

embOS

Real Time Operating System

CPU & Compiler specifics for

RENESAS M16C/80, M32C CPUs

and IAR compiler for M32C

Document Rev. 4

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/80, M32C and IAR compiler for M32C 3/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. What�s new?.. 4

2.1. Update / Upgrade information.. 4
3. Using embOS with IAR�s Embedded Workbench .. 5

3.1. Installation.. 5
3.2. First steps .. 6
3.3. The sample application Main.c .. 8

4. Using debugging tools to debug the application.. 9
4.1. Using IAR�s C-Spy simulator.. 9
4.2. Using ROM Monitor configuration.. 12
4.3. Interrupt vector definition file KD308Vect.asm... 13
4.4. Interrupt vector definition file KD3083Vect.asm... 13
4.5. Using PD308 or other in circuit emulator ... 14
4.6. Using E8 or E8a debugging tool .. 14
4.7. Common debugging hints .. 14

5. Build your own application... 15
5.1. Required files for an embOS application .. 15
5.2. Select a start project .. 15
5.3. Add your own code .. 15
5.4. Change memory model or library mode... 15

6. M16C/80 and M32C specifics ... 17
6.1. Memory models ... 17
6.2. Available libraries... 17
6.3. CPU specific settings ... 18

7. Stacks ... 19
7.1. Task stack for M16C/80 and M32C ... 19
7.2. System stack for M16C/80 and M32C ... 19
7.3. Interrupt stack for M16C/80 and M32C.. 19
7.4. Stack specifics of the RENESAS M16C/80 and M32C family 19

8. Interrupts ... 20
8.1. What happens when an interrupt occurs? ... 20
8.2. Defining interrupt handlers in "C"... 20
8.3. Interrupt-stack.. 21
8.4. Zero latency interrupts with M16C80/M32C CPUs .. 21
8.5. Interrupt priorities with embOS for M16C80/M32C CPUs................................. 21
8.6. Interrupt latency ... 21
8.7. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero latency
interrupts... 22

9. STOP / WAIT Mode .. 23
10. Technical data... 24

10.1. Memory requirements .. 24
11. Files shipped with embOS for IAR M32C compiler .. 24
12. Index ... 25

4/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS for M16C/80 and M32C Real Time
Operating System for the RENESAS M16C/80 and M32C series of microcon-
troller using IAR compiler for M32C and IAR�s Embedded Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
M16C/80 and M32C CPUs with IAR compiler. Before actually using embOS,
you should read or at least glance through this manual in order to become fa-
miliar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using IAR workbench. If you have no experience using embOS, you should fol-
low this introduction, even if you do not plan to use C-SPY or IAR�s Embedded
Workbench, because it is the easiest way to learn how to use embOS in your
application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
M16C/80 and M32C using IAR compiler.

2. What�s new?
• Additional libraries delivered with embOS
Since version 3.50, libraries for 64bit floating point calculation are delivered with
embOS for M32C.
• Zero latency (fast) interrupts:
Since version 3.82 of embOS for M32C, interrupt handling inside embOS was
modified. Instead of disabling interrupts when embOS does atomic operations,
the interrupt level of the CPU is set to a higher user definable level. Therefore
all interrupts with a higher level can still be processed.

2.1. Update / Upgrade information

When you update / upgrade from an embOS version prior 3.82, you may have
to change your interrupt handlers because of the new Fast interrupt support. All
interrupt handlers using embOS functions have to run on priorities below the
user definable priority limit which is initially set to 5. This limit may be changed
by a cll of the new embOS function OS_SetFastIntPriorityLimit().
Please read the chapter �Interrupts� in this manual.

embOS for M16C/80, M32C and IAR compiler for M32C 5/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

3. Using embOS with IAR�s Embedded Work-
bench

3.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, keep all files in their respective sub directories.
Make sure the files are not read only after copying.
If you received a zip-file, extract it to any folder of your choice, preserving the
directory structure of the zip-file.

Assuming that you are using IAR�s Embedded Workbench to develop your ap-
plication, no further installation steps are required. You will find prepared sam-
ple start projects for M16C80 and M32C CPUs, which you should use and
modify to write your application. So follow the instructions of the next chapter
�First steps�.

You should do this even if you do not intend to use IAR�s Embedded Work-
bench for your application development in order to become familiar with
embOS.

If for some reason you will not work with IAR�s Embedded Workbench, you
should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on IAR�s Embedded Workbench, it may be used
without the workbench using batch files or a make utility without any problem.

6/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

3.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample start workspaces and
projects for M16C/80 and M32C CPUs and it is a good idea to use this as a
starting point of all your applications.

Your embOS distribution contains two different folders with start projects:
• �Start_MC80� for M16C/80 CPUs
• �Start_M32C� for M32C CPUs.
Every folder contains everything you need for the specific CPU. As long as only
one CPU is used for your applications, there is no need to copy both of them.

To get your new application running, you should proceed as follows.

For M16C/80 targets you should:
• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start_MC80� from your embOS distribution into your

work directory.
• Clear the read only attribute of all files in the new �Start_MC80�-folder in

your working directory.
• Open the folder �Start_MC80�.
• Open the start workspace �Start_MC80.eww�. (e.g. by double clicking it)
• Select a configuration
• Build the start project

For M32C targets you should:
• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start_M32C� from your embOS distribution into your

work directory.
• Clear the read only attribute of all files in the new �Start_M32C�-folder in

your working directory.
• Open the folder �Start_M32C�.
• Open the start workspace �Start_M32C.eww�. (e.g. by double clicking it)
• Select a configuration
• Build the start project

Further examples in this manual show the start project for M32C CPU which is
found in the �Start_M32C� folder. The M16C80 start project is similar and looks
the same.

After building the start project your screen should look like follows:

embOS for M16C/80, M32C and IAR compiler for M32C 7/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

For latest information you should open the ReadMe.txt which is part of your pro-
ject.

8/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

3.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/*--
File : Main.c
Purpose : Skeleton program for OS
-------- END-OF-HEADER ---
*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for M16C/80, M32C and IAR compiler for M32C 9/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

4. Using debugging tools to debug the applica-
tion

The embOS start project contains configurations which are already setup for
the following debugging tools:
• IAR�s simulator CSpy. This configuration is named �CSpy-Sim�.
• RENESAS�s ROM Monitor driver KD308/KD3083 or IARs CSpy. This configu-

ration is named �ROM-Monitor� and may also be used with IAR CSpy in se-
rial or USB ROM monitor mode or RENESAS KD308/KD3083.

• RENESAS�s in circuit emulator PD308 or newer. This configuration is named
�Emulator�

All these configurations are prepared to produce the appropriate output files re-
quired by your debugger.
The E8a and E8 debugging tool from RENESAS can be used without any prob-
lem. The linker files may have to be modified when used with E8a or E8, be-
cause the debugger occupies 256bytes of RAM and 2KBytes of ROM.
The following chapters describe a sample session based on our sample appli-
cation main using CSpy Simulator.

4.1. Using IAR�s C-Spy simulator

When starting C-Spy simulator after building the C-Spy target, you will usually
see the main function, or you may look at the startup code and have to set a
breakpoint at main. Now you can step through the program.
OS_IncDI()initially disables interrupts and prevents OS_InitKern() from re-
enabling them.
OS_InitKern()initializes embOS -Variables. As this function is part of the
embOS library, you may step into it in disassembly mode only.
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() called from OS_InitHW() is optional. It is required if em-
bOSView shall be used. As simulators usually can not simulate UART opera-
tions, OS_UART may be defined as (-1) to disable UART initialization and
communication.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

10/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

Before you step into OS_Start(), you should set breakpoints in the two tasks:

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, Task0() is the highest priority task and is therefore active.

embOS for M16C/80, M32C and IAR compiler for M32C 11/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).
OS_Idle() is found in RTOSInit.c
You will arrive there, when you step through the task switching process in dis-
assembly mode:

12/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay.
Coming from OS_Idle(), you should execute the �Go� command to arrive at
the highest priority task after its delay is expired.

The watch window shows the system variable OS_Time, which shows how
much time has expired in the target system.

4.2. Using ROM Monitor configuration

The distribution of embOS for M16C80 / M32C is prepared for usage of
KD308/KD3083 debugging software as well as IAR�s CSpy ROM monitor driver.
Depending on the ROM monitor and CPU used, the ROM monitor needs UART
interrupt vectors which point to ROM monitor internal interrupt functions.

embOS for M16C/80, M32C and IAR compiler for M32C 13/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

For M16C80 CPUs, these vectors are defined in �KD308Vect.asm� which is
enabled in the configuration �ROM-Monitor� in the Start_MC80 project. It is
setup for KD308 or CSpy ROM monitor usage.
For M32C CPUs, these vectors are defined in �KD3083Vect.asm� which is en-
abled in the configuration �ROM-Monitor� in the Start_M32C project which is
setup for KD3083 or CSpy ROM monitor usage.
As ROM monitors usually communicate via UART1 of the target CPU, this
UART can not be selected as communication port for embOSView or for your
application.
Note also, that the variable interrupt vector table has to be located below the
highest target CPUs flash sector, which is used by the ROM Monitor.
Default linker files should be set up accordingly.
Depending on the ROM monitor used on M32C CPUs, the interrupt vectors for
UART might not be required, because some CPUs may be configured to use
the debug interrupt for communication.

Problem with ROM monitor running embOS application:
When ROM monitor stopped at a breakpoint, it may happen, that any interrupt
activates a task switch while stepping through the program, as interrupts are
enabled during stepping. This task switch can not be handled by ROM monitor
and it crashes.
To overcome this problem, you may open the register window and set interrupt
priority (IPL) to 6 immediately after the breakpoint was reached. This enables
stepping without any task switches, as all embOS interrupts normally run with
lower priorities.

4.3. Interrupt vector definition file KD308Vect.asm

This file is used for M16C80 CPUs which are already programmed with a
RENESAS ROM monitor. The file defines two interrupt vectors for UART1 used
by ROM Monitor. When not using KD308 or CSpy in ROM monitor mode, this
interrupt vector definition file is not required, as embOS interrupts are defined
in �C�-source code.
Both vectors for Rx- and Tx- interrupt point to the same address.

Important:
Ensure, that this file is linked to your application, when needed for ROM-
Monitor.
Check the project options for assembler AM32C, code generation:
�Make a LIBRARY module� option has to be unchecked. Otherwise the linker
may optimize those vectors away, as they are not referenced by your applica-
tion.

4.4. Interrupt vector definition file KD3083Vect.asm

This file is used for M32C CPUs which are already programmed with a
RENESAS ROM monitor that requires debug communication interrupts on
UART. The file defines two interrupt vectors for UART1 used by ROM Monitor.
When not using KD3083 or CSpy in ROM monitor mode, this interrupt vector
definition file is not required, as embOS interrupts are defined in �C�-source
code.
Both vectors for Rx- and Tx- interrupt point to the same address.

Important:

14/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

Ensure, that this file is linked to your application, when needed for ROM-
Monitor.
Check the project options for assembler AM32C, code generation:
�Make a LIBRARY module� option has to be unchecked. Otherwise the linker
may optimize those vectors away, as they are not referenced by your applica-
tion.

4.5. Using PD308 or other in circuit emulator

The standard distribution of embOS for M16C80 / M32C and IAR compiler con-
tains a configuration for RENESAS�s in circuit emulator.
This configuration is named �Emulator� and it produces an �X30� output file with
debug information which may be loaded into RENESAS�s in circuit emulator to
debug the application.

4.6. Using E8 or E8a debugging tool

RENESAS�s E8a debugging tool can be used for M32C CPUs without problems.
The standard distribution of embOS for M16C80 / M32C and IAR compiler
does not contain a configuration for the E8a, but an existing configuration can
easily be changed to use E8a as debugging tool.
The linker file may have to be modified for E8a support, because E8a occupies
256bytes of RAM and 2KBytes of ROM in the target CPUI.

4.7. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build contains addi-
tional error check functions during runtime.
When an error is detected, the debug libraries call OS_Error(), which is de-
fined in the separate file OS_Error.c.
Using an emulator you should set a breakpoint there. The actual error code is
assigned to the global variable OS_Status. The program then waits for this
variable to be reset. This allows to get back to the program-code that caused
the problem easily: Simply reset this variable to 0 using your in circuit-emulator,
and you can step back to the program sequence causing the problem. Most of
the time, a look at this part of the program will make the problem clear.
How to select an other library with debug code for your projects is described
later on in this manual.

embOS for M16C/80, M32C and IAR compiler for M32C 15/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

5. Build your own application
To build your own application, you should start with the sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

5.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has
to be included in any source file using embOS functions.

• RTOSInit.c from subfolder Src\.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• OS_Error.c from subfolder Src\.
It contains the embOS runtime error handler OS_Error()which is used in
stack check or debug builds.

• One embOS library from the Lib\ subfolder
• KD30*Vect.asm from subfolder Src\ for ROM monitor targets

If configuration should be built for ROM monitor usage, interrupt vectors for
debug UART may have to be defined in your project. This is done in
KD30*Vect.asm.

When you decide to write your own startup code, ensure that non initialized
variables are initialized with zero, according to �C� standard. This is required for
some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_incDI() are
called.

5.2. Select a start project

embOS comes with one start project which includes different configurations for
different output formats or debug tools. The start project was built and tested
with various M16C80 and M32C CPUs. For your specific CPU variant there
may be modifications required.

5.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

5.4. Change memory model or library mode

For your application you may have to choose an other memory-model. For de-
bugging and program development you should use an embOS -debug library.
For your final application you may wish to use an embOS -release library.
Therefore you have to replace the embOS library in your project or target:
• Build a new group for the library an add it to the selected target.
• Add the appropriate library from the Lib-subdirectory to your new group.
• Remove the previous library group from your target.

16/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

Finally check the project options about target CPU data / memory model set-
tings and compiler settings according the selected embOS library mode used.
Refer to chapter 6 about the library naming conventions to select the correct li-
brary.

embOS for M16C/80, M32C and IAR compiler for M32C 17/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

6. M16C/80 and M32C specifics

6.1. Memory models

embOS supports all the memory models that IAR' s C-Compiler supports.
For the M16C/80 and M32C, 3 memory models are available:

Model Code Data
Near far (24 bits always) near (16 bits)
Far far (24 bits always) far (24 bits, 64K segments)
Huge far (24 bits always) huge (24 bits)

6.2. Available libraries

The files to use depend on target CPU, memory model and library type used.
The library files are located in the subfolder �Lib� in the CPU specific start pro-
ject folder.
The CPU type selection and memory model settings for your target application
have to confirm to the library used in your application.

The naming convention for library files is as follows:
RTOS<CPUFAMILY><MEMORYMODEL><FLOAT><LIBRARYTYPE>.r48

<CPUFAMILY> specifies the CPU family:

• 80 for M16C/80 CPUs
• 32 for M32C CPUs

<MEMORYMODEL> specifies the memory model:

• N for Near memory model
• F for Far memory model
• H for Huge memory model

<FLOAT> specifies the memory model:

• D for 64bit floating point calculation.
• left blank for standard 32bit floating point calculation.

<LIBRARYTYPE> specifies the type of embOS -library:

• R stands for Release build library.
• S stands for Stack check library, which performs stack checks during

runtime.
• SP stands for Stack check and Profiling library, which performs stack

checking and additional runtime (Profiling) calculations
• D stands for Debug library which performs error checking during runtime.
• DP stands for Debug and Profiling library which performs error checking

and additional Profiling during runtime.
• DT stands for Debug and Trace library which performs error checking

and additional Trace functionality during runtime.

Example:

RTOS80NSP.r48 is the embOS library for M16C/80 CPU family in Near mem-
ory model, 32bit (standard) floating point calculation, with Stack check and Pro-
filing functionality. It is located in the Start_MC80\lib\ subdirectory.

18/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

6.3. CPU specific settings

embOS may be used with any M16C80 / M32C CPU variant. Our start projects
are set up for �generic� CPU. You should select your specific CPU as project
option.

embOS for M16C/80, M32C and IAR compiler for M32C 19/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

7. Stacks

7.1. Task stack for M16C/80 and M32C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the M16C/80 and M32C, this minimum stack size is about 50 bytes in the
far memory model.

7.2. System stack for M16C/80 and M32C

The system stack size required by embOS is about 30 bytes (60 bytes in. pro-
filing builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application. We recommend at least a minimum of 128 bytes.
embOS uses IARs CSTACK as system stack.
The size of the system stack may be set up as project option or can be defined
in the link file as _CSTACK_SIZE.

7.3. Interrupt stack for M16C/80 and M32C

The M16C/80 and M32C has been designed with multitasking in mind; it has 2
stack-pointers, the USP and the ISP. The U-Flag selects the active stack-
pointer. During execution of a task or timer, the U-flag is set thereby selecting
the user-stack-pointer. If an interrupt occurs, the M16C/80 and M32C clears the
U-flag and switches to the interrupt-stack-pointer automatically this way. The
ISP is active during the entire ISR (interrupt service routine). This way, the inter-
rupt does not use the stack of the task and the stack-size does not have to be
increased for interrupt-routines. Additional stack-switching as for other CPUs is
therefore not necessary for the M16C/80 and M32C.
IAR defines the interrupt stack as ISTACK in the linker files. The size of the in-
terrupt stack is defined in the link-file as _ISTACK_SIZE or may be set up as
project option. (We recommend at least 192 bytes)

7.4. Stack specifics of the RENESAS M16C/80 and M32C family

Because the stack-pointer of M16C/80 and M32C CPUs can address the entire
memory area, stacks can be located anywhere in RAM. For performance rea-
sons you should try to locate stacks in fast RAM.

20/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

8. Interrupts

8.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor interrupt priority

level is below or equal to the interrupt priority level, the interrupt is executed
• the CPU switches to the Interrupt stack
• the CPU saves PC and flags on the stack
• the IPL is loaded with the priority of the interrupt and interrupts are disabled
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute REIT command, restoring PC, Flags and switching to User

stack
• For more details, refer to the RENESAS users manual.

8.2. Defining interrupt handlers in "C"

Routines defined with the keyword interrupt automatically save & restore the
registers they modify and return with REIT.
For a detailed description on how to define an interrupt routine in "C", refer to
the IAR C-Compiler's user's guide.

Example

"Simple" interrupt-routine

#pragma vector= (13)
__interrupt void IntHandlerTimerA1(void) {
 IntCnt++;
}

embOS for M16C/80, M32C and IAR compiler for M32C 21/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

8.3. Interrupt-stack

Since the M16C/80 and M32C have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.

8.4. Zero latency interrupts with M16C80/M32C CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to a higher user definable level. Therefore all inter-
rupts with higher levels can still be processed.
These interrupts are named Zero latency interrupts.
The default level limit for zero latency interrupts is set to 5, meaning, any inter-
rupt with level 6 or 7 is never disabled and can be accepted anytime.
You must not execute any embOS function from within a Zero latency in-
terrupt function.

8.5. Interrupt priorities with embOS for M16C80/M32C CPUs

With introduction of Zero latency interrupts, interrupt priorities useable by the
application are divided into two groups:

• Low priority interrupts with priorities from 1 to a user definable priority
limit. These interrupts are called embOS interrupts.

• High priority interrupts with priorities above the user definable priority
limit. These interrupts are called Zero latency interrupts.

Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters.
The priority limit between embOS interrupts and Zero latency interrupts can be
set at runtime by a call of the function OS_SetFastIntPriorityLimit().

8.6. Interrupt latency

With embOS for M32C, the interrupt latencies are kept as small as possible,
because high priority interrupts are never locked by the operating system.
Because the CPU automatically disables all interrupts when accepting an inter-
rupt, the interrupt latency for interrupts with higher priority can not be zero. The
interrupt handler has to re-enable interrupts by setting the I-Flag. Using em-
bOS, this is done by a call of the function OS_EnterNestableInterrupt()
or OS_EnterInterrupt().

Differences between OS_EnterInterrupt() and OS_EnterNestableInterrupt()

OS_EnterInterrupt() shall be used for an interrupt that may use embOS func-
tions and runs on low priority (below the zero latency priority limit), but shall not
be interrupted by other low priority interrupts.
OS_EnterInterrupt() sets the IPL of the CPU up to the zero latency priority limit
and the re-enables interrupts.
OS_EnterNestableInterrupt() shall be used for an interrupt that may use
embOS functions and runs on low priority (below the zero latency priority limit),
but may be interrupted by other interrupts with higher priority. On entry, the IPL
remains unchanged and interrupts are re-enabled.

22/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

8.7. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for
Zero latency interrupts

The interrupt priority limit for Zero Latency interrupts is set to 5 by default. This
means, all interrupts with higher priority from 6 to 7 will never be disabled by
embOS.

Description
OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between
Zero latency interrupts and lower priority embOS interrupts.

Prototype
void OS_SetFastIntPriorityLimit(unsigned int Priority)

Parameter Meaning

Priority
The highest value useable as priority for embOS interrupts.
All interrupts with higher priority are never disabled by em-
bOS. Valid range: 1 <= Priority <= 7

Return value
NONE.

Add. information
To disable Zero latency interrupts at all, the priority limit may be set to 7 which
is the highest interrupt priority for interrupts.
To modify the default priority limit, OS_SetFastIntPriorityLimit() should
be called before embOS was started.

embOS for M16C/80, M32C and IAR compiler for M32C 23/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

9. STOP / WAIT Mode
Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

24/25 embOS for M16C/80, M32C and IAR compiler for M32C

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

10. Technical data

10.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the embOS library. The
values in the table are for the far memory model and release build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1600 37
Event-management < 200 ---
Mailbox management < 550 ---
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 ---
Timer-management < 250 ---
Add. Task --- 28
Add. Counting Semaphore --- 6
Add. Mailbox --- 16
Add. Timer --- 14
Power-management --- ---

11. Files shipped with embOS for IAR M32C
compiler!

Directory File Explanation
root *.pdf Generic API and target specific documen-

tation
root Release.html Release notes of embOS M32C
root embOSView.exe Utility for runtime analysis, described in

generic documentation
Start_MC80\ Start_MC80.eww Start project for M16C/80 CPUs
Start_M32C\ Start_M32C.eww Start project for M32C CPUs

Each start project folder contains the following files:

Directory File Explanation
 CSpy.mac CSpy macro for hardware timer simulation
 Readme.txt Latest information about embOS M32C
 *.ewp Start project file for embedded workbench
Inc\ RTOS.h To be included in any file using embOS

functions
 *.ewp Start project file for embedded workbench
Lib\ Rtos*.r48 embOS libraries
Src\ main.c Frame program to serve as a start
Src\ RtosInit.c To be compiled & linked with your pro-

gram, initializes the hardware, can be
modified

Src\ OS_Error.c embOS error handler used in stack check
or debug builds

embOS for M16C/80, M32C and IAR compiler for M32C 25/25

 2008-2012 SEGGER Microcontroller GmbH & Co. KG

12. Index
_
_CSTACK_SIZE 19
_ISTACK_SIZE........................... 19
C
C-Spy ... 9
CSTACK...................................... 19
E
E8a ... 9, 14
embOS interrupt........................... 21
I
Installation 5
Interrupt latency........................... 21
Interrupt priorities 21
Interrupt stack 19
Interrupts...................................... 20
Interrupt-stack.............................. 21

ISTACK19
K
KD3083Vect.asm.........................13
KD308Vect.asm...........................13
M
Memory models............................17
Memory requirements24
O
OS_Error()14, 15
OS_SetFastIntPriorityLimit() ...4, 21,

22
P
PD308 ..14
R
ROM Monitor12

S
Stacks .. 19
Stacks, interrupt stack.................. 19
Stacks, system stack..................... 19
Stacks, task stacks........................ 19
Stop-mode 23
System stack 19
T
Task stacks................................... 19
Technical data.............................. 24
W
Wait-mode 23
Z
Zero latency interrupt 21

	Contents
	About this document
	How to use this manual

	What’s new?
	Update / Upgrade information

	Using embOS with IAR’s Embedded Workbench
	Installation
	First steps
	The sample application Main.c

	Using debugging tools to debug the application
	Using IAR’s C-Spy simulator
	Using ROM Monitor configuration
	Interrupt vector definition file KD308Vect.asm
	Interrupt vector definition file KD3083Vect.asm
	Using PD308 or other in circuit emulator
	Using E8 or E8a debugging tool
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	M16C/80 and M32C specifics
	Memory models
	Available libraries
	CPU specific settings

	Stacks
	Task stack for M16C/80 and M32C
	System stack for M16C/80 and M32C
	Interrupt stack for M16C/80 and M32C
	Stack specifics of the RENESAS M16C/80 and M32C family

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack
	Zero latency interrupts with M16C80/M32C CPUs
	Interrupt priorities with embOS for M16C80/M32C CPUs
	Interrupt latency
	OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero latency interrupts

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS for IAR M32C compiler
	Index

