embOS

Real Time Operating System

CPU & Compiler specifics for
RENESAS SH2 CPUs
and RENEsAs HEW4

Document Rev. 1

) E—
/SEGGER

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/25 embOS for SH2 CPUs and Renesas HEW4

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 3/25

Contents
GO NS e, 3
1. ADOUL thiS AOCUMENT ... e et e e e e e e e e e e 4
1.1. How to use this manual..........cooooiiiiiii 4
2. Using embOS with HEW WOrkbenChcoooiiiiiiiii e 5
2.1, INStallatioN.....ccoeeeeee 5
A 51 A= (=] 1 6
2.3. The sample application Start LEDBIINK.C...........cccvuiiiiiiiiiiiiiiieeeeee e 7
3. Using debugging tools to debug the application...............cccoooiiiiii e 8
3.1. Using Renesas E8 emulator and HMoN..............ccoooiiiiiiiiiiiiccee e, 8
3.2. Common debugging NINESooiiiiiiiiiiiiiiie e 11
4. Build your oWn appliCation............uuiiiiiiiiceee e 12
4.1. Required files for an embOS applicationccccovvvviiiiiiiiiiiiiiieeeeeeeeeeee 12
4.2. Add YOUr OWN COOEooviiiiiiiee et e et e e e e e e e e et e e e e e e e e eeanaaaeeaeeeaeennes 12
4.3. Change library Mode............ooooiiiiiiii 12
5. HEW comPiler SPECITICSuuuiiiiiiiii ettt eees 13
5.1. Memory models, compiler OptioNSooouueiii i 13
5.2, Available lIDraries..... ... 13
5.3. Distributed project files.o 13
B. SH2 CPU SPECITICS ..uuuiiiiiiie ettt e e e e e e e e e e e e e e eaaeeeeeeees 14
6.1. Clock settings for embOS timer interruptcccccoiiiiiiii e 14
6.2. Clock settings for UART used for embOSVieW...........cccovveiiiiiiiiiiieeeieeeen. 14
6.3. Conclusion about ClOCK SEttNGS.......ccooiiiiieieeeee e 14
6.4. embOS hardware timer seleCtion............cooooii 15
6.5. UART fOr @MbDOSVIEW ... e 15
7 SHACKS e, 16
7.1. Task stack for SH2 CPUS ... 16
7.2. System stack for SH2 CPUS ..o 16
7.3. Interrupt stack for SH2 CPUS.......ccoooii e 16
7.4. Reducing the StacK SiZeooiiiiiiiieecee e 16
8. Interrupts With SH2 CPUS ... e e e eeeees 17
8.1. Interrupt processing with SH2 CPUS...........ccooiiiiiiiiii e 17
8.2. Fast interrupts with SH2 CPUS ... 17
8.3. Interrupt priorities with embOS for SH2 CPUSccooviiiiiiiiieeeee 17
8.4. Defining interrupt handlers for SH2 CPUS in "C" ... 18
8.5. OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts19
8.6. Interrupt vectortable............o e 19
9. Non generic, port specific fuNCHONS.oiiiiiii e, 20
9.1. OS_ExtendTaskContext(): Make global variables or processor registers task
] o L=Tex 1 (o 3PS PPRORRRP 20
10. Sleep / Standby MOdE...........oooiiiiiii et 23
L =T o T Tz e = = PP 24
11.1. MeMOTY rEQUITEIMENTS ... 24
12. Files shipped With @mBOSooooomiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 24
L TR 1 (o = PP 25

© 1996-2007 Segger Microcontroller Systeme GmbH

4/25 embOS for SH2 CPUs and Renesas HEW4

1. About this document

This guide describes how to use embOS for SH2 Real Time Operating System
for the RENESAS SH2 series of microcontroller using Renesas HEW4 and the
RENESAS shc compiler.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using SH2
CPUs with Renesas HEW4 workbench and shc compiler. Before actually using
embOS, you should read or at least glance through this manual in order to be-
come familiar with the software.

Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Renesas compiler and HEW. If you have no experience using embOS,
you should follow this introduction, even if you do not plan to use HEW work-
bench, because it is the easiest way to learn how to use embOS in your appli-
cation.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the SH2
CPUs and Renesas compiler.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 5/25

2. Using embOS with HEW Workbench

The following chapter describes how to install and work with embOS for SH2
CPUs and HEW Embedded Workbench

2.1. Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Renesas HEW workbench to develop your appli-
cation, no further installation steps are required. You will find a prepared sam-
ple workspace and a start project for an SH7086 CPU, which you should use
and modify to write your application. So follow the instructions of the next chap-
ter ‘First steps’.

You should do this even if you do not intend to use HEW Embedded Work-
bench for your application development in order to become familiar with em-
bOS.

embOS does in no way rely on the HEW Embedded Workbench, it may be
used without the workbench using batch files or a make utility without any prob-
lem.

© 1996-2007 Segger Microcontroller Systeme GmbH

6/25 embOS for SH2 CPUs and Renesas HEW4

2.2. First steps

After installation of embOS (— Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace for
an SH7086 CPU which might be used as a starting point for your applications.

Your embOS distribution contains one folder ‘Start’ which contains the sample
start workspace and a subfolder Start_ SH7086 containing the project and all
CPU specific files required for this project.

Every additional files used to build your embOS application are located in the
Start folder and its subfolders.

To get your application running, you should proceed as follows:

e Create a work directory for your application, for example c:\work

e Copy all files and subdirectories from the embOS distribution disk into your
work directory.

e Clear the read only attribute of all files in the new ‘Start'-folder in your
working directory.

e Open the folder ‘Start’ in your work directory.

¢ Open the start workspace ‘Start SH7086.hws’. (e.g. by double clicking it)

e You may select the Configuration “Debug HMon” and session “Ses-
sion_SH2_HMon” which allows downloading and debugging of the the sam-
ple application into target RAM using the E8 emulator.

e Build the start project

After building the start project, your screen should look like follows:

{ﬁ}ﬁtalt_ﬁH?l]BB - High-performance Embedded Workshop - Start_LEDBlink.c

File Edt “iew Pmoject Buld Debug Setup Toole Test “Wwindow [evice Help

JJ = H e |§ | AEEN] | {=} |ﬁ' ”@ b W W ||Debug_HMOn j ||DefaultSession ﬂ | i HJ
5
) e

R R R R R LR e e R R R R R R R R]

int maini(wvoid) {

) . BSE 05 _IneDIN): /% Initially disable interrupts */
"". 3 tc 03 InitKern(): /% initialize O3 L
N sctc 05 InitHW(); /% initialize Hardware for 03 xf
. BSP Initi); /% initialize LED porta 5y
?ntenups_c A% Tou need to create at least one task here ! L
gsp'gE'C 0S CREATETASE(&TCBHE, "HP Task", HPTask, 100, StackHP);
" frar 0% CREATETASE(<TCELE, "LP Task", LPTask, 50, StackLP);
=| MEsElpg o 03 SItarti): /% Start multitasking =
- |] Rtosinit_SH708E ¢ =
return 0:
. wectthl.c
e H
K | »
@Pr I@T ‘€|N |E I = Start_LEDE...

2l Euild Finished =
T 0 Errors, 0 Warnings -
P >|

4 Build /4 [FDT] Start_SHP086 Jy Debug) Findin Files }, Macro j, Test B Wersion Control [

Ready EE Default] desktop 2

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4

7/25

2.3. The sample application Start LEDBIink.c

The following is a printout of the sample application Start_LEDBIink.c. It is a

good starting-point for your application.
What happens is easy to see:

After initialization of embOS; two tasks are created and started.

The two tasks are activated and execute until they run into the delay, then sus-

pend for the specified time and continue execution.

/***

* SEGGER M CROCONTROLLER SYSTEME GrbH *
* Solutions for real time mcrocontroller applications *
Rk I S kS O S R R O O S Rk O kO
* *
* (c) 1995 - 2007 SEGGER M crocontroller Systene GrbH *
* *
* WWW. segger . com Support: support @egger.com *
* *
Rk I S kS I I S R S R S O I O O I O O

File : Start_LEDBIink.c
Pur pose : Sanple program for OS runni ng on EVAL-boards with LEDs
--------- END- OF- HEADER - - - === = = === === m e e e e e

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; [* Task-control -bl ocks */

static void HPTask(void) {
while (1) {
BSP_Toggl eLEX 0) ;
CS_Del ay (50);
}
}

static void LPTask(void) {
while (1)
BSP_Toggl eLED(1) ;
CS_Del ay (200);
}
}

/***
*
* .

mal n
*
***/

int main(void) {

CS IncDi(); /* Initially disable interrupts */
CS I nitKern(); /[* initialize OS */
CS InitHW); /* initialize Hardware for OS */
BSP_Init(); /* initialize LED ports */

/* You need to create at |east one task before calling OS Start() */
OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);

CS Start(); /[* Start multitasking */
return O;

}

/****** End Of flle ***/

© 1996-2007 Segger Microcontroller Systeme GmbH

8/25

embOS for SH2 CPUs and Renesas HEW4

3. Using debugging tools to debug the applica-

tion

The embOS start project contains a configuration which may be used to
download and debug the sample application into the target RAM using the E8
emulator.

You should use this one to run the sample start application and become familiar
with embOS. You may alternatively generate a session for the SH2 simulator to
run the sample application using the simulator.

The following description shows a sample session with the E8 emulator. A
simulator session should look similar.

3.1. Using Renesas E8 emulator and HMon

After building the application, connect to the target, download the generated
output file, and perform a reset command. The debug window will show the
startup code:

{ﬁ}ﬁtalt_SH?l]ElB - High-performance Embedded Workshop - [resetprg.c]
<7+ File Edt “iew Propct Buld Debug Setup Toole Test “Window Device Ophonz: Memoy Help _|E|1|
H D = E ﬁ |§ | 3: ﬁ | = |@' HJ@ Iﬁl ||Debug_HMon j ||Session_SH2_HMOn j |)1 ’5:‘ ‘
Line Source &d... | 5. Sounce |
64 ﬂ‘wﬂ‘1?1?1?1?1?1?ﬂ‘ﬁ‘ﬂ‘1?ﬂ‘1?1?1?1?ﬂ‘wﬂ‘1?ﬂ‘1?1?1?1?ﬂ‘ﬁﬂ‘1?ﬂ‘1?1?1?1?1?1?ﬂ‘1?ﬂ‘ﬂ‘1?1?1?1?1?ﬂ‘?ﬁ?ﬁ?#ﬁﬁﬁﬁﬁ?ﬁ?#?ﬁﬁﬁﬁ?ﬁ?»j
-
65 |FFFF4000 | rvoid Initialise (void) {
66 % Initialize the Vector Base Register with the hase address of exce
57 vectar table. *F
65 |FFFF4002 set_vwbr{void *)({char *)0)]):
3=
70 f* Copy initilized dats from ROM to RAM.
71 dbsct.c £ile will be used by this function i
72 |FFFF4006 _INITSCT() J
73
74 /% Set up the hardware */
75 |FFFF400C HardwareSetup () ;
TE -
‘| | »
«i#Start_LEDBL.. <% resetprgc I
Feady FE Default] desktn

You may single-step through the startup code to reach main(), or you may open
the “Start_ LEDBIink.c” file and set a breakpoint at main:

{ﬁ}ﬁtalt_SH?l]ElB - High-performance Embedded Workshop - [Start_LEDBIink.c]

<7+ File Edt “iew Propct Buld Debug Setup Toole Test “Window Device Ophonz: Memoy Help _|E|1|
H =Rl |§ | 5 =) | &} |@' HJ@ [||Debug_HMon =l ||Session_SH2_HMOn zl | A ‘
Source &d.. | 5. Source |
FFFF43EZ int main(void) { ZI
FFFF43Es | i OS_IncDI (W f% Initimlly disahle interrupts L
FFFF441:2 03_InitKerni): f% initisliee OS5 *F
FFFF4418 03 _InitHW) /% initialize Hardware for O3 wf
FFFF441E BSP_Init(); /% initialize LED ports "/
/% You need to create at least one task here ! W
FFFF44z4 03 _CREATETASK(&TCEHP, "HP Task™, HPTask, 100, StackHP):
FFFF4444 03_CREATETASK(&TCELP, "LP Task™, LFTask, 50, 3FtackLP):
FFFF4464 03_Start(): f% 3tart multitasking L
FFFF446d return 0;
FFFF4472 ¥ J
J"*ﬂ‘**** End Df fllE ﬂ‘ﬂ'1€**ﬂ‘*ﬂ‘*ﬂ‘*1€ﬂ'*ﬂ‘*ﬂ‘*ﬂ‘*ﬂ‘*1€**ﬂ‘*****#****ﬁ*ﬁ*#********f _ILI
‘| | »

itk Start_LEDEIi...I-:.‘} rezetprg.c |

Ready E Default] deskto 2
When you then issue a “Go” command, you will reach at main().

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 9/25

Eﬁ}ﬁtalt_SH?l]BB - High-performance Embedded Workshop - [Start_LEDEBlink._c]

<7+ File Edit “iew Project Buld Debug Setup Tools Test Window Dewvice Options Memory Help _Iﬂlﬂ
“ IRE= RS- |§ |) [| =} |ﬁ' HJ@ ¥ ||Debug_HMon = ||Session_SH2_HMOn = | Al |
(= &g
Source Ad.. | 5. Source |
FFFF43E2 int main{void) { zl
FFFF43Es | & OS_IncDIH; fS* Initially disshle interrupts w7
FFFF4412 03 _InitKerni): % dinitialize 0S5 *f
FFFF4415 03 InitHW(j: /% initialize Hardware for 05 wf
FFFF441E BSP_Initi); /% initialize LED ports wf
/% Tou need to create at least one task here ! wy
FFFF44z4 0% CREATETASK(&TCEHP, "HP Task", HPTask, 100, ScackiP):
FFFF4444 03 CREATETASKE(&TCELP, "LF Task", LFTask, 50, StackLP):
FFFF44a4 08 _Start(); A% Start multitasking i
FFFFd464 return 07
FFFF4472 H J
JEEuEEE Epd Of file ®r 6t mh b e a b m A A A A R F N AR A AR AR TR AR A ARG AT R RR AR TH _ILI
1| 3

=0 Gtar_LEDBN. |<% resetprg.c

Feady E Default] deskio

OS I ncDl () disables interrupts and tells embOS, that interrupts should not be
enabled during OS_I nit Kern().

OS_I ni t Ker n() initializes embOS —Variables. If OS_i ncDI () was not called
before, interrupts will be enabled. As this function is part of the embOS library,
you may step into it in disassembly mode only.

OS I ni t HW) is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.

OS _Start () is the last line executed in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set two break points in the two
tasks as shown below

Eﬁ}ﬁtalt_SH?l]BB - High-performance Embedded Workshop - [Start_LEDEBlink._c]

<7+ File Edit “iew Project Buld Debug Setup Tools Test Window Dewvice Options Memory Help _Iﬂlﬂ
“D = H G |§ | i 2 | = |@' HJ@ ¥ ||Debug_HMon j ||Session_SH2_HMon j|)l 1 |

Source Ad.. | 5. Source |

FFFF4390 ztatic woid HPTask(wvoid) { j
FFFF4392 while (1) {

FFFF439L | # BSP_TogyleLED (0] ;

FFFF4342 05 Delay (50):

i
FFFF43E4 i

FFFF43EG ztatic woid LPTask(wvoid) {

FFFF43BL while (1) { J
FFFF43cCz | @ ESP_ToggleLED (1) ;

FFFF43CA 05 Delay (200):

i

FFFF45DE H -
1| 3

=0 Gtar_LEDBN. |<% resetprg.c

Fieady E Default] deskio

As OS _Start () is partofthe embOS library, you can step through it in disas-
sembly mode only. You may press GO, step over OS_St art (), or step into
OS _Start () indisassembly mode until you reach the highest priority task.

© 1996-2007 Segger Microcontroller Systeme GmbH

10/25 embOS for SH2 CPUs and Renesas HEW4

E:m'iﬁtalt_SH?l]ElB - High-performance Embedded Workshop - [Start_LEDBIink.c]

<7+ File Edt “iew Propct Buld Debug Setup Toole Test “Window Device Ophonz: Memoy Help _|E|1|
H (W= |§ | & 2 | {1 |@' HJ@ B ||Debug_HMon j ||Session_SH2_HMon j | St g ‘

Source &d.. | 5. Source |

FFFF4390 static wvoid HPTaski(wvoid) | j
FFFF4392 while (1) &

FFFF4394 | & BESP_TaggleLED (0 ;

FFFF43 42 05 Delay (50):

}
FFFF43E4 }

FFFF43E8 static wvoid LPTaskiwvoid) |

FFFF43EL while (1) & J
FFFF43C2 | @ BSP_ToggleLED (1) ;

FFFF43C4 03 Delay (200):

}

FFFF43DE I -
‘| | »

<ok Gtart_LEDBE. |- resetpro.c

Ready E Default] deskto 2

If you continue stepping, you will arrive in the task with the lower priority:

i Start_SH7086 - High-performance Embedded Workshop - [Start_LEDBlink.c]

<7+ File Edt “iew Propct Buld Debug Setup Toole Test “Window Device Ophonz: Memoy Help _|E|1|
H (W= |§ | & [=] | & |@' HJ@ ||Debug_HMon =l ||Session_SH2_HMon =l | 2415 ‘

Source &d.. | 5. Source |

FFFF4390 static wvoid HPTaski(wvoid) | j
FFFF4392 while (1) &

FFFF4394 | @ BSP_TaoggleLED (0] ;

FFFF43 42 05 Delay (50):

}
FFFF43E4 }

FFFF43E8 static wvoid LPTaskiwvoid) |

FFFF43EL while (1) & J
FFFF43C2 | & BSP_ToggleLED (1) ;

FFFF43C4 03 Delay (200):

}

FFFF43DE I -
‘| | »

itk Start_LEDEIi...I-:.‘} rezetprg.c |

Ready E Default] deskto 2

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend LPTask and switch to the idle-loop, which is always

executed if there is nothing else to do:
Start_SH7086 - High-performance Embedded Workshop - [Rtoszinit_5H7086.c]

< File Edit View Froject Buld Debug Setup Tools Test “Window Device Options Memory Help =
H D = E ﬁ |§ | 33 E | {=+ |@ HJ@ ||Debug_Hh~10n j ||Sessi0n_SH2_Hh-10n j |)t Jﬁ} ‘
ElEl=
Line Source Ad.. | 5. Source |
136 ZI
139 Flease note:
140 Thizs iz basically the "core™ of the idle loop.
141 This core loop can be changed, but:
142 The idle loop does not have a stack of its own, therefore no
143 functionality should be implemented that relies on the stack 1
144 to he preserwved. However, a sSimple program loop can be programmecd
145 [like toggeling an output or increwehting & counter)
146 w
147
145 |FFFF4zZ20 C}Imid 03 Idle(wvoid) { /4 Idle loop: No task is resdy to exec
149 for {(::01: A4 Wothing to do ... wait for a interrupt
150 ¥ -
‘I | o

<% resetprgc | <0k Start_ LEDEI.. < Htosinit_SH?,,,I
Ready EZ EE| B |Defaultl desktop [Riead-write [148/351 1

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 11/25

If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.
Coming from OS_I dl e() , you should execute the ‘Go’ command:

Eﬁ}ﬁtalt_SH?l]BB - High-performance Embedded Workshop - [Start_LEDEBlink._c]

<7+ File Edit “iew Project Buld Debug Setup Tools Test Window Dewvice Options Memory Help _Iﬂlﬂ
“D = i Gl |§ | * [2] | = |ﬁ' HJ@ 4 ||Debug_HMon = ||Session_SH2_HMon j|)l 1§ |
Elsll=
Source Ad.. | 5. Source |
FFFF4390 ztatic woid HPTask(wvoid) { j
FFFF4392 while (1) {
FFFF439L | & BSP_ToggleLED(O) :
FFFF43L2 05 _Delay (50): et
i
FFFF43E4 H -
« _>|_I
i Start_LEDBIi...l-—'.‘_’,"i rezetprg.c |

AR R |OF X5

Nane I Value I Type
""" 03 Time L'53 { FFFFSEZC ! (wvolatile ...

A0 watch1 {watchz J, watchs i wiatcha J
Fieady E Default] deskio

As can be seen by the value of embOS timer variable OS_Ti ne, shown in the
watch window, Task0 continues operation after expiration of the 50 ms delay.

3.2. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build contains addi-
tional error check functions during runtime.

When an error is detected, the debug libraries call OS_Error () .

Using an emulator or simulator you should set a breakpoint there. The actual
error code is assigned to the global variable OS_St at us. The program then
waits for this variable to be reset. This allows to get back to the program-code
that caused the problem easily: Simply reset this variable to 0 using your in cir-
cuit-emulator or simulator, and you can step back to the program sequence
causing the problem. Most of the time, a look at this part of the program will
make the problem clear.

How to select an other library with debug code for your projects is described
later on in this manual.

© 1996-2007 Segger Microcontroller Systeme GmbH

12/25 embOS for SH2 CPUs and Renesas HEW4

4. Build your own application

To build your own application, you may start with the sample start project. This
has the advantage, that all necessary files are included and all settings for the
project are already done.

You may also add all necessary files for embOS into your own project as de-
scribed below.

4.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

¢ RTOS.h from sub folder Start\Inc\
This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

¢ OS_Config.h from the Start\Inc\ subfolder. This file may be used to define
different options for different project configurations. Normally, this file is used
to define the library types used for debug and release builds. You may add
other options to this file.

e RTOSInit_*.c from one CPU subfolder.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

e One embOS library from the Start\Lib\ subfolder. Please set the appropriate
OS_LIBMODE define according to the chosen library.
This is normally done in the file OS_Confi g. h

e OS_Error.c from subfolder Setup\ of the CPU specific subfolder, if any Ii-
brary other than Release build library is used in your project.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables.

Your main() function has to initialize embOS by call of OS_| ni t Kern() and
OS_ I nit HW) prior any other embOS functions except OS I ncDl () are
called.

4.2. Add your own code

For your own code, you may add your files to the project.
You should then modify or replace the main.c source file in the subfolder src\.

4.3. Change library mode

For your application you may wish to use a different embOS library. For de-

bugging and program development you should use an embOS debug library.

For your final application you may wish to use an embOS release library.

Therefore you may have to replace the embOS library in your project or target:

e Add the appropriate library from the Lib-subdirectory to your project.

¢ Remove the previous library from your project or exclude it from build.

e Set the appropriate OS_LIBMODE_* define as tool chain compiler option.
Normally done in the OS_Config.h file.

Refer to chapter 5 about the library naming conventions to select the correct li-

brary.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 13/25

5. HEW compiler specifics

5.1. Memory models, compiler options

embOS for SH2 for HEW and shc compiler is delivered with libraries for the de-
fault options and compiler settings.

5.2. Available libraries
embOS is shipped with libraries for SH2 CPUs.

RTOS <CPU> <FPU> <Endianess>_<LibMode>.lib

Parameter |Meaning Values

CPU CPU variant 2: SH2 CPU

FPU Floating point unit N: None

Endianess | Type of endianess B: Big

LibMode Library mode XR: Release
R: Release

S: Stack check

SP: Stack check + profiling

D: Debug

DP: Debug + profiling

DT: Debug + profiling + Trace

This results in 7 different libraries delivered with embOS.

For the different library versions, the following defines have to be set:

Library mode |Meaning Define

XR Extreme release OS LIBMODE XR
R Release OS LIBMODE R
S Stack check OS LIBMODE S
SP Stack check + Profiling OS LIBMODE SP
D Debug + stack check OS LIBMODE D
DP Debug + stack check + Profiling OS_LIBMODE_DP
DT Debug + stack check + profiling + Trace |OS LIBMODE DT

When using HEW workbench, please check the following points:

e The endianess is set as general project option

e One embOS library is part of your project (included in one group of your tar-
get).

e The appropriate define according to embOS library mode is set as compiler
preprocessor option for your project. May be defined in OS_Conf i g. h.

5.3. Distributed project files

The distribution of embOS for SH2 and HEW compiler contains a start project
for an SH7086 CPU.

The start project contains an embOS debug and profiling library which should
be used during program development.

© 1996-2007 Segger Microcontroller Systeme GmbH

14/25 embOS for SH2 CPUs and Renesas HEW4

6. SH2 CPU specifics

All hardware specific functions required for embOS are located in the CPU
specific RTOSInit_*.c files.

Settings for CPU clock speed and UART settings for embOSView are defined
with most common defaults. According to your specific hardware, these settings
may have to be changed to ensure proper timer tick and UART communication
with embOSView..

As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked when you update to a newer
version of embOS.

Various CPU derivates may be equipped with different peripherals. It may be
necessary to write your own initialization code for your specific CPU derivate.
You may therefore copy one RTOSInit_*.c file which is closest to your CPU
variant and modify this new created file to handle your CPU.

6.1. Clock settings for embOS timer interrupt

OS_Ini t HN) routine in RTOSI ni t. ¢ derives timer init values from the con-
stant define OS_PCLK_TI MER. Per default, the value of OS_PCLK TI MER
equals OS_FSYS / 8, which defines the CPU clock of the target system.
Wrong settings would result embOS timer ticks unequal to 1 ms.

To adapt the embOS timer tick frequency to your CPU, you may:

e Define OS_FSYS as project option. OS_FSYS should equal your CPU clock
frequency in Hertz. Note that modification of OS_FSYS may also affect the
UART initialization for embOSView.

e You may alternatively define OS_PCLK TI MER as project option (compiler
preprocessor option). This value is used to calculate the timer compare value
used for embOS timer.

The CPU clock generator and PLL itself is initialized during startup in the func-

tion Har dwar eSet up() which is implemented in the source file hwset up. c.

6.2. Clock settings for UART used for embOSView

OS_COM I nit() routine in RTOSI ni t. c derives baudrate generator init val-
ues from the constant define OS_PCLK UART. Per default, the value of
OS_PCLK_UART equals OS_FSYS, which defines the CPU clock of the target
system.

To ensure correct time base clock for baudrate generator used for embOSView,

you may:

e Define OS_FSYS as project option. OS_FSYS should equal your CPU clock
frequency in Hertz. Note that modification of OS_FSYS may also affect the
timer initialization for embOS tick timer.

e You may alternatively define OS_PCLK _UART as project option (compiler
preprocessor option). This value is used to calculate values used to initialize
UART used for communication with embOSView.

6.3. Conclusion about clock settings

e OS_FSYS has to be defined according to your CPU clock frequency. This
should be defined as compiler preprocessor option in your project.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 15/25

e OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral
clock for the embOS timer. The value defaults to OS_FSYS. It should be
modified and defined as compiler preprocessor option if modification is re-
quired.

e OS_PCLK_UART has to be defined to fit the frequency used as peripheral
clock for the UART used for communication with embOSView. The value de-
faults to OS_FSYS. It should be modified and defined as compiler preproc-
essor option if modification is required.

6.4. embOS hardware timer selection

embOS for SH2 CPUs is prepared to use one Compare Match Timer (CMT)
channel as time base timer.

The initialization code and interrupt handler are delivered in source code and
are located in RTOSInit_*.c.

If another timer has to be used, the interrupt vector table entries in “vect.h” and
“vecttbl.c” have to be modified accordingly.

6.5. UART for embOSView

Any SCI UART of the SH2 CPU may be used as communication channel for

embOSView which enables profiling analysis during runtime.

The initialization code and interrupt handler are delivered in source code and

are located in RTOSInit_*.c.

OS_UART i may be defined from 0 to 2 to select, initialize and enable one of the

SCls. When embOSView should not be used, define OS_UART to —1. This

may be done in OS_Confi g. h.

The UART used for embOSView requires three interrupt handler which are de-

fined in RTOSInit.c:

e 0S ISR err() is the reception error interrupt handler.

e 0S_ ISR rx() isthe reception interrupt.

e 0S ISR _tx() isthe transmission interrupt which is called on Tx end condi-
tion.

The interrupt vector entries in the interrupt vector definition files “vect.h” and

“vecttbl.c” have to be set according the UART channel which is used for em-

bOSViev.

© 1996-2007 Segger Microcontroller Systeme GmbH

16/25 embOS for SH2 CPUs and Renesas HEW4

7. Stacks

7.1. Task stack for SH2 CPUs

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the CPU.

As SH2 CPUs have a 32 bit stack pointer, the whole memory area can be used
as task stack.

Please note, that the task stacks have to be aligned at EVEN addresses.
To ensure proper alignment, implement the task stack as array of int.

The stack-size required for tasks is the sum of the stack-size of all routines plus
basic stack size.

The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.

For the SH2 CPU, the stack size for the CPU registers is 48 bytes.

As the SH2 CPUs do not support a separate interrupt stack, all interrupts may
run on the task stacks as well. Therefore we recommend at least a minimum of
256 bytes for task stacks.

7.2. System stack for SH2 CPUs

The system stack size required by embOS is about 40 bytes (65 bytes in. pro-
filing builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start ()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.

Because the SH2 CPU does not support a separate interrupt stack, all inter-
rupts may also run on the system stack.

The stack used as system stack is the one defined as STACK in the “S” section
in linker command description. The stack size is defined in the “stacksct.h”
header file.

We recommend at least a minimum of 256 bytes.

7.3. Interrupt stack for SH2 CPUs

The SH2 CPUs do not support a hardware interrupt stack. All interrupts run on
the current stack.

Therefore the size of task stacks and the system stack have to be large enough
to handle all nested interrupts and subroutine calls.

7.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
stack also. Using embOSView the total size and used size of any stack can be
examined. This may be used to reduce the stack sizes, if RAM space is a prob-
lem in your application.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 17/25

8. Interrupts with SH2 CPUs

The following chapter describes interrupt specifics of SH2 CPUs and the inter-
rupt modes used with embOS.

8.1. Interrupt processing with SH2 CPUs

SH2 CPUs support a priority controlled interrupt mode. This mode supports the

following features:

e Interrupt priority registers to assign 16 priority levels to peripheral interrupts.

¢ Priority level controlled masking.

¢ Interrupts with higher priority are never disabled by entering an interrupt ser-
vice routine with lower priority

Interrupt processing is as follows:

e The CPU-core receives an interrupt request from the interrupt controller.

¢ If interrupts are enabled for the priority of the interrupting device, the interrupt
is executed.

e The CPU stores PC and the status register onto the current stack.

e The interrupt mask level in the status register of the CPU is updated from the
level of the interrupting device.

e The CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)

ISR: Save registers

ISR: User-defined functionality

ISR: Restore registers

ISR: Execute RTE command, restoring PC and status register from the

satck.

e For more details, refer to the RENESAS manuals.

8.2. Fast interrupts with SH2 CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to a higher user definable level. Therefore all inter-
rupts with higher levels can still be processed.

These interrupts are named Fast interrupts.

The default level limit for fast interrupts is set to 8, meaning, any interrupt with
level 9 or above is never disabled and can be accepted anytime.

You must not execute any embOS function from within a fast interrupt
function.

8.3. Interrupt priorities with embOS for SH2 CPUs

With introduction of Fast interrupts, interrupt priorities useable by the applica-

tion are divided into two groups:

e Low priority interrupts with priorities from 1 to a user definable priority limit.
These interrupts are called embOS interrupts.

e High priority interrupts with priorities above the user definable priority limit.
These interrupts are called Fast interrupts.

Interrupt handler functions for both types have to follow the coding guidelines

described in the following chapters.

The priority limit between embOS interrupts and fast interrupts can be set at

runtime by a call of OS_Set FastIntPriorityLimt().

© 1996-2007 Segger Microcontroller Systeme GmbH

18/25 embOS for SH2 CPUs and Renesas HEW4

8.4. Defining interrupt handlers for SH2 CPUs in "C"

Routines preceded by the keywords #pragma i nt errupt save & restore the
temporary registers and all registers they modify onto the stack and return with
RTE.

The interrupt function has to be declared in the interrupt vector table file
“vect. h” and the interrupt vector has to be inserted in the vector table in
“vecttbl.c”.

The interrupt handler itself may be implemented in any source file. Default
dummy interrupt handler are delivered in the source file “i nt prg. c” . The in-
terrupt handler used by embOS are implemented in the CPU specific
RTCSI nit _*. c file.

Example of an embOS interrupt handler

embOS interrupt handler have to be used for interrupt sources running at all
priorities up to the user definable interrupt priority level limit for fast interrupts.

#pragma i nterrupt void OS_ISR Tick(void) {
OS_Cal | Nest abl el SR(_I srTi ckHandl er) ;
}

Any interrupt handler running at priorities from 1 to 5 has to be written accord-
ing the code example above, regardless any other embOS API function is
called.

The rules for an embOS interrupt handler are as follows:

e The embOS interrupt handler must not define any local variables.

e The embOS interrupt handler has to call S _Cal | | SR(), when interrupts
should not be nested. It has to call OS_Cal | Nest abl el SR() , when nesting
should be allowed.

e The interrupt handler must not perform any other operation, calculation
or function call. This has to be done by the local function called from
OS Cal 11 SR() or OS_Cal | Nest abl el SR() .

Differences between OS CalllISR() and OS CallNestablelSR()

0S_CallIsR() should be used as entry function in an embOS interrupt han-
dler, when the corresponding interrupt should not be interrupted by another
embOS interrupt. OS_Cal | | SR() sets the interrupt priority of the CPU to the
user definable “fast” interrupt priority level, thus locking any other embOS inter-
rupt, Fast interrupts are not disabled.

0S_CallNestableISR() should be used as entry function in an embOS in-
terrupt handler, when interruption by higher prioritized embOS interrupts should
be allowed. OS_Cal | Nest abl el SR() does not alter the interrupt priority of
the CPU, thus keeping all interrupts with higher priority enabled.

Example of a Fast interrupt handler

Fast interrupt handler have to be used for interrupt sources running at priorities
above the user definable interrupt priority limit.

#pragma interrupt void FastUserlnterrupt (void) {

unsigned long Count; // local variables are all owed

Count = TPU_TCNTO;

Handl eCount (Count) ; /1 Any function call except enbOS functions is allowed
}

The rules for a Fast interrupt handler are as follows:

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 19/25

Local variables may be used.

Other functions may be called.

embOS functions must not be called, nor direct, neither indirect.

The priority of the interrupt has to be above the user definable priority limit
for fast interrupts.

8.5. OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit
for fast interrupts

The interrupt priority limit for fast interrupts is set to 8 by default. This means, all
interrupts with higher priority from 9 to 15 will never be disabled by embOS.

Description

OS_SetFastintPriorityLimit() is used to set the interrupt priority limit between
fast interrupts and lower priority embOS interrupts.

Prototype
void OS SetFastintPriorityLimt(unsigned int Priority)
Parameter Meaning
The highest value useable as priority for embOS interrupts.
Priority All interrupts with higher priority are never disabled by em-
bOS. Valid range: 1 <=Priority <=15

Return value
NONE.

Add. information

To disable fast interrupts at all, the priority limit may be set to 15 which is the
highest interrupt priority for interrupts.

To modify the default priority limit, OS_Set FastInt PriorityLi m t () should
be called before embOS was started.

In the default projects, OS_Set FastIntPriorityLimt() is called from
OS IntHW) inRTOSInit_*. c.

All interrupts running at low priority from 1 to the user definable priority limit for
fast interrupts have to call OS _Cal | I SR() or OS_Cal | Nest abl el SR() re-
gardless any other embOS function is called in the interrupt handler.

This is required, because interrupts with low priorities may be interrupted by
other interrupts calling embOS functions. The task switch from interrupt will
only work if every embOS interrupt uses the same stack layout. This can only
be guaranteed when OS_Cal | | SR() or OS_Cal | Nest abl el SR() is used.
Any interrupts running above the fast interrupt priority limit must not call any
embOS function.

8.6. Interrupt vector table

The sample start project uses startup code and an interrupt vector table written
in “C” source and header files.

For embOS, the embOS timer tick interrupt vector is defined in the vector table.
The embOS timer interrupt handler itself is located in the in the source code file
RTOSInit_*.c.

© 1996-2007 Segger Microcontroller Systeme GmbH

20/25

embOS for SH2 CPUs and Renesas HEW4

9. Non generic, port specific functions

The following chapter describes additional non generic embOS functions which
are available for embOS SH2 and which are not described in the generic

embOS manual.

9.1. OS_ExtendTaskContext(): Make global variables or proces-
sor registers task specific.

Description

OS_ExtendTaskContext() can be used to add global variables or special regis-
ters, like floating point registers, to the task context and make them task spe-

cific.

Prototype

voi d OS_Ext endTaskCont ext (
CS TASK * pTask,
voi d (*pfSave)(void * pStack),
void (*pfRestore)(const void * pStack)

Parameter

Meaning

pTask

Pointer to the tasks who's task context should be extended. A
NULL pointer may be used to address the current running
task.

pf Save

function pointer, addresses the function used to save the ex-
tended task context. This function is called, when the task is
suspended for any reason.

pf Rest ore

function pointer, addresses the function used to restore the
extended task context. This function is called when the task is
resumed.

Return value
NONE.

The function may be used to store global variables like errno or others into the
task context, if these variables have to be task specific, which is the case, if
they are used by different tasks.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 21/25

The following listing shows, how to use OS ExtendTaskContext():

File . ExtendTaskCont ext. c

Pur pose : Sanple program for enbGCS denonstrating how to dynamically
extend the task context.
Thi s exanpl e adds a gl obal variable to the task context of
certain tasks.

-------- END- OF- HEADER - - - - - - - - - - o oo oo oo oo e

*/

#i ncl ude "RTGCS. h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control -bl ocks */
int d obal Var; /[l This
/***
*

* _Restore / _Save

*

* Function description

* This function pair saves and restores an extended task context.

* In this case, the extended task context consists of just a single
* menber, which is a global variable.

*/

t ypedef struct {
int d obal Var;
} CONTEXT_EXTENSI ON;

void OS_Save(void * pStack) {
CONTEXT_EXTENSI ON * p;
p = ((CONTEXT_EXTENSI ON*) pSt ack) - 1; /1 Create pointer to our structure
I

// Save all nenbers of the structure
/1
p- >d obal Var = d obal Var;

}

void OS_Restore(void * pStack) {
CONTEXT_EXTENSI ON * p;
p = ((CONTEXT_EXTENSI ON*) pSt ack) - 1; /1 Create pointer to our structure
I

/! Restore all nmenbers of the structure
/1
d obal Var = p->d obal Var;

}

/***

HPTask

Functi on description
During the execution of this function, the thread-specific
gl obal variabl e has al ways the same val ue of 1.

EE . R R

/
static void HPTask(void) {
OS_Ext endTaskCont ext (NULL, OS Save, OS Restore);
d obal Var = 1;
while (1) {
CS_Del ay (10);

}

/***

LPTask

Functi on description
During the execution of this function, the thread-specific
gl obal variabl e has al ways the same val ue of 2.

EE . I R

/
static void LPTask(void) {
OS_Ext endTaskCont ext (NULL, OS Save, OS Restore);
d obal Var = 2;
while (1) {
CS_Del ay (50);

© 1996-2007 Segger Microcontroller Systeme GmbH

22/25 embOS for SH2 CPUs and Renesas HEW4

}

/***
*

* mai n

*/

int main(void) {
OS_IncDl(); /* Initially disable interrupts */
OS I nitKern(); /* initialize OS */
OS InitHW); /* initialize Hardware for OS */
/* You need to create at |east one task here ! */

OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);

oS _Start(); /* Start multitasking */
return O;

}

This sample application can be found in the “Samples” folder of the embOS
distribution.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4 23/25

10. Sleep / Standby Mode

Usage of the Sleep instruction is one possibility to save power consumption
during idle times. If required, you may modify the OS_1 dl e() routine, which is
part of the hardware dependent module Rtoslnit.c.

The Sleep mode works without any problems, because the embOS scheduler
is activated on any timer interrupt.

The Software Standby-Mode may be used, if scheduling depends on those in-
terrupts, which may release Software Standby-Mode. The real-time operating
system is halted during the execution of the Software-Standby mode if the timer
that the scheduler uses is supplied from internal clock. With external clock, the
scheduler keeps working. embOS timer may be realized with external hard-
ware which triggers one of the interrupt inputs of the CPU.

Hardware standby mode can not be used, as this mode can not be suspended
by any interrupt.

© 1996-2007 Segger Microcontroller Systeme GmbH

24/25 embOS for SH2 CPUs and Renesas HEW4

11. Technical data

11.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the release build library.

Short description ROM RAM

[byte] [byte]
Kernel approx.2000 49
Add. Task - 40
Add. Semaphore --- 16
Add. Mailbox — 24
Add. Timer -—- 20
Power-management — —

12. Files shipped with embOS

embOS for SH2 and Renesas compiler is shipped with documentation in PDF
format and release notes as html.

The start project, source files, all libraries and additional files required for linker
or emulator / simulator are located in the sub folder ‘Start’. The distribution of
embOS contains the following files:

Directory File Explanation

Start\ Start*. hws Start workspace for HEW Embedded
Workbench.

Start. SH*\ *. hwp CPU specific project file for embOS

Start\Inc\ RTCS. h embOS API header file. To be included in
any file using embOS functions

Start\Lib\ *.lib embOS libraries

Start SH*\CPU |*. * CPU specific sample application and

~SH*\ setup files

CPU\ *LE embOS start project sources and files to
build libraries and start projects (Source
version only)

GenOsSrc\ L embOS sources (Source version only)

*. Bat Batch files to build embOS libraries from

sources (Source version only)

embOSView and the manuals are found in the root directory of the distribution.

© 1996-2007 Segger Microcontroller Systeme GmbH

embOS for SH2 CPUs and Renesas HEW4

25/25

13. Index

#

#pragma interrupt...........coecereenee. 18
Cc

Clock settings........ccceveeeeceennennen 15
Clock settings, timer interrupt...... 14
Clock settings, UARTc.c.c... 14
E

embOS interrupt.......cccceeveeeeneenee. 17
F

Fast interrupt.......c..coceveeveniennenne 17
H

|

Installationcccoceevveerceneninnnnee 5
Interrupt mode........ccccoeevienienene 17
Interrupt priorities..........c.cceeeeee. 17
Interrupt stack

Interrupt vector table.................... 19

Interrupt, fast.......
Interrupts SH2
INEPIG.C e 18

Memory models..........cccccrerenennen. 13
Memory requirements 24

o
OS_CallISR.....ccvveeriinreinenns
OS_CallNestablel
OS_E1101() eeevvevenieeeenieeieneeenne,
OS_ExtendTaskContext............... 20
OS_FSYS .o

OS ISR err......
OS_ISR_1x....
OS_ISR_tX e
0S_PCLK_TIMER
0S_PCLK_UART..................
OS_SetFastIntPriorityLimit().17, 19
OS_UART....ctniiiiiiircenrcineens 15

S
SH2 CPU specificsccccoveeenenene 14
Sleep-mode

SaCKS ..o

Stacks, interrupt stack.................. 16
Stacks, system stack
Stacks, task stacks...........c..ccuo.....
Standby-mode........cccevveieinnrnenn.
System stackcccceceverereeennnn

T
Task Stacks.........cocveevvvecreeeinreennenns
Technical data

U
UART for embOSView 15

\')
VECLN oo 18
VECHDLC v 18

© 1996-2007 Segger Microcontroller Systeme GmbH

	Contents
	About this document
	How to use this manual

	Using embOS with HEW Workbench
	Installation
	First steps
	The sample application Start_LEDBlink.c

	Using debugging tools to debug the application
	Using Renesas E8 emulator and HMon
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Add your own code
	Change library mode

	HEW compiler specifics
	Memory models, compiler options
	Available libraries
	Distributed project files

	SH2 CPU specifics
	Clock settings for embOS timer interrupt
	Clock settings for UART used for embOSView
	Conclusion about clock settings
	embOS hardware timer selection
	UART for embOSView

	Stacks
	Task stack for SH2 CPUs
	System stack for SH2 CPUs
	Interrupt stack for SH2 CPUs
	Reducing the stack size

	Interrupts with SH2 CPUs
	Interrupt processing with SH2 CPUs
	Fast interrupts with SH2 CPUs
	Interrupt priorities with embOS for SH2 CPUs
	Defining interrupt handlers for SH2 CPUs in "C"
	OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts
	Interrupt vector table

	Non generic, port specific functions
	OS_ExtendTaskContext(): Make global variables or processor registers task specific.

	Sleep / Standby Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

