.2 Hardware-specific routines

The following routines are not exposed as user API, but are instead required by embQOS for
internal usage. They are shipped as source code to allow for modifications to match your
actual target hardware. However, unless explicitly stated otherwise, these functions must
not be called from your application.

, - 3 3 7|5
Routine Description % o |3 ‘-3'2
Required for embOS
OS _Convert Cycl es2us() | Converts cycles into microseconds. ojo|o e
0S _Get Ti me_Cycl es() Reads the timestamp in cycles.
The idle loop is executed whenever no task is
Cs Idle() i
ready for execution.
0S| ni t HW() E-E:;Clahzes the hardware required for embOS to .
SysTi ck_Handl er () The embOS timer interrupt handler.
Optional for run-time embOSView
oS COM Init() Initializes communication with embOSView. °
OS_COM Send1() Sends one character towards embOSView.
Receive interrupt handler for UART communica-
O5_I'SR_Rx() tion with embOSView.
Transmit interrupt handler for UART communi-
O5_I' SR_Tx() cation with embOSView.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

448 CHAPTER 24 Hardware-specific routines

24.2.1 0OS_ConvertCycles2us()

Description

Converts clock cycles into microseconds.

Prototype
OS_U32 OS_Convert Cycl es2us(0S_U32 Cycl es);
Parameters
Parameter Description
Cycl es Number of CPU cycles to convert.

Return value

The period of time in microseconds that is equivalent to the given number of clock cycles
as a 32 bit unsigned integer value.

Additional information

This function is required for profiling and high resolution time measurement. You must
modify it when using different clock settings (see Setting the system frequency OS_FSYS
on page 458).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

449 CHAPTER 24 Hardware-specific routines

24.2.2 0OS_GetTime_Cycles()

Description

Returns the system time in timer clock cycles. Cycle length depends on the system.

Prototype
OS_U32 OS_Get Ti me_Cycl es(void);

Return value

The number of clock cycles that have passed since the last reset as a 32 bit unsigned
integer value.

Additional information

Interrupts must be disabled prior to calling this function. This function is required for pro-
filing and high resolution time measurement. You must modify it when using different clock
settings (see Setting the system frequency OS_FSYS on page 458).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

450 CHAPTER 24 Hardware-specific routines

24.2.3 0OS_Idle()

Description

The function OS_| dl e() is called when no task, timer routine or ISR is ready for execution.

Usually, GS I dl e() is programmed as an endless loop without any content. With many
embOS start projects, however, it activates a power save mode of the target CPU (see
Starting power save modes in OS_| dl e() on page 301).

Prototype

void OS_Idle(void);

Additional information

Cs Idle() is not a task, it neither has a task context nor a dedicated stack. Instead, it
runs on the system’s C stack, which is also used by the kernel. Exceptions and interrupts
occurring during OS_I dl e() will returnto OS_I dl e() unless they trigger a task switch. When
returning to OS_1dl e(), execution is continued from where it was interrupted. However, in
case a task switch did occur during execution of OS_I dl e(), the function is abandoned and
execution will start from the beginning when it is activated again. Hence, no functionality
should be implemented that relies on the stack to be preserved. If this is required, please
consider implementing a custom idle task (Creating a custom Idle task on page 451).

Calling OS_TASK_Ent er Regi on() and OS_TASK LeaveRegi on() from OS_Idl e() allows to
inhibit task switches during the execution of OS_I dl e(). Running in a critical region does
not block interrupts, but disables task switches until OS_TASK LeaveRegi on() is called.
Using a critical region during GS_I dl e() will therefore affect task activation time, but will
not affect interrupt latency.

Example

void OS_ ldle(void) { // Idle loop: No task is ready to execute
while (1) {
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

451 CHAPTER 24

24.2.3.1 Creating a custom Idle task

Hardware-specific routines

As an alternative to OS_I dl e(), it is also possible to create a custom “idle task”. This task
must run as an endless loop at the lowest task priority within the system. If no blocking
function is called from that task, the system will effectively never enter GS_I dl e(), but will
execute this task instead whenever no other task is ready for execution.

Example

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128], Stackldle[128];

static OS_TASK TCBHP, TCBLP, TCBIdI e;
static void HPTask(void) {
while (1) {
BSP_Toggl eLED 0) ;
OS_TASK Del ay(50);

enbCs

HPTask, StackHP);

}
}
static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}
static void Idl eTask(void) {
while (1) {
11
/'l Performidle duty, e.g.
Il - Switch off clocks for unused peripherals.
/'l - Free resources that are no |onger used by any task.
/1l - Enter power save node.
11
}
}
int main(void) {
CS Init(); /[l Initialize enbCS
OS_Ini t HW() ; /1l Initialize hardware for
BSP_Init(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100,
OS_TASK_CREATE(&TCBLP, "LP Task", 50,

OS_TASK _CREATE(&TCBIdl e, "Idle Task", 1,
Os _Start(); /1 Start multitasking
return O;

UMO01001 User Guide & Reference Manual for embOS

LPTask, StackLP);
I dl eTask, Stackldle);

© 1995-2018 SEGGER Microcontroller GmbH

452 CHAPTER 24 Hardware-specific routines

24.2.4 OS_InitHW()

Description

Initializes the hardware required for embQOS to run. embQOS needs a timer interrupt to
determine when to activate tasks that wait for the expiration of a delay, when to call a
software timer, and to keep the time variable up-to-date.

This function must be called once during mai n() .

Prototype
void OS_InitHWvoi d);

Additional information

You must modify this routine when a different hardware timer should be used (see Using a
different timer to generate tick interrupts for embOS on page 458).

With most embOS start projects, this routine may also call further, optional configuration
functions, e.g. for

e configuration of the embOS microsecond precise system time parameters (see
OS_TI ME_Confi gSysTi mer ()), and

e initialization of the communication interface to be used with embOSView (see
0S_COM I nit()).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

453 CHAPTER 24 Hardware-specific routines

24.2.5 SysTick _Handler()
Description

The embQOS system timer tick interrupt handler.

Prototype

voi d SysTi ck_Handl er (voi d);

Additional information

With specific embOQS start projects, this handler may be implemented using a device specific
interrupt name. When using a different timer, always check the specified interrupt vector.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

454 CHAPTER 24 Hardware-specific routines

24.2.6 0OS_COM_Init()

Description

Initializes the communication channel for embOSView. This function usually is called once
during GS_ I ni t HW() .

Prototype

void OS_COM Init(void);

Additional information

You must modify this routine according to your communication interface. For example when
a different UART or baudrate should be used for communication with embOSView. (see
Using a different UART or baudrate for embOSView on page 458).

To select a communications interface other than UART, refer to Select the communication
channel in the start project on page

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

455 CHAPTER 24 Hardware-specific routines

24.2.7 OS_COM_Sendl()

Description

Sends one character towards embOSView via the configured interface.

Prototype
void OS_COM Sendl1(0OS_U8 c);
Parameters
Parameter Description
c The character to send towards embOSView.

Additional information
This function is required for OS_COM SendStri ng() (see OS_COM SendString()).

You must modify this routine according to your communication interface. Using a different
UART or baudrate for embOSView on page 458).

To select a communications interface other than UART, refer to Select the communication
channel in the start project on page

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

456 CHAPTER 24 Hardware-specific routines

24.2.8 0OS_ISR_RXx()

Description

Receive interrupt handler for UART communication with embOSView.

Prototype

void OS_| SR Rx(void);

Additional information

You must modify this routine when UART is selected as communications interface but a
different UART should be used for communication with embOSView. With specific embOS
start projects, this handler may be implemented using a device specific interrupt name.
Furthermore, with specific devices UART interrupts may share a common interrupt source.
In that case, 05 | SR Rx() and OS_I SR Tx() are implemented as a single interrupt handler
that may utilize a device specific interrupt name.

When using a different communications interface, this routine is not used.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

457 CHAPTER 24 Hardware-specific routines

2429 OS_ISR_Tx()

Description

Transmit interrupt handler for UART communication with embOSView.

Prototype

void OS_ | SR _Tx(void);

Additional information

You must modify this routine when UART is selected as communications interface but a
different UART should be used for communication with embOSView. With specific embOS
start projects, this handler may be implemented using a device specific interrupt name.
Furthermore, with specific devices the UART interrupts may share a common interrupt
source. In that case, OS | SR Rx() and OS_| SR Tx() are implemented as a single interrupt
handler that may utilize a device specific interrupt name.

When using a different communications interface, this routine is not used.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

458 CHAPTER 24 How to change settings

24.3 How to change settings

24.3.1 Setting the system frequency OS _FSYS

Relevant defines
e (S FSYS (System frequency in Hz)

Relevant routines

e (S ConvertCycl es2us()
e (S GetTine_Cycles()
e OS InitHW)

OS_FSYS defines the clock frequency of your system in Hz (times per second). The value
of OS5 _FSYS is used to calculate the desired reload counter value for the system timer for
1000 interrupts / sec. The interrupt frequency therefore typically is 1 kHz.

Different (lower or higher) interrupt rates are possible. If you choose an interrupt frequency
different from 1 kHz, the value of the time variable OS_Q obal .Time will no longer be
equivalent to multiples of 1 msec (see OS_d obal .Time on page 461). However, if you
use a multiple of 1 msec as tick time, the basic time unit can be made 1 msec by using the
function OS_TI CK _Confi g() (see OS_TI CK Config()). The basic time unit does not need
to be 1 msec; it might just as well be 100 usec or 10 msec or any other value. For most
applications, however, 1 msec is an appropriate value.

24.3.2 Using a different timer to generate tick interrupts for
embOS

Relevant routines
e OS InitHW)

embOS usually generates one interrupt per msec, making the timer interrupt, or tick, nor-
mally equal to 1 msec. This is done by a timer initialized in the routine OS_I ni t H\() . If you
want to use a different timer for your application, you must modify OS_| ni t HA() to initialize
the appropriate timer. For details about initialization, read the comments in RTCSI ni t. c.

24.3.3 Using a different UART or baudrate for embOSView

Relevant defines

e (OS_UART (Selection of UART to be used with embOSView, -1 to disable)
e (S _BAUDRATE (Selection of baudrate for communication with embOSView)

Relevant routines:

OS_COM I nit()
OS_COM Sendl()
OS_| SR _Rx()
OS_| SR _Tx()

In some cases, this may be done by simply changing the define OS_UART. Refer to the
contents of the RTOSI ni t . ¢ file for more information about which UARTS have been pre-
configured for your target hardware.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 25

System Variables

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

460 CHAPTER 25 Introduction

25.1 Introduction

The system variables are described here for a deeper understanding of how the OS works
and to make debugging easier.

Not all embOS internal variables are explained here as they are not required to use embOS.
Your application should not rely on any of the internal variables, as only the documented
API functions are guaranteed to remain unchanged in future versions of embOS.

These variables are accessible, but they should only be altered by functions of embOS.
However, some of these variables can be very useful, especially the time variables.

Note

Do not alter any system variables!

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

461 CHAPTER 25 Time variables

25.2 Time variables

25.2.1 OS_Global

0S_d obal is a structure which includes embOS internal variables. The following vari-
ables OS_d obal . Ti ne and OS_d obal . Ti neDex are part of OS_Ad obal . Any other part of
0S_d obal is not explained here as they are not required to use embQS.

25.2.2 OS_Global.Time

Description

This is the time variable which contains the current system time in embOS system ticks
(typically equivalent to msec).

Additional information

The time variable has a resolution of one time unit, which is normally 1/1000 sec (1 msec)
and is normally the time between two successive calls to the embOS timer interrupt handler.
Instead of accessing this variable directly, use OS_TI ME_Get Ti cks() or OS_TI ME_Get Ti ck-
s32() as explained in the Chapter Time Measurement on page 282.

25.2.3 0OS_Global. TimeDex

For internal use only. Contains the time at which the next task switch or timer activation is
due. If ((int)(OS_ G obal . Time - OS dobal.TineDex)) # 0, the task list and timer list
will be checked for a task or timer to activate. After activation, 0S_d obal . Ti neDex will be
assigned the time stamp of the next task or timer to be activated.

Note that the value of OS_@ obal . Ti nreDex may be invalid during task execution. It con-
tains correct values during execution of OS_| dl e() and when used internally in the embQOS
scheduler. The value of GS_d obal . Ti mreDex should not be used by the application.

If you need any information about the next time-scheduled action from embOS, the function
OS Tl CKLESS Get Numl dl eTi cks() can be used to get the number of system ticks spent
idle.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

462 CHAPTER 25 OS information routines

25.3 OS information routines

: - 3 |d|= |2
Routine Description o 8|23

S |=|® @

OS | NFO_Get CPU() Returns the CPU name. oo |o o
OS | NFO _Cet Li bvbde() Returns the library mode. o o 0o
OS_| NFO _Get Li bNane() Returns the library name. AR
0S_| NFO_Get Model () Returns the memory model name. oo |o o
OS_| NFO_Get Ver si on() Returns the embOS version number. oo |o e

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

463 CHAPTER 25 OS information routines

253.1 OS_INFO_GetCPU()

Description

Returns the CPU name.

Prototype

char *OS_I NFO_Get CPU(voi d) ;

Return value

Char pointer to a null-terminated string containing the CPU name.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

464 CHAPTER 25 OS information routines

25.3.2 OS_INFO_GetLibMode()

Description

Returns the library mode.

Prototype

char *OS_I NFO_Get Li bMbde(voi d);

Return value

Char pointer to a null-terminated string containing the embOS library mode, e.g. “"DP”, "R"
or “SP”.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

465 CHAPTER 25 OS information routines

25.3.3 OS_INFO_GetLibName()
Description
Returns the library name.

Prototype

char *OS_I NFO_Get Li bNare(voi d) ;

Return value

Char pointer to a null-terminated string containing the complete embOS library name,
memory model and library mode, e.g. “v7vLDP”.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

466 CHAPTER 25 OS information routines

25.3.4 OS_INFO_GetModel()

Description

Returns the memory model name.

Prototype

char *OS_I NFO_Get Mobdel (voi d);

Return value

Char pointer to a null-terminated string containing the embOS memory model string, e.g.
“v7vLl”.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

467 CHAPTER 25 OS information routines

25.3.5 OS_INFO_GetVersion()

Description

Returns the embOS version number.

Prototype

OS_UI NT OS_I NFO_Get Ver si on(voi d) ;

Return value

Returns the embQOS version number, e.g. "41203” for embOS version 4.12c.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 26

Supported Development Tools

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

469 CHAPTER 26 Overview

26.1 Overview

embOS has been developed with and for a specific C compiler version for the selected target
processor. Check the file RELEASE. HTM. for details. It works with the specified C compiler
only, because other compilers may use different calling conventions (incompatible object
file formats) and therefore might be incompatible. However, if you prefer to use a different
C compiler, contact us and we will do our best to satisfy your needs in the shortest possible
time.

Reentrance

All routines that can be used from different tasks at the same time must be fully reentrant.
A routine is in use from the moment it is called until it returns or the task that has called
it is terminated.

All routines supplied with your real-time operating system are fully reentrant. If for some
reason you need to have non-reentrant routines in your program that can be used from
more than one task, it is recommended to use a mutex to avoid this kind of problem.

C routines and reentrance

Normally, the C compiler generates code that is fully reentrant. However, the compiler may
have options that force it to generate non-reentrant code. It is recommended not to use
these options, although it is possible to do so in certain circumstances.

Assembly routines and reentrance

As long as assembly functions access local variables and parameters only, they are fully
reentrant. Everything else needs to be thought about carefully.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 27

Source Code

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

471 CHAPTER 27 Introduction

27.1 Introduction

embOS is available in two versions:

1. Object version: Object code + hardware initialization source.
2. Full source version: Complete source code.

Because this document describes the object version, the internal data structures are not
explained in detail. The object version offers the full functionality of embOS including all
supported memory models of the compiler, the debug libraries as described and the source
code for idle task and hardware initialization. However, the object version does not allow
source-level debugging of the library routines and the kernel.

The full source version gives you complete flexibility: embOS can be recompiled for different
data sizes; different compile options give you full control of the generated code, making it
possible to optimize the system for versatility or minimum memory requirements. You can
debug the entire system and even modify it for new memory models or other CPUs.

The source code distribution of embOS contains the following additional files:

e The CPU folder contains all CPU and compiler-specific source code and header files used
for building the embOS libraries. Generally, you should not modify any of the files in
the CPU folder.

The GenCSSr ¢ folder contains all generic embOS sources.
The embQOS libraries can be rebuild with the additional batch files in the root folder. All
of them are described in the following section.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

472 CHAPTER 27 Building embOS libraries

27.2 Building embQOS libraries

The embOS libraries can only be built if you have licensed a source code version of embOS.

In the root path of embOS, you will find a DOS batch file Prep. bat, which needs to be
modified to match the installation directory of your C compiler. Once this is done, you can
call the batch file M bat to build all embOS libraries and RTOS.h for your CPU.

The build process should run without any error or warning message. If the build process
reports any problem, check the following:

e Are you using the same compiler version as mentioned in the file Rel ease. ht m ?

e Can you compile a simple test file after running Prep. bat and does it really use the
compiler version you have specified?

e Is there anything mentioned about possible compiler warnings in the Rel ease. ht m ?

If you still have a problem, let us know.

The whole build process is controlled with a small number of batch files which are located
in the root directory of your source code distribution:

e ASM bat : This batch file calls the assembler and is used for assembling the assembly
part of embOS which contains the task switch functionality. This file is called from the
embOS internal batch file CC_CS. bat and cannot be called directly.

e ASM CPU. bat : This batch file is used to compile additional assembler files in the CPU
OSSr cCPU folder. ASM _CPU. bat cannot be called directly.

e CC. bat: This batch file calls the compiler and is used for compiling one embOS source
file without debug information output. Most compiler options are defined in this file and
generally should not be modified. For your purposes, you might activate debug output
and may also modify the optimization level. All modifications should be done with care.
This file is called from the embOS internal batch file CC_CS. bat and cannot be called
directly.

e CC _CPU. bat : This batch file is used to compile additional C files in the CPU OSSr cCPU
folder. CC_CPU. bat cannot be called directly.

e CCD. bat : This batch file calls the compiler and is used for compiling OS_d obal . ¢ which
contains all global variables. All compiler settings are identical to those used in CC. bat ,
except debug output is activated to enable debugging of global variables when using
embQOS libraries. This file is called from the embOS internal batch file CC_CS. bat and
cannot be called directly.

e (l ean. bat : Deletes the entire output of the embOS library build process. It is called
during the build process, before new libraries are generated. It deletes the Start folder.
Therefore, be careful not to call this batch file accidentally. This file is called initially by
M bat during the build process of all libraries.

e M bat: This batch file must be called to rebuild all embQOS libraries and RTOS.h. It
initially calls d ean. bat and therefore deletes the previous libraries and RTOS.h.

e ML. bat : This batch file is called from M.bat and is used for building one specific embQOS
library, it cannot be called directly.

e MakeH. bat : Builds the embOS header file RTCS. h which is composed from the CPU/
compiler-specific part OS_Chi p. h and the generic part OS_RAW h. RTCS. h is output in
the subfolder Start\1 nc.

e Prep.bat: Sets up the environment for the compiler, assembler, and linker. Ensure
that this file sets the path and additional include directories which are needed for your
compiler. This batch file is the only one which might require modifications to build the
embOS libraries. This file is called from M bat during the build process of all libraries.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

473 CHAPTER 27 Compile time switches

27.3 Compile time switches

Many features of embOS may be modified using compile-time switches. With each embQOS
distribution, these switches are preconfigured to appropriate values for each embOS library
mode. In case a configuration set is desired that was not covered by the shipped embQOS
libraries, the compile-time switches may be modified accordingly to create customized con-
figurations on your own authority. The embOS source code is necessary in order to do so.

According modifications must not be done to OS_RAW h or RTCS. h, instead compile-time
switches must be added to OS_Confi g. h or configured as preprocessor definitions. Subse-
quently, the embOS sources must be recompiled to reflect the modified switches. In case
of doubt, please contact the embOS support for assistance. The default values depend on
the used library mode and are given in the following table for library mode OS_LI BMODE_DP.

Compile time switch Description SRz Default
values
Enables runtime debug 0: Disabled
O5_DEBUG checks 1: Enabled 1
1: Stan-
dard debug
Enables additional debug | code
O5_DEBUG_LEVEL checks 2: Extend- 1
ed debug
code
0: Disabled
1: Enabled
2: Stack
OS_CHECKSTACK Performs stack checks chec_k with 1
config-
urable
stack check
limit
Percentage of stack us-
OS_STACKCHECK LIM T age that will be detected | 1-100 100
as a stack overflow error
- 0: Disabled
OS_PRCFI LE Profiling support 1: Enabled 1
S SUPPORT T CKSTEP embOSView tick step 0: Disabled 1
- - support 1: Enabled
05 TRACE embOSView trace sup- O Disabled 0
port 1: Enabled
Generates additional 0: Disabled
OS_TRACE_RECORD API _END SystemView API-End) 1
1: Enabled
events
. 0: Disabled
OS_RR_SUPPORTED Round Robin supported 1: Enabled 1
S TRACKNANE Allows task and OS ob- 0: Disabled 1
- ject names 1: Enabled
S SUPPORT SAVE RESTORE HOOK Support task context ex- | 0: Disabled 1
- - — — tensions 1: Enabled
0S_SUPPORT_STAT _Generate_ task statistic 0 Disabled 1
information 1: Enabled
S SUPPORT PTLS Support for thread local 0 Disabled 1
- - storage 1: Enabled
Initialization of internal 0: Disabled
C_INFT_EXPLICG TLY embOS variables 1: Enabled 0

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

474 CHAPTER 27 Compile time switches

Compile time switch Description e e Default
values
S SUPPORT Tl MER Suppo!'t for embQS soft- | 0: Disabled 1
- - ware timers 1: Enabled
S SUPPORT Tl CKLESS Support for embOS tick- | 0: Disabled 1
- - less mode 1: Enabled
S SUPPORT PERI PHERAL POVWER CTRL Enables peripheral power | 0: Disabled 1
- - - - control 1: Enabled
0S_PO/AER_NUM_COUNTERS Number of peripherals | ., 5
- — = which can be used
0S_SPI NLOCK_MAX_CORES Number of cores that >0 4
should access a spinlock
Support for embOS A
OS_SUPPORT_OS _ALLCC thread safe heap alloca- 0: Disabled 1
tion 1: Enabled

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

475 CHAPTER 27 Source code project

27.4 Source code project

All embOS start projects use the embOS libraries instead of the embOS source code. Even
the embOS source shipment does not include a project which uses embQOS sources.

It can be useful to have the embOS sources instead of the embOS library in a project, e.g.
for easier debugging. To do so you just have to exclude or delete the embQS library from
your project and add the embOS sources as described below.

The embOS sources consists of the files in the folder Gen0SSrc, CPU and CPW OSSr cCPU.
These files can be found in the embOS source shipment.

Folder Description
GenOSSrc embOS generic sources
CPU RTOS assembler file
CPU\OSSrcCPU CPU and compiler-specific files

Please add all C and assembler files from these folders to your project and add include
paths to these folders to your project settings. For some embOS ports it might be necessary
to add additional defines to your preprocessor settings. If necessary you will find more
information about it in the CPU and compiler-specific embOS manual.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 28

Shipment

This chapter describes the different embOS shipment variants.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

477

CHAPTER 28

28.1 General information

embQOS is available in three different variants: Free, Library, and Source code. The fully
functional free variant can easily be downloaded for each embOS port and has no technical

limitation.

The following table lists the included features with each of these variants:

General information

Features

Free

Library

Source code

embOS libraries

embOS source code

embOSView - Profiling PC tool

embOS manual

CPU/Compiler specific manual

Release notes

embOS IDE plug-ins

Board support packages

Feature & maintenance updates

Technical support

Free for any non-commercial use

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

478

CHAPTER 28

28.2 Library variant

J Start

| Start
| BoardSupport bt embO5View.exe
. Inc %] JLinkARM.dII
| Lib

s

Library variant

€ Release_embO5.html

€ Release_embO5_CPU_Compiler.htrml
| SYSVIEW_embOS.txt

8 UM01001_embOS.pdf

& UMO01061_embOS_CPU_Compiler.pdf

Directory

File

Description

St art\ Boar dSupport

Board support packages in ven-
dor specific subfolders

Start\lnc

RTCS. h, BSP. h, 0S_Confi g. h

Including files for embQOS

Start\Lib

embOS libraries

enbOSVi ew. exe

PC utility for runtime analysis

JLi nkARM dI |

J-Link DLL used with embOSView

Rel ease_enbCS. ht m

embOS release history

Rel ease_enb(OS_CPU_Conpi | -
er.htm

embOS CPU and compiler-specif-
ic release history

SYSVI EW enbCS. t xt

SytemView ID descripton file

UMD10xx_enmbOS_CPU_Conpi | -
er . pdf

embOS CPU and compiler-specif-
ic manual

UMD1001_enbCS. pdf

embOS manual

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

479 CHAPTER 28 Free variant

28.3 Free variant

The Free variant is identical to the library variant, exept for additional license information
governing the use of this variant.

. Start & | Start
. BoardSupport Bl embOSView. exe
i Inc 2] ILinkARM.dIl
. Lib || Licensetd
& Releaze_emb5.html
& Release_emb05 CPU_Compiler.html
| SYSVIEW_embO5.bd
& UMD1001_embOS.pdf
b UMD1061_embOS_CPU_Compiler.pdf
Directory File Description
start Boar suppor Coerd support packages in ven
Start\lnc RTCS. h, BSP. h, 0OS_Confi g. h | Including files for embOS
Start\Lib embOS libraries
enbCOSVi ew. exe PC utility for runtime analysis
JLi nkARM dI | J-Link DLL used with embOSView
Li cense. t xt License information
Rel ease_enbCS. ht ni embOS release history
Rel ease_enb0s _CPU Conpi | - | embOS CPU and compiler-specif-
er.htn ic release history
SYSVI EW enbCS. t xt SytemView ID descripton file
UMD10xx_enb(OS_CPU_Conpi | - | embOS CPU and compiler-specif-
er. pdf ic manual
UMD1001_enbCS. pdf embOS manual

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

480

CHAPTER 28

28.4 Source code variant

The source code variant is identical to the library variant, but in addition also contains the
embOS source files and a set of batch files that can be used to rebuild the embOS libraries.

y CPU

) Gen0585rc

| Start

| BoardSupport

) Inc

| Lib

-~

, CPU
 GenO55rc
| Start
i ASM.bat
L ASM_CPU bat
| CC.bat
| CC_CPU bat
| CCD.bat
i) Clean.bat

em

embO5View,exe

[
%] ILinkARM.4II
) M. bat

i M1 bat

&5 MAKEH. bat
| Prep.bat

& Release_embOS.html

m

€ Release_embO5_

Source code variant

CPU_Compiler.html

| SYSVIEW_embOS.bit
8 UM01001_embOS.pdf
8 UMO1061_emb0OS_CPU_Compiler.pdf

Directory

File

Description

CPU

OSCHI P. h, CS Priv.h,
RTCS. asm

CPU- and compiler-specific files

CPW OSSr cCPU

Additional CPU- and compil-
er-specific source files

Gen(GSSr ¢

Generic source files

St art\ Boar dSupport

Board support packages in ven-
dor specific subfolders

Start\lnc

RTCS. h, BSP. h, 0S_Confi g. h

Including files for embQOS

Start\Lib

embOS libraries

enbOSVi ew. exe

PC utility for runtime analysis

JLi nkARM dI |

J-Link DLL used with embOSView

Rel ease_enbCS. ht m

embOS release history

Rel ease_enb(OS_CPU _Conpi | -
er.htm

embOS CPU and compiler-specif-
ic release history

SYSVI EW enhCS. t xt

SytemView ID descripton file

UMD10xx_enbOS_CPU_Conpi | -
er . pdf

embOS CPU and compiler-specif-
ic manual

UMD1001_enbCS. pdf

embOS manual

*, bat

Batch files to rebuild the embQOS
libraries

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

Chapter 29
Update

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

482 CHAPTER 29 Introduction

29.1 Introduction

This chapter describes how to update an existing project with a newer embOS version.
embQOS ports are available for different CPUs and compiler. Each embQOS port has its own
version number.

SEGGER updates embOS ports to a newer software version for different reasons. This is
done to fix problems or to include the newest embOS features.

Customers which have a valid support and update agreement will be automatically informed
about a new software version via email and may subsequently download the updated soft-
ware from www.myaccount.segger.com. The version information and release history is also
available at www.segger.com.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

http://myaccount.segger.com
http://segger.com

483 CHAPTER 29 How to update an existing project

29.2 How to update an existing project

If an existing project should be updated to a later embQOS version, only files have to be
replaced.

Note

Do not use embOS files from different embQOS versions in your project!

You should have received the embOS update as a zip file. Unzip this file to the location
of your choice and replace all embOS files in your project with the newer files from the
embOS update shipment.

For an easier update procedure, we recommend to not modify the files shipped with embOS.
In case these need to be updated, you will have to merge your modifications into the most
recent shipment version of that file, or else your modifications will be lost.

In general, the following files have to be updated:

File Location Description
embOS libraries Start\Lib embOS object code libraries
RTGCS. h Start\lnc embOS header file
0S_Config.h Start\lnc embOS config header file
BSP. h Start\lnc Board support header file
RTCSInit.c St art\ Boar dSupport\.\Setup |Hardware related routines
CS Error.c St art\ Boar dSupport\.\Setup |embQOS error routines
Additional files St art\ Boar dSupport\.\Setup | CPU and compiler-specific files

29.2.1 My project does not work anymore. What did | do
wrong?

One common mistake is to only update the embQOS library but not RTCS. h. You should
always ensure the embOS library and RTCS. h belong to the same embQS port version. Also,
please ensure further embOS files like O8 Error.c and RTCSI ni t. ¢ have been updated to
the same version. If you are still experiencing problems, please do not hesitate to contact
the embOS support (see Contacting support on page 493).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

484 CHAPTER 29 embOS API Migration guide

29.3 embOS API Migration guide

Most embOS API names and some object type names have changed between embOS V4
and V5. The legacy embOS API names can still be used and there is no need to update
the user application. embOS is still 100% compatible. However, for new projects the V5
API should be used.

If you want to replace the V4 with the V5 API in an existing application you can easily replace
all API calls. SEGGER provides a CSV file on request which can be used to automatically
replace all API calls.

Please be aware with some API the parameter order has changed. This needs to be adapted
manually.

OS_TASK _CREATE()/ OS_TASK CREATEEX(): The order of the parameters Priority and
pRout i ne has changed.

OS_TASKEVENT_Set () : The order of the parameters pTask and Event has changed.
0S_MEMPOOL_Al | oc()/ OS_MEMPOOL_Al | ocBl ocked()/ OS MEMPOOL_Al | ocTi ned(): The
parameter Pur pose does not longer exist.

V4 V5
OS_I sRunni ng()
OS_Confi gStop()

OS_I sRunni ng()
OS_Config_Stop()

OS I nitKern() OS Init()

CS_| sRunni ng() GS_| sRunni ng()
OGS _Start () OS Start ()
OS_Stop() OS_Stop()

OS_AddExt endTaskCont ext ()
OS_AddTer m nat eHook()
OS_CREATETASK()

OS_Creat eTask()
OS_CREATETASK_EX()
OS_Creat eTaskEx()

OS_TASK_AddCont ext Ext ensi on()
OS_TASK _AddTer mi nat eHook()
0S_TASK_CREATE()
OS_TASK_Create()
OS_TASK_CREATEEX()

OS_TASK Creat eEx()

OS _Del ay() OS_TASK Del ay()
OS Del ayUntil () OS_TASK Del ayUntil ()
OS_Del ayus() OS_TASK Del ayus()

OS_Ext endTaskCont ext ()
OS_CGet Nunirasks()
OS_GetPriority()
OS_Cet SuspendCnt ()
OS_Get Taskl D()

OS_CGet TaskNane()

OS _CGet Ti meSli ceRem()
OS I sTask()

OS_TASK_ Set Cont ext Ext ensi on()
OS_TASK_ Get Numirasks()
OS_TASK_GetPriority()
OS_TASK_Get SuspendCnt ()
OS_TASK_Get | IX()

OS_TASK_Get Nare()

OS_TASK_Get Ti neSl i ceRent()
OS_TASK | sTask()

OS_RenpveTer m nat eHook()

OS_TASK RenoveTer m nat eHook()

OS_RenpveAl | Ter ni nat eHooks()

OS_TASK RenopveAl | Ter mi nat eHooks()

OS_Resune()

OS_TASK_Resune()

OS_ResuneAl | Tasks()

OS_TASK ResuneAl'l ()

OS_Set Def aul t TaskCont ext Ext ensi on()

OS_TASK_ Set Def aul t Cont ext Ext ensi on()

OS_Set Def aul t TaskSt ar t Hook()

OS_TASK_Set Def aul t St art Hook()

OS_Set I nitial SuspendCnt ()

OS_TASK_Set I ni ti al SuspendCnt ()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

485

CHAPTER 29

V4

V5

OS SetPriority()

OS _TASK SetPriority()

OS_Set TaskNane()

0S_TASK_Set Nane()

OS _Set TineSlice()

OS _TASK Set Ti meSlice()

OS_Suspend()

OS_TASK Suspend()

OS_SuspendAl | Tasks()

OS_TASK_SuspendAl | ()

OS_Taskl ndex2Ptr ()

OS_TASK_| ndex2Ptr ()

OS_Ter m nat eTask()

OS_TASK Term nat e()

OS_\keTask()

0S_TASK_Wake()

OS_Yi el d()

OS_TASK_Yi el d()

OS_CREATETI MER()

OS_TI MER_CREATE()

OS CreateTinmer()

OS_TI MER Create()

OS_CREATETI MER_EX()

OS_TI MER_CREATEEX()

OS_Creat eTi mer Ex()

OS_TI MER_Cr eat eEx()

OS Del et eTi ner ()

OS_TI MER Del et e()

OS _Del et eTi mer Ex()

OS_TI MER Del et eEx()

OS_Get pCurrent Ti mer ()

OS_TI MER Get Current ()

OS_CGet pCurrent Ti mer Ex()

OS_TI MER_Get Cur r ent Ex()

OS_Get Ti nmer Peri od()

OS_TI MER Get Peri od()

OS_CGet Ti nmer Peri odEXx()

OS_TI MER Get Peri odEX()

OS_CGet Ti mer St at us()

OS_TI MER Get St at us()

OS_Cet Ti mer St at usEx()

OS_TI MER Get St at usEx()

OS_Get Ti nmer Val ue()

OS_TI MER _Get Rerai ni ngPeri od()

OS_CGet Ti nmer Val ueEx()

OS_TI MER _Get Rerrai ni ngPer i odEX()

OS_RetriggerTimer()

OS TI MER Restart ()

OS_Retrigger Ti mer Ex()

OS_TI MER Rest art Ex()

OS_Set Ti ner Peri od()

OS_TI MER Set Peri od()

OS_Set Ti mer Peri odEXx()

OS_TI MER Set Peri odEX()

OS _Start Timer ()

OS TIMER Start()

OS_Start Ti mer Ex()

OS_TI MER St ar t Ex()

OS_StopTi ner ()

OS_TI MER_St op()

OS_StopTi nmer Ex()

OS_TI MER St opEX()

OS_Trigger Ti mer ()

OS_TI MER Trigger ()

OS_Tri gger Ti mer Ex()

OS_TI MER Trigger Ex()

OS_d ear Event s()

OS_TASKEVENT_d ear ()

OS_d ear Event sEx()

OS_TASKEVENT_Cl ear Ex()

OS_CGet Event sCccurred()

OS_TASKEVENT Get ()

OS_Si gnal Event ()

OS_TASKEVENT_Set ()

OCS Wi t Event ()

OS_TASKEVENT_Get Bl ocked()

OS Wi t Event Ti ned()

OS_TASKEVENT _Get Ti med()

OS_Wai t Si ngl eEvent ()

OS_TASKEVENT_Get Si ngl eBl ocked()

OS_ Wi t Si ngl eEvent Ti med()

OS_TASKEVENT _Get Si ngl eTi med()

OS_EVENT Create()

OS_EVENT Create()

OS_EVENT_Cr eat eEx()

OS_EVENT_Cr eat eEx()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

embOS API Migration guide

486 CHAPTER 29

V4

V5

OS_EVENT _Del et e()

OS_EVENT _Del et e()

OS_EVENT_Get ()

OS_EVENT_Get ()

OS_EVENT_Get Mask()

OS_EVENT_Get Mask()

OS_EVENT_Get MaskMode()

OS_EVENT_Get MaskMode()

OS_EVENT_Get Reset Mbde()

OS_EVENT_Cet Reset Mbde()

OS_EVENT_Pul se()

OS_EVENT_Pul se()

OS_EVENT_Reset ()

OS_EVENT Reset ()

OS_EVENT_Set ()

OS_EVENT_Set ()

OS_EVENT_Set Mask()

OS_EVENT_Set Mask()

OS_EVENT_Set MaskMode()

OS_EVENT_Set MaskMode()

OS_EVENT_Set Reset Mbde()

OS_EVENT_Set Reset Mode()

OS_EVENT Wi t ()

OS_EVENT_Cet Bl ocked()

OS_EVENT_Wi t Mask()

OS_EVENT_Get MaskBI ocked()

OS_EVENT Wi t MaskTi med()

OS_EVENT_Get MaskTi med()

OS_EVENT_ Wi t Ti med()

OS_EVENT_Get Ti med()

OS_Creat eRSenan()

OS_MJTEX Create()

OS_CREATERSEMA()

OS_MUTEX_CREATE()

OS_Del et eRSena()

OS_MUTEX Del et e()

OS_CGet Resour ceOaner ()

OS_MUTEX_ Get Omner ()

OS_Cet SemaVal ue()

OS_MUTEX Get Val ue()

OS_Request () OS_MUTEX Lock()
OS_Unuse() OS_MUTEX _Unl ock()
S _Use() OS_MUTEX LockBl ocked()

OS_UseTi nmed()

OS_MJTEX_LockTi med()

OS_CREATECSEMA()

OS_SENMAPHORE_CREATE()

OS_Creat eCSena()

OS_SEMAPHORE_Cr eat e()

OS_CSemaRequest ()

OS_SEMAPHORE Take()

OS_Del et eCSena()

OS_SEMAPHORE Del et e()

OS_CGet CSenaVal ue()

OS_SEMAPHORE_Get Val ue()

OS_Set CSenmaVal ue()

OS_SEMAPHORE_Set Val ue()

OS_Si gnal Csena()

OS_SEMAPHORE G ve()

OS_Si gnal CSenaMax()

0S_SEMAPHORE_Gi veMax()

OS Wi t Csema()

OS_SEMAPHORE_TakeBl ocked()

OS_ Wi t CSemaTi ned()

OS_SEMAPHORE_TakeTi med()

OS_d ear MB()

OS_MAI LBOX _d ear ()

OS_Creat eMvB()

OS_MAI LBOX Create()

OS_Del et eVB()

OS_MAI LBOX_Del et e()

OS_Get Mai | ()

OS_MAI LBOX_Get Bl ocked()

OS_Get Mai | 1()

OS_MAI LBOX Get Bl ocked1()

OS_Get Mai | Cond()

OS_MAI LBOX_Get ()

OS_Get Mai | Cond1()

OS_MAI LBOX_Get 1()

OS_Get Mai | Ti med()

OS_MAI LBOX_Get Ti med()

OS_Get Mai | Ti med1()

OS_MAI LBOX_Get Ti med1()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

embOS API Migration guide

487 CHAPTER 29

embOS API Migration guide

V4

V5

OS_CGet MessageCnt ()

OS_MAI LBOX_CGet MessageCnt ()

S Mai | _GetPtr()

OS_MAI LBOX _Get Pt r Bl ocked()

OS Mai |l _Get PtrCond()

OS_MAI LBOX_Get Pt r ()

OGS _Mai | _Purge()

OS_NAI LBOX_Pur ge()

OS_PeekMni | ()

OS_MAI LBOX_Peek()

Os_Put Mai | ()

OS_MAI LBOX_Put Bl ocked()

OS_Put Mai | 1()

OS_MAI LBOX _Put Bl ocked1()

OS_Put Mai | Cond()

OS_MAI LBOX_Put ()

OS_Put Mai | Cond1()

OS_MAI LBOX_Put 1()

OS_Put Mai | Front ()

OS_MAI LBOX _Put Front Bl ocked()

OS_Put Mai | Front 1()

OS_MAI LBOX_Put Front Bl ocked1()

OS_Put Mai | Front Cond()

OS_MNAI LBOX_Put Front ()

OS_Put Mai | Front Cond1()

OS_MAI LBOX_Put Front 1()

Os_Put Mai | Ti med()

OS_MAI LBOX_Put Ti med()

Os_Put Mai | Ti med1()

OS_MAI LBOX_Put Ti med1()

OS Wit Mai l () OS_MAI LBOX Wai t Bl ocked()
OS Wit Mai | Ti med() OS_MAI LBOX Wi t Ti med()
0S Q dear() OS QUEUE _d ear ()

0S Q Create() OS_QUEUE Create()
0S _Q Del ete() OS_QUEUE Del et e()

OS_Q Get MessageCnt ()

OS_QUEUE_GCet MessageCnt ()

OS_Q Get MessageSi ze()

OS _QUEUE_ Get MessageSi ze()

0S_Q GetPtr()

OS QUEUE_Get Pt r Bl ocked()

0OS_Q Get PtrCond()

OS_QUEUE_Get Ptr ()

OS Q GetPtrTimed()

OS_QUEUE_Get Pt r Ti med()

CS Q IslnUse()

OS_QUEUE_| sl nUse()

S _Q PeekPtr ()

OS_QUEUE PeekPtr ()

OS_Q Purge() OS_QUEUE_Pur ge()
G5_Q Put () OS_QUEUE_Put ()
OS_Q Put Ex() OS_QUEUE_Put Ex()

OS_Q Put Bl ocked()

OS_QUEUE_Put Bl ocked()

OS_Q Put Bl ockedEx()

OS_QUEUE_Put Bl ockedEx()

0S_Q Put Ti med()

OS_QUEUE_Put Ti med()

0S_Q Put Ti medEx()

OS_QUEUE_Put Ti medEx()

s _WD_Add()

s _WD_Add()

OS WD _Check()

OS WD Check()

OS_WD_Config()

OS WD Config()

OCS WD _Renove()

OS WD _Renove()

OS WD Trigger ()

OS WD Trigger ()

OS_SPI NLOCK Create()

OS_SPI NLOCK Create()

0S_SPI NLOCK_Lock()

0S_SPI NLOCK_Lock()

0S_SPI NLOCK_Unl ock()

0S_SPI NLOCK_Unl ock()

OS_SPI NLOCK_SW Creat e()

OS_SPI NLOCK_SW Creat e()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

488 CHAPTER 29

embOS API Migration guide

V4

V5

OS_SPI NLOCK_SW Lock()

0S_SPI NLOCK_SW Lock()

OS_SPI NLOCK_SW Unl ock()

OS_SPI NLOCK_SW Unl ock()

0S_DecRI () OS_| NT_DecRI ()
Os Dl () OS_I NT_Di sabl e()
Cs _El () OS_| NT_Enabl e()
CS I ncDi () CS INT_IncDl ()

OS_| NT_PRI O_PRESERVE()

OS | NT_Preserve()

OS_| NT_PRI O RESTORE()

OS | NT_Restore()

OS_| NTERRUPT_Maskd obal ()

OS_I NT_Di sabl eAl | ()

OS_| NTERRUPT_Pr eser veAndMaskd obal ()

OS | NT_PreserveAndDi sabl eAl | ()

OS_| NTERRUPT _Pr eserved obal ()

OS | NT_PreserveAl |l ()

OS_| NTERRUPT_Rest or ed obal ()

OS_| NT_Rest or eAl | ()

OS_| NTERRUPT_Unmaskd obal ()

OS_I NT_Enabl eAl | ()

CS Restorel ()

OS_| NT_Enabl eCondi ti onal ()

0s_Cal | 1 SR()

OS_INT_Cal | ()

OS_Cal | Nest abl el SR()

OS_ | NT_Cal | Nest abl e()

OS Enterlnterrupt()

OS_ I NT_Enter ()

OS_Ent er Nest abl el nterrupt ()

OS | NT_Ent er Nest abl e()

OGS Inlnterrupt()

OS INT_Inlnterrupt()

OS Leavel nterrupt ()

OS_|I NT_Leave()

OS_LeaveNest abl el nterrupt ()

OS_ | NT_LeaveNest abl e()

CS Enterlnt Stack()

OS I NT_EnterlntStack()

OS Leavel nt St ack()

OS | NT_Leavel nt St ack()

OS SetFastIntPriorityLimt()

OS INT_SetPriorityThreshol d()

OS_Ent er Regi on()

OS_TASK_Ent er Regi on()

OS LeaveRegi on()

OS_TASK LeaveRegi on()

Os_Get Ti me()

OS TI ME_Get Ti cks()

OS_Get Ti me32()

OS_TI ME_Get Ti cks32()

OS_Ti m ng_End()

OS_TI ME_St opMeasur enent ()

OS_Ti m ng_Get Cycl es()

OS_TI ME_Get Resul t ()

OS Timng Start()

OS_TI ME_Start Measur enent ()

OS_Tim ng_Getus()

OS TI ME_CGet Resul tus()

OS_Confi g_SysTi ner ()

OS_TI ME_Confi gSysTi ner ()

OS GetTinme_us()

OS_TI ME_Get us()

OS _Get Ti me_us64()

OS_TI ME_Get us64()

OS_Adj ust Ti me()

OS_TI CKLESS Adj ust Ti ne()

0S_Get Nuni dl eTi cks()

OS_TI CKLESS_Get Nuni dI eTi cks()

CS_Start Ti ckl essMode()

OS_TI CKLESS_Start ()

OS_St opTi ckl essMode()

OS_TI CKLESS St op()

OS_POAER Get Mask()

OS_POWNER Get Mask()

OS_PONER UsageDec()

OS_PONER UsageDec()

OS_POVER Usagel nc()

OS_POVNER Usagel nc()

CS free()

OS _HEAP free()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

489 CHAPTER 29

embOS API Migration guide

V4

V5

OS_mal | oc()

OS_HEAP_mal | oc()

CS real l oc()

OS_HEAP real |l oc()

oS MEM-_Al | oc()

OS_MEMPOOL_Al | ocBl ocked()

OS_MEMF_Al | ocTi med()

OS _ MEMPOOL_Al | ocTi ned()

OS_MEMF_Create()

OS_MEMPOOL_Cr eat e()

OS_MEMF_Del et e()

OS_MEMPOOL_Del et e()

OS_MEM-_FreeBl ock()

OS_MEMPOOL_Free()

OS_MEMF_Get Bl ockSi ze()

OS_MEMPOOL_Cet Bl ockSi ze()

OS_MEMF_Get MaxUsed()

OS_MEMPOOL_Get MaxUsed()

OS_MEMF_Get NunBl ocks()

0OS_MEMPOOL_Get NumBl ocks()

OS_MEM-_CGet Nunfr eeBl ocks()

OS_MEMPOOL_Get Nunfr eeBl ocks()

OS_MEMF_I sl nPool ()

OS_MEMPOOL_I sl nPool ()

OS_MEMF_Rel ease()

OS_MEMPOOL_Fr eeEx()

OS_MEMF_Request ()

OSs_MEMPOOL_Al | oc()

OS _TICK Config()

OS_TICK Config()

OS_TI CK_Handl e()

OS_TI CK_Handl e()

OS_TI CK_Handl eEx()

OS_TI CK_Handl eEx()

OS_TI CK_Handl eNoHook()

OS_TI CK_Handl eNoHook()

OS_TI CK_AddHook()

Os_TI OK_AddHook()

OS_TI CK_RenpveHook()

OS_TI CK_RenpveHook()

OS_Set Cbj Narre()

OS_DEBUG_Set Obj Nane()

OS_Get Obj Nare()

OS_DEBUG_Get Obj Nare()

OS_AddLoadMeasur enent ()

OS_STAT_AddLoadMeasur enent ()

OS_CGet LoadMeasur enent ()

OS_STAT_Cet LoadMeasur enent ()

OS_STAT_Di sabl e()

OS_STAT_Di sabl e()

OS_STAT_Enabl e()

OS_STAT_Enabl e()

OS_STAT_Get Load()

OS_STAT_Get Load()

OS_STAT_Cet TaskExecTi me()

OS_STAT_Get ExecTi me()

OS_STAT_Sanpl e()

OS_STAT_Sanpl e()

OS_SendString()

OS_COM SendString()

OS_Set RxCal | back()

OS_COM Set RxCal | back()

OS_TraceDi sabl e()

OS_TRACE Di sabl e()

OS_TraceDi sabl eAl | ()

OS_TRACE_Di sabl eAl | ()

CS TraceDi sabl eFilterld()

OS_TRACE Disabl eFilterld()

OS_TraceDi sabl el d()

OS_TRACE Di sabl el d()

OS_TraceEnabl e()

OS_TRACE Enabl e()

OS_TraceEnabl eAl | ()

OS_TRACE_Enabl eAl | ()

OS _TraceEnabl eFil terld()

OS_TRACE Enabl eFilterld()

OS_TraceEnabl el d()

OS_TRACE Enabl el d()

OS_TraceDat a()

OS_TRACE_Dat a()

OS_TraceDat aPtr ()

OS_TRACE_Dat aPtr ()

CS TracePtr ()

OS_TRACE_Ptr ()

OS TraceU32Ptr ()

OS_TRACE_U32Pt r ()

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

490 CHAPTER 29

embOS API Migration guide

V4

V5

OS_TraceVoi d()

OS_TRACE_Voi d()

OS_Set TraceAPI ()

OS_TRACE_Set API ()

Os_MPU_AddRegi on()

OS_MPU_AddRegi on()

OS_MPU_Cal | Devi ceDri ver ()

OS_MPU_Cal | Devi ceDri ver ()

OS_MPU_Conf i gvem()

OS_MPU_Confi gMem()

OS_MPU _Enabl e()

OS_MPU _Enabl e()

OS_MPU_Enabl eEx()

OS_MPU_Enabl eEx()

OS_MPU_Ext endTaskCont ext ()

OS_MPU_Ext endTaskCont ext ()

OS_MPU_Get ThreadSt at e()

OS_MPU _Get ThreadSt at e()

OS_MPU_Set Al | owedObj ect s()

OS_MPU_Set Al | owedObj ect s()

OS_MPU _Set Devi ceDri ver Li st ()

OS_MPU_Set Devi ceDri ver Li st ()

OS_MPU_Set Err or Cal | back()

OS_MPU_Set Error Cal | back()

OS_MPU _Swit chToUnpri vSt at e()

OS_MPU Swi t chToUnprivState()

OS_MPU _Swi t chToUnpri vSt at eEx()

OS_MPU _Swi t chToUnpri vSt at eEx()

OS_MPU_AddSani t yCheckBuffer ()

OS_MPU_Set Sani t yCheckBuffer ()

OS_MPU _Sani t yCheck()

OS_MPU_Sani t yCheck()

OS_Cet I nt St ackBase()

OS_STACK Cet I nt St ackBase()

OS _Getlnt StackSi ze()

OS_STACK Get I nt St ackSi ze()

OS_Cet I nt St ackSpace()

OS_STACK Get I nt St ackSpace()

OS _CGetlnt StackUsed()

OS_STACK Get I nt St ackUsed()

OS_Cet St ackBase()

OS_STACK Cet TaskSt ackBase()

OS_Get St ackSi ze()

OS_STACK Get TaskSt ackSi ze()

OS_Cet St ackSpace()

OS_STACK Get TaskSt ackSpace()

OS_CGet StackUsed()

OS_STACK Get TaskSt ackUsed()

OS_Cet SysSt ackBase()

OS_STACK Get SysSt ackBase()

OS_Get SysSt ackSi ze()

OS_STACK Get SysSt ackSi ze()

OS_CGet SysSt ackSpace()

OS_STACK Get SysSt ackSpace()

OS_CGet SysSt ackUsed()

OS_STACK Get SysSt ackUsed()

OS_Set St ackCheckLim t ()

OS_STACK_Set CheckLi ni t ()

OS_Get St ackCheckLim t ()

OS_STACK_Get CheckLi mit ()

0s_OnRx() OS_COM OnRx ()
0s_OnTx() Os_COM OnTx()
OS_EvaPacket Ex() OS_COM EvaPacket Ex()
0S_Get CPY() OS_| NFO_Get CPU()

OS_Get Li bMbde()

OS_I NFO_Get Li bvbde()

OS_Get Li bNane()

OS_I NFO_Get Li bNane()

OS_Get Model ()

0S_| NFO_Get Mbdel ()

OS_Get Version()

OS | NFO _Get Versi on()

Changed object types:

V4

V5

OS_RSEMA

0S_MJTEX

OS_CSEMA

OS_SEMAPHORE

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

491 CHAPTER 29 embOS API Migration guide

V4 V5
05 Q 0S_QUEUE

0S_Q SRCLI ST OS_QUEUE_SRCLI ST
0OS_MEMF 0S_MEMPOOL
OS_TASK_EVENT OS_TASKEVENT

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

Chapter 30

Support

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

493 CHAPTER 30 Contacting support

30.1 Contacting support

This chapter should help if any problem occurs. This could be a problem with the tool chain,
with the hardware or the use of the embOS functions and it describes how to contact the
embQOS support.

If you are a registered embOS user and you need to contact the embOS support please
send the following information via email to support_embos@segger.com:

Which embQOS do you use? (CPU, compiler).

The embOS version.

Your embOS registration number.

If you are unsure about the above information you can also use the name of the embQOS
zip file (which contains the above information).

A detailed description of the problem.

Optionally a project with which we can reproduce the problem.

Note

Even without a valid license, feel free to contact our support e.g. in case of questions
during your evaluation of embOS or for hobbyist purposes.

Please also take a few moments to help us improve our services by providing a short
feedback once your support case has been solved.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

mailto:support_embos@segger.com

Chapter 31

Performance and Resource
Usage

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

495 CHAPTER 31 Introduction

31.1 Introduction

This chapter covers the performance and resource usage of embOS. It explains how to
benchmark embOS and contains information about the memory requirements in typical
systems which can be used to obtain sufficient estimates for most target systems.

High performance combined with low resource usage has always been a major design con-
sideration. embOS runs on 8/16/32 bit CPUs. Depending on which features are being used,
even single-chip systems with less than 2 Kbytes ROM and 1 Kbyte RAM can be supported
by embOS. The actual performance and resource usage depends on many factors (CPU,
compiler, memory model, optimization, configuration, etc.).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

496

CHAPTER 31

31.2 Memory requirements

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures of the library. The following table shows the memory requirements for the different
modules. These values are typical values for a 32 bit CPU and depend on CPU, compiler,

and library model used.

Memory requirements

Module Memory type Memory requirements

embOS kernel ROM 1700 bytes

embOS kernel RAM 71 bytes

Mailbox RAM 24 bytes

Semaphore RAM 8 bytes

Mutex RAM 16 bytes

Software timer RAM 20 bytes

Task event RAM 0 bytes

UMO01001 User Guide & Reference Manual for embOS

© 1995-2018 SEGGER Microcontroller GmbH

497 CHAPTER 31 Performance

31.3 Performance

The following section shows how to benchmark embOS with the supplied example pro-
grams.

31.4 Benchmarking

embOS is designed to perform fast context switches. This section describes two different
methods to calculate the execution time of a context switch from a task with lower priority
to a task with a higher priority.

The first method uses port pins and requires an oscilloscope. The second method uses the
high-resolution measurement functions. Example programs for both methods are supplied
in the \ Appl i cati on directory of your embOS shipment.

SEGGER uses these programs to benchmark embQOS performance. You can use these exam-
ples to evaluate the benchmark results. Note that the actual performance depends on many
factors (CPU, clock speed, toolchain, memory model, optimization, configuration, etc.).

Please be aware that the number of cycles are not equal to the number of instructions.
Many instructions on ARM need two or three cycles even at zero wait-states, e.g. LDR needs
3 cycles.

The following table gives an overview about the variations of the context switch time de-
pending on the memory type and the CPU mode:

Target Memory | Time/Cycles
ST STM32F756 @ 200 MHz RAM 1.5us / 260
Renesas RZ @ 400 MHz RAM 720ns / 287

All named example performance values in the following section are determined with the
following system configuration:

All sources are compiled with IAR Embedded Workbench version 6.40.5, OS_LI BMODE_XR
and high optimization level. embOS version 4.14 has been used; values may differ for
different builds.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

498 CHAPTER 31 Benchmarking

31.4.1 Measurement with port pins and oscilloscope

The example file OS_Measur eCST_Scope. ¢ uses the BSP. ¢ module to set and clear a port
pin. This allows measuring the context switch time with an oscilloscope. The following source
code is an excerpt from OS_Measur eCST_Scope. c:

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS _TASK TCBHP, TCBLP; /* Task-control - bl ocks */

/***

*

* HPTask
*/
static void HPTask(void) {
while (1) {
OS_TASK Suspend(NULL); // Suspend high priority task
BSP_Cl r LED(0) ; /1 Stop neasurenent
}
}

/***

*

* LPTask

*/

static void LPTask(void) {

while (1) {

OS_TASK Del ay(100); /'l Synchronize to tick to avoid jitter
I
/1 Display neasurenent overhead
I

BSP_Set LED(0) ;
BSP_O r LED(0) ;

I

/'l Perform nmeasur enment

I

BSP_Set LED(0) ; /1 Start measurement

OS_TASK Resune(&TCBHP); // Resune high priority task to force task switch

}
}

/***

*

* mai n

*/

int main(void) {
CS Init(); /1 Initialize enbCS
CS InitHW); /1 Initialize hardware for enbCS
BSP_Init(); /1 Initialize LED ports

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start multitasking
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

499 CHAPTER 31 Benchmarking

31.4.1.1 Oscilloscope analysis

The context switch time is the time between switching the LED on and off. If the LED is
switched on with an active high signal, the context switch time is the time between the
rising and the falling edge of the signal. If the LED is switched on with an active low signal,
the signal polarity is reversed.

The real context switch time is shorter, because the signal also contains the overhead of
switching the LED on and off. The time of this overhead is also displayed on the oscilloscope
as a small peak right before the task switch time display and must be subtracted from
the displayed context switch time. The picture below shows a simplified oscilloscope signal
with an active-low LED signal (low means LED is illuminated). There are switching points
to determine:

A = LED is switched on for overhead measurement
B = LED is switched off for overhead measurement
C = LED is switched on right before context switch in low-prio task
D = LED is switched off right after context switch in high-prio task

The time needed to switch the LED on and off in subroutines is marked as time tpg. The

time needed for a complete context switch including the time needed to switch the LED on
and off in subroutines is marked as time tcp.

The context switching time tcg is calculated as follows:
tcs = tep - ta

Voltage [V]
A

|<_ tAB _>| I4 tCD §I

P Time [t]

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

500 CHAPTER 31 Benchmarking

31.4.1.2 Example measurements Renesas RZ, Thumb2 code in RAM

Task switching time has been measured with the parameters listed below:

embOS Version V4.14

Application program: OS_Measur eCST_Scope. ¢
Hardware: Renesas RZ processor with 399MHz

Program is executing in RAM

Thumb?2 mode is used

Compiler used: SEGGER Embedded Studio V2.10B (GCC)
CPU frequency (fcpy): 399.0MHz

CPU clock cycle (tcycle): teycle = 1/ fecpy = 1/ 399.0MHz = 2.506ns
Measuring tag and tcp

D50-% 20144, MY54480519; Mon Nov 23 17.08:38 2015

580.0% Stop 244y

tag is measured as 480ns. RENLoae
The number of cycles ‘
calculates as follows: |
CycIesAB = taB / tCyCIe :['wr Ehammmﬂ :1
= 480ns / 2.506ns o 10,01
= 191.54 Cycles
=> 192 Cycles

Quick Action Annotation
~- P

tcp is measured as 12000ns.
The number of cycles
calculates as follows:
Cyclescp = tep / teycle i .
= 1200ns / 2.506ns C 1001
= 478.85 Cycles -

=> 479 Cycles

Resulting context switching time and number of cycles

The time which is required for the pure context switch is:
tcs = tep - tag = 479 Cycles - 192 Cycles = 287 Cycles
=> 287 Cycles (0.72us @399 MHz).

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

501 CHAPTER 31 Benchmarking

31.4.1.3 Measurement with high-resolution timer

The context switch time may be measured with the high-resolution timer. Refer to section
High-resolution measurement on page 287 for detailed information about the embOS high-
resolution measurement.

The example OS_Measur eCST_HRTi mer _enbOSVi ew. ¢ uses a high resolution timer to mea-
sure the context switch time from a low priority task to a high priority task and displays
the results on embOSView.

#i ncl ude "RTCS. h"
#i ncl ude <stdio. h>

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS TASK TCBHP, TCBLP; /'l Task-control -bl ocks
static OS_ U32 Tineg; // Tinmer val ues

/***

*

* HPTask
*/
static void HPTask(void) {
while (1) {
OS_TASK_Suspend(NULL) ; /1 Suspend high priority task
OS_TI ME_St opMeasur erent (& Ti ne) ; /1 Stop nmeasurenent
}
}

/***

*

* LPTask
*/
static void LPTask(void) {
char acBuf fer[100]; /1 CQutput buffer
OS _U32 Measur eOver head; // Tinme for Measure Over head
OS _U32 v;
/1

/'l Measure Overhead for tinme neasurenent so we can take
/1l this into account by subtracting it

I

OS_TI ME_St art Measur enent (&veasur eOver head) ;

OS_TI ME_St opMeasur enent (&veasur eOver head) ;

I

/'l Perform neasurenents in endl ess | oop

I

while (1) {
OS_TASK Del ay(100); /1 Sync. to tick to avoid jitter
OS_TI ME_St art Measur enent (& _Ti ne) ; /1 Start nmeasurenment

OS_TASK _Resune(&TCBHP) ;
/1 Resune high priority task to force task sw tch
v = OS_ TIME CGetResult (& Tine);
v -= OS_TI ME_Cet Resul t (&veasur eOver head) ;
v = OS_ConvertCycl es2us(1000 * v); // Convert cycles to nano-seconds
sprintf(acBuffer, "Context switch tinme: %u.% 31u usec\r",
v / 1000uL, v % 1000ul);
OS_COM SendString(acBuffer);

}
}

The example program calculates and subtracts the measurement overhead. The results will
be transmitted to embOSView, so the example runs on every target that supports UART
communication to embOSView.

The example program OS_Measur eCST_HRTi mer _Printf. c is identical to the example pro-
gram OS_Measur eCST_HRTi ner _enbOSVi ew. ¢ but displays the results with the printf ()
function for those debuggers which support terminal output emulation.

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

Chapter 32

Glossary

UMO01001 User Guide & Reference Manual for embOS © 1995-2018 SEGGER Microcontroller GmbH

503

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 32

Term

Definition

Cooperative multitasking

A scheduling system in which each task is allowed to
run until it gives up the CPU; an ISR can make a higher
priority task ready, but the interrupted task will be re-
turned to and finished first.

Counting semaphore

A type of semaphore that keeps track of multiple re-
sources. Used when a task must wait for something that
can be signaled more than once.

CPU

Central Processing Unit. The “brain” of a microcontroller;
the part of a processor that carries out instructions.

Critical region

A section of code which must be executed without inter-
ruption.

Event

A message sent to a single, specified task that some-
thing has occurred. The task then becomes ready.

Interrupt Handler

Interrupt Service Routine. The routine is called by the
processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all regis-
ters).

ISR

Interrupt Service Routine. The routine is called by the
processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all regis-
ters).

Mailbox

A data buffer managed by an RTOS, used for sending
messages to a task or interrupt handler.

Message

An item of data (sent to a mailbox, queue, or other con-
tainer for data).

Multitasking

The execution of multiple software routines indepen-
dently of one another. The OS divides the processor’s
time so that the different routines (tasks) appear to be
happening simultaneously.

Mutex

A data structure used for managing resources by en-
suring that only one task has access to a resource at a
time.

NMI

Non-Maskable Interrupt. An interrupt that cannot be
masked (disabled) by software. Example: Watchdog
timer interrupt.

Preemptive multitasking

A scheduling system in which the highest priority task
that is ready will always be executed. If an ISR makes a
higher priority task ready, that task will be executed be-
fore the interrupted task is returned to.

Processes are tasks with their own memory layout. Two
processes cannot normally access the same memory lo-

Process cations. Different processes typically have different ac-
cess rights and (in case of MMUs) different translation
tables.

Processor Short for microprocessor. The CPU core of a controller.

—_ The relative importance of one task to another. Every

Priority

task in an RTOS has a priority.

Priority inversion

A situation in which a high priority task is delayed while
it waits for access to a shared resource which is in use
by a lower priority task. A task with medium priority

in the ready state may run, instead of the high priori-
ty task. embOS avoids this situation by priority inheri-
tance.

© 1995-2018 SEGGER Microcontroller GmbH

504

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 32

Term

Definition

Like a mailbox, but used for sending larger messages,

Queue or messages of individual size, to a task or an interrupt
handler.

Read Any task that is in “ready state” will be activated when

y no other task with higher priority is in “ready state”.

Anything in the computer system with limited availabili-

Resource ty (for example memory, timers, computation time). Es-
sentially, anything used by a task.

RTOS Real-time Operating System.

Running task

Only one task can execute at any given time. The task
that is currently executing is called the running task.

The program section of an RTOS that selects the active

Scheduler task, based on which tasks are ready to run, their rela-
tive priorities, and the scheduling system being used.
Semaphore A data structure used for synchronizing tasks.

Software timer

A data structure which calls a user-specified routine af-
ter a specified delay.

Stack

An area of memory with LIFO storage of parameters,
automatic variables, return addresses, and other in-
formation that needs to be maintained across function
calls. In multitasking systems, each task normally has
its own stack.

Superloop

A program that runs in an infinite loop and uses no re-
al-time kernel. ISRs are used for real-time parts of the
software.

Task

A program running on a processor. A multitasking sys-
tem allows multiple tasks to execute independently from
one another.

Thread

Threads are tasks which share the same memory layout.
Two threads can access the same memory locations.

If virtual memory is used, the same virtual to physi-

cal translation and access rights are used(c.f. Thread,
Process)

Tick

The OS timer interrupt. Typically equals 1 msec.

Time slice

The time (number of system ticks) for which a task will
be executed until a round-robin task change may occur.

© 1995-2018 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Introduction and basic concepts
	What is embOS?
	Tasks
	Threads vs. Processes

	Single-task systems (superloop)
	Advantages & disadvantages
	Using embOS in superloop applications
	Migrating from superloop to multi-tasking

	Multitasking systems
	Task switches
	Cooperative multitasking
	Preemptive multitasking

	Scheduling
	Round-robin scheduling algorithm
	Priority-controlled scheduling algorithm
	Priority inversion / priority inheritance

	Communication between tasks
	Periodic polling
	Event-driven communication mechanisms
	Mailboxes and queues
	Semaphores and Mutexes
	Events

	How task switching works
	Switching stacks

	Change of task status
	How the OS gains control
	Different builds of embOS
	List of builds
	OS_Config.h

	Valid context for embOS API
	Blocking and Non blocking embOS API
	API functions
	OS_ConfigStop()
	OS_Init()
	OS_IsRunning()
	OS_Start()
	OS_Stop()

	Tasks
	Introduction
	Example of a task routine as an endless loop
	Example of a task routine that terminates itself

	Cooperative vs. preemptive task switches
	Disabling preemptive task switches for tasks of equal priority
	Completely disabling preemptions for a task

	Extending the task context
	Passing one parameter to a task during task creation
	Extending the task context individually at runtime
	Extending the task context by using own task structures

	API functions
	OS_TASK_AddContextExtension()
	OS_TASK_AddTerminateHook()
	OS_TASK_CREATE()
	OS_TASK_Create()
	OS_TASK_CREATEEX()
	OS_TASK_CreateEx()
	OS_TASK_Delay()
	OS_TASK_DelayUntil()
	OS_TASK_Delayus()
	OS_TASK_GetName()
	OS_TASK_GetNumTasks()
	OS_TASK_GetPriority()
	OS_TASK_GetSuspendCnt()
	OS_TASK_GetID()
	OS_TASK_GetTimeSliceRem()
	OS_TASK_IsTask()
	OS_TASK_Index2Ptr()
	OS_TASK_RemoveAllTerminateHooks()
	OS_TASK_RemoveTerminateHook()
	OS_TASK_Resume()
	OS_TASK_ResumeAll()
	OS_TASK_SetContextExtension()
	OS_TASK_SetDefaultContextExtension()
	OS_TASK_SetDefaultStartHook()
	OS_TASK_SetInitialSuspendCnt()
	OS_TASK_SetName()
	OS_TASK_SetPriority()
	OS_TASK_SetTimeSlice()
	OS_TASK_Suspend()
	OS_TASK_SuspendAll()
	OS_TASK_Terminate()
	OS_TASK_Wake()
	OS_TASK_Yield()

	Software Timers
	Introduction
	API functions
	OS_TIMER_CREATE()
	OS_TIMER_Create()
	OS_TIMER_CREATEEX()
	OS_TIMER_CreateEx()
	OS_TIMER_Delete()
	OS_TIMER_DeleteEx()
	OS_TIMER_GetCurrent()
	OS_TIMER_GetCurrentEx()
	OS_TIMER_GetPeriod()
	OS_TIMER_GetPeriodEx()
	OS_TIMER_GetRemainingPeriod()
	OS_TIMER_GetRemainingPeriodEx()
	OS_TIMER_GetStatus()
	OS_TIMER_GetStatusEx()
	OS_TIMER_Restart()
	OS_TIMER_RestartEx()
	OS_TIMER_SetPeriod()
	OS_TIMER_SetPeriodEx()
	OS_TIMER_Start()
	OS_TIMER_StartEx()
	OS_TIMER_Stop()
	OS_TIMER_StopEx()
	OS_TIMER_Trigger()
	OS_TIMER_TriggerEx()

	Task Events
	Introduction
	API functions
	OS_TASKEVENT_Clear()
	OS_TASKEVENT_ClearEx()
	OS_TASKEVENT_Get()
	OS_TASKEVENT_GetBlocked()
	OS_TASKEVENT_GetSingleBlocked()
	OS_TASKEVENT_GetSingleTimed()
	OS_TASKEVENT_GetTimed()
	OS_TASKEVENT_Set()

	Event Objects
	Introduction
	Examples of using event objects
	Activate a task from interrupt by an event object
	Activating multiple tasks using a single event object

	API functions
	OS_EVENT_Create()
	OS_EVENT_CreateEx()
	OS_EVENT_Delete()
	OS_EVENT_Get()
	OS_EVENT_GetBlocked()
	OS_EVENT_GetMask()
	OS_EVENT_GetMaskBlocked()
	OS_EVENT_GetMaskMode()
	OS_EVENT_GetMaskTimed()
	OS_EVENT_GetResetMode()
	OS_EVENT_GetTimed()
	OS_EVENT_Pulse()
	OS_EVENT_Reset()
	OS_EVENT_Set()
	OS_EVENT_SetMask()
	OS_EVENT_SetMaskMode()
	OS_EVENT_SetResetMode()

	Mutexes
	Introduction
	API functions
	OS_MUTEX_Create()
	OS_MUTEX_Delete()
	OS_MUTEX_GetOwner()
	OS_MUTEX_GetValue()
	OS_MUTEX_Lock()
	OS_MUTEX_LockBlocked()
	OS_MUTEX_LockTimed()
	OS_MUTEX_Unlock()

	Semaphores
	Introduction
	API functions
	OS_SEMAPHORE_CREATE()
	OS_SEMAPHORE_Create()
	OS_SEMAPHORE_Delete()
	OS_SEMAPHORE_Give()
	OS_SEMAPHORE_GiveMax()
	OS_SEMAPHORE_GetValue()
	OS_SEMAPHORE_SetValue()
	OS_SEMAPHORE_Take()
	OS_SEMAPHORE_TakeBlocked()
	OS_SEMAPHORE_TakeTimed()

	Mailboxes
	Introduction
	Single-byte mailbox functions

	API functions
	OS_MAILBOX_Clear()
	OS_MAILBOX_Create()
	OS_MAILBOX_Delete()
	OS_MAILBOX_Get()
	OS_MAILBOX_Get1()
	OS_MAILBOX_GetBlocked()
	OS_MAILBOX_GetBlocked1()
	OS_MAILBOX_GetMessageCnt()
	OS_MAILBOX_GetTimed()
	OS_MAILBOX_GetTimed1()
	OS_MAILBOX_GetPtr()
	OS_MAILBOX_GetPtrBlocked()
	OS_MAILBOX_Peek()
	OS_MAILBOX_Purge()
	OS_MAILBOX_Put()
	OS_MAILBOX_Put1()
	OS_MAILBOX_PutBlocked()
	OS_MAILBOX_PutBlocked1()
	OS_MAILBOX_PutFront()
	OS_MAILBOX_PutFront1()
	OS_MAILBOX_PutFrontBlocked()
	OS_MAILBOX_PutFrontBlocked1()
	OS_MAILBOX_PutTimed()
	OS_MAILBOX_PutTimed1()
	OS_MAILBOX_WaitBlocked()
	OS_MAILBOX_WaitTimed()

	Queues
	Introduction
	API functions
	OS_QUEUE_Clear()
	OS_QUEUE_Create()
	OS_QUEUE_Delete()
	OS_QUEUE_GetMessageCnt()
	OS_QUEUE_GetMessageSize()
	OS_QUEUE_GetPtr()
	OS_QUEUE_GetPtrBlocked()
	OS_QUEUE_GetPtrTimed()
	OS_QUEUE_IsInUse()
	OS_QUEUE_PeekPtr()
	OS_QUEUE_Purge()
	OS_QUEUE_Put()
	OS_QUEUE_PutEx()
	The OS_QUEUE_SRCLIST structure

	OS_QUEUE_PutBlocked()
	OS_QUEUE_PutBlockedEx()
	OS_QUEUE_PutTimed()
	OS_QUEUE_PutTimedEx()

	Watchdog
	Introduction
	API functions
	OS_WD_Add()
	OS_WD_Check()
	OS_WD_Config()
	OS_WD_Remove()
	OS_WD_Trigger()

	Multi-core Support
	Introduction
	API functions
	OS_SPINLOCK_Create()
	OS_SPINLOCK_Lock()
	OS_SPINLOCK_Unlock()
	OS_SPINLOCK_SW_Create()
	OS_SPINLOCK_SW_Lock()
	OS_SPINLOCK_SW_Unlock()

	Interrupts
	What are interrupts?
	Interrupt latency
	Causes of interrupt latencies
	Additional causes for interrupt latencies
	How to measure latency and detect its cause
	Zero interrupt latency
	High / low priority interrupts
	Using embOS API from zero latency interrupts

	Rules for interrupt handlers
	General rules
	Additional rules for preemptive multitasking
	Nesting interrupt routines
	API functions
	OS_INT_Call()
	OS_INT_CallNestable()
	OS_INT_Enter()
	OS_INT_EnterNestable()
	OS_INT_InInterrupt()
	OS_INT_Leave()
	OS_INT_LeaveNestable()

	Interrupt control
	Enabling / disabling interrupts
	Global interrupt enable / disable
	Non-maskable interrupts (NMIs)
	API functions
	OS_INT_IncDI() / OS_INT_DecRI()
	OS_INT_IncDI()
	OS_INT_DecRI()

	OS_INT_Disable()
	OS_INT_Enable()
	OS_INT_EnableConditional()
	OS_INT_Preserve()
	OS_INT_Restore()
	OS_INT_DisableAll()
	OS_INT_PreserveAndDisableAll()
	OS_INT_PreserveAll()
	OS_INT_RestoreAll()
	OS_INT_EnableAll()

	Critical Regions
	Introduction
	API functions
	OS_TASK_EnterRegion()
	OS_TASK_LeaveRegion()

	Time Measurement
	Introduction
	Low-resolution measurement
	API functions
	OS_TIME_GetTicks()
	OS_TIME_GetTicks32()

	High-resolution measurement
	API functions
	OS_TIME_StartMeasurement()
	OS_TIME_StopMeasurement()
	OS_TIME_GetResult()
	OS_TIME_GetResultus()

	Example
	Microsecond precise system time
	API functions
	OS_TIME_ConfigSysTimer()
	The OS_SYSTIMER_CONFIG struct

	OS_TIME_Getus()
	OS_TIME_Getus64()

	Low Power Support
	Introduction
	Starting power save modes in OS_Idle()
	Tickless support
	OS_Idle()
	Callback Function
	API functions
	OS_TICKLESS_AdjustTime()
	OS_TICKLESS_GetNumIdleTicks()
	OS_TICKLESS_Start()
	OS_TICKLESS_Stop()

	Frequently Asked Questions

	Peripheral power control
	API functions
	OS_POWER_GetMask()
	OS_POWER_UsageDec()
	OS_POWER_UsageInc()

	Example

	Heap Type Memory Management
	Introduction
	API functions
	OS_HEAP_free()
	OS_HEAP_malloc()
	OS_HEAP_realloc()

	Fixed Block Size Memory Pool
	Introduction
	API functions
	OS_MEMPOOL_Alloc()
	OS_MEMPOOL_AllocBlocked()
	OS_MEMPOOL_AllocTimed()
	OS_MEMPOOL_Create()
	OS_MEMPOOL_Delete()
	OS_MEMPOOL_Free()
	OS_MEMPOOL_FreeEx()
	OS_MEMPOOL_GetBlockSize()
	OS_MEMPOOL_GetMaxUsed()
	OS_MEMPOOL_GetNumBlocks()
	OS_MEMPOOL_GetNumFreeBlocks()
	OS_MEMPOOL_IsInPool()

	System Tick
	Introduction
	API functions
	OS_TICK_Config()
	OS_TICK_Handle()
	OS_TICK_HandleEx()
	OS_TICK_HandleNoHook()

	Hooking into the system tick
	API functions
	OS_TICK_AddHook()
	OS_TICK_RemoveHook()

	Disabling the system tick

	Debugging
	Runtime application errors
	List of error codes
	Application defined error codes

	Human readable object identifiers
	API functions
	OS_DEBUG_SetObjName()
	OS_DEBUG_GetObjName()

	Profiling
	Introduction
	API functions
	OS_STAT_AddLoadMeasurement()
	OS_IdleCnt

	OS_STAT_Disable()
	OS_STAT_Enable()
	OS_STAT_GetExecTime()
	OS_STAT_GetLoadMeasurement()
	OS_CPU_Load

	OS_STAT_GetLoad()
	OS_STAT_Sample()

	embOSView
	Overview
	Task list window
	System variables window
	Sharing the SIO for terminal I/O
	API functions
	OS_COM_SendString()
	OS_COM_SetRxCallback()

	Enable communication to embOSView
	Select the communication channel
	Select a UART for communication
	Select J-Link for communication
	Select Ethernet for communication

	Setup embOSView for communication
	Select a UART for communication
	Select J-Link for communication
	Select Ethernet for communication
	Use J-Link for communication and debugging in parallel
	Restrictions for using J-Link with embOSView

	Using the API trace
	Settings up trace from embOSView

	Trace filter setup functions
	API functions
	OS_TRACE_Enable()
	OS_TRACE_EnableAll()
	OS_TRACE_EnableId()
	OS_TRACE_EnableFilterId()
	OS_TRACE_Disable()
	OS_TRACE_DisableAll()
	OS_TRACE_DisableId()
	OS_TRACE_DisableFilterId()

	Trace record functions
	API functions
	OS_TRACE_Data()
	OS_TRACE_DataPtr()
	OS_TRACE_Ptr()
	OS_TRACE_U32Ptr()
	OS_TRACE_Void()

	Application-controlled trace example
	User-defined functions

	MPU - Memory Protection
	Introduction
	Privilege states
	Code organization

	Memory Access permissions
	Default memory access permissions
	Interrupts
	Access to additional memory regions
	Access to OS objects

	ROM placement of embOS
	Allowed embOS API in unprivileged tasks
	Device driver
	Concept

	API functions
	OS_MPU_AddRegion()
	OS_MPU_CallDeviceDriver()
	OS_MPU_ConfigMem()
	OS_MPU_Enable()
	OS_MPU_EnableEx()
	OS_MPU_ExtendTaskContext()
	OS_MPU_GetThreadState()
	OS_MPU_SetAllowedObjects()
	OS_MPU_SetDeviceDriverList()
	OS_MPU_SetErrorCallback()
	OS_MPU_SwitchToUnprivState()
	OS_MPU_SwitchToUnprivStateEx()
	OS_MPU_SetSanityCheckBuffer()
	OS_MPU_SanityCheck()

	Stacks
	Introduction
	System stack
	Task stack
	Interrupt stack
	Stack size calculation
	Stack-check

	API functions
	OS_STACK_GetIntStackBase()
	OS_STACK_GetIntStackSize()
	OS_STACK_GetIntStackSpace()
	OS_STACK_GetIntStackUsed()
	OS_STACK_GetTaskStackBase()
	OS_STACK_GetTaskStackSize()
	OS_STACK_GetTaskStackSpace()
	OS_STACK_GetTaskStackUsed()
	OS_STACK_GetSysStackBase()
	OS_STACK_GetSysStackSize()
	OS_STACK_GetSysStackSpace()
	OS_STACK_GetSysStackUsed()
	OS_STACK_SetCheckLimit()
	OS_STACK_GetCheckLimit()

	Board Support Packages
	Introduction
	Hardware-specific routines
	OS_ConvertCycles2us()
	OS_GetTime_Cycles()
	OS_Idle()
	Creating a custom Idle task

	OS_InitHW()
	SysTick_Handler()
	OS_COM_Init()
	OS_COM_Send1()
	OS_ISR_Rx()
	OS_ISR_Tx()

	How to change settings
	Setting the system frequency OS_FSYS
	Using a different timer to generate tick interrupts for embOS
	Using a different UART or baudrate for embOSView

	System Variables
	Introduction
	Time variables
	OS_Global
	OS_Global.Time
	OS_Global.TimeDex

	OS information routines
	OS_INFO_GetCPU()
	OS_INFO_GetLibMode()
	OS_INFO_GetLibName()
	OS_INFO_GetModel()
	OS_INFO_GetVersion()

	Supported Development Tools
	Overview

	Source Code
	Introduction
	Building embOS libraries
	Compile time switches
	Source code project

	Shipment
	General information
	Library variant
	Free variant
	Source code variant

	Update
	Introduction
	How to update an existing project
	My project does not work anymore. What did I do wrong?

	embOS API Migration guide

	Support
	Contacting support

	Performance and Resource Usage
	Introduction
	Memory requirements
	Performance
	Benchmarking
	Measurement with port pins and oscilloscope
	Oscilloscope analysis
	Example measurements Renesas RZ, Thumb2 code in RAM
	Measurement with high-resolution timer

	Glossary

