

embOS

Real Time Operating System

CPU & Compiler specifics for

Freescale Coldfire core

using Metrowerks Codewarrior workbench

Document Rev. 1

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

Contents

Contents.. 2
1. About this document ... 3

1.1. How to use this manual ... 3
2. Using embOS with Metrowerks Codewarrior Workbench .. 4

2.1. Installation.. 4
2.2. First steps .. 5
2.3. The sample application Start_LEDBlink.c.. 6
2.4. Stepping through the sample application using the debugger 6

3. Build your own application... 10
3.1. Required files for an embOS application .. 10
3.2. Change library mode ... 10
3.3. Select an other CPU.. 11

4. Freescale Coldfire specifics .. 12
4.1. CPU modes ... 12
4.2. Available libraries... 12

5. Compiler specifics ... 13
5.1. Standard system libraries .. 13

6. Stacks ... 14
6.1. Task stack for Freescale Coldfire .. 14
6.2. System stack for Freescale Coldfire .. 14
6.3. Interrupt stack for Freescale Coldfire... 14

7. Interrupts ... 15
7.1. What happens when an interrupt occurs? ... 15
7.2. Defining interrupt handlers in "C"... 15
7.3. Interrupt vector table.. 15
7.4. Fast interrupts with Freescale Coldfire .. 15
7.5. Interrupt priorities... 16
7.6. Interrupt handling with vectored interrupt controller... 17
7.6.1. OS_EnableISR(): Install an interrupt handler.. 17
7.6.2. OS_DisableISR(): Disable specific interrupt ... 17
7.7. High priority non maskable exceptions .. 18

8. STOP / WAIT Mode .. 19
9. Technical data... 19

9.1. Memory requirements.. 19
10. Files shipped with embOS.. 19
11. Index ... 20

embOS for Coldfire and Metrowerks Codewarrior Workbench 3/20

 1996- 2007 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS Real Time Operating System for the
Freescale Coldfire series of microcontroller using Metrowerks Codewarrior
Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics of embOS using Frees-
cale Coldfire based controllers with Metrowerks Codewarrior Workbench. Be-
fore actually using embOS, you should read or at least glance through this
manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
for Freescale Coldfire using Metrowerks Codewarrior Workbench. If you have
no experience using embOS, you should follow this introduction, because it is
the easiest way to learn how to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
important detailed information about functionality and fine-tuning of embOS for
the Freescale Coldfire based controllers using Metrowerks Codewarrior Work-
bench.

4/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

2. Using embOS with Metrowerks Codewarrior Work-
bench

The following chapter describes how to start with and use embOS for Frees-
cale Coldfire and Metrowerks Codewarrior Workbench. You should follow these
steps to become familiar with embOS for Freescale Coldfire and Metrowerks
Codewarrior Workbench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Metrowerks Codewarrior Workbench project man-
ager to develop your application, no further installation steps are required. You
will find a prepared sample start application, which you should use and modify
to write your application. So follow the instructions of the next chapter �First
steps�.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on Metrowerks Codewarrior Workbench project
manager, it may be used without the project manager using batch files or a
make utility without any problem.

embOS for Coldfire and Metrowerks Codewarrior Workbench 5/20

 1996- 2007 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample start workspaces and
projects and it is a good idea to use one of these as a starting point of all your
applications.
Your embOS distribution contains one folder �Start� which contains the sample
start workspaces and projects and every additional files used to build your ap-
plication.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start� which is part of your embOS distribution into

your work directory
• Clear the read only attribute of all files in the new �start� folder.
• Open a sample workspace start\start_*.mcp with Metrowerks Codewarrior

Workbench project manager (e.g. by double clicking it). We used
Start_M52233DEMO.mcp for our documentation.

• Build the start project

Your screen should look like follows:

For latest information you should refer to the ReadMe.txt files in the start and
CPU folders..

6/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

2.3. The sample application Start_LEDBlink.c

The following is a printout of the sample application Start_LEDBlink.c. It is a
good starting-point for your application. (Please note that the file actually
shipped with your port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

--
File : Start_LEDBlink.c
Purpose : Sample program for OS running on EVAL-boards with LEDs
--------- END-OF-HEADER --*/

#include "RTOS.h"
#include "BSP.h"
#include "uart.h"
OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main
*
***/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 BSP_Init(); /* initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

2.4. Stepping through the sample application using the debugger

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). In some debuggers, you may look at the startup code
and have to set a breakpoint at main. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-Variables. Because of the
previous call of OS_IncDI(), interrupts are not enabled during execution of
OS_InitKern().

embOS for Coldfire and Metrowerks Codewarrior Workbench 7/20

 1996- 2007 Segger Microcontroller Systeme GmbH

OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you continue stepping, you should set two break points in the two tasks
as shown below:

As OS_Start() is part of the embOS library, you can not step through it.
You may press GO to reach the highest priority task.

8/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

If you continue by pressing GO, you will arrive in the task with lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).
You will arrive there when you set a breakpoint there before you continue:

embOS for Coldfire and Metrowerks Codewarrior Workbench 9/20

 1996- 2007 Segger Microcontroller Systeme GmbH

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. Press GO to enter the highest priority
task again.
As can be seen by the value of embOS timer variable OS_Time, shown in the
watch window, Task0 continues operation after expiration of the 50 ms delay.

10/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

3. Build your own application
To build your own application, you should always start with a copy of the sam-
ple start workspace and project. Therefore copy the entire folder �Start� from
your embOS distribution into a working folder of your choice and then modify
the start project there. This has the advantage, that all necessary files are in-
cluded and all settings for the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c from one CPU subfolder.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• One embOS library from the Lib\ subfolder
• MCF5222x_vectors.s from the Setup\ subfolder.

It contains the interrupt vector table and default interrupt handler.
• OS_Error.c from subfolder Setup\ The error handler is used if any library

other than Release build library is used in your project.
• Additional low level init code may be required according to CPU.
When you decide to write your own startup code or use a __low_level_init func-
tion, please ensure that non initialized variables are initialized with zero, accord-
ing to �C� standard. This is required for some embOS internal variables.
Also ensure, that main is called with CPU running in thread mode using the
main stack.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.
You should then modify or replace the main.c source file in the subfolder src\.

3.2. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library or a stack
check library.
Therefore you have to select or replace the embOS library in your project or
target:
• If your library is already contained in your project, just select the appropriate

configuration or enable the library and disable others.
• To add a library, you may add a new embOSLib group to your project and

add the new library to the new group. Exclude all other library groups from
build, delete unused embOSLib groups or remove them from the configura-
tion. Alternatively you may add the library to the predefined �Lib� group and
exclude all other libraries from build.

• Check and set the appropriate OS_LIBMODE_* define as preprocessor op-
tion.

embOS for Coldfire and Metrowerks Codewarrior Workbench 11/20

 1996- 2007 Segger Microcontroller Systeme GmbH

3.3. Select an other CPU

embOS for Freescale Coldfire and Metrowerks Codewarrior compiler contains
CPU specific code for various Coldfire CPUs and starter kits. The sample start
workspaces contain a project for a specific eval boards or starter kits.
Check whether your CPU and starter board is supported by embOS. CPU spe-
cific functions are located in the subfolders of the start project folder.
To select a CPU which is already supported, just select the appropriate project
from the start workspace.
If your CPU is currently not supported, examine all RTOSInit files in the CPU
specific subfolders and select one which almost fits your CPU. You may have to
modify OS_InitHW(), OS_COM_Init() and communication routines to embOS-
View.

12/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

4. Freescale Coldfire specifics

4.1. CPU modes

embOS supports all memory and code model combinations that Metrowerks
Codewarrior' s C-Compiler supports.

4.2. Available libraries

embOS for Freescale Coldfire for Metrowerks Codewarrior is shipped with 14
different libraries, one for each memory model/Libmode combination.
The libraries are named as follows:

cfrtos<CodeModel><LibMode>.r79

Parameter Meaning Values
CodeModel Specifies the code

model
n: near code model
f: far code model
XR: Release w/o round robin and
 task names
R: Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling

LibMode Library mode

DT: Debug + trace

Example:
cfrtosndp.elf is the library for a project using near code model with debug and
profiling support.

embOS for Coldfire and Metrowerks Codewarrior Workbench 13/20

 1996- 2007 Segger Microcontroller Systeme GmbH

5. Compiler specifics

5.1. Standard system libraries

embOS for Freescale Coldfire and Metrowerks Codewarrior may be used with
standard Metrowerks Codewarrior system libraries for most of all projects.
Heap management and file operation functions of standard system libraries are
not reentrant and can therefore not be used with embOS, if non thread safe
functions are used from different tasks.
For heap management, embOS delivers its own thread safe functions which
may be used. These functions are described in embOS CPU independent
manual.

14/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

6. Stacks

6.1. Task stack for Freescale Coldfire

All embOS tasks execute in supervisor mode using the supervisor stack
pointer. The stack-size required is the sum of the stack-size of all routines plus
basic stack size plus size used by exceptions.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the Freescale Coldfire CPU, this minimum task stack size is about 72 bytes.
But because any function call uses some amount of stack and every exception
also pushes at least 12 bytes onto the current stack, the task stack size has to
be large enough to handle all nested exceptions too. We recommend at least
256 bytes stack as a start.

6.2. System stack for Freescale Coldfire

The embOS system executes in supervisor mode, the scheduler executes also
in supervisor mode. The minimum system stack size required by embOS is
about 176 bytes (stack check & profiling build) However, since the system stack
is also used by the application before the start of multitasking (the call to
OS_Start()), and because software-timers and �C�-level interrupt handlers
also use the system-stack, the actual stack requirements depend on the appli-
cation.

6.3. Interrupt stack for Freescale Coldfire

If a normal hardware exception occurs, the Coldfire CPU uses the supervisor
stack as interrupt stack. Be aware that the supervisor stacks is big enough to
have place for the interrupt stack data.

embOS for Coldfire and Metrowerks Codewarrior Workbench 15/20

 1996- 2007 Segger Microcontroller Systeme GmbH

7. Interrupts
The Freescale Coldfire core comes with an built in vectored interrupt controller
which supports up to 57 separate interrupt sources. The real number of inter-
rupt sources depends on the specific target CPU.

7.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request form the interrupt controller.
• As soon as the interrupts are enabled, the interrupt is executed
• The CPU enters supervisor mode and fetch 8 bit vector from the interrupt

controller
• The CPU pushes the status register, the vector number and the return ad-

dress onto the current stack.
• The CPU jumps to the vector address
• The interrupt handler is processed.
• The interrupt handler ends with a �return from interrupt�
• The CPU switches back to the mode which was active before the exception

was called.
• The CPU restores the status register and return address from the stack and

continues the interrupted function.

7.2. Defining interrupt handlers in "C"

Interrupt handlers for Coldfire are written as normal �C�-functions which do not
take parameters and do not return any value. If you wish the have nestable in-
terrupts, you may call OS_EI()/OS_DI() in your interrupt handler.

Example

"Simple" interrupt-routine

void OS_ISR_TickHandler(void) {
 OS_EI();
 PIT0_PMR |= PIT_PCSR_PIF; /* reset Timer interrupt flag */
 OS_HandleTick();
 OS_DI();
}

7.3. Interrupt vector table

After Reset, the Freescale Coldfire CPU uses an initial interrupt vector table
which is located in ROM at address 0x00. It contains the initial address for the
main stack pointer and addresses for all exceptions.
The interrupt vector table is located in the assembler file m522x_vectors_rom.s
in the specific subfolder. Only interrupt handler function addresses for fast inter-
rupts have to be inserted manually in the vector table. For all other interrupts
exists a interrupt handler table in RAM. This allows to enable variable interrupt
handler installation with OS_EnableISR()/OS_DisableISR().

7.4. Fast interrupts with Freescale Coldfire

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 5. Therefore all interrupt priorities higher than 5

16/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

can still be processed. Please note, that higher priority number define a higher
priority. All interrupts with priority level from 5 to 7 are never disabled.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

7.5. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.
• Any interrupt handler using embOS API functions has to run with interrupt

priorities from 0 to 4.
• Any Fast interrupt (running at priorities from 5 to 7) must not call any embOS

API function. Even OS_EnterInterrupt() and OS_LeaveInterrupt()
must not be called.

• Two interrupts with the same priority must have different subpriorites.

The priority limit between embOS interrupts and Fast interrupts is fixed to
5 and can only be changed by recompiling embOS libraries!

embOS for Coldfire and Metrowerks Codewarrior Workbench 17/20

 1996- 2007 Segger Microcontroller Systeme GmbH

7.6. Interrupt handling with vectored interrupt controller

For Coldfire, which has a built in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions.

To handle interrupts with the vectored interrupt controller, embOS offers the
following functions:

7.6.1. OS_EnableISR(): Install an interrupt handler

Description
OS_EnableSR() is used to install a specific interrupt vector when Coldfire CPUs
with interrupt controller are used.

Prototype
OS_ISR_HANDLER* OS_EnableISR (int ISRIndex,
 OS_ISR_HANDLER* pISRHandler,
 int Prio);

Parameter Meaning

ISRIndex Index of the interrupt source, normally the interrupt vector
number.

pISRHandler Address of the interrupt handler function.
Prio Interrupt priority(Bits 4..6) and subpriority (Bits 3..0)

Return value
OS_ISR_HANDLER*: the address of the previous installed interrupt function,
which was installed at the addressed vector number before.

Add. information
This function installs the interrupt vector, modify the priority and automatically
enable the interrupt in the interrupt controller by setting the interrupt mask.

7.6.2. OS_DisableISR(): Disable specific interrupt

Description
OS_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source.

Prototype
void OS_DisableISR(int ISRIndex)

Parameter Meaning
ISRIndex Index of the interrupt source which should be enabled.

Return value
NONE.

Add. information

18/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

This function disables the interrupt inside the interrupt controller. It does not
disable the interrupt of any peripherals. This has to be done elsewhere.

7.7. High priority non maskable exceptions

High priority non maskable exceptions with non configurable priority like Reset,
NMI and HardFault can not be used with embOS functions.
These exceptions are never disabled by embOS.
Never call any embOS function from an exception handler of one of these ex-
ceptions.

embOS for Coldfire and Metrowerks Codewarrior Workbench 19/20

 1996- 2007 Segger Microcontroller Systeme GmbH

8. STOP / WAIT Mode
In case your controller supports some kind of power saving mode, it should be
possible to use it also with embOS, as long as the system timer keeps working
and timer interrupts are processed. To enter that mode, you usually have to im-
plement some special sequence in function OS_Idle(), which you can find in
embOS module RTOSINIT*.c.

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The kernel itself has a minimum ROM size requirement of about
1.700 bytes.
In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

embOS resource RAM [bytes]
Task control block 30
Resource semaphore 14
Counting semaphore 8
Mailbox 22
Software timer 18

10. Files shipped with embOS

Directory File Explanation
root *.pdf Generic API and target specific documen-

tation
Root Release.html Version control document
Root embOSView.exe Utility for runtime analysis, described in

generic documentation
START Start.* Sample workspace and project files for

Metrowerks Codewarrior Workbench.
START\INC RTOS.H Include file for embOS, to be included in

every "C"-file using embOS -functions
START\LIB cfrtos*.r79 embOS libraries
START\Board
Support

*.c Board specific �C�-files

Any additional files shipped serve as example.

20/20 embOS for Coldfire and Metrowerks Codewarrior Workbench

 1996-2007 Segger Microcontroller Systeme GmbH

11. Index
H
Halt-mode.......................... 19
I
Idle-task-mode 19
Installation 4
Interrupt priority 16
Interrupt stack 14
Interrupt vector table 15
Interrupts 15

M
memory models12
memory requirements19
O
OS_DisableISR()17
OS_EnableISRHandler() ...17
S
Stacks................................14
Stacks, interrupt stack14
Stacks, system stack.........14

Stacks, task stack 14
Stop-mode 19
system libraries 13
System stack..................... 14
T
target hardware................. 19
Task stack......................... 14
W
Wait-mode 19

	Contents
	About this document
	How to use this manual

	Using embOS with Metrowerks Codewarrior Workbench
	Installation
	First steps
	The sample application Start_LEDBlink.c
	Stepping through the sample application using the debugger

	Build your own application
	Required files for an embOS application
	Change library mode
	Select an other CPU

	Freescale Coldfire specifics
	CPU modes
	Available libraries

	Compiler specifics
	Standard system libraries

	Stacks
	Task stack for Freescale Coldfire
	System stack for Freescale Coldfire
	Interrupt stack for Freescale Coldfire

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt vector table
	Fast interrupts with Freescale Coldfire
	Interrupt priorities
	Interrupt handling with vectored interrupt controller
	OS_EnableISR(): Install an interrupt handler
	OS_DisableISR(): Disable specific interrupt

	High priority non maskable exceptions

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

