

embOS

Real Time Operating System

CPU & Compiler specifics for

Mitsubishi M16C CPUs

and TASKING compiler

Document Rev. 2

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

embOS for M16C CPUs and TASKING compiler 3/20

 1996- 2004 Segger Microcontroller Systeme GmbH

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with TASKING EDE... 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Main.c .. 7

3. Using debugging tools to debug the application.. 8
3.1. Using Crossview Pro simulator .. 8
3.2. Common debugging hints .. 11

4. Build your own application... 12
4.1. Required files for an embOS application .. 12
4.2. Select a start project .. 12
4.3. Add your own code .. 12
4.4. Change memory model or library mode... 12

5. TASKING compiler specifics ... 13
5.1. Data / Memory models, compiler options... 13
5.2. Available libraries... 13
5.3. Distributed project files... 13

6. M16C6N and M16C62P CPU specifics... 14
6.1. Clock settings and corrections for embOS timer interrupt................................. 14
6.2. Clock settings and corrections for UART used for embOSView 14
6.3. PLL settings ... 15
6.4. Conclusion about clock settings... 15

7. Stacks ... 16
7.1. Task stack for M16C.. 16
7.2. System stack for M16C.. 16
7.3. Interrupt stack for M16C .. 16
7.4. Reducing the stack size ... 16

8. Interrupts ... 17
8.1. What happens when an interrupt occurs? ... 17
8.2. Defining interrupt handlers in "C"... 17
8.3. Interrupt vector table .. 17
8.4. Interrupt priorities ... 17

9. STOP / WAIT Mode .. 18
10. Technical data... 19

10.1. Memory requirements .. 19
11. Files shipped with embOS M16C ... 19
12. Index ... 20

4/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

1. About this document
This guide describes how to use embOS for M16C Real Time Operating Sys-
tem for the Mitsubishi M16C series of microcontroller using TASKING compiler
and TASKING EDE.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using M16C
CPUs with TASKING compiler. Before actually using embOS, you should read
or at least glance through this manual in order to become familiar with the soft-
ware.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using TASKING C compiler and TASKING EDE. If you have no experience us-
ing embOS, you should follow this introduction, even if you do not plan to use
TASKING EDE, because it is the easiest way to learn how to use embOS in
your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the M16C
CPUs and TASKING compiler.

embOS for M16C CPUs and TASKING compiler 5/20

 1996- 2004 Segger Microcontroller Systeme GmbH

2. Using embOS with TASKING EDE

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using TASKING EDE to develop your application, no fur-
ther installation steps are required. You will find a prepared start project work-
space for M16C CPUs, which you should use and modify to write your
application. So follow the instructions of the next chapter �First steps�.

You should do this even if you do not intend to use TASKING EDE for your ap-
plication development in order to become familiar with embOS.

embOS does in no way rely on TASKING EDE, it may be used without the
workbench using batch files or a make utility without any problem.

6/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start project work-
space for M16C CPUs and it is a good idea to use this as a starting point of all
your applications.

Your embOS distribution contains one folder �Start� which contains the sample
start project workspace, the start projects and every additional files used to
build your application.

To get your application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the embOS distribution disk into your

work directory.
• Clear the read only attribute of all files in the new �Start�-folder in your work-

ing directory.
• Open the folder �Start� in your work directory.
• Open the start project workspace �Start.psp�. (e.g. by double clicking it)
• Select and build one start project

After building the start project your screen should look like follows:

Initially a target for small memory model with debug and stack check functional-
ity is selected. You may select any other project, as anyone will run on your
simulator or debugger.

embOS for M16C CPUs and TASKING compiler 7/20

 1996- 2004 Segger Microcontroller Systeme GmbH

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.

What happens is easy to see:

After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 OS_Delay (10);
 }
}

void Task1(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_Start(); /* Start multitasking */
 return 0;
}

8/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

3. Using debugging tools to debug the application
The embOS start projects produce Intel-Hex output files and ELF files, which
may be used for debugging tools.
Simulation using Crossview Pro simulator is supported.
The following chapter describe a sample session based on our sample applica-
tion main.

3.1. Using Crossview Pro simulator

When starting Crossview Pro simulator after building the start project, you will
usually see the main function, or you may look at the startup code and have to
set a breakpoint at main. Now you can step through the program.
OS_IncDI() initially disables interrupts and tells embOS not to re-enable in-
terrupts during internal initialization.
OS_InitKern()initializes embOS -Variables and enables interrupts. As this
function is part of the embOS library, you may step into it in disassembly mode
only.
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. As UART reception from embOSView can not be simulated,
OS_UART may be defined as (-1) to disable UART initialization and
communication.
OS_Start() is the last line in main which is executed, since it starts multitask-
ing and does not return.

Before stepping over OS_Start(), you should set two breakpoint in our tasks
in main.c as shown below:

embOS for M16C CPUs and TASKING compiler 9/20

 1996- 2004 Segger Microcontroller Systeme GmbH

When you step over OS_Start() the next source line executed is Task0 which
is the task with the highest priority in our start project and is therefore activated.

If you continue stepping, you will arrive in the task with the lower priority:

10/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or
timer executing). OS_Idle() is found in RTOSInit.c. You will arrive there when
you set a breakpoint there, or by stepping through the task switch process in
assembly mode:

embOS for M16C CPUs and TASKING compiler 11/20

 1996- 2004 Segger Microcontroller Systeme GmbH

If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.
Coming from OS_Idle(), you should execute the �Go� command:

As can be seen by the value of embOS timer variable OS_Time, shown in the
watch window, Task0 continues operation after expiration of the 10 ms delay.

3.2. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build contains addi-
tional error check functions during runtime.
When an error is detected, the debug libraries call OS_Error(), which is part
of RTOSInit.c.
Using an emulator you should set a breakpoint there. The actual error code is
assigned to the global variable OS_Status. The program then waits for this
variable to be reset. This allows to get back to the program-code that caused
the problem easily: Simply reset this variable to 0 using your in circuit-emulator,
and you can step back to the program sequence causing the problem. Most of
the time, a look at this part of the program will make the problem clear.
How to select an other library with different runtime debug options for your pro-
ject is described later on in this manual.

12/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

4. Build your own application
To build your own application, you should start with one sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

4.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has
to be included in any source file using embOS functions.

• RTOSInit.c from subfolder Src\.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• One embOS library from the Lib\ subfolder
• OS_Error.c from subfolder Src\.

It contains the embOS runtime error handler OS_Error()which is used in
stack check or debug builds.

When you decide to write your own startup code, or modify the project options,
please ensure that non initialized variables are initialized with zero, according to
�C� standard. This is required for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS function except OS_IncDI() is called.

4.2. Select a start project

embOS comes with one start project workspace which includes start projects
for small and large memory model and all different embOS library types. All
projects are tested with standard M16C/62 CPUs. For some CPU variants there
may be modifications required as described later in this manual.

4.3. Add your own code

For your own code, you may add a new project to the workspace.
We strongly recommend to modify an existing project, as this ensures, that all
necessary settings are already done. You may modify or replace the main.c
source file in the subfolder src\.

4.4. Change memory model or library mode

For your application you may have to choose an other memory-model. For de-
bugging and program development you should use an embOS -debug library.
For your final application you may wish to use an embOS -release library.
Just select the project which is set up for your needs and add your own code
there.
When you built a new project on your own, check project options about memory
model settings and compiler settings according library mode used. Refer to
chapter 5 about the library naming conventions to select the correct library.

embOS for M16C CPUs and TASKING compiler 13/20

 1996- 2004 Segger Microcontroller Systeme GmbH

5. TASKING compiler specifics

5.1. Data / Memory models, compiler options

embOS for M16C for TASKING compiler is delivered with libraries for small,
medium and large model and most common options supported by TASKING
compiler.
When embOS sources are used or recompiled with the appropriate options, all
options may be used.

TASKING compiler offers three memory models:
Model Data Constants Pointers
Small __near: in first 64 KB __near __near
Medium __near: in first 64 KB __paged __paged
Large __far: anywhere in 1 MB __far __far

5.2. Available libraries

embOS is shipped with libraries for all memory models and different runtime
debug capabilities:

Memory model Library type Library define
Small Release rtosSR OS_LIBMODE_R
Small Stack-check rtosSS OS_LIBMODE_S
Small Stack-check + Profiling rtosSSP OS_LIBMODE_SP
Small Debug rtosSD OS_LIBMODE_D
Small Debug + Profiling rtosSDP OS_LIBMODE_DP
Small Debug + Profiling + Trace rtosSDT OS_LIBMODE_DT
Medium Release rtosMR OS_LIBMODE_R
Medium Stack-check rtosMS OS_LIBMODE_S
Medium Stack-check + Profiling rtosMSP OS_LIBMODE_SP
Medium Debug rtosMD OS_LIBMODE_D
Medium Debug + Profiling rtosMDP OS_LIBMODE_DP
Medium Debug + Profiling + Trace rtosMDT OS_LIBMODE_DT
Large Release rtosLR OS_LIBMODE_R
Large Stack-check rtosLS OS_LIBMODE_S
Large Stack-check + Profiling rtosLSP OS_LIBMODE_SP
Large Debug rtosLD OS_LIBMODE_D
Large Debug + Profiling rtosLDP OS_LIBMODE_DP
Large Debug + Profiling + Trace rtosLDT OS_LIBMODE_DT

When using TASKING EDE or compiler with make utilities, please check the
following points:
• The memory model is set as general project (compiler) option
• One embOS library is included in your project.
• The appropriate define is set as compiler option for your project.

5.3. Distributed project files

The distribution of embOS containes one start project workspace and projects
for small and large memory model with any available library type in the �start�
subdirectory. The naming convention of these projects follows the convention
for the library names: Startxxx <=> rtosxxx.

14/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

6. M16C6N and M16C62P CPU specifics
The hardware initialization routines and default settings in RTOSInit.c were de-
signed for M16C/62 CPUs.
M16C6N and M16C62P CPUs are equipped with additional prescaler that is ac-
tivated per default after reset and divide the peripheral clock for timer and
UART by two.
This may result in wrong settings for embOS timer tick and baudrate for UART
used for embOSView.
As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked when you update to a newer
version of embOS.

6.1. Clock settings and corrections for embOS timer interrupt

OS_InitHW() routine in RTOSInit.c derives timer init values from the con-
stant define OS_PCLK_TIMER. Per default, the value of OS_PCLK_TIMER
equals OS_FSYS, which defines the CPU clock of the target system. As
M16C6N and M16C62P CPUs have additional prescaler for timer peripherals
enabled after reset, the value OS_PCLK_TIMER has to be corrected.
In RTOSInit.c, this correction is done, if one of the defines like:
_REGM*_SFR,
is valid
One of these defines is normally set automatically by TASKING EDE, if one of
the related CPUs is selected.
When you do not use TASKING EDE, or you did not select one of these CPUs
but still use one of them, you may correct the timer init value calculation as fol-
lows:
• Reprogram the Peripheral function clock select register (PCLKR) at address

0x025E to disable the prescaler for timer peripherals. This should be done
before calling OS_InitHW() during your own target specific hardware ini-
tialization. The protection register bit 0 has to be set to enable modification
of PCLKR.

• You may alternatively define OS_PCLK_TIMER as project option (compiler
preprocessor option). This value is used to calculate values used to initial-
ize embOS timer.

6.2. Clock settings and corrections for UART used for embOSView

OS_COM_Init() routine in RTOSInit.c derives baudrate generator init val-
ues from the constant define OS_PCLK_UART. Per default, the value of
OS_PCLK_UART equals OS_FSYS, which defines the CPU clock of the target
system. As M16C6N and M16C62P CPUs have additional prescaler for UART
peripherals enabled after reset, value of OS_PCLK_UART can not be set to
OS_FSYS and has to be corrected. Without correction, the UART will run at
half the estimated speed without correction.
In RTOSInit.c, this correction is done, if one of the defines like:
_REGM*_SFR,
is valid
One of these defines is normally set automatically by TASKING EDE, if one of
the related CPUs is selected.
When you do not use TASKING EDE, or you did not select one of these CPUs
but still use one of them, you may correct the timer init value calculation as fol-
lows:

embOS for M16C CPUs and TASKING compiler 15/20

 1996- 2004 Segger Microcontroller Systeme GmbH

To correct the embOS UART baudrate for embOSView, you may:
• Reprogram the Peripheral function clock select register (PCLKR) at address

0x025E to disable the prescaler for UART peripherals. This should be done
before calling OS_InitHW() during your own target specific hardware ini-
tialization. The protection register bit 0 has to be set to enable modification
of PCLKR.

• You may alternatively define OS_PCLK_UART as project option (compiler
preprocessor option). This value is used to calculate values used to initial-
ize UART used for communication with embOSView.

6.3. PLL settings

M16C62P group CPUs are equipped with internal PLL and additional clock op-
tions. Standard RTOSInit.c routines are written for CPUs without PLL.
Normally, PLL should be initialized as early as possible. You may initialize PLL
before calling OS_InitHW() during your own hardware initialization. You may
also modify OS_InitHW() to initialize PLL.
When using PLL, OS_InitHW() which initializes embOS timer may have to be
modified.

6.4. Conclusion about clock settings

• OS_FSYS has to be defined according to your CPU clock frequency. This
should be defined as compiler preprocessor option in your project.

• OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral
clock for the embOS timer. The value defaults to OS_FSYS. It should be
modified and defined as compiler preprocessor option if modification is re-
quired. Normally this is done automatically by defining the CPU in
TASKING EDE.

• OS_PCLK_UART has to be defined to fit the frequency used as peripheral
clock for the UART used for communication with embOSView. The value
defaults to OS_FSYS. It should be modified and defined as compiler pre-
processor option if modification is required. Normally modification according
to CPU type used, is done automatically by defining the CPU in TASKING
EDE.

• PLL settings should be checked. OS_InitHW() in RTOSInit.c might have
to be modified, as this function modifies clock options of CPU.

You may also check the output listings of RTOSInit.c to examine whether
OS_PCLK_TIMER and OS_PCLK_UART are set as required.

16/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

7. Stacks

7.1. Task stack for M16C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the M16C CPU.
As M16C CPUs have a 16bit stack pointer only, this may be any RAM located
from 0x0400..0xFFFF.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the M16C, this minimum stack size is about 42 bytes in the near memory
model.
M16C USP is used for task stacks.

7.2. System stack for M16C

The system is the stack used during startup and main until OS_Start() is called.
The startup code initializes M16Cs ISP as system stack.
The stack size required by embOS is about 40 bytes (65 bytes in. profiling
builds) However, since the system stack is also used by the application before
the start of multitasking (the call to OS_Start()), and because software-timers
and embOS internal functions during task switch also use the system-stack, the
actual stack requirements depend on the application.
System stack size is defined in the Linker-option file, or is set as option from the
EDE.
A good value for the system stack size is at minimum 200 bytes.

7.3. Interrupt stack for M16C

The M16C CPU has been designed with multitasking in mind; it has 2 stack-
pointers, the USP and the ISP. The U-Flag selects the active stack-pointer.
During execution of a task or timer, the U-flag is set thereby selecting the user-
stack-pointer. If an interrupt occurs, the M16C clears the U-flag and switches to
the interrupt-stack-pointer automatically this way. The ISP is active during the
entire ISR (interrupt service routine). This way, the interrupt does not use the
stack of the task and the stack-size does not have to be increased for interrupt-
routines. Additional stack-switching as for other CPUs is therefore not neces-
sary for the M16C.

7.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
and interrupt stack also. Using embOSView, the total size and used size of any
stack can be examined. This may be used to reduce the stack sizes, if RAM
space is a problem in your application.

embOS for M16C CPUs and TASKING compiler 17/20

 1996- 2004 Segger Microcontroller Systeme GmbH

8. Interrupts

8.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as interrupts are enabled and the processor interrupt priority level

is below or equal to the interrupt priority level of the interrupting device, the
interrupt is executed.

• the CPU switches to the Interrupt stack
• the CPU saves PC and flags on the stack
• the IPL is loaded with the priority of the interrupt
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute REIT command, restoring PC, Flags and switching to previ-

ous stack
• For details, please refer to the Mitsubishi users manual.

8.2. Defining interrupt handlers in "C"

Routines preceded by the keyword __interrupt(n) save & restore the regis-
ters they modify and return with REIT.
By specifying the corresponding interrupt vector number (parameter n) in the
range of 0..63, the interrupt function is automatically inserted in the interrupt
vector table, unless this feature is not disabled by project settings.
For a additional information refer to the TASKING C-Compiler's user's guide.

Example
__interrupt (18) void UART_ISR_rx(void) {
 int Data = U0RB;
 if (Data & 0x6000) { /* Check if errors occurred */
 U0C1 &= 255-(1<<2); // disable Rx
 U0C1 |= (1<<2); // enable Rx => error reset
 } else {
 HandleRx(Data);
 }
}

8.3. Interrupt vector table

Normally there is no need to define a separate interrupt vector table when using
TASKING compiler for M16C, as interrupt routines may be written in �C� source
as described above. If for some reason, you have to define a vector table as
assembler file, please refer to TASKING documentation.

8.4. Interrupt priorities

Any interrupt priority may be used for any interrupt handler.
embOS internal interrupts for timer tick and UART for communication with em-
bOSView run on lowest interrupt priority per default.

18/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

9. STOP / WAIT Mode
Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

embOS for M16C CPUs and TASKING compiler 19/20

 1996- 2004 Segger Microcontroller Systeme GmbH

10. Technical data

10.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the near memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1680 29
Add. Task --- 17
Add. Semaphore --- 4
Add. Mailbox --- 11
Add. Timer --- 11
Power-management --- ---

11. Files shipped with embOS M16C
embOS for M16C and TASKING compiler is shipped with documentation in
PDF format and release notes as html.
The start projects, source files, all libraries and additional files required for linker
or emulator / simulator are located in the sub folder �Start�. The distribution of
embOS contains the following files:

Directory File Explanation
Start\ Start.psp Start project workspace for TASKING EDE.
Start\ Start*.prj Start projects
Start\ CLEAN.BAT Batch file to erase outputs and temporary

files.
Start\Inc\ RTOS.h embOS API header file. To be included in any

file using embOS functions
Start\Lib\ rtos*.a embOS libraries
Start\Src\ main.c Frame program to serve as a start
Start\Src\ RtosInit.c Hardware setup functions used for embOS
Start\Src\ OS_Error.c embOS error handler. Used for all builds with

runtime error check functionality.
GenOsSrc\ *.* embOS sources (Source version only)
CPU\ *.* CPU specific sources (Source version only)
 *.Bat Batch files to build embOS libraries from

sources (Source version only)

embOSView, Release notes and manuals are found in the root directory of the
distribution.
Additional files serve as sample

20/20 embOS for M16C CPUs and TASKING compiler

  1996-2004 Segger Microcontroller Systeme GmbH

12. Index
C
Clock settings............................... 15
Clock settings, timer interrupt...... 14
Clock settings, UART.................. 14
Crossview....................................... 8
I
Installation 5
Interrupt priority 17
Interrupt stack 16
Interrupt vector table.................... 17
Interrupts...................................... 17
M
M16C62P..................................... 14
M16C6N 14

Memory models............................13
Memory requirements19
O
OS_Error()11, 12
OS_FSYS...............................14, 15
OS_PCLK_TIMER................14, 15
OS_PCLK_UART..................14, 15
P
PCLKR...14
PLL settings15
S
Stacks ...16
Stacks, interrupt stack16
Stacks, system stack16

Stacks, task stacks16
Stop-mode18
System stack16
T
Task stacks16
Technical data...............................19
W
Wait-mode....................................18

	Contents
	About this document
	How to use this manual

	Using embOS with TASKING EDE
	Installation
	First steps
	The sample application Main.c

	Using debugging tools to debug the application
	Using Crossview Pro simulator
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	TASKING compiler specifics
	Data / Memory models, compiler options
	Available libraries
	Distributed project files

	M16C6N and M16C62P CPU specifics
	Clock settings and corrections for embOS timer interrupt
	Clock settings and corrections for UART used for embOSView
	PLL settings
	Conclusion about clock settings

	Stacks
	Task stack for M16C
	System stack for M16C
	Interrupt stack for M16C
	Reducing the stack size

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt vector table
	Interrupt priorities

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS M16C
	Index

