

embOS

Real Time Operating System

CPU & Compiler specifics for

RENESAS M16C CPUs

and IAR compiler

Document Rev. 5

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C CPUs and IAR compiler 3/28

 2013 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. What’s new?.. 4

2.1. Update / Upgrade information.. 4
3. Using embOS with IAR’s Embedded Workbench .. 5

3.1. Installation.. 5
3.2. First steps .. 6
3.3. The sample application Main.c .. 6

4. Using debugging tools to debug the application.. 8
4.1. Using IAR’s C-Spy simulator.. 8
4.2. Using KD30 ROM Monitor ... 11
4.3. Interrupt vector definition file KD30Vect.asm... 11
4.4. Using PD30 / PC4701 in circuit emulator... 12
4.5. Using PD30Sim.. 16
4.6. Common debugging hints .. 16

5. Build your own application... 17
5.1. Required files for an embOS application .. 17
5.2. Select a start project .. 17
5.3. Add your own code .. 17
5.4. Change memory model or library mode... 17

6. IAR compiler specifics ... 19
6.1. Data / Memory models, compiler options... 19
6.2. Available libraries... 19
6.3. Distributed project files... 20
6.4. Distributed target configurations .. 20

7. M16C6N and M16C62P CPU specifics... 21
7.1. Clock settings and corrections for embOS timer interrupt................................. 21
7.2. Clock settings and corrections for UART used for embOSView 21
7.3. PLL settings ... 22
7.4. Conclusion about clock settings... 22

8. Stacks ... 23
8.1. Task stack for M16C.. 23
8.2. System stack for M16C.. 23
8.3. Interrupt stack for M16C .. 23
8.4. Reducing the stack size ... 23

9. Interrupts ... 24
9.1. What happens when an interrupt occurs? ... 24
9.2. Defining interrupt handlers in "C"... 24
9.3. Interrupt vector table .. 24
9.4. Interrupt-stack.. 24
9.5. Fast interrupts with M16C.. 25
9.6. Interrupt priorities ... 25

10. STOP / WAIT Mode .. 26
11. Technical data... 27

11.1. Memory requirements .. 27
12. Files shipped with embOS M16C for IAR compiler .. 27
13. Index ... 28

4/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS for M16C Real Time Operating Sys-
tem for the RENESAS M16C series of microcontroller using IAR compiler and
IARs Embedded Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using M16C
CPUs with IAR compiler. Before actually using embOS, you should read or at
least glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using IAR C compiler and IAR’s Embedded Workbench.. If you have no experi-
ence using embOS, you should follow this introduction, even if you do not plan
to use IAR’s Embedded Workbench, because it is the easiest way to learn how
to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the M16C
CPUs and IAR compiler.

2. What’s new?
• Additional libraries delivered with embOS
Since version 3.20, libraries for byte aligned objects and near constants in near
memory model are delivered with embOS for M16C. Near constants are re-
quired for R8C CPU which is supported by new IAR workbench and compiler
since version 2.12.
• Fast interrupts:
Since version 3.10p of embOS for M16C, interrupt handling inside embOS
was modified. Instead of disabling interrupts when embOS does atomic opera-
tions, the interrupt level of the CPU is set to 4. Therefore all interrupts with level
5 or above can still be processed.

2.1. Update / Upgrade information

When you update / upgrade from an embOS version prior 3.10p, you may
have to change your interrupt handlers because of Fast interrupt support. All in-
terrupt handlers using embOS functions have to run on priorities from 1 to 4.
Please read chapter “Interrupts” in this manual.

embOS for M16C CPUs and IAR compiler 5/28

 2013 SEGGER Microcontroller GmbH & Co. KG

3. Using embOS with IAR’s Embedded Work-
bench

3.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using IAR’s Embedded Workbench to develop your ap-
plication, no further installation steps are required. You will find a prepared
sample start project for M16C CPUs, which you should use and modify to write
your application. So follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use IAR’s Embedded Work-
bench for your application development in order to become familiar with em-
bOS.

embOS does in no way rely on IAR’s Embedded Workbench, it may be used
without the workbench using batch files or a make utility without any problem.

6/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

3.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace
and project for M16C CPUs and it is a good idea to use this as a starting point
of all your applications.

Your embOS distribution contains one folder ‘Start’ which contains the sample
start workspace and project and every additional files used to build your appli-
cation.

To get your application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the embOS distribution disk into your

work directory.
• Clear the read only attribute of all files in the new ‘Start’-folder in your work-

ing directory.
• Open the folder ‘Start’ in your work directory.
• Open the start workspace ‘Start.eww’. (e.g. by double clicking it)
• Build the start project

After building the start project your screen should look like follows:

Initially a target for Near memory model for IAR’s simulator / debugger CSpy
should be selected.
If you do not have CSpy installed, you may select an other target which is use-
able for your simulator / debugger.

3.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.

embOS for M16C CPUs and IAR compiler 7/28

 2013 SEGGER Microcontroller GmbH & Co. KG

What happens is easy to see:

After initialization of embOS; two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 OS_Delay (10);
 }
}

void Task1(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_Start(); /* Start multitasking */
 return 0;
}

8/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

4. Using debugging tools to debug the applica-
tion

The embOS start project contains targets which are already setup for the fol-
lowing debugging tools:
• IAR’s debugger / simulator CSpy. This target is named “CSpy_Simulator”.
• RENESAS’s ROM Monitor KD30. This target is named “Target_KD30” and

may also be used with IAR CSpy in serial ROM monitor mode
• RENESAS’s in circuit emulator PD30. This target is named “Target_PD30”
These targets are prepared to produce the appropriate output files required by
your debugger.
The following chapters describe a sample session based on our sample appli-
cation main.

4.1. Using IAR’s C-Spy simulator

When starting C-Spy simulator after building the C-Spy target, you will usually
see the main function, or you may look at the startup code and have to set a
breakpoint at main. Now you can step through the program.
OS_IncDI()initially disables interrupts and prevents OS_InitKern() from re-
enabling them.
OS_InitKern()initializes embOS -Variables. As this function is part of the
embOS library, you may step into it in disassembly mode only.
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. As simulators usually can not simulate UART operations,
OS_UART should be defined as (-1) to disable UART initialization and commu-
nication.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

embOS for M16C CPUs and IAR compiler 9/28

 2013 SEGGER Microcontroller GmbH & Co. KG

Before stepping over OS_Start(), you should set two breakpoints in our tasks
in main.c as shown below:

When you step over OS_Start() the next source line executed is Task0 which
is the task with the highest priority in our start project and is therefore activated.

If you continue stepping, you will arrive in the task with the lower priority:

10/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or
timer executing). OS_Idle() is found in RTOSInit.c:

If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.
Coming from OS_Idle(), you should execute the ‘Go’ command:

embOS for M16C CPUs and IAR compiler 11/28

 2013 SEGGER Microcontroller GmbH & Co. KG

As can be seen by the value of embOS timer variable OS_Time, shown in the
watch window, Task0 continues operation after expiration of the 10 ms delay.

4.2. Using KD30 ROM Monitor

The distribution of embOS for M16C is prepared for usage of KD30 ROM
monitor. KD30 ROM monitor needs UART interrupt vectors which point to KD30
internal interrupt functions.
These vectors are defined in ‘KD30Vect.asm’ which is included in the target
“Target_KD30” which is setup for KD30. Please check whether these vectors fit
to your version of ROM monitor.
As KD30 usually communicates via UART1 of the target CPU, this UART can
not be selected as communication port for embOSView or for your application.
Note also, that the variable interrupt vector table has to be located below the
highest target CPUs flash sector, which is used by KD30 ROM Monitor.
The linker file used by embOS KD30 target is set up accordingly.

Problem with KD30 ROM monitor running embOS application:
When ROM monitor stopped at a breakpoint, it may happen, that any interrupt
activates a task switch while stepping through the program, as interrupts are
enabled during stepping. This task switch can not be handled by KD30 and
KD30 crashes.
To overcome this problem, you should open the register window and set inter-
rupt priority (IPL) to 6 immediately after the breakpoint was reached. This en-
ables stepping without any task switches, as all embOS interrupts normally run
with lower priorities.
How to step through the sample application can be seen chapter 3.4 “Using
PD30 / PC4701 in circuit emulator. PD30 is similar to KD30.

4.3. Interrupt vector definition file KD30Vect.asm

This file defines two interrupt vectors for UART1 used by KD30 ROM Monitor.
When not using KD30, an interrupt vector definition file is not required, as em-
bOS interrupts are defined in ‘C’-source code.

12/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

When using KD30, please check whether the vector itself fits to your KD30
monitor version:
• 0FCB6Bh for old version of KD30
• 0FF900h for newer version of KD30 (above 3.0).

Both vectors for Rx- and Tx- interrupt point to the same address.

Important:
Please ensure, that this file is linked to your application, when needed for KD30
ROM-Monitor.
Check the project options for assembler AM16C, code generation:
‘Make a LIBRARY module’ option has to be unchecked. Otherwise the linker
would optimize those vectors away, as they are not referenced by your applica-
tion.

4.4. Using PD30 / PC4701 in circuit emulator

The standard distribution of embOS for M16C and IAR compiler contains a tar-
get for RENESAS’s PD30 / PC4701 in circuit emulator.
This target is named “Target_PD30” and it produces an ‘X30’ output file with
debug information which may be loaded into PD30 eg. RENESAS’s PC4701 in
circuit emulator to debug the application.
When starting the debugger and load the application, you will usually see the
main function (very similar to the screenshot below). or you may look at the
startup code and have to set a breakpoint at main. Now you can step through
the program.
OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes embOS -Variables and enables inter-
rupts. If you do want to enable interrupts from start, you are free to change your
code by incrementing the interrupt-disable counter using OS_IncDI() before
calling OS_InitKern().
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. In this case it should initialize the UART used for communication.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

embOS for M16C CPUs and IAR compiler 13/28

 2013 SEGGER Microcontroller GmbH & Co. KG

Before you step into OS_Start(), you should set breakpoints in the two tasks
as shown below:

14/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, Task0() is the highest priority task and is therefore active.

If you continue stepping, you will arrive in the task with the lower priority:

embOS for M16C CPUs and IAR compiler 15/28

 2013 SEGGER Microcontroller GmbH & Co. KG

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or
timer executing). OS_Idle() is found in RTOSInit.c:

If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.
Coming from OS_Idle(), you should execute the ‘Go’ command:

16/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

Please note:
As the emulator does not stop the timer when it reaches a breakpoint, the timer
continues counting and produces an interrupt as soon as the next step is exe-
cuted. This results in extra counts of the time variable OS_Time which is shown
in the watch window.

The screenshots above are taken with an older version of PD30 as those look
the same for PD30, KD30 and PD30Sim.
Version 6 of PD30 looks a little bit different, but the principle of operation is the
same.

4.5. Using PD30Sim

The PD30 simulator may be used to examine or debug your application. The
peripherals of M16C are not simulated automatically. To simulate interrupts,
you have to load an I/O script file.
The embOS distribution contains the I/O script file ‘PD30_SimInt21.scr’
which simulates timer A0 interrupt, which is normally used as embOS timer in-
terrupt.
The interrupt simulation should be started after the call of OS_InitHW().
To start the simulation, proceed as follows:
• Open the I/O script window by menu ‘Optional Window | IO Window’.
• From the menu in the IO Window, choose ‘Load’
• Open the I/O script file ‘PD30_SimInt21.scr’ found in the start directory

Please note:
The simulation starts immediately, but stops as soon as the IO Window is
closed. Therefore the IO Window may be minimized, but must not be closed
during the debugging session.

4.6. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build contains addi-
tional error check functions during runtime.
When an error is detected, the debug libraries call OS_Error(), which is de-
fined in the separate file OS_Error.c.
Using an emulator you should set a breakpoint there. The actual error code is
assigned to the global variable OS_Status. The program then waits for this
variable to be reset. This allows to get back to the program-code that caused
the problem easily: Simply reset this variable to 0 using your in circuit-emulator,
and you can step back to the program sequence causing the problem. Most of
the time, a look at this part of the program will make the problem clear.
For M16C CPUs, the error code is contained in the R0 register (refer to IAR
documentation for details on the calling convention)
How to select an other library with debug code for your projects is described
later on in this manual.

embOS for M16C CPUs and IAR compiler 17/28

 2013 SEGGER Microcontroller GmbH & Co. KG

5. Build your own application
To build your own application, you should start with the sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

5.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has
to be included in any source file using embOS functions.

• RTOSInit.c from subfolder Src\.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• OS_Error.c from subfolder Src\.
It contains the embOS runtime error handler OS_Error()which is used in
stack check or debug builds.

• One embOS library from the Lib\ subfolder
• KD30Vect.asm from subfolder Src\ for KD30 targets

If target should be built for KD30, the interrupt vectors for KD30 UART have
to be defined in your project. This is done in KD30Vect.asm.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_incDI() are
called.

5.2. Select a start project

embOS comes with one start project which includes different targets for differ-
ent output formats or debug tools. The start project was built and tested for
standard M16C CPUs. For various CPU variants there may be modifications
required as described later in this manual.

5.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

5.4. Change memory model or library mode

For your application you may have to choose an other data- / memory-model.
For debugging and program development you should use an embOS -debug
library. For your final application you may wish to use an embOS -release li-
brary.
Therefore you have to replace the embOS library in your project or target:
• Build a new group for the library an add it to the selected target.
• Add the appropriate library from the Lib-subdirectory to your new group.
• Remove the previous library group from your target.

18/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

Finally check project options about target CPU data / memory model settings
and compiler settings according library mode used. Refer to chapter 6 about
the library naming conventions to select the correct library.

embOS for M16C CPUs and IAR compiler 19/28

 2013 SEGGER Microcontroller GmbH & Co. KG

6. IAR compiler specifics

6.1. Data / Memory models, compiler options

embOS for M16C for IAR compiler is delivered with libraries for the most com-
mon data models and other optional settings used by IAR compiler.
The following limitations exist when standard embOS libraries are used:
• Calling convention Simple not supported by standard libraries.
• 64bit IEEE floating point option not supported by standard libraries
When embOS sources are used or recompiled with the appropriate options, all
of these options may be used.

IAR compiler offers three main data models:
Data Model Variables in
Near pointers far (20 bits always) near (16 bits)
Far pointers far (20 bits always) far (20 bits, 64K segments)

Default placement far
Huge pointers far (20 bits always) huge (20 bits)

6.2. Available libraries

embOS is shipped with libraries for most commonly used data model options.
The library name is composed as follows:

rtos u v w x y z LM.r34

Parameter Meaning Values

n: Near pointers
f: Far pointers

u Data model

h: Huge pointers
n: Near memory
f: Far memory

v Variable placement

h: Huge memory
n: Near memory
f: Far memory

w Constant placement

h: Huge memory
f: 32 bit x size of doubles
d: 64 bit IEEE float *Note
w: word aligned y Alignment of objects
b: byte aligned
w: writeable (located in RAM) z Writeable strings
c: constant
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling

LM Library mode

DT: Debug + profiling + Trace
*Note: Not supported by standard embOS libraries
The following data model / variable placement options are supported by stan-
dard embOS libraries:

20/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

Data model Variables Constants Library name Note
Near pointers Near Near rtos_nnnfyw_LM.r34 Writeable

strings
Near pointers Near Near rtos_nnnfyc_LM.r34
Near pointers Near Far rtos_nnffyc_LM.r34
Near pointers Near Huge rtos_nnhfyc_LM.r34
Far pointers Near Far rtos_fnffyc_LM.r34
Far pointers Far Far rtos_ffffyc_LM.r34
Huge pointers Near Huge rtos_hnhfyc_LM.r34
Huge pointers Huge Huge rtos_hhhfyc_LM.r34

y may be b for Byte aligned objects or w for word aligned objects.

LM For each data model / variable placement options, all embOS Library
modes are available:

Library mode Meaning define
XR Extreme Release OS_LIBMODE_XR
R Release OS_LIBMODE_R
S Stack check OS_LIBMODE_S
SP Stack check + Profiling OS_LIBMODE_SP
D Debug + stack check OS_LIBMODE_D
DP Debug + stack check + Profiling OS_LIBMODE_DP
DT Debug + stack check + profiling + Trace OS_LIBMODE_DT

This results in 96 different libraries delivered with embOS.

When using IAR workbench, please check the following points:
• The data / memory model is set as general project option
• One embOS library is part of your project (included in one group of your

target). To find out the correct embOS library, you may look at XLINK op-
tions “Include, Library”. embOS libraries follow the same naming conven-
tions as IAR runtime libraries included by linker.

• The appropriate define according to embOS library mode is set as compiler
preprocessor option for your project.

6.3. Distributed project files

The distribution of embOS for M16C and IAR compiler contains one start pro-
ject for IAR’s Embedded Workbench that contains targets for near memory
model and SP library types.

6.4. Distributed target configurations

Different targets are included in the sample start project. The targets are named
according the output format they were built for:

• Target: Produces an Motorola output file
• CSpy Simulator: Is set up for CSPY Simulator, produces the correct output

file and starts embOS timer interrupt simulation.
• Target_KD30: Includes UART vectors used for KD30 ROM monitor. It may

be used with CSpy or KD30.
• Target_PD30: Produces an X30 output file used for in circuit emulator.

embOS for M16C CPUs and IAR compiler 21/28

 2013 SEGGER Microcontroller GmbH & Co. KG

7. M16C6N and M16C62P CPU specifics
The hardware initialization routines and default settings in RTOSInit.c were de-
signed for M16C/62 CPUs.
M16C6N and M16C62P CPUs are equipped with additional prescaler that is ac-
tivated per default after reset and divide the peripheral clock for timer and
UART by two.
This results in wrong settings for embOS timer tick and baudrate for UART
used for embOSView.
As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked when you update to a newer
version of embOS.

7.1. Clock settings and corrections for embOS timer interrupt

OS_InitHW() routine in RTOSInit.c derives timer init values from the con-
stant define OS_PCLK_TIMER. Per default, the value of OS_PCLK_TIMER
equals OS_FSYS, which defines the CPU clock of the target system. As
M16C6N and M16C62P CPUs have additional prescaler for timer peripherals,
the calculated values derived from OS_PCLK_TIMER are wrong, the timer will
run at half the estimated speed without correction.

To correct the embOS timer tick frequency, you may:
• Reprogram the Peripheral function clock select register (PCLKR) at address

0x025E to disable the prescaler for timer peripherals. This should be done
before calling OS_InitHW() either during your own target specific hard-
ware initialization or during __low_level_init() which is called from
startup code. The protection register bit 0 has to be set to enable modifica-
tion of PCLKR.

• You may alternatively define OS_PCLK_TIMER as project option (compiler
preprocessor option). This value is used to calculate values used to initial-
ize embOS timer.

7.2. Clock settings and corrections for UART used for embOS-
View

OS_COM_Init() routine in RTOSInit.c derives baudrate generator init val-
ues from the constant define OS_PCLK_UART. Per default, the value of
OS_PCLK_UART equals OS_FSYS, which defines the CPU clock of the target
system. As M16C6N and M16C62P CPUs have additional prescaler for UART
peripherals, the calculated values derived from OS_PCLK_UART are wrong, the
UART will run at half the estimated speed without correction.

To correct the embOS UART baudrate for embOSView, you may:
• Reprogram the Peripheral function clock select register (PCLKR) at address

0x025E to disable the prescaler for UART peripherals. This should be done
before calling OS_InitHW() either during your own target specific hard-
ware initialization or during __low_level_init() which is called from
startup code. The protection register bit 0 has to be set to enable modifica-
tion of PCLKR.

• You may alternatively define OS_PCLK_UART as project option (compiler
preprocessor option). This value is used to calculate values used to initial-
ize UART used for communication with embOSView.

22/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

7.3. PLL settings

M16C62P group CPUs are equipped with internal PLL and other clock options.
Standard RTOSInit.c routines are written for CPUs without PLL.
Normally, PLL should be initialized as early as possible. You may initialize PLL
in __low_level_init() which is called during startup code.
When using PLL, OS_InitHW() which initializes embOS timer may have to be
modified.

7.4. Conclusion about clock settings

• OS_FSYS has to be defined according to your CPU clock frequency. This
should be defined as compiler preprocessor option in your project.

• OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral
clock for the embOS timer. The value defaults to OS_FSYS. It should be
modified and defined as compiler preprocessor option if modification is re-
quired.

• OS_PCLK_UART has to be defined to fit the frequency used as peripheral
clock for the UART used for communication with embOSView. The value
defaults to OS_FSYS. It should be modified and defined as compiler pre-
processor option if modification is required.

• PLL settings should be checked. OS_InitHW() in RTOSInit.c might have
to be modified, as this function modifies clock options of CPU.

embOS for M16C CPUs and IAR compiler 23/28

 2013 SEGGER Microcontroller GmbH & Co. KG

8. Stacks

8.1. Task stack for M16C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the M16C CPU.
As M16C CPUs have a 16bit stack pointer only, this may be any RAM located
from 0x0400..0xFFFF.
The stack-size required is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the M16C, this minimum stack size is about 42 bytes in the near memory
model.

8.2. System stack for M16C

The system stack size required by embOS is about 40 bytes (65 bytes in.
profiling builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.
The stack used as system stack is the one defined as CSTACK in the linker
command file (*.xcl).
A good value for the system stack is typically about 80 to 200 bytes.
The stack size itself can be set as project option under “General Options, Heap
/ Stack”.

8.3. Interrupt stack for M16C

The M16C CPU has been designed with multitasking in mind; it has 2 stack-
pointers, the USP and the ISP. The U-Flag selects the active stack-pointer.
During execution of a task or timer, the U-flag is set thereby selecting the user-
stack-pointer. If an interrupt occurs, the M16C clears the U-flag and switches to
the interrupt-stack-pointer automatically this way. The ISP is active during the
entire ISR (interrupt service routine). This way, the interrupt does not use the
stack of the task and the stack-size does not have to be increased for interrupt-
routines. Additional stack-switching as for other CPUs is therefore not neces-
sary for the M16CC.
The stack used as interrupt stack is the one defined as ISTACK in the linker
command file (*.xcl).
The interrupt stack size itself can be set as project option under “General Op-
tions, Heap / Stack”.

8.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
and interrupt stack also. Using embOSView the total size and used size of any
stack can be examined. This may be used to reduce the stack sizes, if RAM
space is a problem in your application.

24/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

9. Interrupts

9.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as interrupts are enabled and the processor interrupt priority level

is below or equal to the interrupt priority level of the interrupting device, the
interrupt is executed.

• the CPU switches to the Interrupt stack
• the CPU saves PC and flags on the stack
• the IPL is loaded with the priority of the interrupt
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute REIT command, restoring PC, Flags and switching to User

stack
• For details, please refer to the RENESAS users manual.

9.2. Defining interrupt handlers in "C"

Routines preceded by the keyword __interrupt save & restore the registers
they modify and return with REIT.
The corresponding interrupt vector number should be written prior the function
using a #pragma directive.
For a detailed description on how to define an interrupt routine in "C", refer to
the IAR C-Compiler's user's guide.

Example
"Simple" interrupt-routine

#pragma vector = 21
__interrupt void ISR_Timer (void) {
 OS_EnterInterrupt();
 HandleTimer();
 OS_LeaveInterrupt();
}

9.3. Interrupt vector table

Normally there is no need to define a separate interrupt vector table when using
IAR compiler for M16C, as interrupt routines may be written in “C” source as
described above. If for some reason, you have to define a vector table as as-
sembler file, please refer to IAR documentation or take the vector definition file
KD30Vect.asm for KD30 ROM Monitor interrupt vectors as reference.

9.4. Interrupt-stack

Since the M16C CPUs have a separate stack pointer for interrupts, there is no
need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source
compatibility to other processors only and have no functionality.

embOS for M16C CPUs and IAR compiler 25/28

 2013 SEGGER Microcontroller GmbH & Co. KG

9.5. Fast interrupts with M16C

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 4. Therefore all interrupts with level 5 or above
can still be processed.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

9.6. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.
• Any interrupt handler using embOS API functions has to run with interrupt

priorities from 1 to 4. These embOS interrupt handlers have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and must
end with OS_LeaveInterrupt() or OS_LeaveNestableInterrupt().

• Any Fast interrupt (running at priorities from 5 to 7) must not call any
embOS API function. Even OS_EnterInterrupt() and
OS_LeaveInterrupt() must not be called.

• Interrupt handler running at low priorities (from 1 to 4) not calling any
embOS API function are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Fast interrupts is fixed to
4 and can only be changed by recompiling embOS libraries!

26/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

10. STOP / WAIT Mode
Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part
of the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

embOS for M16C CPUs and IAR compiler 27/28

 2013 SEGGER Microcontroller GmbH & Co. KG

11. Technical data

11.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the near memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1650 28
Add. Task --- 18
Add. Semaphore --- 4
Add. Mailbox --- 12
Add. Timer --- 12
Power-management --- ---

12. Files shipped with embOS M16C for IAR
compiler

embOS for M16C and IAR compiler is shipped with documentation in PDF for-
mat and release notes as html.
The start project, source files, all libraries and additional files required for linker
or emulator / simulator are located in the sub folder ‘Start’. The distribution of
embOS contains the following files:

Directory File Explanation
Start\ Start.eww Start workspace for IAR Embedded Work-

bench.
Start\ Start.ewp Start project for IAR Embedded Work-

bench.
Start\ Cspy.mac embOS timer Interrupt simulation macro

for IAR C-Spy simulator
Start\ PD30_SimInt21.

scr
IO script file for embOS timer interrupt
simulation under PD30Sim

Start\Inc\ RTOS.h embOS API header file. To be included in
any file using embOS functions

Start\Lib\ *.r34 embOS libraries
Start\Src\ main.c Frame program to serve as a start
Start\Src\ RtosInit.c Hardware setup functions used for em-

bOS
Start\Src\ OS_Error.c embOS runtime error handler.
Start\Src\ KD30Vect.asm Interrupt vector definition sample for KD30

ROM monitor.
GenOsSrc\ *.* embOS sources (Source version only)
 *.Bat Batch files to build embOS libraries from

sources (Source version only)

embOSView and the manuals are found in the root directory of the distribution.

28/28 embOS for M16C CPUs and IAR compiler

  2013 SEGGER Microcontroller GmbH & Co. KG

13. Index
_
__low_level_init()........................ 21
C
Clock settings............................... 22
Clock settings, timer interrupt...... 21
Clock settings, UART.................. 21
C-Spy ... 8
CSTACK...................................... 23
F
Fast interrupt................................ 25
I
Installation 5
Interrupt priority 25
Interrupt stack 23
Interrupt vector table.................... 24
Interrupt, fast................................ 25
Interrupts...................................... 24

Interrupt-stack24
ISTACK23
K
KD30..11
KD30Vect.asm.............................11
M
M16C62P21
M16C6N21
Memory models............................19
Memory requirements27
O
OS_Error()16, 17
OS_FSYS...............................21, 22
OS_PCLK_TIMER................21, 22
OS_PCLK_UART..................21, 22
P
PCLKR...21

PD30...12
PD30Sim16
PLL settings..................................22
R
ROM Monitor...............................11
S
Stacks ...23
Stacks, interrupt stack...................23
Stacks, system stack......................23
Stacks, task stacks23
Stop-mode26
System stack23
T
Task stacks23
Technical data...............................27
W
Wait-mode....................................26

	Contents
	About this document
	How to use this manual

	What’s new?
	Update / Upgrade information

	Using embOS with IAR’s Embedded Workbench
	Installation
	First steps
	The sample application Main.c

	Using debugging tools to debug the application
	Using IAR’s C-Spy simulator
	Using KD30 ROM Monitor
	Interrupt vector definition file KD30Vect.asm
	Using PD30 / PC4701 in circuit emulator
	Using PD30Sim
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	IAR compiler specifics
	Data / Memory models, compiler options
	Available libraries
	Distributed project files
	Distributed target configurations

	M16C6N and M16C62P CPU specifics
	Clock settings and corrections for embOS timer interrupt
	Clock settings and corrections for UART used for embOSView
	PLL settings
	Conclusion about clock settings

	Stacks
	Task stack for M16C
	System stack for M16C
	Interrupt stack for M16C
	Reducing the stack size

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt vector table
	Interrupt-stack
	Fast interrupts with M16C
	Interrupt priorities

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS M16C for IAR compiler
	Index

