

embOS

Real Time Operating System

CPU & Compiler specifics for

RENESAS H8/300H / H8S CPUs

and IAR compiler

Document Rev. 4

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

embOS for H8/H8S CPUs and IAR compiler 3/26

 2008 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with IAR’s Embedded Workbench .. 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Main.c .. 6

3. Using debugging tools to debug the application.. 8
3.1. Using IAR’s CSpy simulator... 8
3.2. Common debugging hints .. 11

4. Build your own application... 12
4.1. Required files for an embOS application .. 12
4.2. Select a start project .. 12
4.3. Add your own code .. 12
4.4. Change memory model or library mode... 12

5. IAR compiler specifics ... 13
5.1. Memory models, compiler options ... 13
5.2. Available libraries... 13
5.3. Distributed project files... 14
5.4. Distributed configurations .. 14

6. H8/300H and H8S CPU specifics.. 15
6.1. Clock settings and corrections for embOS timer interrupt................................. 15
6.2. Clock settings and corrections for UART used for embOSView 15
6.3. Conclusion about clock settings... 15

7. Stacks ... 17
7.1. Task stack for H8 CPUs... 17
7.2. System stack for H8 CPUs .. 17
7.3. Interrupt stack for H8 CPUs... 17
7.4. Reducing the stack size ... 17

8. Interrupts with H8/300H CPUs .. 18
8.1. Interrupt handling process with H8/300H CPUs... 18
8.2. Fast interrupts with H8/300H CPUs ... 18
8.3. Interrupt priorities with H8/300H CPUs .. 18
8.4. Nested interrupts with H8/300H CPUs... 19
8.5. Defining interrupt handlers for H8/300H CPUs in "C" .. 19

9. Interrupts with H8S CPUs ... 20
9.1. Interrupt handling process with H8S CPUs.. 20
9.2. Fast interrupts with H8S CPUs .. 20
9.3. Interrupt priorities with embOS for H8S CPUs .. 20
9.4. Defining interrupt handlers for H8S CPUs in "C" ... 21
9.5. Defining interrupt handlers for H8S CPUs in assembler 22
9.6. Interrupt vector table .. 23

10. Sleep / Standby Mode... 24
11. Technical data... 25

11.1. Memory requirements .. 25
12. Files shipped with embOS H8 for IAR compiler ... 25
13. Index ... 26

4/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS for H8/H8S Real Time Operating Sys-
tem for the RENESAS H8/300H and H8S series of microcontroller using IAR
compiler and IARs Embedded Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using H8
CPUs with IAR compiler. Before actually using embOS, you should read or at
least glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using IAR C compiler and IAR’s Embedded Workbench. If you have no experi-
ence using embOS, you should follow this introduction, even if you do not plan
to use IAR’s Embedded Workbench, because it is the easiest way to learn how
to use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the H8
CPUs and IAR compiler.

Naming convention
As embOS for H8 supports two different CPU cores, some aspects described
in the following chapters may be specific for H8/300H or H8S CPU cores and
others may be valid for both. We use the following CPU naming convention:
• H8 is used when description covers both CPU cores.
• H8/300H is used for information specific to H8/300H CPU core.
• H8S is used for information specific to H8S CPUs.

embOS for H8/H8S CPUs and IAR compiler 5/26

 2008 SEGGER Microcontroller GmbH & Co. KG

2. Using embOS with IAR’s Embedded Work-
bench

The following chapter describes how to install and work with embOS for H8
CPUs and IAR’s Embedded Workbench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using IAR’s Embedded Workbench to develop your ap-
plication, no further installation steps are required. You will find prepared sam-
ple start projects for H8/300H and H8S CPUs, which you should use and
modify to write your application. So follow the instructions of the next chapter
‘First steps’.

You should do this even if you do not intend to use IAR’s Embedded Work-
bench for your application development in order to become familiar with em-
bOS.

embOS does in no way rely on IAR’s Embedded Workbench, it may be used
without the workbench using batch files or a make utility without any problem.

6/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace
and projects for H8/300H and H8S CPUs and it is a good idea to use this as a
starting point of all your applications.

Your embOS distribution contains one folder ‘Start’ which contains the sample
start workspace and projects and every additional files used to build your
application.

To get your application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the embOS distribution disk into your

work directory.
• Clear the read only attribute of all files in the new ‘Start’-folder in your

working directory.
• Open the folder ‘Start’ in your work directory.
• Open the start workspace ‘Start.eww’. (e.g. by double clicking it)
• Select and build one the start project, preferably a configuration for CSpy

After building the start project your screen should look like follows:

Initially the configuration for huge memory model for IAR’s simulator / debugger
CSpy is selected.
If you do not have CSpy installed, you may select an other target which is use-
able for your simulator / debugger.

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application.

What happens is easy to see:

embOS for H8/H8S CPUs and IAR compiler 7/26

 2008 SEGGER Microcontroller GmbH & Co. KG

After initialization of embOS, two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications
**
--
File : Main.c
Purpose : Skeleton program for embOS
-------- END-OF-HEADER ---
*/

#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

8/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

3. Using debugging tools to debug the applica-
tion

The embOS start projects contain configurations which are already setup for
IAR’s debugger / simulator C-Spy. These targets are named “DP_CSpy”.
The CSpy configurations are prepared to produce the appropriate output files
required by IAR’s CSpy debugger.
The following chapter describes a sample session based on our sample appli-
cation main and target DP_CSpy.

3.1. Using IAR’s CSpy simulator

When starting CSpy simulator after building the CSpy configuration, you will
usually see the main function, or you may look at the startup code and have to
set a breakpoint at main. Now you can step through the program.
OS_IncDI() disables interrupts and tells embOS, that interrupts should not be
enabled during OS_InitKern().
OS_InitKern()initializes embOS –Variables. If OS_incDI() was not called
before, interrupts will be enabled. As this function is part of the embOS library,
you may step into it in disassembly mode only.
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
shall be used. As simulators usually can not simulate UART operations,
OS_UART should be defined as (-1) to disable UART initialization and commu-
nication.
OS_Start() is the last line executed in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set two break points in the two
tasks as shown below

embOS for H8/H8S CPUs and IAR compiler 9/26

 2008 SEGGER Microcontroller GmbH & Co. KG

As OS_Start() is part of the embOS library, you can step through it in disas-
sembly mode only. You may press GO, step over OS_Start(), or step into
OS_Start() in disassembly mode until you reach the highest priority task.

If you continue stepping, you will arrive in the task with the lower priority:

10/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or
timer executing). OS_Idle() is found in RTOSInit.c:

If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.
Coming from OS_Idle(), you should execute the ‘Go’ command:

embOS for H8/H8S CPUs and IAR compiler 11/26

 2008 SEGGER Microcontroller GmbH & Co. KG

As can be seen by the value of embOS timer variable OS_Time, shown in the
watch window, Task0 continues operation after expiration of the 10 ms delay.

3.2. Common debugging hints

For debugging your application, you should use a debug build, e.g. use the de-
bug build libraries in your projects if possible. The debug build contains addi-
tional error check functions during runtime.
When an error is detected, the debug libraries call OS_Error().
Using an emulator or simulator you should set a breakpoint there. The actual
error code is assigned to the global variable OS_Status. The program then
waits for this variable to be reset. This allows to get back to the program-code
that caused the problem easily: Simply reset this variable to 0 using your in cir-
cuit-emulator or simulator, and you can step back to the program sequence
causing the problem. Most of the time, a look at this part of the program will
make the problem clear.
How to select an other library with debug code for your projects is described
later on in this manual.

12/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

4. Build your own application
To build your own application, you should start with one of the sample start pro-
jects. This has the advantage, that all necessary files are included and all set-
tings for the project are already done.

4.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c from one CPU subfolder.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• One embOS library from the Lib\ subfolder
• OS_Error.c from subfolder Src\ if any library other than Release build library

is used in your project.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions are called.

4.2. Select a start project

embOS comes with start projects for H8/300H and H8S CPUs, which include
different configurations for different output formats or debug tools. The start
project for H8/300H CPU was built and tested for H83069 CPU. For various
CPU variants there may be modifications required as described later in this
manual.

4.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

4.4. Change memory model or library mode

For your application you may have to choose a different memory-model. For
debugging and program development you should use an embOS -debug li-
brary. For your final application you may wish to use an embOS -release li-
brary.
Therefore you have to replace the embOS library in your project or target:
• Add the appropriate library from the Lib-subdirectory to your Lib group.
• Exclude the previous library from build.
• Set the appropriate OS_LIBMODE_* define as project option.
Finally check project options about target CPU, memory model settings and
compiler settings according library mode used. Refer to chapter 5 about the li-
brary naming conventions to select the correct library.

embOS for H8/H8S CPUs and IAR compiler 13/26

 2008 SEGGER Microcontroller GmbH & Co. KG

5. IAR compiler specifics

5.1. Memory models, compiler options

embOS for H8 for IAR compiler is delivered with libraries for the all combina-
tions of CPU operating modes and data models supported by IAR compiler.

5.2. Available libraries

embOS is shipped with libraries for two different CPU variants and all memory
models.
The library name is composed as follows:

Rtos <CPU> <operating mode> <data model> <float>_<LibMode>. r37

Parameter Meaning Values

H8H: H8/300H CPU type CPU CPU variant
H8S: H8S CPU type
l: advanced mode operating

mode
Operating mode of
CPU s: normal mode

s: small data model data model Data model for variable
addressing h: huge data model

f: 32bit float Size of “double” varia-
bales d: 64bit

R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling

LibMode Library mode

DT: Debug + profiling + Trace

For each operating mode / data model / float size combinaton, all embOS li-
brary modes are available:

Library mode Meaning define
R Release OS_LIBMODE_R
S Stack check OS_LIBMODE_S
SP Stack check + Profiling OS_LIBMODE_SP
D Debug + stack check OS_LIBMODE:_D
DP Debug + stack check + Profiling OS_LIBMODE_DP
DT Debug + stack check + profiling + Trace OS_LIBMODE_DT

This results in 72 different libraries delivered with embOS.

When using IAR workbench, please check the following points:
• Operating mode and data model are set as general project option
• One embOS library is part of your project (included in one group of your tar-

get). The CPU type and memory model of the library used has to fit to the
project options.

• The appropriate define according to embOS library mode is set as compiler
preprocessor option for your project.

14/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

5.3. Distributed project files

The distribution of embOS for H8 and IAR compiler comes with start projects
for H8/300H CPUs and H8S CPUs:
• Start_H83069 is a sample start project, prepared for starterkit EDK3069
• Start_H8S2239 is a start project file for H8S CPUs

The start projects contain configurations for different embOS library modes and
debug options.

5.4. Distributed configurations

Different configurations are included in the sample start projects. The configura-
tions are named according the output format they were built for:

• Target_*: Produces an Motorola output file
• CSpy_*: Is set up for CSPY Simulator, produces the correct output file and

starts embOS timer interrupt simulation.

embOS for H8/H8S CPUs and IAR compiler 15/26

 2008 SEGGER Microcontroller GmbH & Co. KG

6. H8/300H and H8S CPU specifics
All hardware specific functions required for embOS are located in the CPU
specific RTOSInit_*.c files.
Settings for CPU clock speed and UART settings for embOSView are defined
with most common defaults. According to your specific hardware, these settings
may have to be changed to ensure proper timer tick and UART communication
with embOSView..
As far as possible, you should not modify RTOSInit.c, as this has the disadvan-
tage, that this modifications have to be tracked when you update to a newer
version of embOS.
Various CPU derivates may be equipped with different peripherals. It may be
necessary to write your own initialization code for your specific CPU derivate.
You may therefore copy one RTOSInit_*.c file which is closest to your CPU
variant and modify this new created file to handle your CPU.

6.1. Clock settings and corrections for embOS timer interrupt

OS_InitHW() routine in RTOSInit.c derives timer init values from the con-
stant define OS_PCLK_TIMER. Per default, the value of OS_PCLK_TIMER
equals OS_FSYS, which defines the CPU clock of the target system. Wrong set-
tings would result embOS timer ticks unequal to 1 ms.
To adapt the embOS timer tick frequency to your CPU, you may:
• Define OS_FSYS as project option. OS_FSYS should equal your CPU clock

frequency in Hertz. Note that modification of OS_FSYS may also affect the
UART initialization for embOSView.

• You may alternatively define OS_PCLK_TIMER as project option (compiler
preprocessor option). This value is used to calculate the timer compare value
used for embOS timer.

6.2. Clock settings and corrections for UART used for embOS-
View

OS_COM_Init() routine in RTOSInit.c derives baudrate generator init val-
ues from the constant define OS_PCLK_UART. Per default, the value of
OS_PCLK_UART equals OS_FSYS, which defines the CPU clock of the target
system.

To correct the embOS UART baudrate for embOSView, you may:
• Define OS_FSYS as project option. OS_FSYS should equal your CPU clock

frequency in Hertz. Note that modification of OS_FSYS may also affect the
timer initialization for embOS.

• You may alternatively define OS_PCLK_UART as project option (compiler
preprocessor option). This value is used to calculate values used to initialize
UART used for communication with embOSView.

6.3. Conclusion about clock settings

• OS_FSYS has to be defined according to your CPU clock frequency. This
should be defined as compiler preprocessor option in your project.

• OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral
clock for the embOS timer. The value defaults to OS_FSYS. It should be

16/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

modified and defined as compiler preprocessor option if modification is re-
quired.

• OS_PCLK_UART has to be defined to fit the frequency used as peripheral
clock for the UART used for communication with embOSView. The value de-
faults to OS_FSYS. It should be modified and defined as compiler preproc-
essor option if modification is required.

embOS for H8/H8S CPUs and IAR compiler 17/26

 2008 SEGGER Microcontroller GmbH & Co. KG

7. Stacks

7.1. Task stack for H8 CPUs

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location that can be used as stack by the H8 CPU.
As H8 CPUs have a 32 bit stack pointer, the whole memory area can be used
as task stack.
Using Small data model, the available memory is limited to 64 KBytes which are
accessible in near memory range.
Please note, that the task stacks have to be aligned at EVEN addresses.
To ensure proper alignment, implement task stack as array of int.
The stack-size required for tasks is the sum of the stack-size of all routines plus
basic stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the H8, this minimum task stack size is about 42 bytes in the near memory
model.
As current version of embOS does not support a separate interrupt stack, all
interrupts may run on the task stacks as well. Therefore we recommend at least
a minimum of 128 bytes for task stacks.

7.2. System stack for H8 CPUs

The system stack size required by embOS is about 40 bytes (65 bytes in.
profiling builds) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because soft-
ware-timers also use the system-stack, the actual stack requirements depend
on the application.
The stack used as system stack is the one defined as CSTACK in the linker
command file (*.xcl) and normally its size is defined as a project option.
A good value for the system stack is typically about 128 to 256 bytes.

7.3. Interrupt stack for H8 CPUs

The H8 CPUs do not support a hardware interrupt stack. All interrupts run on
the current stack.
Therefore the size of task stacks and the system stack have to be large enough
to handle all nested interrupts and subroutine calls.

7.4. Reducing the stack size

The stack check libraries check the used stack of every task and the system
stack also. Using embOSView the total size and used size of any stack can be
examined. This may be used to reduce the stack sizes, if RAM space is a prob-
lem in your application.

18/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

8. Interrupts with H8/300H CPUs
The following chapter describes interrupt specifics of H8/300H CPUs and inter-
rupt modes used with embOS.

8.1. Interrupt handling process with H8/300H CPUs

H8/300H CPUs support two different interrupt modes. For embOS, interrupt
mode 1 is used. This mode supports the following features:
• Interrupt priority registers to assign two priority levels to peripheral interrupts.
• Three level masking by I and UI bit in the CPU condition code register.

Interrupt mode 1 has to be initialized by clearing the UE bit in the CPUs System
Control Register SYSCR. This is normally done in OS_InitHW() in RTOSInit.c

Interrupt processing in interrupt mode 1 is as follows:
• The CPU-core receives an interrupt request
• If interrupts are enabled for the priority of the interrupting device, the interrupt

is executed.
• All interrupts are masked by setting the I and UI bit.
• The CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : Save registers
• ISR : User-defined functionality
• ISR : Restore registers
• ISR: Execute RTE command, restoring PC and condition code register.
• For details, please refer to the RENESAS users manual.

8.2. Fast interrupts with H8/300H CPUs

Instead of disabling interrupts when embOS does atomic operations, the I-Flag
(interrupt disable flag) of condition code register is set. This results in disabling
interrupts with low priority. All interrupts with high priority can still be processed.
These interrupts are named Fast interrupts.
You must not execute any embOS function from within a fast interrupt
function.

8.3. Interrupt priorities with H8/300H CPUs

Interrupt priorities useable for interrupts using embOS API functions are lim-
ited.
• Any interrupt handler using embOS API functions has to run with low inter-

rupt priority. These embOS interrupt handlers have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and must
end with OS_LeaveInterrupt() or OS_LeaveNestableInterrupt().

• Any Fast interrupt (running at high priority) must not call any embOS API
function. Even OS_EnterInterrupt() and OS_LeaveInterrupt() must
not be called.

• Interrupt handler running at low priority not calling any embOS API function
are allowed, but must not re-enable interrupts!

embOS for H8/H8S CPUs and IAR compiler 19/26

 2008 SEGGER Microcontroller GmbH & Co. KG

8.4. Nested interrupts with H8/300H CPUs

After entering the interrupt service routine, interrupts are automatically disabled
by the CPU. As long as interrupts are not re-enabled by software, the interrupt
service routine can not be interrupted by any other interrupt regardless of prior-
ity.
Interrupt service-routines using embOS functions may be made nestable by
use of the following two functions:
• OS_EnterInterrupt() : tells embOS, that interrupt code is running and en-

ables high priority interrupts by resetting the UI-Flag.
• OS_EnterNestableInterrupt() : tells embOS, that interrupt code is running

and enables all interrupts by resetting the I- and UI-Flag. Thus interrupt ser-
vice routines running at low priority may also be interrupted by other inter-
rupts running at low priority. The interrupt service routine may nest itself!

Please be careful using nestable interrupt service routines.
• Always reset the interrupt pending condition before re-enabling interrupts.
• To re-enable interrupts in an interrupt service routine using embOS func-

tions, always use OS_EnterInterrupt() or OS_EnterNestableInterrupt() at the
beginning of the ISR.

• Never call OS_EI() or any other interrupt enabling function from inside an in-
terrupt service routine which uses embOS functions.

• From an interrupt service routine running at high priority, never re-enable low
priority interrupts.

8.5. Defining interrupt handlers for H8/300H CPUs in "C"

Routines preceded by the keyword interrupt save & restore the registers
they modify and return with RTE.
The corresponding interrupt vector number has to be written after the keyword
interrupt using brackets.
For a detailed description on how to define an interrupt routine in "C", refer to
the IAR C-Compiler's user's guide.

Example of an embOS interrupt handler
embOS interrupt handler can be used for interrupt sources running at low prior-
ity.

void interrupt [TPU_INTVEC] TimerInt (void) {
 _RESET_INT_PENDING(TPU_TISR, TPU_INT_PENDING_BIT);
 OS_EnterNestableInterrupt();
 _HandleTimer();
 OS_LeaveNestableInterrupt();
}

Please ensure that interrupt pending condition is reset before re-enabling inter-
rupts by OS_EnterNestableInterrupt().
If re-enabling of interrupts should not be performed in an Interrupt handler, use
OS_EnterInterrupt() and OS_LeaveInterrupt().
Every interrupt handler using embOS functions has to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and has to
end with OS_LeaveInterrupt() or OS_LeaveNestableInterrupt(). In-
side the interrupt handler, any other function may be called.

20/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

9. Interrupts with H8S CPUs
The following chapter describes interrupt specifics of H8S CPUs and the inter-
rupt modes used with embOS.

9.1. Interrupt handling process with H8S CPUs

H8S CPUs support two different interrupt modes. For embOS, interrupt mode 2
is used. This mode supports the following features:
• Interrupt priority registers to assign 8 priority levels to peripheral interrupts.
• Priority level controlled masking.
• Interrupts with higher priority are never disabled by entering an interrupt ser-

vice routine with lower priority

Interrupt mode 2 has to be initialized during CPU setup. This is normally done
in OS_InitHW() in RTOSInit.c

Interrupt processing in interrupt mode 2 is as follows:
• The CPU-core receives an interrupt request
• If interrupts are enabled for the priority of the interrupting device, the interrupt

is executed.
• The CPU store PC, CCR and EXR onto the current stack.
• The interrupt mask level of the CPU is updated from the level of the interrupt-

ing device.
• The CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR: Save registers
• ISR: User-defined functionality
• ISR: Restore registers
• ISR: Execute RTE command, restoring PC, condition code register and EXR.
• For details, please refer to the RENESAS users manual.

9.2. Fast interrupts with H8S CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 5. Therefore all interrupts with level 6 or above
can still be processed.
These interrupts are named Fast interrupts.
You must not execute any embOS function from within a fast interrupt
function.

9.3. Interrupt priorities with embOS for H8S CPUs

With introduction of Fast interrupts, interrupt priorities useable by the applica-
tion are divided into two groups:
• Low priority interrupts with priorities from 1 to 5. These interrupts are called

embOS interrupts.
• High priority interrupts with priorities of 6 and 7. These interrupts are called

Fast interrupts.
Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters.

embOS for H8/H8S CPUs and IAR compiler 21/26

 2008 SEGGER Microcontroller GmbH & Co. KG

9.4. Defining interrupt handlers for H8S CPUs in "C"

Routines preceded by the keyword __interrupt save & restore the registers
they modify and return with RTE.
The corresponding interrupt vector number has to be assigned immediately be-
fore the interrupt function using a #pragma definition:
I#pragma vector=number.
For a detailed description on how to define an interrupt routine in "C", refer to
the IAR C-Compiler's user's guide.

Example of an embOS interrupt handler
embOS interrupt handler have to be used for interrupt sources running at
priorities from 1 to 5

#pragma vector=TPU_INTVEC
__interrupt void UserInterrupt (void) {
 OS_EnterInterrupt(); // Tell embOS that interrupt code is running.
 HandleUserInterrupt(); // Call interrupt handler function
 OS_LeaveInterrupt(); // Tell embOS that interrupt code ends.
}

Any interrupt handler running at priorities from 1 to 5 has to be written accord-
ing the code example above, regardless any other embOS API function is
called.
The rules for an embOS interrupt handler are as follows:
• The embOS interrupt handler must not define any local variables.
• The embOS interrupt handler has to call OS_EnterInterrupt() as first

function call, when interrupts should not be nested. It has to call
OS_EnterNestableInterrupt(), when the related interrupt may be in-
terruptible be higher priority interrupts.

• The interrupt handler has to call a user defined function which handles the
interrupt. This function may use local variables and should clear the interrupt
pending condition of the interrupting source if necessary. This user handler
function may call other functions and may also call any other embOS func-
tion, but must not modify the interrupt priority.

• Finally the embOS interrupt handler has to call OS_LeaveInterrupt()
when OS_EnterInterrupt() was called initially, or has to end with
OS_LeaveNestableInterrupt() when a nestable interrupts was entered
by OS_EnterNestableInterrupt().

Differences between OS_EnterInterrupt() and OS_EnterNestableInterrupt()
OS_EnterInterrupt() should be used as entry function in an embOS inter-
rupt handler, when the corresponding interrupt should not be interrupted by an
other embOS interrupt. OS_EnterInterrupt() sets the interrupt priority of
the CPU to 5 thus locking any other embOS interrupt, Fast interrupts are not
disabled.
Interrupt handlers started with OS_EnterInterrupt() have to end with
OS_LeaveInterrupt().

OS_EnterNestableInterrupt() should be used as entry function in an
embOS interrupt handler, when interruption by higher prioritized embOS inter-
rupts should be allowed. OS_EnterNestableInterrupt() does not alter the
interrupt priority of the CPU thus keeping all interrupts with higher priority en-
abled.

22/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

Interrupt handlers started with OS_EnterNestableInterrupt() have to end
with OS_LeaveNestableInterrupt().

Example of a Fast interrupt handler
Fast interrupt handler have to be used for interrupt sources running at priorities
from 6 to 7 only

#pragma vector=TPU_INTVEC
__interrupt void FastUserInterrupt (void) {
 unsigned long Count; // local variables are allowed
 Count = TPU_TCNT0;
 HandleCount(Count); // Any function call except embOS functions is allowed
}

The rules for a Fast interrupt handler are as follows:
• Local variables may be used.
• Other functions may be called.
• embOS functions must not be called, nor direct, neither indirect.

9.5. Defining interrupt handlers for H8S CPUs in assembler

Even though not recommended, you may write interrupt handlers in assembler.
These interrupt handlers have to follow the same rules as interrupt handlers
written in “C”.
All interrupts running at low priority from 1 to 5 also have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt(). These mac-
ros are defined in RTOS.h.
This is required, because interrupts with low priorities may be interrupted by
other interrupts calling embOS functions. The task switch from interrupt will
only work if every embOS interrupt uses the same stack layout and starts with
OS_EnterInterrupt() or OS_EnterNestableInterrupt().
To get an idea how to write an interrupt handler in assembler, you may look at
the list files of any module containing an embOS interrupt handler.

Example of an interrupt handler using OS_EnterInterrupt() written in assembler:
 ; ***** void __interrupt OS_ISR_Tick (void)
OS_ISR_Tick:
 STM.L (ER4-ER6), @-ER7 ; Initially save registers ER4..ER6
 ; DO NOT SAVE ANY OTHER REGISTERS
 ; because task switch from int relies
 ; on this stack frame !
 ; ***** OS_EnterInterrupt();
 JSR @OS_EnterIntFunc:24

 ; ***** _ISR_TickHandler();
 JSR @_ISR_TickHandler:24 ; call interrupt handler function

 ; ***** OS_LeaveInterrupt();
 JSR @OS_LeaveIntFunc:24

 LDM.L @ER7+, (ER4-ER6) ; Finally restore registers
 RTE ; return from interrupt

embOS for H8/H8S CPUs and IAR compiler 23/26

 2008 SEGGER Microcontroller GmbH & Co. KG

Example of an interrupt handler using OS_EnterNestableInterrupt():
 ; ***** void interrupt [TPU_INTVEC] OS_ISR_Tick (void)
OS_ISR_Tick:
 STM.L (ER4-ER6), @-ER7 ; Initially save registers ER4..ER6
 ; DO NOT SAVE ANY OTHER REGISTERS
 ; because task switch from int relies
 ; on this stack frame !
 ; ***** OS_EnterInterrupt();
 JSR @OS_EnterNestableIntFunc:24

 ; ***** _ISR_TickHandler();
 JSR @_ISR_TickHandler:24 ; call interrupt handler function

 ; ***** OS_LeaveInterrupt();
 JSR @OS_LeaveNestableIntFunc:24

 LDM.L @ER7+, (ER4-ER6) ; Finally restore registers
 RTE ; return from interrupt

9.6. Interrupt vector table

Normally there is no need to define a separate interrupt vector table when using
IAR compiler for H8, as interrupt routines may be written in “C”-source and the
interrupt vector table is generated automatically. If for some reason, you have
to define a vector table as assembler file, please refer to IAR documentation.

24/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

10. Sleep / Standby Mode
Usage of the Sleep instruction is one possibility to save power consumption
during idle times. If required, you may modify the OS_Idle() routine, which is
part of the hardware dependent module RtosInit.c.
The Sleep mode works without any problems, because the embOS scheduler
is activated on any timer interrupt.
The Software Standby-Mode may be used, if scheduling depends on those in-
terrupts, which may release Software Standby-Mode. The real-time operating
system is halted during the execution of the Software-Standby mode if the timer
that the scheduler uses is supplied from internal clock. With external clock, the
scheduler keeps working. embOS timer may be realized with external hard-
ware which triggers one of the interrupt inputs of the CPU.
Hardware standby mode can not be used, as this mode can not be suspended
by any interrupt.

embOS for H8/H8S CPUs and IAR compiler 25/26

 2008 SEGGER Microcontroller GmbH & Co. KG

11. Technical data

11.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the Large memory model and release
build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1582 34
Add. Task --- 28
Add. Semaphore --- 6
Add. Mailbox --- 14
Add. Timer --- 14
Power-management --- ---

12. Files shipped with embOS H8 for IAR com-
piler

embOS for H8 and IAR compiler is shipped with documentation in PDF format
and release notes as html.
The start project, source files, all libraries and additional files required for linker
or emulator / simulator are located in the sub folder ‘Start’. The distribution of
embOS contains the following files:

Directory File Explanation
Start\ Start*.ew* Start workspace and projects projects for

IAR Embedded Workbench.
Start\CPU*\ *.mac embOS timer Interrupt simulation macro

for IAR C-Spy simulator
Start\CPU*\ RTOSInit*.c CPU specific hardware setup functions

used for embOS
Start\Inc\ RTOS.h embOS API header file. To be included in

any file using embOS functions
Start\Lib\ *.r37 embOS libraries
Start\Src\ main.c Frame program to serve as a start
Start\Src\ OS_Error.c embOS Error handler, used in stack-

check or debug builds.
CPU*\Sample\ *.* Sample applications.
GenOsSrc\ *.* embOS sources (Source version only)
 *.Bat Batch files to build embOS libraries from

sources (Source version only)

embOSView and the manuals are found in the root directory of the distribution.

26/26 embOS for H8/H8S CPUs and IAR compiler

  2008 SEGGER Microcontroller GmbH & Co. KG

13. Index
C
Clock settings............................... 15
Clock settings, timer interrupt...... 15
Clock settings, UART.................. 15
C-Spy ... 8
CSTACK...................................... 17
E
embOS interrupt........................... 20
F
Fast interrupt................................ 18
Fast interrupt H8S........................ 20
H
H8/H8S CPU specifics................. 15
I
Installation 5

Interrupt mode 1...........................18
Interrupt mode 2...........................20
Interrupt priorities H8S20
Interrupt stack17
Interrupt vector table23
Interrupt, fast..........................18, 20
Interrupts H8/300H18
Interrupts H8S..............................20
M
Memory models............................13
Memory requirements25
O
OS_EnterInterrupt........................21
OS_EnterNestableInterrupt21
OS_Error()11
OS_FSYS.....................................15

OS_PCLK_TIMER15
OS_PCLK_UART..................15, 16
S
Sleep-mode...................................24
Stacks ...17
Stacks, interrupt stack...................17
Stacks, system stack......................17
Stacks, task stacks17
Standby-mode...............................24
SYSCR ...18
System stack17
T
Task stacks17
Technical data...............................25

	Contents
	About this document
	How to use this manual

	Using embOS with IAR’s Embedded Workbench
	Installation
	First steps
	The sample application Main.c

	Using debugging tools to debug the application
	Using IAR’s CSpy simulator
	Common debugging hints

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	IAR compiler specifics
	Memory models, compiler options
	Available libraries
	Distributed project files
	Distributed configurations

	H8/300H and H8S CPU specifics
	Clock settings and corrections for embOS timer interrupt
	Clock settings and corrections for UART used for embOSView
	Conclusion about clock settings

	Stacks
	Task stack for H8 CPUs
	System stack for H8 CPUs
	Interrupt stack for H8 CPUs
	Reducing the stack size

	Interrupts with H8/300H CPUs
	Interrupt handling process with H8/300H CPUs
	Fast interrupts with H8/300H CPUs
	Interrupt priorities with H8/300H CPUs
	Nested interrupts with H8/300H CPUs
	Defining interrupt handlers for H8/300H CPUs in "C"

	Interrupts with H8S CPUs
	Interrupt handling process with H8S CPUs
	Fast interrupts with H8S CPUs
	Interrupt priorities with embOS for H8S CPUs
	Defining interrupt handlers for H8S CPUs in "C"
	Defining interrupt handlers for H8S CPUs in assembler
	Interrupt vector table

	Sleep / Standby Mode
	Technical data
	Memory requirements

	Files shipped with embOS H8 for IAR compiler
	Index

