

embOS

Real Time Operating System

CPU & Compiler specifics for

Freescale Coldfire core

using IAR workbench

Document Rev. 2

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

embOS for Coldfire and IAR Workbench 3/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with IAR Workbench ... 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Start_LEDBlink.c.. 7
2.4. Stepping through the sample application using C-Spy .. 7

3. Build your own application... 11
3.1. Required files for an embOS application .. 11
3.2. Change library mode.. 11
3.3. Select an other CPU .. 12

4. Freescale Coldfire specifics .. 13
4.1. CPU modes ... 13
4.2. Available libraries... 13

5. Compiler specifics ... 14
5.1. Standard system libraries .. 14

6. Stacks ... 15
6.1. Task stack for Freescale Coldfire .. 15
6.2. System stack for Freescale Coldfire .. 15
6.3. Interrupt stack for Freescale Coldfire... 15

7. Interrupts ... 16
7.1. What happens when an interrupt occurs? ... 16
7.2. Interrupt vector table .. 16
7.3. First level interrupt handler OS_ISR_Handler() ... 16
7.4. First level interrupt handler OS_ISR_HandlerNestable() 17
7.5. Second level interrupt handler OS_irq_handler()... 17
7.6. Application level interrupt handler in "C".. 17
7.7. Fast interrupts with Freescale Coldfire CPUs .. 18
7.8. Interrupt priorities ... 18
7.9. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for fast interrupts.... 18
7.10. Interrupt handling with vectored interrupt controller ... 19
7.10.1. OS_EnableISR(): Install an interrupt handler.. 19
7.10.2. OS_DisableISR(): Disable specific interrupt ... 19
7.11. High priority non maskable exceptions .. 20

8. STOP / WAIT Mode .. 21
9. Technical data... 21

9.1. Memory requirements .. 21
10. Files shipped with embOS.. 21
11. Index ... 22

4/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS Real Time Operating System for the
Freescale Coldfire series of microcontroller using IAR Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics of embOS using Frees-
cale Coldfire based controllers with IAR Workbench. Before actually using em-
bOS, you should read or at least glance through this manual in order to
become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
for Freescale Coldfire using IAR Workbench. If you have no experience using
embOS, you should follow this introduction, because it is the easiest way to
learn how to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
important detailed information about functionality and fine-tuning of embOS for
the Freescale Coldfire based controllers using IAR Workbench.

embOS for Coldfire and IAR Workbench 5/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

2. Using embOS with IAR Workbench
The following chapter describes how to start with and use embOS for Frees-
cale Coldfire and IAR Workbench. You should follow these steps to become
familiar with embOS for Freescale Coldfire and IAR Workbench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using IAR Workbench project manager to develop your
application, no further installation steps are required. You will find a prepared
sample start application, which you should use and modify to write your applica-
tion. So follow the instructions of the next chapter �First steps�.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on IAR Workbench project manager, it may be
used without the project manager using batch files or a make utility without any
problem.

6/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample start workspaces and
projects and it is a good idea to use one of these as a starting point of all your
applications.
Your embOS distribution contains one folder �Start� which contains the sample
start workspaces and projects and every additional files used to build your ap-
plication.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start� which is part of your embOS distribution into

your work directory
• Clear the read only attribute of all files in the new �start� folder.
• Open a sample workspace start\start_*.eww with IAR Workbench project

manager (e.g. by double clicking it). We used Start_M52233DEMO.eww for
our documentation.

• Build the start project

Your screen should look like follows:

For latest information you should refer to the ReadMe.txt files in the start and
CPU folders..

embOS for Coldfire and IAR Workbench 7/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

2.3. The sample application Start_LEDBlink.c

The following is a printout of the sample application Start_LEDBlink.c. It is a
good starting-point for your application. (Please note that the file actually
shipped with your port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

--
File : Start_LEDBlink.c
Purpose : Sample program for OS running on EVAL-boards with LEDs
--------- END-OF-HEADER --*/

#include "RTOS.h"
#include "BSP.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main
*
***/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 BSP_Init(); /* initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

2.4. Stepping through the sample application using C-Spy

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). In some debuggers, you may look at the startup code
and have to set a breakpoint at main. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-Variables. Because of the
previous call of OS_IncDI(), interrupts are not enabled during execution of
OS_InitKern().

8/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you continue stepping, you should set two break points in the two tasks
as shown below:

As OS_Start() is part of the embOS library, you can not step through it.
You may press GO to reach the highest priority task.

embOS for Coldfire and IAR Workbench 9/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

If you continue by pressing GO, you will arrive in the task with lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).
You will arrive there when you set a breakpoint there before you continue:

10/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. Press GO to enter the highest priority
task again.
As can be seen by the value of embOS timer variable OS_Time, shown in the
watch window, Task0 continues operation after expiration of the 50 ms delay.

embOS for Coldfire and IAR Workbench 11/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

3. Build your own application
To build your own application, you should always start with a copy of the sam-
ple start workspace and project. Therefore copy the entire folder �Start� from
your embOS distribution into a working folder of your choice and then modify
the start project there. This has the advantage, that all necessary files are in-
cluded and all settings for the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c from one CPU subfolder.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• One embOS library from the Lib\ subfolder
• cstart*.s68 from the CPU specific Setup\ subfolder.

It contains the interrupt vector table and default exception handler.
• OS_Error.c from subfolder Setup\ The error handler is used if any library

other than Release build library is used in your project.
• Additional low level init code may be required according to CPU.
When you decide to write your own startup code or use a __low_level_init func-
tion, please ensure that non initialized variables are initialized with zero, accord-
ing to �C� standard. This is required for some embOS internal variables.
Also ensure, that main() is called with the CPU running in supervisor mode.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.
You should then modify or replace the main.c source file in the subfolder src\.

3.2. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library or a stack
check library.
Therefore you have to select or replace the embOS library in your project or
target:
• If your library is already contained in your project, just select the appropriate

configuration or enable the library and disable others.
• To add a library, you may add a new embOSLib group to your project and

add the new library to the new group. Exclude all other library groups from
build, delete unused embOSLib groups or remove them from the configura-
tion. Alternatively you may add the library to the predefined �Lib� group and
exclude all other libraries from build.

• Check and set the appropriate OS_LIBMODE_* define as preprocessor op-
tion, or modify the OS_Config.h file.

12/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

3.3. Select an other CPU

embOS for Freescale Coldfire and IAR Workbench compiler contains CPU
specific code for various Coldfire CPUs and starter kits. The sample start work-
spaces contain a project for a specific eval boards or starter kits.
Check whether your CPU and starter board is supported by embOS. CPU spe-
cific functions are located in the subfolders of the start project folder.
To select a CPU which is already supported, just select the appropriate project
from the start workspace.
If your CPU is currently not supported, examine all RTOSInit files in the CPU
specific subfolders and select one which almost fits your CPU. You may have to
modify OS_InitHW(), OS_COM_Init() and communication routines to embOS-
View.

embOS for Coldfire and IAR Workbench 13/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

4. Freescale Coldfire specifics

4.1. CPU modes

embOS supports all code models and the far data memory model that IAR�s C-
compiler supports.
The near data memory model can be supported by recompiling the sources
with appropriate compiler settings.

4.2. Available libraries

embOS for Freescale Coldfire for IAR Workbench is shipped with 56 different
libraries for different CPU and code model options.
The naming convention of the embOS libraries follows the naming convention
of the IAR runtime libraries.
The libraries are named as follows:

oscf<ISA><Code_Model><Data_Model><Lib_Config>_<LibMode>.r79

Parameter Meaning Values
ISA Specifies the instruction

set variant
a: ISA A (Coldfire V2)
ap: ISA A+ (Coldfire V2)
b: ISA B (V3, Future extension)
c: ISA C (Coldfire V1)

Code_Model Specifies the code
model

n: near code model
f: far code model

Data_Model Specifies the data
model

n: near data model
f: far data model

Lib_Config Specifies the runtime
library variant

n: normal
f: full (not needed for embOS)
xr: Release w/o round robin and
 task names
r: Release
ss: Stack check
d: Debug
sp: Stack check + profiling
dp: Debug + profiling

LibMode Library mode

dt: Debug + trace

Example:
oscfapnfn_dp.r68 is the library for a project using ISA A+ instruction set, near
code model, far data model, normal runtime libraries, with debug and profiling
support.

14/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

5. Compiler specifics

5.1. Standard system libraries

embOS for Freescale Coldfire and IAR Workbench may be used with standard
IAR Workbench system libraries for most of all projects.
Heap management and file operation functions of standard system libraries are
not reentrant and can therefore not be used with embOS, if non thread safe
functions are used from different tasks.
For heap management, embOS delivers its own thread safe functions which
may be used. These functions are described in embOS CPU independent
manual.

embOS for Coldfire and IAR Workbench 15/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

6. Stacks

6.1. Task stack for Freescale Coldfire

All embOS tasks execute in supervisor mode using the supervisor stack
pointer. The stack-size required is the sum of the stack-size of all routines plus
basic stack size plus size used by exceptions.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the Freescale Coldfire CPU, this minimum task stack size is about 72 bytes.
But because any function call uses some amount of stack and every exception
also pushes at least 32 bytes onto the current stack, the task stack size has to
be large enough to handle all nested exceptions too. We recommend at least
256 bytes stack as a start.

6.2. System stack for Freescale Coldfire

The embOS system executes in supervisor mode, the scheduler executes also
in supervisor mode. The minimum system stack size required by embOS is
about 136 bytes (stack check & profiling build) However, since the system stack
is also used by the application before the start of multitasking (the call to
OS_Start()), and because software-timers and �C�-level interrupt handlers
also use the system-stack, the actual stack requirements depend on the appli-
cation.

6.3. Interrupt stack for Freescale Coldfire

If a normal hardware exception occurs, the Coldfire CPU uses the current stack
as interrupt stack. Be aware that your stacks are big enough to have place for
the interrupt stack data.

16/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

7. Interrupts
The Freescale Coldfire core comes with an built in vectored interrupt controller
which supports up to 57 separate interrupt sources. The real number of inter-
rupt sources depends on the specific target CPU.

7.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request form the interrupt controller.
• As soon as the interrupts are enabled, the interrupt is accepted
• The CPU enters supervisor mode and fetches an 8 bit vector from the inter-

rupt controller
• The CPU pushes the status register, the vector number and the return ad-

dress onto the current stack.
• The CPU jumps to the vector address
• The interrupt handler function is processed.
• The interrupt handler ends with a �return from interrupt�
• The CPU switches back to the mode which was active before the exception

was called.
• The CPU restores the status register and return address from the stack and

continues the interrupted function.

7.2. Interrupt vector table

After Reset, the Freescale Coldfire CPU uses an initial interrupt vector table
which is located in ROM at address 0x00. It contains the initial stack address,
the reset vector and the vectors for all exceptions and interrupts.
The interrupt vector table is located in the CPU specific assembler startup file
which is delivered with embOS.
Initially, all exception vectors address dummy exception handler functions lo-
cated in the startup file. The peripheral interrupt handler vectors point to an
embOS first level interrupt handler which is part of the embOS library.
Only interrupt handler function addresses for high priority exceptions or fast in-
terrupts may be inserted in the vector table. All low priority interrupts have to
call one of the embOS first level interrupt handler OS_ISR_Handler() or
OS_ISR_HandlerNestable().
The interrupt vectors for peripheral interrupts are held in a separate interrupt
vector table in RAM or ROM. These vectors are initialized and enabled or dis-
abled by embOS functions during runtime.
The variable vector table is declared in the CPU specific RTOSInit source file.

7.3. First level interrupt handler OS_ISR_Handler()

The first level interrupt handler OS_ISR_Handler() is the default interrupt
handler for all peripheral interrupts and exceptions. It is inserted in the vector
table in the CPU specific startup code for all exceptions and peripheral inter-
rupts.
This first level interrupt handler acts as follows:
• Push temporary registers onto the stack
• Call OS_EnterInterrupt() to inform embOS that interrupt code is exe-

cuted and disable low priority interrupts.
• Call the second level interrupt handler OS_irq_Handler() and pass the in-

terrupt vector number as parameter.

embOS for Coldfire and IAR Workbench 17/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

• Call OS_LeaveInterrupt() when the second level interrupt returns to in-
form embOS that the interrupt is left, prepare a task switch if requested.

• Restores the saved registers.
• Execute a return from interrupt, restoring the previous processor state, the

interrupted function continues, or the activated task starts execution.
Calling an embOS first level interrupt handler for every interrupt running on low
priority is required for stable operation.
The first level interrupt handler OS_ISR_Handler()sets the interrupt priority
level for Coldfire to the Fast interrupt priority level, thus disabling all low priority
interrupts to avoid interrupt nesting.

7.4. First level interrupt handler OS_ISR_HandlerNestable()

The first level interrupt handler OS_ISR_HandlerNestable() is an alternate
interrupt handler which allows nested interrupts.
It may be used for peripheral interrupts when interrupt nesting shall be allowed
for the specific interrupt.
This first level interrupt handler acts as follows:
• Push temporary registers onto the stack.
• Call OS_EnterNestableInterrupt() to inform embOS that interrupt

code is running and enable nested interrupts.
• Call the second level interrupt handler OS_irq_Handler() and pass the in-

terrupt vector number as parameter.
• Call OS_LeaveNestableInterrupt() when the second level handler returns to

inform embOS that the interrupt function is left, prepare a task switch, if re-
quested

• Restores the saved registers
• Execute a return from interrupt, restoring the previous processor state, the

interrupted function continues, or the activated task starts execution.
Calling an embOS first level interrupt handler for every interrupt running on low
priority is required for stable operation.
The first level interrupt handler OS_ISR_HandlerNestable() does not mod-
ify the interrupt priority level of the Coldfire CPU, thus allows nested interrupts.

7.5. Second level interrupt handler OS_irq_handler()

The second level interrupt handler OS_irq_handler() is called from the first
level interrupt handler and is part of the CPU specific RTOSInit source file and
is therefore part of the application and may be modified if required.
The second level interrupt handler uses the interrupt vector number passed as
parameter to call the corresponding interrupt handler function from the vector
table.
The interrupt vector table is declared in the RTOSInit source file and contains
the vectors for all peripherals.

7.6. Application level interrupt handler in "C"

Interrupt handlers for Coldfire using embOS are written as normal �C�-functions
which do not take parameters and do not return any value.
The addresses of all peripheral interrupt handler functions called by the
embOS interrupt handler have to be inserted in the peripheral interrupt vector
table located in the CPU specific RTOSInit file.

Example of a peripheral interrupt handler

18/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

"Simple" interrupt-routine

static void _ISR_TickHandler(void) {
 PIT0_PCSR |= PIT_PCSR_PIF; /* reset Timer interrupt flag */
 OS_HandleTick();
}

7.7. Fast interrupts with Freescale Coldfire CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to the �Fast interrupt priority limit�, which is set to 7
initially for Coldfire V1 cores and is 5 for other Coldfire cores. Therefore all in-
terrupt priorities higher than the �Fast interrupt priority limit� can still be proc-
essed. Please note, that higher priority number defines a higher priority. All
interrupts with a priority level above the Fast Interrupt priority level are never
disabled.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.
The Fast interrupt priority limit may be modified during runtime by calling the
embOS function OS_SetFastIntPriorityLimit().

7.8. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.
• Any interrupt handler using embOS API functions has to run with an inter-

rupt priorities from 0 up to the Fast interrupt priority limit.
• Any Fast interrupt (running at priorities above the Fast interrupt priority limit

must not call any embOS API function.

7.9. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for
fast interrupts

The interrupt priority limit for fast interrupts is set to 5 by default. This means, all
interrupts with higher priority from 6 up to the maximum CPU specific priority
are never be disabled by embOS.

Description
OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between
zero latency interrupts and lower priority embOS interrupts.

Prototype
void OS_SetFastIntPriorityLimit(unsigned int Priority)

Parameter Meaning

Priority
The highest value useable as priority for embOS interrupts.
Interrupts with higher priority are never disabled by embOS.
Valid range:
1 <= Priority <= 7

Return value

embOS for Coldfire and IAR Workbench 19/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

NONE.

Add. information
To disable zero latency interrupts at all, the priority limit may be set to the high-
est interrupt priority supported by the CPU, which is 7 for Coldfire CPU.
To modify the default priority limit, OS_SetFastIntPriorityLimit() should
be called before embOS was started.
In the default start projects, OS_SetFastIntPriorityLimit() is not called.
The start projects use the default Fast interrupt priority limit.
Any interrupts running above the Fast interrupt priority limit must not call any
embOS function.

7.10. Interrupt handling with vectored interrupt controller

For Coldfire, which has a built in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions.
To handle interrupts with the vectored interrupt controller, embOS offers the
following functions:

7.10.1. OS_EnableISR(): Install an interrupt handler

Description
OS_EnableISR() is used to install a specific interrupt vector when Coldfire
CPUs with interrupt controller are used.

Prototype
OS_ISR_HANDLER* OS_EnableISR (int ISRIndex,
 OS_ISR_HANDLER* pISRHandler,
 int Prio,
 int SubPrio);

Parameter Meaning

ISRIndex Index of the interrupt source, normally the interrupt vector
number.

pISRHandler Address of the interrupt handler function.
Prio Interrupt priority, NOT for Coldfire V1
SubPrio Interrupt sub priority, NOT for Coldfire V1

Return value
OS_ISR_HANDLER*: the address of the previous installed interrupt function,
which was installed at the addressed vector number before.

Add. information
This function installs the interrupt vector and modify the priority and automati-
cally enable the interrupt in the interrupt controller by setting the interrupt mask.
When the interrupt handler table is located in ROM, the vector can not be modi-
fied, the function sets the priority only.
Coldfire V1 cores do not support variable interrupt priorities. The two parameter
Prio and SubPrio do not exist in embOS for Coldfire V1 cores.

7.10.2. OS_DisableISR(): Disable specific interrupt

Description

20/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

OS_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source.

Prototype
void OS_DisableISR(int ISRIndex)

Parameter Meaning
ISRIndex Index of the interrupt source which should be enabled.

Return value
NONE.

Add. information
This function disables the interrupt inside the interrupt controller. It does not
disable the interrupt of any peripherals. This has to be done elsewhere.

7.11. High priority non maskable exceptions

High priority non maskable exceptions with non configurable priority like Reset,
NMI and HardFault can not be used with embOS functions.
These exceptions are never disabled by embOS.
Never call any embOS function from an exception handler of one of these ex-
ceptions.

embOS for Coldfire and IAR Workbench 21/22

 2008-2010 Segger Microcontroller GmbH & Co. KG

8. STOP / WAIT Mode
In case your controller supports some kind of power saving mode, it should be
possible to use it also with embOS, as long as the system timer keeps working
and timer interrupts are processed. To enter that mode, you usually have to im-
plement some special sequence in function OS_Idle(), which you can find in
embOS module RTOSINIT.c.

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The kernel itself has a minimum ROM size requirement of about
1.700 bytes.
In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

embOS resource RAM [bytes]
Task control block 32
Resource semaphore 8
Counting semaphore 4
Mailbox 20
Software timer 20

10. Files shipped with embOS

Directory File Explanation
root *.pdf Generic API and target specific documen-

tation
root Release.html Version control document
root embOSView.exe Utility for runtime analysis, described in

generic documentation
START Start.* Sample workspace and project files for

IAR Workbench.
START\INC RTOS.H Include file for embOS, to be included in

every "C"-file using embOS -functions
START\LIB os*.r79 embOS libraries
START\SRC main.c Sample frame program to serve as a start
START\SRC OS_Error.c embOS runtime error handler used in

stack check or debug builds

START\CPU_* *.* CPU specific hardware routines for vari-

ous CPUs and starter boards.

Any additional files shipped serve as example.

22/22 embOS for Coldfire and IAR Workbench

  2008-2010 Segger Microcontroller GmbH & Co. KG

11. Index
H
Halt-mode 21
I
Idle-task-mode 21
Installation 5
Interrupt priority 18
Interrupt stack 15
Interrupt vector table.................... 16
Interrupts...................................... 16
IOS_irq_handler 17
IOS_ISR_Handler........................ 16

IOS_ISR_HandlerNestable17
M
memory models13
memory requirements...................21
O
OS_DisableISR()19
OS_EnableISRHandler()..............19
OS_SetFastIntPriorityLimit().......18
S
Stacks ...15
Stacks, interrupt stack15

Stacks, system stack......................15
Stacks, task stack15
Stop-mode21
system libraries.............................14
System stack15
T
target hardware21
Task stack15
W
Wait-mode....................................21

	Contents
	About this document
	How to use this manual

	Using embOS with IAR Workbench
	Installation
	First steps
	The sample application Start_LEDBlink.c
	Stepping through the sample application using C-Spy

	Build your own application
	Required files for an embOS application
	Change library mode
	Select an other CPU

	Freescale Coldfire specifics
	CPU modes
	Available libraries

	Compiler specifics
	Standard system libraries

	Stacks
	Task stack for Freescale Coldfire
	System stack for Freescale Coldfire
	Interrupt stack for Freescale Coldfire

	Interrupts
	What happens when an interrupt occurs?
	Interrupt vector table
	First level interrupt handler OS_ISR_Handler()
	First level interrupt handler OS_ISR_HandlerNestable()
	Second level interrupt handler OS_irq_handler()
	Application level interrupt handler in "C"
	Fast interrupts with Freescale Coldfire CPUs
	Interrupt priorities
	OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for fast interrupts
	Interrupt handling with vectored interrupt controller
	OS_EnableISR(): Install an interrupt handler
	OS_DisableISR(): Disable specific interrupt

	High priority non maskable exceptions

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

