

embOS

Real Time Operating System

CPU & Compiler specifics for

ST STM8 CPUs

and IAR compiler for STM8

Document Rev. 0

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for STM8 and IAR compiler for STM8 3/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with IAR Embedded Workbench ... 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Start_LEDBlink.c.. 7
2.4. Stepping through the sample application Main.c using CSpy.............................. 7

3. Build your own application... 11
3.1. Required files for an embOS application .. 11
3.2. Select a start project .. 11
3.3. Add your own code .. 11
3.4. Change the library mode.. 11

4. Project and compiler specifics... 12
4.1. Code and data memory models, compiler options... 12
4.2. Available libraries... 12

5. Stacks ... 14
5.1. Task stack for STM8 CPUs.. 14
5.2. System stack for STM8 CPUs ... 14
5.3. Interrupt stack for STM8 CPUs.. 14
5.4. Stack specifics of the STM8 family .. 14

6. Interrupts ... 15
6.1. What happens when an interrupt occurs? ... 15
6.2. Defining interrupt handlers in "C"... 15
6.3. Interrupt handling with embOS for STM8.. 15
6.4. Interrupt-stack.. 17

7. Low-Power Modes... 18
8. Technical data... 19

8.1. Memory requirements .. 19
9. Files shipped with embOS STM8 IAR .. 19
10. Index ... 20

4/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS for STM8 Real Time Operating Sys-
tem for the ST STM8 series of microcontroller using the IAR compiler for STM8
and the IAR Embedded Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS STM8 for
IAR compiler. Before actually using embOS, you should read or at least glance
through this manual in order to become familiar with the software.
Chapter 2 contains a step-by-step introduction, how to install and use embOS
using IAR Embedded Workbench. If you have no experience using embOS,
you should follow this introduction, even if you do not plan to use C-SPY or the
IAR Embedded Workbench, because it is the easiest way to learn how to use
embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for STM8
CPUs using the IAR compiler.

embOS for STM8 and IAR compiler for STM8 5/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

2. Using embOS with IAR Embedded Work-
bench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using the IAR Embedded Workbench to develop your
application, no further installation steps are required. You will find a prepared
sample workspace including one start project, which you should use and modify
to write your application. So follow the instructions of the next chapter �First
steps�.

You should do this even if you do not intend to use the IAR Embedded Work-
bench for your application development in order to become familiar with
embOS.

If for some reason you will not work with the IAR Embedded Workbench, you
should:
Copy either all or only the library-file that you need to your work-directory. Also
copy the hardware initialization file RTOSInit*.c and the embOS header file
RTOS.h. This has the advantage that when you switch to an updated version of
embOS later in a project, you do not affect older projects that use embOS
also.
embOS does in no way rely on the IAR Embedded Workbench, it may be used
without the workbench using batch files or a make utilities without any problem.

6/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample workspaces and start
project for an STM8S CPU and it is a good idea to use this project as a starting
point for all of your applications.

To get your new application running, you should proceed as follows.
• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start� from your embOS distribution into your work

directory.
• Clear the read only attribute of all files in the new �Start�-folder in your work-

ing directory.
• Open the folder �Start\BoardSuport\ST\�.
• Open one of the sample workspaces in one of the subfolders of

Start\BoardSupport\ST\ *.eww�. (e.g. by double clicking it)
The documentation is based on the Start_STM8_128.eww sample work-
space for the ST STM8_128_Eval-Board.

• Select the configuration �Debug_Simulator�
• Build the start project

Further examples in this manual show the configuration for the CSpy simulator.
Using the ST-Link tool and CSpy for debugging in real hardware is supported
by another configuration and is similar and looks the same.

After building the start project your screen should look like follows:

For additional information you should open the ReadMe.txt which is part of the
sample project.

embOS for STM8 and IAR compiler for STM8 7/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

2.3. The sample application Start_LEDBlink.c

The following is a printout of the sample application Start_LEDBlink.c. It is a
good starting-point for your application.
What happens is easy to see:
After initialization of embOS, two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/***
* SEGGER MICROCONTROLLER GmbH & CoKG
* Solutions for real time microcontroller applications
**
File : Start_LEDBlink.c
Purpose : Sample program for OS running on EVAL-boards with LEDs
--------- END-OF-HEADER --*/

#include "RTOS.h"
#include "BSP.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 BSP_Init(); /* Initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

2.4. Stepping through the sample application Main.c using CSpy

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). If you may look at the startup code, you have to set a
breakpoint at main(). Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes some relevant OS-Variables. Because of
the previous call of OS_IncDI(), interrupts are not enabled during execution of
OS_InitKern().

8/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

OS_InitHW() is part of the CPU specific RTOSInit*.c file and therefore part of
your application. Its primary purpose is to initialize the hardware required to
generate the timer-tick-interrupt for embOS. Step through it to see what is
done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. In this case it should initialize the UART used for communication.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set breakpoints in the two tasks:

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, HPTask() is the highest priority task and is therefore active.

embOS for STM8 and IAR compiler for STM8 9/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend LPTask() and switch to the idle-loop, which is an
endless loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).
OS_Idle() is found in the CPU specific RTOSInit*.c:

10/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay.
Coming from OS_Idle(), you should execute the �Go� command to arrive at
the highest priority task after its delay is expired.
This can be seen at the system variable OS_Global.Time:

embOS for STM8 and IAR compiler for STM8 11/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

3. Build your own application
To build your own application, you should start with the sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:
• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c from a CPU specific Setup\ subfolder.
It contains the hardware dependent initialization code for the embOS timer
and optional UART for embOSView.

• One embOS library from the Lib\ subfolder.
• OS_Error.c from the CPU specific Setup\ folder.

The error handler is used if any library other than a Release build library is
used in your project.

When you decide to write your own startup code, ensure that non initialized
variables are initialized with zero, according to �C� standard. This is required for
some embOS internal variables.
Your main() function has to initialize embOS by calling OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.

3.2. Select a start project

embOS comes with one start project for an STM8S CPU. The project includes
different configurations for different output formats or debug tools. The start
project for the STM8S CPU was built and tested with an STM8S208MB CPU
and the STM8/128_EVAL board from ST. For other CPU variants there may be
modifications required in the CPU specific RTOSInit*.c file.

3.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main() function in the start project.

3.4. Change the library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library.
Therefore you have to select or replace the embOS library in your project or
target:
• in the Lib group, exclude all libraries from build, except the one which should

be used for your application.
Finally check the project options about library mode setting according library
mode used, or modify the OS_Config.h file. Refer to chapter 4 about the li-
brary naming conventions to select the correct library and library mode specific
define.

12/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

4. Project and compiler specifics

4.1. Code and data memory models, compiler options

embOS for STM8 and IAR compiler is delivered with libraries for all code mod-
els and one data model.

For STM8 CPUs, the IAR compiler offers three code models:

Code Model Default code memory attribute Code placement
Small __near_func 0-0xFFFF
Medium __far_func 0-0xFFFFFF
Large __huge_func 0-0xFFFFFF

For STM8 CPUs, the IAR compiler offers three data models:

Data Model Default memory attribute Data placement
Small __tiny 0-0xFF
Medium __near 0-0xFFFF
Large __far 0-0xFFFFFF

With embOS, the following limitations exist:

• The small data model for STM8 is not supported, because it does not
make much sense to run an RTOS application with 256 bytes of RAM.

• The large data model for STM8 is not supported.

4.2. Available libraries

The embOS library files are located in the subfolder �Lib� of the �Start� folder.
To use embOS, one library has to be included to your project. The files to use
depend on additional error check possibilities wished to be used.
The naming convention for embOS libraries follows the one used by IAR for the
runtime libraries:

osSTM8<code_model><data_model>_<LibMode>.a

Parameter Meaning Values
code_model Selected code model s: small code model
 m: medium code model
 l: large code model
data_model Selected data model m: medium data model

XR: Extreme Release
R: Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling

LibMode Library mode

DT: Debug + trace

Example:

osSTM8sm_SP.a is the embOS library for the small code model, medium data
model and Stack check and Profiling functionality.
It is located in the Start\Lib\ subdirectory.

embOS for STM8 and IAR compiler for STM8 13/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

For STM8 CPUs, the following embOS libraries are available:

Library type Library Code / data model #define
Extreme
Release

osSTM8sm_XR.a small / medium OS_LIBMODE_XR

Release osSTM8sm_R.a small / medium OS_LIBMODE_R
Stack-check osSTM8sm_S.a small / medium OS_LIBMODE_S
Stack-
check+Profiling

osSTM8sm_SP.a small / medium OS_LIBMODE_SP

Debug osSTM8sm_D.a small / medium OS_LIBMODE_D
Debug+Profiling osSTM8sm_DP.a small / medium OS_LIBMODE_DP
Debug+Profiling
+Trace

osSTM8sm_DT.a small / medium OS_LIBMODE_DT

Extreme
Release

osSTM8mm_XR.a medium / medium OS_LIBMODE_XR

Release osSTM8mm _R.a medium / medium OS_LIBMODE_R
Stack-check osSTM8mm _S.a medium / medium OS_LIBMODE_S
Stack-
check+Profiling

osSTM8mm _SP.a medium / medium OS_LIBMODE_SP

Debug osSTM8mm _D.a medium / medium OS_LIBMODE_D
Debug+Profiling osSTM8mm _DP.a medium / medium OS_LIBMODE_DP
Debug+Profiling
+Trace

osSTM8mm _DT.a medium / medium OS_LIBMODE_DT

Extreme
Release

osSTM8lm_XR.a large / medium OS_LIBMODE_XR

Release osSTM8lm _R.a large / medium OS_LIBMODE_R
Stack-check osSTM8lm _S.a large / medium OS_LIBMODE_S
Stack-
check+Profiling

osSTM8lm _SP.a large / medium OS_LIBMODE_SP

Debug osSTM8lm _D.a large / medium OS_LIBMODE_D
Debug+Profiling osSTM8lm _DP.a large / medium OS_LIBMODE_DP
Debug+Profiling
+Trace

osSTM8lm _DT.a large / medium OS_LIBMODE_DT

For STM8 CPUs, only the medium data model is available.

Ensure that the define, according to the library type used, is set as compiler
option in your project, or is selected in the OS_Config.h file according the
value of the DEBUG define.
Check �Project | Options | C/C++ compiler | Preprocessor | Defined symbols�.

14/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

5. Stacks

5.1. Task stack for STM8 CPUs

Every embOS task has to have its own stack. Task stacks can be located in
any �near� RAM memory location.
The stack has to be addressable by the CPUs stack pointer which is 16bits
wide, so the stack may reside in any RAM location between 0x0 to 0xFFFF.
The required task stack size is the sum of the stack size needed from all rou-
tines called by the task, plus a basic task stack size.
The basic task stack size is the size of memory required to store the registers
and virtual registers of the CPU plus the stack size required by embOS -
routines.
For the STM8 CPU, the minimum task stack size is about 30 bytes.
As the STM8 CPU does not support its own interrupt stack, interrupts also run
on task stacks. We recommend at least a minimum task stack size of 100
bytes.
Using nested interrupts will increase the required stack size. You may use the
embOSView tool to analyze the total amount of task stack used in your applica-
tion.

5.2. System stack for STM8 CPUs

The system stack size required by embOS is about 30 bytes (60 bytes in. pro-
filing builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers and embOS internal scheduling functions also use the system-
stack, as well as interrupts, which may also run on the system stack, the actual
stack requirements depend on the application and interrupt handling.
The size of the system stack is given in the link-file or project options as size of
the CSTACK.
We recommend a minimum of 128 bytes.

5.3. Interrupt stack for STM8 CPUs

Unfortunately the STM8 CPUs do not support a separate interrupt stack
pointer. Interrupts use the stack of the running application. Therefore interrupts
occupy additional stack space on every task and on the system stack. The cur-
rent version of embOS does not support a separate interrupt stack.

5.4. Stack specifics of the STM8 family

The STM8 family of microcontroller can address up to 64KB of memory as
stack. Because the stack-pointer register is 16bits wide.

embOS for STM8 and IAR compiler for STM8 15/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

6. Interrupts

6.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• If the priority of the interrupt is higher than the current processor priority, the

interrupt is accepted.
• The CPU saves the PC, all registers including flags on the stack
• The CPU sets its own interrupt priority in the condition code register to the

priority of the requested interrupt, thus disabling all further interrupts of lower
priority.

• The CPU jumps to the interrupt service routine (ISR) whose address is found
in the in the vector table.

• ISR : Save scratch registers
• ISR : User-defined functionality
• ISR : Restore scratch Registers
• ISR: Execute RETI command, restoring the PC and all registers, Flags and

continue interrupted program.
• For details, refer to the ST STM8 reference and programming manuals.

6.2. Defining interrupt handlers in "C"

Routines defined with the keyword __interrupt automatically save & restore
the scratch registers and all registers they modify and return with RETI.
The interrupt vector number has to be given as additional parameter by a
#pragma directive prior the interrupt handler function.
For a detailed description on how to define an interrupt routine in "C", refer to
the IAR C/C++ Development guide for EWSTM8.

"Simple" interrupt-routine

#prgama vector=12
__interrupt void IntHandlerTimer(void) {
 IntCnt++;
}

6.3. Interrupt handling with embOS for STM8

Interrupt processing with embOS for STM8 requires some precautions and ad-
ditional code in the interrupt handler functions.

6.3.1. Interrupt priorities with embOS for STM8
The current version 3.82h of embOS for STM8 does NOT support the priority
controlled interrupt nesting of the STM8 CPUs.

• All interrupt handler functions have to run on the highest interrupt priority.
• The interrupt priority control registers for peripherals have to remain in their

default state, or have to be initialized to an interrupt priority of 3, which is the
highest priority.

• Interrupt nesting is therefore disabled per default.
Re-Enabling interrupts inside an interrupt handler should be avoided and has
to handled carefully.

16/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

6.3.2. Interrupt handler with embOS for STM8
Using embOS functions in an interrupt handler requires additional embOS
functions which inform embOS that an interrupt handler is running and inform
embOS when the interrupt handler ends.
This is required to avoid task switches from within an interrupt handler. Task
switches can only be performed when the interrupt handler finished.
Therefore, every interrupt handler calling subroutines, or using embOS func-
tions, has to start with a call of OS_EnterInterrupt() and has to end with a
call of OS_LeaveInterrupt().

Example of an interrupt handler calling embOS functions
#pragma vector=17
static __interrupt void OS_IsrTickHandler(void) {
 OS_TIM_SR1 &= ~(1uL << 0); // Clear interrupt pending condition...
 OS_EnterInterrupt(); // Inform embOS that interrupt is running
 OS_HandleTick();
 OS_LeaveInterrupt(); // Inform embOS that interrupt ended, perform
} // task switch if required

OS_EnterInterrupt()informs embOS that an interrupt handler is running
and blocks task switches.
OS_LeaveInterrupt() informs embOS that the interrupt handler ended and
re-enables task switches. If a task switch is pending it is performed directly from
OS_LeaveInterrupt().
Note that most peripherals do not reset the interrupt pending condition auto-
matically when the interrupt service routine is called. This has to be done during
the execution of the interrupt service routine. To avoid loosing interrupts, this
should be done as early as possible. Resetting the interrupt pending flag may
be performed before the call of OS_EnterInterrupt().

6.3.3. Nested Interrupt handler with embOS for STM8
As embOS version 3.82h for STM8 does not support the priority controlled in-
terrupt nesting of the STM8 CPU, all interrupt handlers have to run on the high-
est interrupt priority level and automatic nesting by different priorities is not
available.
However, interrupt nesting can be used if required, but has to be used very
carefully, as all interrupts are re-enabled when interrupts are enabled in an in-
terrupt service routine.
This may cause recursion which has to be avoided.
Writing a nestable interrupt handler using embOS requires a call of the
embOS function OS_EnterNestableInterrupt() as entry function and
has to end with the embOS function call OS_LeaveNestableInterrupt().

Example of a nestable interrupt handler calling embOS functions
#pragma vector=17
static __interrupt void OS_IsrTickHandler(void) {
 OS_TIM_SR1 &= ~(1uL << 0); // Clear interrupt pending condition...
 OS_EnterNestableInterrupt(); // Inform embOS that interrupt is running,
 OS_HandleTick(); // and re-enable interrupts
 OS_LeaveNestableInterrupt(); // Inform embOS that interrupt ended, perform
} // task switch if required
Warning: As OS_EnterNestableInterrupt() re-enables all interrupt lev-
els, the interrupt pending condition has to be reset, or the specific interrupt
source has to be disabled, before calling OS_EnterNestableInterrupt().

embOS for STM8 and IAR compiler for STM8 17/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

OS_EnterNestableInterrupt()informs embOS that an interrupt handler is
running and blocks task switches. Then it re-enable all interrupts.
OS_LeaveNestableInterrupt() informs embOS that the interrupt handler
ended and re-enables task switches. If a task switch is pending it is performed
directly from OS_LeaveNetstableInterrupt().

6.4. Interrupt-stack

Since STM8 CPUs do not provide a separate stack pointer for interrupts, every
interrupt occupies additional stack space on the current stack. This may be the
system stack, or a task stack of a running task that is interrupted. The addi-
tional amount of necessary stack for all interrupts has to be reserved on all task
stacks.
The current version of embOS for STM8 does not support extra interrupt stack-
switching in an interrupt routine.
The routines OS_EnterIntStack() and OS_LeaveIntStack() are sup-
plied for source compatibility to other processors only and have no functionality.

18/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

7. Low-Power Modes
Usage of Low-Power modes is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit_*.c to enter a Low-Power mode.
Please do not enter a Low-Power mode which stops the embOS timer, as this
would stop time scheduled task activations.

embOS for STM8 and IAR compiler for STM8 19/20

 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

8. Technical data

8.1. Memory requirements

These values are neither precise nor guaranteed but they give a good idea of
the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the medium memory model and re-
lease build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1800 42
Event-management < 200 ---
Mailbox management < 550 ---
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 ---
Timer-management < 250 ---
Add. Task --- 22
Add. Counting semaphore --- 4
Add. Resource semaphore --- 7
Add. Mailbox --- 11
Add. Timer --- 9
Power-management --- ---

9. Files shipped with embOS STM8 IAR!
Directory File Explanation
root *.pdf Generic API and target specific docu-

mentation
root Release.html Release notes of embOS STM8
root embOSView.exe Utility for runtime analysis, described in

generic documentation
Start\
BoardSupport

Start_*.eww CPU or eval board specific start work-
space

Start\
BoardSupport

Start_*.ewp CPU or eval board specific start projects

Start\
BoardSupport

Start_*.ewd Setup for CSpy debugger

Start\
BoardSupport

RtosInit_*.c Target CPU specific hardware initializa-
tion; can be modified

Start\Inc\ RTOS.h To be included in any file using embOS
functions

Start\Lib\ os*.a embOS libraries
CPU\ *.* CPU specific embOS sources, delivered

with the source version only.
GenOsSrc\ *.* embOS generic sources, delivered with

the source version only.

Other sample source files and additional documentation or tools may be deliv-
ered with embOS.

20/20 embOS for STM8 and IAR compiler for STM8

  2010 - 2012 SEGGER Microcontroller GmbH & Co. KG

10. Index
_
__interrupt 15
C
Code memory models 12
D
Data memory models 12
I
Installation 5
Interrupt stack 14, 17
Interrupts...................................... 15
L
Low-Power modes 18

M
Memory models............................12
Memory requirements19
O
OS_Config.h11, 13
OS_EnterInterrupt()16
OS_EnterIntStack()17
OS_EnterNestableInterrupt()16
OS_Idle()..................................9, 18
OS_InitHW()..................................8
OS_InitKern()7
OS_LeaveInterrupt()16
OS_LeaveIntStack()17

OS_LeaveNestableInterrupt().16, 17
OS_Start()8
S
Stacks ...14
Stacks, interrupt stack...................14
Stacks, system stack......................14
Stacks, task stacks14
System stack14
T
Task stacks14
Technical data...............................19

	Contents
	About this document
	How to use this manual

	Using embOS with IAR Embedded Workbench
	Installation
	First steps
	The sample application Start_LEDBlink.c
	Stepping through the sample application Main.c using CSpy

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change the library mode

	Project and compiler specifics
	Code and data memory models, compiler options
	Available libraries

	Stacks
	Task stack for STM8 CPUs
	System stack for STM8 CPUs
	Interrupt stack for STM8 CPUs
	Stack specifics of the STM8 family

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt handling with embOS for STM8
	Interrupt priorities with embOS for STM8
	Interrupt handler with embOS for STM8
	Nested Interrupt handler with embOS for STM8

	Interrupt-stack

	Low-Power Modes
	Technical data
	Memory requirements

	Files shipped with embOS STM8 IAR
	Index

