embOS

Real Time Operating System

CPU & Compiler specifics for
RENESAS M16C CPUs
and HEW workbench

Document Rev. 1

) E—
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/28 embOS for M16C CPUs and NC30 compiler

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 3/28

Contents
L0 1 (=T 01 £ PP 3
1. ADOUL thiS AOCUMENT ...t e et e e e e e e e e e eaab e e e e e eeeeeees 4
1.1. HOW t0 USE thiS MANUAL........ceiiiiiiiiiiiiiiiiiiiiieii it 4
2. Using embOS with RENESAS HEWoiiii e 5
2.0 INSTAIALION. ... 5
A e | €5 B = 1T 6
2.3. The sample application MaIN.Ccouuuiiiieie e e 6
3. Using debugging tools to debug the application..............cooiiiiiiiiiiiiiii e 8
3.1. Debug the application using HEW M16C Simulatorcccevvvvviiiieeeeeeeeeiinnnnn. 8
3.2. USIiNg KD30 ROM MONITOKuiiieiiiiiiiiiiiie ettt e e e e eeanann s 14
3.3. Using PD30 / PC4701 / PC7501 in circuit emulator.............ccoevvvvvieieeeeeeeeiiiinnnn. 17
I S U S To I 2 1015 o PP 18
4. Build your oOWN appliCatiON........cooviiiiiiie e e e e e e e e e aaaaa—— 19
4.1. Required files for an embOS applicationccooviiiiiiiiiiiiiiii e, 19
S 1o (=T = U] = L o (o] [o 19
4.3. Add YOUI OWN COER ...ttt e ettt e e e e e e e e eaaa e e e as 19
4.4. Change memory model or library mode............cooovvviiiiiiiieiiieee e 19
5. M16C and NC30 SPECITICS ...uuuuuuiiiieiii ittt e ettt e e e e e e eeerb e e e e e eeeeenes 21
S0 |V =T g T Y 10T L= £ 21
5.2, Available lDrariEs. 21
5.3. Distributed project fileS.......uu i 21
5.4. M306N CPU SPECITICS ...ciiiiiiiiiiiiie ettt e e e e e e anen s 21
5.5. M16C/62P CPU SPECIFICS, PLLuuiiiiiiiiiiiiiiiiiiiiiiiiiii e 22
5.6. Startup file NCRTO.830.......uuiiiiiiiiiiiiiiiiee ettt e e e e eeanea s 22
5.7. Section and interrupt vector definition file SECT30.INC.......ccovvvviiiieeieeeeeeiiiiinn. 22
8. SHACKS ..t e et e e e e et e et b e e e e e eeeeaaeeee 23
6.1. TaSK StACK FOr MLBCuuuiiiiiiiiiiiiiiiii s 23
6.2. System Stack fOr MLBC.........uuiiii e 23
6.3. Interrupt StaCk fOr MLOCuiiii e e e e e s 23
6.4. Reducing the StaCK SIZeiiiiiii e 23
A L1 (=] € (0] 0] £ PPN 24
7.1. What happens when an interrupt OCCUIS?ooeeiiiiiiiiiiiie et e e 24
7.2. Defining interrupt handlers in "C™ooooeeiii e 24
7.3. Interrupt VECLOr table ... 24
A 11 (=T 8 o ot = Lo G 24
7.5. Fast interrupts WIith MLOBCiiii e 25
AT 1 (=T 0T o1 o1 o 11 1 S 25
8. STOP / WAIT MOUE ... 26
9. TECNNICAI ALA......ccc e oo 27
9.1. MemMOIY rEQUITEMENTSciiiiiiiiiii e e e ettt e e e e ettt e e e e e e e e e e aba e e e e e e e eeenennan s 27
10. Files shipped with embOS for NC30 COMPIIET.........uvuiiiiiieeiiieeiiee e 27
0 T 1 T = PSSR 28

0 2008 SEGGER Microcontroller GmbH & Co. KG

4/28 embOS for M16C CPUs and NC30 compiler

1. About this document

This guide describes how to use embOS for M16C Real Time Operating Sys-
tem for the RENESAS M16C series of microcontroller using RENESAS NC30
compiler version 5.40 and HEW version 4.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using M16C
CPUs with NC30 compiler. Before actually using embOS, you should read or at
least glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using RENESAS High-performance Embedded Workshop HEW. If you have no
experience using embOS, you should follow this introduction, even if you do
not plan to use RENESAS HEW, because it is the easiest way to learn how to
use embOS in your application.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the M16C
CPUs and NC30 compiler.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 5/28

2. Using embOS with RENESAS HEW

2.1. Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using RENESAS HEW to develop your application, no
further installation steps are required. You will find a prepared sample work-
space and sample start project for M16C CPU, which you should use and mod-
ify to write your application. So follow the instructions of the next chapter ‘First
steps’.

You should do this even if you do not intend to use RENESAS HEW for your
application development in order to become familiar with embOS.

embOS does in no way rely on RENESAS HEW, it may be used without the
workbench using batch files or a make utility without any problem.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C CPUs and NC30 compiler

2.2. First steps

After installation of embOS (- Installation) you are able to create your first
multitasking application. You received a ready to go sample start project for
M16C CPUs and it is a good idea to use this as a starting point of all your appli-
cations.

Your embOS distribution contains everything you need for NC30 compiler ver-
sion 5.40 and HEW version 4. If you have to use compiler version 5.3 or lower
and RENESAS Tool manager, the sample start workspace can not be used.

For NC30 compiler version 5.40 and HEW version 4 which is explained in this

manual, you should:

» Create a work directory for your application, for example c:\work

e Copy all files and subdirectories from the folder ‘em-
bOS M16C _NC30 V540 HEW’ from your embOS distribution into your
work directory.

» Clear the read only attribute of all files in the new ‘Start’-folder in your work-
ing directory.

* Open the folder ‘Start’

* Open the start workspace ‘Start. M16C.hws’. (e.g. by double clicking it)

* Build the start project

After building the start project, your screen should look like follows:

Fil= Edit “iew Project Buld Debug Setup Tools Window Help
IR A e - = =l
=
E@ Start_M16C - L\ ork\STARTASRC\Main.c H=]
E--(E Start_M16C 40 static void HFTaskivoid) ¢ =
E-E3 INC 41 while (1] {
- L[] CRUMIBCH 4z 0f_Delay (10);
43 H
44 h
45
46 static woid LPTask(wvoid] {
B3 Sre 47 while (1) { J
ERIEY] ain.c| 48 05_Delay (50);
+- | &] nert0.a30 49 3
05_Erorc 50 b
- |£] RTOSInit.c E1 hd
i [2] sect30ine ﬂ_l o
T e | ISR =TS | < Maine I
:’:II Phaze M1&6C Load Module Converter finished ;I
Build Finished
0 Errors, 0 Warnings j
4 I DI\BuiId f{Debug ,}\ Find in Files)\ Yersion Control j‘
Feady [FT EZ| 2| EB| [Defaultl deskiop [Readwiite [1/59 v

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.

What happens is easy to see:

After initialization of embOS; two tasks are created and started

The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 7/28

/***

* SEGGER M CROCONTROLLER SYSTEME GrbH *
* Solutions for real time mcrocontroller applications *
Rk I S kS S O S
* *
* (O 2006 SEGGER M crocontrol | er Systenme GrbH *
* *
* WWW. segger . com Support: support @egger.com *
* *
Rk I S kS I S R S R S O I O kO I

File : Main.c
Pur pose : Skel eton program for enbhCS
-------- END- OF- HEADER - - == - = === = = == o e e mm e e

#i ncl ude "RTGCS. H'

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; [* Task-control -bl ocks */

static void HPTask(void) {
while (1) {
CS _Del ay (10);

}

static void LPTask(void) {
while (1) {
CS_Del ay (50);

}

/***
*
* .

mal n
*
***/

int main(void) {

CS IncDi(); /* Initially disable interrupts */
CS I nitKern(); /[* initialize OS */
CS InitHW); /* initialize Hardware for OS */
/* You need to create at |east one task here ! */

OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);

CS Start(); /[* Start multitasking */
return O;

}

0 2008 SEGGER Microcontroller GmbH & Co. KG

8/28 embOS for M16C CPUs and NC30 compiler

3. Using debugging tools to debug the applica-
tion
The embOS start project is configured to produce an “X30” output file which
can directly be loaded into RENESAS in circuit emulator, the compatible
simulator PD30Sim, may also be used with the ROM Monitor KD30 or even the
HEW simulator.

The following chapter describes a sample session based on our sample appli-
cation main.

3.1. Debug the application using HEW M16C Simulator

The easiest way to debug the start project is using the M16C Simulator which is
included in Renesas HEW.
The distribution of embOS for M16C comes with a simple timer simulation script
which can be used to simulate the embOS system timer.
After building the start project, the M16C Simulator can be selected as debug-
ger by the following procedure:
e From The main menu choose “Debug -> Debug Settings”.
* Inthe “Debug Settings” dialog, select Target: M16C Simulator.
* In the “Debug Settings” dialog, select Default Debug Format:
IEEE695 RENESAS.
In the “Debug Settings” dialog, add the generated output of the start pro-
ject to the list “Download Modules”. The output file of the sample start
project for M16C is “Start\Start_M16C\debug\Start M16C.x30"

The dialog should look like follows:

Debug Settings HE |
IDefaultSessiDn j T arget | Dptiunsl
------ (5 Stat_MIGC Target
|M16C REC Simulator =

Default Debug Format:
|[EEEEI5_RENESAS =

Diownload kodules:

File Mame | Offzet Addrezs | Faormat |
C:vwlorkhStarthStart_ . 00000000 IEEEE35_REMES. .

Eemawe |

e |
[T |

OF. | Cancel |

You will then have to setup the M16C Simulator, if not already done.
When you choose “Debug -> Connect” from the main menu, The “Init (M16C
Simulator)” dialog appears.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 9/28

You have to define a CPU in the “MCU” tab. To select a CPU, click the “Re-
fer...” button.

For the Start. M16C sample, select the M16C6x.mcu file.

Depending on other options, the debugger then automatically loads the target
file.

To be sure the right target is loaded, you may choose “Debug -> Download
Modules” from the main menu and load the Start_ M16C.x30 file.

0 2008 SEGGER Microcontroller GmbH & Co. KG

10/28 embOS for M16C CPUs and NC30 compiler

The Debugger will load the file and show the startup code:

E:ﬁ:!ﬁtalt_H1EE - High-performance Embedded Workshop - [C:AWorkA\STARTASRCAncrtD. a30]

<+ File Edit Wiew Project Buld Debug Setup Toolz Window Help _|5|1|
IN=2=N- N e N [e e Nt | ey
162 Y zl
170 : after reset,this program will startc
171 HE e ke it I e bl bl b D DD Lt
172 £1419 = 1lde #istac}c_top, isp ;set istack pointer
173 fi41d mov.hb #02Zh,0ah
174 fl14:-1 o . b #00h, 04h ;3et processer wmode =1
175 fild4z4 wov . b #00h, Oah
176 fi14z7 lde #0080k, flg
177 fl14z2Zh 1de #stack_tu:np, 3p !sSet stack pointer
178 f14:=f ldc #data_SE_tDp, sh :=set sh register
179 £f1433 ldinth #VECTOR_LDR -
4| I 3
“lF neoitD a3l l
Ready FZ |Default] deskiop |Readw 2

You should open or select the main.c file and set a breakpoint at main()
When you then start the CPU by “Debug -> Go” or just press F5, the simulator
stops at main. Alternatively, you may step through the startup code to get there:

E:ﬁ:!ﬁtalt_H1EE - High-performance Embedded Workshop - [C:\Work\Start\SrciMain.c]
<+ File Edit Wiew Project Buld Debug Setup Toolz Window Help _|5|1|
IN=2=N- M= e AR 2 LR N N ey
Els=
o B
58 fO0045 |4 int mwain(void) |
59 foo4s 03 IncDI(): ¥ Initially disakle inte:
[=10] fO0OS5f 03 InitEerni(): S* initiaslize OS5
61 fO063 O3 _InitHWQ) ; % initialize Hardware for
62 A% ¥ou need to create at least one task here !
63 fO06E7 03 CREATETASE (&TCEHF, "HP Task"™, HPTask, 100, StackHP):
64 foos1 05 CREATETASE(&TCELP, "LFP Task"™, LPTask, S50, StackLP);
65 o0kl 03 _Starc():; % 3tart maltitasking J
33 fookt return 0;
67 } -
1| I 3
F o poitla3d 2 Maine I
Ready FZ |Default] deskiop |Readw 2

You may now step through the sample application.

e OS_IncDl () Initially disables interrupts and prevents re-enabling them in
OS InitKern().

e OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables.

« OS_InitHW) is part of RTOSInit.c and therefore part of your application.
Its primary purpose is to initialize the hardware required to generate the
timer-tick-interrupt for embOS. Step through it to see what is done.

e OS _Start () should be the last line in main, since it starts multitasking and
does not return. OS_St ar t () automatically enables interrupts.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 11/28

When you step into OS_St art (), the next line executed is already in the high-
est priority task created. (you may also use disassembly mode to get there of
course, then stepping through the task switching process, but you maust not
step over OS_Start ()). In our small start program, HPTask() is the highest
priority task and is therefore active:

E:ﬁ:!ﬁtall_ﬂlﬁ[l - High-performance Embedded Workshop - [C:AWorkAStart\SichAMain. c]

<+ File Edit “iew Project Build Debug Setup Toolz Window Help ;lilil
[IN=R= - M= AR = RN B N ey
=2 &l

40 foozs static wvoid HPTask(woid)] { g

41 fOOZS while (1) {

4z | fO00Zc | @ 03 Delay (10);

43 fOo034 }

44 0036 i

45

46 fOO38 static wvoid LPTask(woid) { J

47 fO0035 while (1) 1

45 | foo3c | @ 03 Delay (50):

49 o044 i

50 foo4a i w7
<1 ;I_I

ol petladl oF Mainc I

Ready FZ |Default desktop |Readw

You should set a breakpoint in every task, as shown above. If you continue
stepping, you will arrive in the task with the second highest priority:

E:ﬁ:!ﬁtall_ﬂlﬁ[l - High-performance Embedded Workshop - [C:AWorkAStart\SichAMain. c]

<+ File Edit “iew Project Build Debug Setup Toolz Window Help ;lilil
[IN=R= - M= AR = RN B N ey
=2 &l

40 foozs static wvoid HPTask(woid)] { g

41 fOOZS while (1) {

4z | f00Zc |4 03 Delay (10);

43 fOo034 }

44 0036 i

45

46 fOO38 static wvoid LPTask(woid) { J

47 fO0035 while (1) 1

15 | foo3e (€ 03 Delay (50):

49 o044 i

50 foo4a i w7
<1 ;I_I

ol petladl oF Mainc I

Ready FZ |Default desktop |Readw

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).

When you step into the OS_Del ay(), you will arrive there:

0 2008 SEGGER Microcontroller GmbH & Co. KG

12/28 embOS for M16C CPUs and NC30 compiler

Eﬁ! Start_M16C - High-performance Embedded Workshop - [C:\Work\STARTACPU_M16CARTOS Init_M16._. =]
<+ File Edit Wiew Project Buld Debug Setup Toolz Window Help _|5|1|
IN=2=N- M= e AR 2 LR N N ey
= &
108 Thizs iz basically the "core™ of the idle loop j
109 This core loop can be changed, but:
110 The idle loop does not have a stack of its own, therefore nc
111 functionality should be implemented that relies on the stacl
112 to be preserved. Howewver, a sSimple program loop can he progri—d
113 [like toggeling ah output or incrementing & counter)
114 *f
115
116 foil14 orwoid 03 _Idle(woid] | £ Idle loop: No task is ready
117 for (::): A4 Mothing to do ... wait for :
118 i -
4| I 3
5 nollad) [x Mane 5 RTOSKCM.|
Ready FZ |Default] deskiop |Readw 2

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. You may open the watch window to dis-
play the embOS time variable OS_Time, which shows how much time has
expired in the target system.
Now, it is time to start the embOS timer simulation script:
e From main menu choose View -> CPU -> I/O Timing Setting.
The 1/0 Timing setting window opens.
» Select the Timer-symbol.
The Set Timer Dialog opens
* Choose "Load..."
« Select the file Start\embOS_Timer.stm which is delivered with embOS.

Set Timer Dialog |
Load... | Save... |
= mzec
Interval: Add
Il = Lzen
Yector: I Claze |
Friority: I
Temp Directory: [C:ADOCUME ~14ADMINI Flefer... |
Timer;

Vec[21] Prio[1] Time[1]msi

=1
i

Del Al
Erable
All Enable
[zt

(| »| ADisable

L

The simple timer script generates interrupt 21 which is used for embOS timer

* Close the Set Timer dialog.

* Do not close the 1/0 Timing settings window, because the timer only runs
as long as this window is open.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 13/28

Now start the target CPU by “Debug -> Go” or press F5. The HP task will con-
tinue after the given delay of 10 ms:

E:ﬁ:!ﬁtall_ﬂlﬁ[l - High-performance Embedded Workshop - [C:AWorkAStart\SichAMain. c]

<+ File Edit “iew Project Build Debug Setup Toolz Window Help _|E|1|
[IN=R= - M= AR = RN B N ey
|2 &
37 0% STACEPTR int StackHP[128], StackLP[128]: /T Task =
38 03 _TASK TCEHP, TCELF: /% Task-control-
39
40 fO028 static woid HPTaski(woid) |
41 fO00z5 while (1] 4
4z | fooze |& 05 Delay (100 ;
43 o054 H J
443 f003 6 H
45
46 f0038 static woid LPTask(woid)] |
47 | fOO38 while (1) { -
L] I I 3
2 netla3l <% Mainc I
| x|
dox|s6zw @ B &
Watch | Local | File Local| Global |
Name | Values
[signed long) ©F_Time
Ready EZ |Default] desktop |Read-w

0 2008 SEGGER Microcontroller GmbH & Co. KG

14/28 embOS for M16C CPUs and NC30 compiler

3.2. Using KD30 ROM Monitor

The distribution of embOS for M16C is prepared for usage of KD30 ROM
monitor. Therefore two interrupt vectors are defined for UART1 per default.
This is done in ‘sect30.inc’. Please check whether these vectors fit to your ver-
sion of ROM monitor.

After starting KD30 debugger and downloading the Module “Start. M16C.x30" ,
you will usually see the startup code.

You should set a breakpoint at main and then press “Go” to arrive at main().

“%o KD30 [C:A\Work\START\Start_M16C\debug\Start_M16C.x30]

Fil= Edit Wiew Environment Debug Option Basicwindows Optionafindows Help

¥ | & g = [

Go | Came Return| | Stop S

.
Step

=
e

Over

Feset

Hreak

BY | I B Source | By Mis |VDis |
K

[
Line |BRK|PASS| Source ||
L 2
 ADP53

E
A5 4 [main
5 e

1 |int main<void}» {

0S_IncDICH; % Initially dizable interrupts =~
05 _InitKerndo; % ipitialize 08 *s
05 _InitHW(S; #* jinitialize Hardware for 05 *s
BEBG 2 ##* You need to create at least one task here t *s
5[5 08 _CREATETASK(&TCBHP, "HF Task", HPTask. 188, StackHP};

0% _CREATETASK{&ICBLP. “LF Task". LPTask. 58, StackLP>;

1515 05 _Stapti>; /#% Btaprt multitasking */_I
| BBBGE return B;

1)
=
0]
1|1 ==
=

1=k
[[

n
[RURIRI RN

HAAG 7 > =
[« | 2y

?_—?‘ C Watch Window [Start_M16C_x30]

MHadd | X Fem.| & set | ERen.. |

watch | Local | File Local | Global|
Mame __|U]

{signed long> O0S_Time a

Ready [SERIAL.COMI | 7

CS I ncDI () initially disables interrupts and informs embOS that interrupts
should not be re-enabled during embOS function calls.

OS I nitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables and would
enable interrupts if OS_I ncDI () was not called before.

OS_Ini t HW) is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.

OS COMInit() in OS_InitHW) is optional. It is required if embOSView
shall be used. In this case it initializes the UART used for communication.

OS _Start () should be the last line in main, since it starts multitasking and
does not return. Interrupts are re-enabled during execution of OS_St art ().

Before you step into OS Start(), you should remove the breakpoint at
mai n() and set two breakpoints in the two tasks as shown below:

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler

15/28

s KD30 [C:\Work\START\Start_M16C\debug\Start_M16C.x30]

Fil= Edit “iew Environment Debug Option Basicwindows Optionakvfindows Help

| L| #|P|d| = =
Go | Come Step | Ower |Retun| Shop Ereak | Reset | SAw..
5] Program Window [Main_c] [_ (O] =}
@.\-"lew | I B Source B Mix |VDIS |
ne K| PASS | Source =]
?:‘IEJEEE Hinclude "RIOS.H"

. BAe37 08 _STACKPTIR int StackHP[12B1,. StackLP[1281; s%* Task stacks =/
(38 05_TASK TCBHP, TCEHLF;: ##» Tazk—control-hlocks =~
[A39
pH4d || — static void HPTask<void) {

_APn41 | — while <i> £

g

4 =

ompas | = > |
ARA46 | — static void LPTask(uoid) ¢

AAR47? | — while <i> £
_APn48 | B 1
_HaR4Y || — | ¥

WA5E | — > i

T_-':-. C Watch Window [Start_M16C_x30]

Cuadd | K Fem. | # 5ot | EDRen.. |

wiatch | Local | Fie Local | Global |
Name .l

Czigned long>» 08 _Time a

Ready

[SERIBL.COMT |

Z

When you step over OS_Start (),

the next line executed is already in the

highest priority task created. (you may also step into OS_Start (), then step-
ping through the task switching process in disassembly mode). In our small
start program, HPTask() is the highest priority task and is therefore active.

s KD30 [C:\Work\START\Start_M16C\debug\Start_M16C.x30]

Fil= Edit “iew Environment Debug Option Basicwindows Optionakvfindows Help

¥ | $|P || m| 2= M
Go | Come Step | Ower |Retun| Shop Ereak | Reset | SAw..

5] Program Window [Main_c] [_ (O] =}

@.\-"lew | I B Source B Mix |VDIS |
ne K| PASS | Source =]
?:‘IEJEEE Hinclude "RIOS.H"

. BAe37 08 _STACKPTIR int StackHP[12B1,. StackLP[1281; s%* Task stacks =/
A3 05_TASK TCBHP, TCEHLF;: ##» Tazk—control-hlocks =~
HA3e
pH4d || — static void HPTask<void) {

_APn41 | — while <i> ¢

B%éfg B 1 ; 08 _Delay <18>;
4 =
ompas | = > |
ARA46 | — static void LPTask(uoid) ¢
AAR47? | — while <i> £

_APn48 | B 1

_BPu4e | — | 2>
WA5E | — > i

T_-':-. C Watch Window [Start_M16C_x30]

Cuadd | K Fem. | # 5ot | EDRen.. |

wiatch | Local | Fie Local | Global |

Name UJ
Czigned long>» 08 _Time 1
Ready |SERIAL:COMY | i

If you continue stepping, you will arrive in the task with the lower priority:

0 2008 SEGGER Microcontroller GmbH & Co. KG

16/28

embOS for M16C CPUs and NC30 compiler

A KD30 [C:AWork\STARTA\Start_M16C\debughStart_M16C.x30]
Fil= Edit Wiew Environment Debug Option Basicwindows Optionafindows Help
¥ L ||| B 2
Go | Came Step | Over |Return] Stop Ereal: | Reset | SAw..
5] Program Window [Main_c] =] B
B Wiew | I B Source | By Mis |VDIS |
[Line K| PASS | Source ||
SEEEE ftinc lude “RTOS.H™
 BEA37 08 _STACKPTR int StackHP[1281, StackLPL[1281; »» Task stacks =/
;f 05_TASK TCBHF. TCELF; ~%* Task—control-hlocks =~
@40 | — static wvoid HPTask<void}» {
B4l | — | while <1> £
4] =
A4 —
= 5‘ > _I
b = mtatic void LPTask{uoid> ¢
= while <1> ¢
8 B 1 05 _Delay <58>;
HOW49 | — >
BAWSAE | — > 7
<] | v 4
= C Watch Window [Start_M16C.x30) 1 =] =3
MHadd | X Fem.| & set | ERen.. |
watch | Local | File Local | Global|
Hame u
{signed long> O0S_Time 3
Ready |SERIBL:COMY | i

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend LPTask() and switch to the idle-loop, which is al-
ways executed if there is nothing else to do (no task is ready, no interrupt
routine or timer executing). OS_| dl e() is found in RTOSInit.c:

oo KD30 [C:AWorkA\STARTAStart_M16Chdebug\Start_M16C_x30]
File Edit “iew Enwironment Debug Option BaszicWindows Optionalayindows Help
4 L |S|d| m)| 2=
Go | Come Step | Over |Retun] = Stop Breal | Reset | S84
B4, Program Window [RTOSInit.c] [_To] <]
B} View | I B Source By Mix |VD|S |
Line K| PASE | Bource |-
AA1 A6 —I
BA1A7
BH1HE Pleaze note:
BE102 This is basically the '"core" of the idle loop
pE118 This core loop can be changed,. bhut:
_BAdd1dl The idle loop does not have a stack of its own. therefore no _I
112 functionality should be implemented that relies on the stack
AA113 to be preserved. However, a simple program loop can he programmed
AA11 4 {like toggeling an output or incrementing a counter)
BH115 4
BH116
P17 | — void 08_Tdledvoid> ¢ /# Idle loop: Mo task iz ready to exec
_AA11§ for (i50; /7 Hothing to do ... wait for a interrup
A1 1 >
BE12A
A1 21 bl
<] | bl
35 C Watch Window [Start_M16C_x30])
Miadd | X Fem.| # 5ot | ERet.. |
Watch | Lacal | File Local | Global |
Name U.l
{zsigned long?» 085_Time 5
Feady |SERISLCOMT | 4

If you set a breakpoint in one or both of our tasks, you will see that they con-

tinue execution after the given delay.

Coming from OS_I dl e(), you should execute the ‘Go’ command:

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 17/28

s KD30 [C:\Work\START\Start_M16C\debug\Start_M16C.x30]

Fil= Edit “iew Environment Debug Option Basicwindows Optionakvfindows Help

¥ | & S| |d| = fm

hd
Go | Come Return| Stop SAw.

h 4
Step

=
Rezet

Cwer Ereak

@.\-"iew | I Caurce &'Mik |VDis... |
_Line |BRK|PASS | Source =]
Hinclude *"RTOS.H™

08 _STACKPTIR int StackHP[12B1,. StackLP[1281; s%* Task stacks =/
05_TASK TCBHP, TCEHLF;: ##» Tazk—control-hlocks =~

static void HPTask<void) {

while (1> {
08 _Delay C183;

]
> |
etatic void LPFTask(uoid> ¢

wyhile ¢1> £

|
>

5]5]5
5]5]5

[~
=
I
50 2|28 = [[o | o 0 = 150 0 (860 = | T [
LSRRI R
=

s o =
m!m..........'
|t
BRI R
(=Y

T_-':-. C Watch Window [Start_M16C_x30]

Cuadd | K Fem. | # 5ot | EDRen.. |

wiatch | Local | Fie Local | Global |
Name

u.
Czigned long>» 08 _Time 13
Ready |SERIAL:COMY | i

Please note:

As the ROM monitor does not stop the timer when it reaches a breakpoint, the
timer continues counting and produces an interrupt as soon as the next step is
executed. This results in extra counts of the time variable OS_Time which is
shown in the watch window.

Hints for debugging an embOS application with KD30 ROM monitor:

When ROM monitor stopped at a breakpoint, it may happen, that any interrupt
activates a task switch while stepping through the program, as interrupts are
enabled during stepping. This task switch can not be handled by KD30 and
KD30 crashes.

To overcome this problem, you should open the register window and set the in-
terrupt priority register of the CPU (IPL) to 6 immediately after the breakpoint
was reached. This enables stepping without any task switches, as all embOS
interrupts normally run with lower priorities.

When using M16C/62P CPUs, the ROM monitor may have set up the PLL of
the CPU. This may cause problems during the call of OS_| ni t H\() , because
standard initialisation of timer hardware does not initialise the PLL and sets
CPUs clock mode register to a state which might not work with PLL enabled.
This may require modification of OS_I ni t H\() .

3.3. Using PD30 / PC4701 / PC7501 in circuit emulator

You may use the same output file “Start_ M16C.x30” with an in circuit emulator.
Debugging our sample application should look similar to the sample described
above.

0 2008 SEGGER Microcontroller GmbH & Co. KG

18/28 embOS for M16C CPUs and NC30 compiler

3.4. Using PD30Sim

The PD30 simulator may be used to examine or debug your application. The
peripherals of M16C CPUs are not simulated automatically. To simulate inter-
rupts, you have to load an 1/O script file.

The embOS distribution contains the 1/0O script file ‘PD30_Si m nt 21. scr’
which simulates timer AO interrupt, which is normally used as embOS timer
interrupt.

The interrupt simulation should be started after the call of OS_I ni t HW() .

To start the simulation, proceed as follows:

* Open the 1/O script window by menu ‘Optional Window | 10 Window'.

* From the menu in the 10 Window, choose ‘Load’

* Open the 1/O script file ‘PD30_SimInt21.scr’ found in the start directory

Please note:

The timer interrupt simulation starts immediately, but stops as soon as the 10
Window is closed. Therefore the 10 Window may be minimized, but must not
be closed during the debugging session.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 19/28

4. Build your own application

To build your own application, you should start with a sample start project. This
has the advantage, that all necessary files are included and all settings for the
project are already done.

4.1. Required files for an embOS application

To build an application using embQOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and
has to be included in any source file using embOS functions.
RTOSInit_*.c from subfolder CPU_*\,

It contains hardware dependent initialization code for embOS timer and
optional UART for embOSView.

OS_Error.c from subfolder Src\.

It contains the embOS runtime error handler OS_Er r or () which is used
in stack check or debug builds.

One embOS library from the Lib\ subfolder

ncrt0.a30 from subfolder Src\.

This is the startup code which is modified to be used with embOS.
sect30.inc from subfolder Src\.

This is the interrupt vector table file which is setup to be used with em-
bOS.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embQOS internal variables.

Your main() function has to initialize embOS by call of OS_I ni t Kern() and
OS I nitHW) prior any other embOS functions except OS i ncDI () are

called.

4.2. Select a start project

embOS comes with one start project for an M16C60 CPU and one start project
for an M16C62P CPU. The start projects were built and tested for standard
CPUs. For various CPU variants there may be modifications required.

4.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

4.4. Change memory model or library mode

For your application you may have to choose an other data- / memory-model.
For debugging and program development you should use an embOS -debug
library. For your final application you may wish to use an embOS -release li-

brary.

Therefore you have to replace the embOS library in your project or target:

Replace the library by modifying the linker settings.

0 2008 SEGGER Microcontroller GmbH & Co. KG

20/28 embOS for M16C CPUs and NC30 compiler

Finally check project options about target CPU data / memory model settings
and compiler settings according library mode used. Refer to chapter 5 about
the library naming conventions to select the correct library.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 21/28

5. M16C and NC30 specifics

5.1. Memory models

embOS supports all memory models that RENESAS NC30 C-Compiler sup-
ports.
For M16C there are two memory models available:

Model Code Data
Near far (20 bits always) near (16 bits)
Far far (20 bits always) far (20 bits)

5.2. Available libraries

The files for M16C to use are:

Memorymodel | Library type Library define

Near Release RTOSNR OS LIBMODE R
Near Stack-check RTOSNS OS LIBMODE S
Near Stack-check + Profiling |RTOSNSP OS LIBMODE SP
Near Debug RTOSND OS LIBMODE D
Near Debug + Profiling RTOSNDP OS LIBMODE_DP
Near Trace + Debug RTOSNDT OS LIBMODE_DT
Far Release RTOSFR OS LIBMODE R
Far Stack-check RTOSFS OS LIBMODE S
Far Stack-check + Profiling |RTOSFSP OS LIBMODE SP
Far Debug RTOSFD OS LIBMODE_ D
Far Debug + Profiling RTOSFDP OS LIBMODE_DP
Far Trace + Debug RTOSFDT OS LIBMODE_ DT

When using RENESAS HEW, please check the following points:

» The memory model is set as option for your compiler

* One embOS library is added to your project (under Project Options | Linker
settings)

» The appropriate define is set as compiler option for your project.

5.3. Distributed project files

The distribution of embOS contains one start project which is set up for the
near memory model.

5.4. M306N CPU specifics

The M16C/6N group of CPUs require modification affecting RTOSInit.c. The
hardware initialization routines and default settings in RTOSInit.c were de-
signed for M16C/62 CPUs.

M306N CPUs have additional prescalers that are activated per default after re-
set and divide the peripheral clock for timer and UART by two.

This results in wrong settings for embOS timer tick and baudrate for UART
used for embOSView.

0 2008 SEGGER Microcontroller GmbH & Co. KG

22/28

embOS for M16C CPUs and NC30 compiler

There are different solutions to correct these settings.

As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked, when you update to a newer
version of embOS.

You may reprogram the Peripheral function clock select register (PCLKR) at
address 0x025E to disable the prescaler for timer and UART, before calling
CS I nit HW). This could be done during your own target specific hardware
initialization. The protection register bit O has to be set to enable modification of
PCLKR

When PCLKR is left unchanged (reset value = 0x00), CPUs internal timer AO
and UART clock is derived from CPU clock divided by two.

If you do not want to disable (reprogram) the prescaler for UART or timer, you
may define different values for OS_PCLK _TI MER and OS_PCLK_UART as com-
piler / project option without any changes in RTOSInit.c

CS_PCLK _TI MER is the frequency of CPUs internal peripheral clock used for
the timer. Calculations of timer reload value is derived from this define. Without
modification or override, it is defined to OS_FSYS.

OS_PCLK_UART is the frequency of CPUs internal peripheral clock used for
UARTSs. Calculations of baudrate generator value is derived from this define.
Without modification or override, it is defined to OS_FSYS.

5.5. M16C/62P CPU specifics, PLL

M16C/62P CPUs come with a built in PLL.

The initialization routine OS_I ni t HA() for timer initialization is written for ge-
neric M16C CPUs and can also be used for M16C/62P CPUs.

If you want to use the PLL, you will have to modify the initialization sequence
for CPU clock mode setting in OS_I ni t HA() .

You might also have to modify the clock mode initialization when you decide to
use the KD30 ROM monitor for debugging. If the monitor is set up to initialize
the PLL, the system may stop working when the CPU clock mode is modified
during OS_I ni t H\() .

5.6. Startup file NCRTO0.a30

embOS. comes with a modified startup file for M16C. Minor modifications are
required; they are documented in this file.

5.7. Section and interrupt vector definition file SECT30.inc

This file was modified to export information about stack sizes. Also embOS in-
terrupts are defined in this file. All modifications are documented in this file.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 23/28

6. Stacks

6.1. Task stack for M16C

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the M16C CPU.

As M16C CPUs have a 16bit stack pointer only, this may be any RAM located
from 0x0000..0xFFFF.

The stack-size required is the sum of the stack-size of all routines plus basic
stack size.

The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.

For the M16C, this minimum stack size is about 42 bytes in the near memory
model.

6.2. System stack for M16C

The system stack size required by embOS is about 40 bytes (65 bytes in.
profiling builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start ()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.

The stack used as system stack is the one defined at startup. Its size is defined
as STACKSI ZE in the ncrt0.a30 start up file.

A good value for the system stack is typically about 80 to 200 bytes.

6.3. Interrupt stack for M16C

The M16C CPU has been designed with multitasking in mind; it has 2 stack-
pointers, the USP and the ISP. The U-Flag selects the active stack-pointer.
During execution of a task or timer, the U-flag is set thereby selecting the user-
stack-pointer. If an interrupt occurs, the M16C clears the U-flag and switches to
the interrupt-stack-pointer automatically this way. The ISP is active during the
entire ISR (interrupt service routine). This way, the interrupt does not use the
stack of the task and the task-stack-size does not have to be increased for in-
terrupt-routines. Additional stack-switching as for other CPUs is therefore not
necessary for the M16CC.

The stack used as interrupt stack is the one defined at startup. Its size is de-
fined as | STACKSI ZE in the ncrt0.a30 start up file.

6.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
and interrupt stack also. Using embOSView, the total size and used size of any
stack can be examined. This may be used to analyze stack requirements and to
reduce the stack sizes, if RAM space is a problem in your application.

0 2008 SEGGER Microcontroller GmbH & Co. KG

24/28 embOS for M16C CPUs and NC30 compiler

7. Interrupts

7.1. What happens when an interrupt occurs?

« The CPU-core receives an interrupt request

* As soon as the interrupts are enabled and the processor interrupt priority
level is below or equal to the interrupt priority level, the interrupt is executed

» the CPU switches to the Interrupt stack

« the CPU saves PC and flags on the stack

» the IPL is loaded with the priority of the interrupt

» the CPU jumps to the address specified in the vector table for the interrupt
service routine (ISR)

* ISR : save registers
* ISR : user-defined functionality
* ISR : restore registers

* ISR: Execute REIT command, restoring PC, Flags and switching to User
stack

» For details, please refer to the RENESAS users manual.

7.2. Defining interrupt handlers in "C"

Routines defined with the keywords #pr agnma | NTERRUPT automatically save
& restore the registers they modify and return with REIT.

For a detailed description on how to define an interrupt routine in "C", refer to
the NC30 C-Compiler's user's guide.

Example
"Simple" interrupt-routine

#pragma | NTERRUPT OS | SR tx

void OS_ISR tx(void) {
OS _EnterNestablelnterrupt(); // W wll enable interrupts
OS_OnTx();
OS_LeaveNestabl el nterrupt();

}

7.3. Interrupt vector table

The interrupt vectors may be defined in “C” when using RENESAS HEW 4 and
new NC30 compiler.

The distribution of embOS uses the old style of interrupt vector table definition
using an assembly include file which is included in the startup file.

embOS comes with a prepared and modified section definition file sect30.inc
which should be used and modified for your needs.

7.4. Interrupt-stack

Since the M16C CPUs have a separate stack pointer for interrupts, there is no
need for explicit stack-switching in an interrupt routine. The routines
OS EnterlntStack() and OS Leavel nt St ack() are supplied for source
compatibility to other processors only and have no functionality.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler 25/28

7.5. Fast interrupts with M16C

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 4. Therefore all interrupts with level 5 or above
can still be processed.

These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

7.6. Interrupt priorities

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-

ing embOS API functions are limited.

* Any interrupt handler using embOS API functions has to run with interrupt
priorities from 1 to 4. These embOS interrupt handlers have to start with
OS Enterinterrupt() or OS_Enter Nestabl el nterrupt() and must
end with OS_Leavel nterrupt () or OS_LeaveNest abl el nterrupt ().

* Any Fast interrupt (running at priorities from 5 to 7) must not call any embOS
API function. Even OS_Enterinterrupt () and OS_Leavel nterrupt ()
must not be called.

* Interrupt handler running at low priorities (from 1 to 4) not calling any
embOS API function are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Fast interrupts is fixed to
4 and can only be changed by recompiling embOS libraries!

0 2008 SEGGER Microcontroller GmbH & Co. KG

26/28 embOS for M16C CPUs and NC30 compiler

8. STOP / WAIT Mode

Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OGS _I dl e() routine, which is part
of the hardware dependent module Rtoslnit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/R8 CPUs and NC30 compiler

27/28

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the near memory model and release

build library.
Short description ROM RAM
[byte] [byte]
Kernel approx.1670 27
Add. Task 19
Add. Semaphore 4
Add. Mailbox 11
Add. Timer 11
Power-management

10. Files shipped with embOS for NC30 com-

piler

embOS for M16C and NC30 compiler is shipped for compiler version 5.40 and

projects for HEW version 4.

This version of embQOS is located in Folder “embOS_M16C_NC30 V540" and

contains the following files:

Directory File Explanation

Start\ Start _ML6C. hws | Start workspace for HEW 4

Start\ PD30_Si m nt 21. ||0 script file for embOS timer interrupt

Scr simulation under PD30Sim

Start\Start M |*. * Project files for HEW

16c\

Start\INC\ RTCS. h embOS API header file. To be included in
any file using embQOS functions

Start\INC\ CPUMLEC. h SFR definition file for M16C CPU

Start\Lib *.1ib embOS libraries

Start\Src\ mai n. c Frame program to serve as a start

Start\CPU_*\ [RTCSInit_*.c Hardware dependant functions used by
embOS

Start\Src OS_Error.c The embOS error handler, used called on
runtime error occurrence in debug builds.

Start\Src\ ncrt0.a30 Startup file, modified for use with embOS

Start\Src\ sect 30. i nc Section definition file and interrupt vector
table, modified for use with embOS

embOSView and the manuals are found in the root directory of the distribution.

0 2008 SEGGER Microcontroller GmbH & Co. KG

28/28 embOS for M16C CPUs and NC30 compiler

11. Index

= MBOBN ... seereeeeesesesee 21 S
Fast iNerruptoooeovveeeeeerrrsrs, 25 Memory models...........cccccvvvvvvee 21 SECT30NC oo 2
| Memory requirements................. 21 SEACKS . veeerereeeeees e 23
(T3S [i s DO 5 N Stacks, interrupt Stack.................. 23
INEETUPE PHOFILY ©.vvovvvvrereererrrrrs 25 NCRTO0.830.....cccevueiereerrrieeresienan 22 Stacks, system stacK...........covneee. 23
INLEITUPE SEACK ..o 23 O Stacks, task StaCkS ... 23
Interrupt vector table.................... 24 OS _Error() coveeeeeeeeeeeieesesiesiennens 19 ST ACKS' ZE o 23
INEETUPE, FBSL. . .vvvvveeeeeereeeeresrersee 25 OS PCLK_UART ooovvrorreeerere. 2 StEtUP il 22
IIEETUDES. - oooeeeeeeeeeeeeeeeee e 24 OS _PLCK_TIMER oo 2 StOP-MOUE v 26
| nterrupt-St&Ck 24 P System St&k 23
ISTACKSIZE. ...oovvvivivinivivininininen 23 5% o FO 17 T

K PD30SIM....veooereeeeees e 18 TasK SHACKS oo 23
KDB0 w.vvovveeeeeeeseeeeseeessseeeeeeeese 14 I I 2 Technical dafa............cccvvvrssssnee 21
M R w
MIBCIB2P.eeeeeeeeeeeseeerreee 22 ROM MONItOF .eeeeeveeereeeseseeee 14 WEIt-MOTE. ...ocvvvesvvvre 26

0 2008 SEGGER Microcontroller GmbH & Co. KG

	Contents
	About this document
	How to use this manual

	Using embOS with RENESAS HEW
	Installation
	First steps
	The sample application Main.c

	Using debugging tools to debug the application
	Debug the application using HEW M16C Simulator
	Using KD30 ROM Monitor
	Hints for debugging an embOS application with KD30 ROM monitor:

	Using PD30 / PC4701 / PC7501 in circuit emulator
	Using PD30Sim

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	M16C and NC30 specifics
	Memory models
	Available libraries
	Distributed project files
	M306N CPU specifics
	M16C/62P CPU specifics, PLL
	Startup file NCRT0.a30
	Section and interrupt vector definition file SECT30.inc

	Stacks
	Task stack for M16C
	System stack for M16C
	Interrupt stack for M16C
	Reducing the stack size

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt vector table
	Interrupt-stack
	Fast interrupts with M16C
	Interrupt priorities

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS for NC30 compiler
	Index

