embOS

Real Time Operating System

CPU & Compiler specifics for
C166/C167 core with Keil uVision2
Developer’s Kit V2.38a

Document Rev. 1

YT
SEGGER

A product of Segger Microcontroller Systeme GmbH

www.segger.com

2/18 embOS for C166/C167 and Keil Developer’s Kit

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit 3/18

Contents
@7 0] o1 1=) £ 3
1. About thiS dOCUMENL ... 4
1.1. How to use this manual..............oooiiii e 4
2. Using embOS with Keil Developer's Kit...........oooiiiiiiiiiiiie et 5
2 I 1 1= =1 = £ o o 5
W | £ B (=T 01 TSR UPPPPRRRPIIN 6
2.3. The sample application Main.C.........oouuuiiiiii i 7
2.4. Stepping through the sample application Main.c using Keil Debugger 7
B I O 11 7 O L A= o 1= [12
I T RS0 o] oo 4 (Yo Moo] a1 (o] | 1= = PSR 12
K I |V =T g T Y T T L= L PR 12
3.3. Available lIDrari@sccoov e 12
3.4. Assembler startup COUEooouimiiie e 13
S = To 11 (=Tl o 1= | T 13
] €= Lo € PSPPSR 14
4.1. Stack specifics Of CTB6/CTGTcoeeeeiiieee e e s 14
4.2. Task stack for C1B6/CABTcccee oo 14
4.3. System stack for C166/CAG7ccooeeeeeeeeeeeeeee 14
4.4. Interrupt stack for C166/C167cceeeeeeeeeeeeeeeeeeeeeeeeee e 14
T (0] =] 4 (U o] £ TS 15
5.1. What happens when an interrupt OCCUIrS?...........ouuvviiiiiiiemiiiiiiiiiinees 15
5.2. Defining interrupt handlers in "C"o i e 15
5.3, INterrUPL-StACK ... 16
5.4. Fast interrupts With CT166/C 167cooeeriieiiiee e e e 16
5.5. Special considerations for C166/C167uuuueueeeeeemmmnieiiiieieeinninneennns 16
6. STOP /WAIT MOAE......ccc o 17
A =13 g1 Tez= 1 e = | = 17
7.1, MemOry reqQUIMEMENTSoiiiiiiiiiiiiiiiiiiieieieeeie ettt ssneeseeeeennnnes 17
8. Files shipped With @mbOS ... 17
S T 1 o =SS 18

© 1996- 2002 Segger Microcontroller Systeme GmbH

4/18 embOS for C166/C167 and Keil Developer’s Kit

1. About this document

This guide describes how to use embOS Real Time Operating System for the
C166/C167 series of microcontrollers using Keil Developer’s Kit.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
C166/C167 based controllers with Keil Developer’s Kit. Before actually using
embOS, you should read or at least glance through this manual in order to be-
come familiar with the software.

Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Keil Developer's Kit. If you have no experience using embOS, you
should follow this introduction, because it is the easiest way to learn how to use
embOS in your application.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
C166/C167 based controllers using Keil Developer’s Kit.

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit 5/18

2. Using embOS with Keil Developer’s Kit

2.1. Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Keil Developer’s Kit project manager to develop
your application, no further installation steps are required. You will find a pre-
pared sample start application, which you should use and modify to write your
application. So follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:

Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.

embOS does in no way rely on Keil Developer’s Kit project manager, it may be
used without the project manager using batch files or a make utility without any
problem.

© 1996- 2002 Segger Microcontroller Systeme GmbH

6/18

embOS for C166/C167 and Keil Developer’s Kit

2.2. First steps

After installation of embOS (— Installation) you are able to create your first
multitasking application. You received a ready to go sample start project and it
is a good idea to use this as a starting point of all your applications.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c:\work
Copy the whole folder ‘Start’ which is part of your embOS distribution into your

work directory

Clear the read only attribute of all files in the new ‘start’ folder.
Open the sample project start\start.uv2 with Keil Developer’s Kit project man-

ager (e.g. by double clicking it)

Build the start project

Your screen should look like follows:

B start - pyision2 - [C\Work',emb0OS_C166_KEIL_UD"start'SrciMain.c]

[:| embO3

41 embOSLib_75_R
-7 embOSLib_75_5P
#1871 embOSLib_75_DP
D main

[:] ReadMe

B-§21 Start_KeiMon
[:l Skart_Flash

y Filex |§ Fegs MBooks I

Eile Edit wiew Project Debug Peripherals Tools SWCS indow Help _|ﬁ'|1|
PEHE| PR D2 EE 6% %% B = ¢4
@& aQ|oE|o T o
& | | &% [75_SP_TQM167U_Flash

= x| j
EE 75 5P TQMI&?U Flash !**

*

*

*

411

hEkhkk kA kAR kR AR AR AR R Ak R kAR kAR AR ARk AR kAR Ak ARk

vold main(woid) f
02_TInitKern():;
08_TInitHW () ;

J% initialize 02 &7
J* initialire Hardware for 02 &7
J* You need to oreate at least one task here | *f

OS_CREATETASK (&TCEO, "HE Task', TaskO, 100, Stacko);
0S_CREATETASK (&TCEL, "LE Task', Taskl, 50, Stackl);
08_gtart () ;

main

J* Start multitasking *f

HEnila target '7S_SP_TQM167U_Flash'
fcompiling Rtosinit.c...

compiling Main.c..
agzembling STY7U_F.R66. ..

linking...
creating hex file from ".‘\Outputi=tart"...
"Uszoubtputhstart" - 0 Erroris), 0 Warning(s).

[) B * Build A Command Find in Filex

|;I
[L I»

Lizsciz [[[Riw

For latest information you should open the file start\ReadMe.txt.

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit 7/18

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)

What happens is easy to see:

After initialization of embOS; two tasks are created and started

The 2 tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**

* SEGGER M CROCONTROLLER SYSTEME GibH
* Solutions for real time microcontroller applications

Rk S O O O R O S I

File : Main.c
Pur pose : Skel eton program for enbCS
-------------- END- OF- HEADER- - - - - - - - - --------mmmmmm oo o

#i ncl ude "RTCS. H'

OS_STACKPTR int StackO[128], Stackl[128]; /* Stack-space */
OS_TASK TCBO, TCB1; |/ * Task-control - bl ocks */

voi d TaskO(void) {
while (1) {
CS_Del ay (10);

}
voi d Taskl(void) {
while (1) {
CS_Del ay (50);
}

/**
*
* .

mal n
*
**/

void main(void) {
CS_InitKern(); /* initialize OS */
CS InitHW); /* initialize Hardware for OS */
/* You need to create at |east one task here ! */
OS_CREATETASK(&TCBO, "HP Task", TaskO, 100, StackO);
OS_CREATETASK(&TCB1, "LP Task", Taskl, 50, Stackl);
OS_SendString("Start project will start rultitasking '\n");
CS Start(); /* Start mnultitasking */

2.4. Stepping through the sample application Main.c using Keill
Debugger

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). Depending on your debugger settings, you may look
at the startup code and have to set a breakpoint at main. Now you can step
through the program.

OS I nitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables and enables
interrupts. If you do not like this behavior, you are free to change it by incre-
menting the interrupt-disable counter using OS | ncDI () before the call to
CS InitKern().

© 1996- 2002 Segger Microcontroller Systeme GmbH

8/18

embOS for C166/C167 and Keil Developer’s Kit

OS I ni t HW) is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step thru it to see what is done.

OS_COM I nit() is optional. It is required if embOSView shall be used. In this
case it should initialize the UART used for communication.

OS _Start () should be the last line in main, since it starts multitasking and
does not return.

B start - pyision2 - [C\¥Work\embOS_C166_KEIL_UD"start"SrciMain.c]

Eile Edit wiew Project Debug Peripherals Tools SWCS indow Help _|ﬁ'|1||
| PR D2 EE 6% %% B = d4
B8 anE e
wEHOBPF 0| R aRYsoE |
==l ZI
Hegis[e[|Va|ue I: !**
S word I]
03000 . main
g“gggg i(i(i(f(i(i(i(i(kﬁi«i«i(i(i(i(f(i(i(i(i(i(i(f(i(i(i(i(i(f(i(i(i(i(i(i(f(i(i(kﬁkﬁﬁtkﬁﬁkﬁﬁtkﬁkﬁﬁﬁf
b
0x4253 .))
£954 vold main{wvoid)
00000 o 02_InitKern(): J* initialize 08 ®f
00000 0S_TInitHW(); J* initialize Hardware for 08 *f
%0000 b f* ¥ou need Lo oreate at least one task here | *
00000 02_CREATETASK (&TCBO, "HP Task", Tasko, 100, Stackd):;
00001 OZ_CREATETAZE (&TCBL, "LP Task", Taskl, 50, Stackl);
00000 03_3tart(i; /* Start multitasking */
040000 ¥
0x0000
00000
00000
00000 = |
Files @Regs m:lBooks | I‘II _’I_
HLoad "C:\\Workh\embos_cl66_al | = sddess: H =
TIBS WMAINY22 o o

- ¢hype F2 to edits

BS WMATINW16

b

LSM BSSIGH BreakDisable = =
|4| 4 I blbll\ Buuild)\ Command ﬁ Findl in Files u_l ﬂ |4| 4' blbll\ Memory #1 ((hile |4I QI blbll(Localz)\ Watch #1 A lilatch #2 A Call
Ready [[RE=Xah! [e [e

Before you step into OS_Start(), set one break point in TaskO and one in
Task1. When you step into OS_Start(), you will only step into it in disassembly
mode, because this function is part of the embOS library. However, you can
press GO now or step in disassembly mode until you reach the highest priority
task.

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s

Kit

i start - pvision2 - [C:\Work'emb0S_C166_KEIL_UD'start’SrcMain.c]

Eile Edit Wiew Project Debug Peripherals Tools SWCS window Help

BDedd| s BRR|D x|
@ &g mFE oo

A Tb T Vi T [EED ~| #h

SEOBMBP 0| >

i)

Register | Walue I;
= Yford

}
)

[| 0S_Delay (50);
¥
} —
ILILI llln’i(i(i(i(i(f(i(i(i(i(i(i(f(i(i(i(i(i(i(i(i(i(i(i(i(f(i(i(i(i(i(i(f(i(kﬁk*ﬁﬁtkﬁkﬁﬁﬁtkﬁkﬁﬁtﬁkﬁk
0+0000 !
------- M4 0x0000 N .
------- M5 0:0000 =il . At
Files @Regs IQ:IBuoks I I*II
Hroad "C:\\Work\embas_C166_ 2] |] adess
T|BS \MAINY22 ‘

0S_STACKETR int StackO[128], Stackl([128]; /* Task stacks */ ZI
0S_TASK TCBO, TCBL;

wold Tasko(wold) {
while (1) {

03_Delay (10);

wvold Taskl (void) |
while {1} {

/* Task-control-blocks */f

BS WMATINYW16G

=

ASM ASSIGHN BreakDisable

-

EIE DN d £ Findin Files] [4[| »]

Ready

M4 FlHl\Memor}rM@—l

<type F2 to edits

[A]A M [T Locals p watch &1 £ Watch # 3 Call

lLit6 it [[[Riw 4

If you continue stepping, you will arrive in the task with the second highest prior-
ity:

© 1996- 2002 Segger Microcontroller Systeme GmbH

10/18

embOS for C166/C167 and Keil Developer’s Kit

B start - pyision2 - [C\¥Work\embOS_C166_KEIL_UD"start"SrciMain.c]

Eile Edit wiew Project Debug Peripherals Tools SWCS indow Help _|ﬁ'|1|

PeEd s o=
IR T

= % T b Yo T EET ~| ¢4

= x|

Regizter | Walue I;
Elwford

0=53100

------- il 00000
2 0=3100

------- O=0000 .

------- 0=0001

------- (0=0000

<l

------- 115 00000 =

0S8_STACKPTE int Stack0[128], Stackl[1l28]; /j* Task stacks */ ZI
02_TASE TCBO, TCBL:; J* Task-control-hblocks */

wold TaskO(wold) {

}

vold Taskl (void) {

Files @Regs m:lBooks | JLI*_I _'ILI

while {13 {
03_Delay (10);
H

while (13 {
08_Delay (50);
i
3 |

III-’kixﬁi«i(i(i(kﬁi«i«i(i(kixﬁi«i«i(i(kixﬁi«i(i(i(kﬁi«i«i(i(kixﬁi«i«kﬁkﬁﬁtkﬁkﬁﬁﬁtkﬁkﬁﬁﬁt
&
* main

TIBS WMAINYZ2
BS WMATINW16

Hroad "C:VWorky vembas_c166_a] | addess H

x|

type F2 to edits

b

LSM BSSIGH BreakDisable H =
4[4 T » [Bl o d f_Finein Files] [« [| »] AT M, temory 21 £ e AT IMT Locals p, watch 1 £ Watch 2} Gal

Ready

| Lzz it [o[Riw 4

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-

tine or timer executing).

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit 11/18

I‘f!}_start - p¥ision2 - [C:\Work'.emb0S_C166_KEIL_UD"start',SrchRtosinit.c]

Eile Edit Wiew Project Debug Peripherals Tools SWCS window Help ;Iilil|

SN2 =N - NN Ry

A Tb T Vi T [EED ~| #h

@&(amE oo ®
RO BDP OG0 g

i)

Register

| Walue

[4]

= Yford

%3200

0x0000

0=0000

I***tj
-

* Idle loop (038 _TIdle)

kkhhhhhh Ak kh Ak hhkhkhhh kA h Rk ko hhhhkhh ko kA hhhh Ak kR Rk

[

FPlease note:
Thizs iz basically the "core" of the idle loop.
Thiszs core loop can be changed, but:
The idle leoop does not run as task, scit does not have have
therefore no functionality should ke implemented that relies
to ke preserved. Howsver, a simple program loop <an be prog:
{(like toggeling an output or incrementing a counter)
*
/

o Qffff
"""" 1 01216 , , .
_______ HZ ﬁamu wold 05 _Tdle(wvoid) { J* Idle loop: Mo task iz ready to ez
_______ 13 Ds0000 B for (::); /% Mothing te do ... wait for inter:
------- M4 0x0000 3
....... [15 DHDDDD ﬂ f{i(f(f(f(f()’(i(i(f(f(fcf(l’(ﬁf(f(f(fcf(ﬁi(f(f(fcf(l’(i(i(f(f(fcf()’(ﬁf(f(f(kﬁﬁﬁkﬁkﬁﬁﬁﬁf(f(fcf(ﬁﬁf(f(f(fcﬁiv
Files @Regs IQ:IBuoks I I*II LlJ
H10ad "C:\\Work\ hembos_c166_| [H[addess H !
TIBs WMAINY22 T Tl

BS WMATINYW16G

<type F2 to edits

=

ASM ASSIGHN BreakDisable = =
4L AT [+ Buid_}y c d £ Findin Files] [4[| »] HI4] blbll\Memmm@_l AT M Locals p, Watch #1 £ Waich 22}, Gall

Ready

| |Ligs i1 [[[Riw 4

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. If you inspect system variable OS_Time,
you can see how much time has expired in the target system.

© 1996- 2002 Segger Microcontroller Systeme GmbH

12/18

embOS for C166/C167 and Keil Developer’s Kit

3. C166/C167 specifics

3.1. Supported controllers

embOS does support all C166 and C167 compatible controllers. C167 libraries
have been built with the MOD167 control directive and take advantage of the
enhanced instruction set.

3.2. Memory models

There are embOS libraries, which support SMALL, COMPACT, HCOMPACT,
MEDIUM, LARGE and HLARGE memory model of the Keil Developer’s Kit. If

you need support for TINY memory model, please contact us.

3.3. Available libraries

Core Model Library type Library

C166 SMALL Release RTOS6S_R.lib
C166 SMALL Stack-check RTOS6S_S.lib
C166 SMALL Stack-check + Profiling | RTOS6S_SP.lib
C166 SMALL Debug RTOS6S_D.lib
C166 SMALL Debug + Profiling RTOS6S DP.lib
C166 SMALL Debug + Trace RTOS6S DT.lib
C166 COMPACT |Release RTOS6C_R.lib
C166 COMPACT | Stack-check RTOS6C S.lib
C166 COMPACT | Stack-check + Profiling | RTOS6C_SP.lib
C166 COMPACT |Debug RTOS6C_D.lib
C166 COMPACT | Debug + Profiling RTOS6C DP.lib
C166 COMPACT |Debug + Trace RTOS6C DT.lib
C166 MEDIUM Release RTOS6M_R.lib
C166 MEDIUM Stack-check RTOS6M S.lib
C166 MEDIUM Stack-check + Profiling | RTOS6M_SP.lib
C166 MEDIUM Debug RTOS6M D.lib
C166 MEDIUM Debug + Profiling RTOS6M_DP.lib
C166 MEDIUM Debug + Trace RTOS6M DT.lib
C166 LARGE Release RTOS6L_R.lib
C166 LARGE Stack-check RTOS6L_S.lib
C166 LARGE Stack-check + Profiling | RTOS6L SP.lib
C166 LARGE Debug RTOS6L_D.lib
C166 LARGE Debug + Profiling RTOS6L_DP.lib
C166 LARGE Debug + Trace RTOS6L_DT.lib
C167 SMALL Release RTOS7S_R.lib
Cc167 SMALL Stack-check RTOS7S_S.lib
C167 SMALL Stack-check + Profiling | RTOS7S_SP.lib
Cc167 SMALL Debug RTOS7S_D.lib
Cc167 SMALL Debug + Profiling RTOS7S_DP.lib
Cc167 SMALL Debug + Trace RTOS7S_DT.lib
Cc167 COMPACT |Release RTOS7C_R.lib
Cc167 COMPACT |Stack-check RTOS7C_S.lib
C167 COMPACT | Stack-check + Profiling | RTOS7C_SP.lib
Cc167 COMPACT |Debug RTOS7C _D.lib

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit

13/18

C167 COMPACT |Debug + Profiling RTOS7C_DP.lib
C167 COMPACT |Debug + Trace RTOS7C_DT.lib
C167 HCOMPACT |Release RTOS7HC_R.lib
C167 HCOMPACT | Stack-check RTOS7HC_S.lib
C167 HCOMPACT | Stack-check + Profiling | RTOS7HC_SP.lib
C167 HCOMPACT | Debug RTOS7HC_D.lib
C167 HCOMPACT | Debug + Profiling RTOS7HC_DP.lib
C167 HCOMPACT |Debug + Trace RTOS7HC_DT.lib
C167 MEDIUM Release RTOS7M_R.lib
C167 MEDIUM Stack-check RTOS7M_S.lib
C167 MEDIUM Stack-check + Profiling | RTOS7M_SP.lib
C167 MEDIUM Debug RTOS7M_D.lib
C167 MEDIUM Debug + Profiling RTOS7M_DP.lib
C167 MEDIUM Debug + Trace RTOS7M_DT.lib
C167 LARGE Release RTOS7L_R.lib
C167 LARGE Stack-check RTOS7L_S.lib
C167 LARGE Stack-check + Profiling | RTOS7L_SP.lib
C167 LARGE Debug RTOS7L_D.lib
C167 LARGE Debug + Profiling RTOS7L_DP.lib
C167 LARGE Debug + Trace RTOS7L_DT.lib
C167 HLARGE Release RTOS7HL_R.lib
C167 HLARGE Stack-check RTOS7HL_S.lib
C167 HLARGE Stack-check + Profiling | RTOS7HL_SP.lib
C167 HLARGE Debug RTOS7HL_D.lib
C167 HLARGE Debug + Profiling RTOS7HL_DP.lib
C167 HLARGE Debug + Trace RTOS7HL_DT.lib

3.4. Assembler startup code

embOS does not require any specific startup code. The scheduler is started by
calling function OS_Start(). However, embOS has to be able to reset the user
stack pointer. For that reason, it is necessary to make the symbol
?C_USERSTKTORP of the default startup code public.

3.5. Register banks

The Context Pointer CP is not modified by embOS in any way. Therefore, you
can still use different register banks in your application, but you must ensure,
that no ISR using embOS API takes place during a different register bank is
active. You must also not call any embOS function during a different register
bank is active.

© 1996- 2002 Segger Microcontroller Systeme GmbH

14/18 embOS for C166/C167 and Keil Developer’s Kit

4. Stacks

4.1. Stack specifics of C166/C167

Using the Keil Developer’s Kit , C166/C167 does have two kind of stacks. One
is the system stack, which is the real CPU stack. This stack has to be located
inside the internal RAM and is used to save registers or for calling subroutines.
The other stack is the user stack, which is used for automatic variables and pa-
rameter passing.

During a task change, the current system stack is copied to the user stack.
When embOS reactivates a task, the system stack is restored. So each task
does have its own system and user stack.

By default the user stack has to be located in near memory area, because the
Keil compiler generates code, which accesses the near memory area for auto-
matic variables and parameter passing. The compiler option
USERSTACKDPP3 is currently not supported.

4 2. Task stack for C166/C167

For C166/C167 the task stack is used as user stack for that specific task. So it
is used for automatic variables and parameter passing by this task. When a
task change takes place, contents of the system stack are also copied to the
task stack. Therefore the minimum task stack size for C166/C167 is about 22
bytes. Please be aware, that all task stacks have to be located in the near
memory area; see also 4.1. This can be achieved by using a memory model
with default data segment near, or by using memory type keyword near for the
stack declaration.

4.3. System stack for C166/C167

For embOS, system stack does usually mean the stack area, which is used by
the application, before OS_Start() is called. embOS does use this stack area
also for its software-timers and during task change.

Using the C166/C167 with Keil compiler, system stack does also specify the
memory area of the real CPU stack. The embOS system stack does mean the
user and system stack, which are active before OS_Start() is called.

Size of Keil user and system stack can be changed in the assembler startup
code; for details, please refer to Keil Developer's Kit documentation. For
embOS the minimum system stack size is about 112 bytes and the minimum
user stack size is about 4 bytes (used by OS_CREATETASK for parameter
passing).

4.4. Interrupt stack for C166/C167

C166/C167 does not support a separate stack for interrupt service routines. In-
terrupt functions use the system stack for saving CPU registers and the current
user stack for automatic variables and parameter passing.

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit 15/18

5. Interrupts

5.1. What happens when an interrupt occurs?

e The CPU-core receives an interrupt request.

e As soon as interrupts are enabled and the interrupt’s level is higher than cur-
rent CPU interrupt level, the interrupt is executed.

e CPU registers PSW and PC are pushed to the system stack by hardware

e The interrupt function does save scratch registers and those permanent reg-
isters, which will be modified, to the system stack.

e If you are using embOS function OS_Ent er I nt er rupt (), interrupts will be
disabled during execution of the interrupt function to avoid nesting of inter-
rupts.

e If you are using embOS function OS_Ent er Nest abl el nt errupt (), inter-
rupts will remain enabled during execution of the interrupt function and allow
interrupts with higher interrupt level to take place.

e Execution of the interrupt function’s code

e If you are using embOS function OS_Leavel nterrupt () or
OS _LeaveNest abl el nterrupt () atthe end of the interrupt function,
embOS will check for pending task switches and change the task is required
during the end of the interrupt function.

e The interrupt function does restore scratch registers and those permanent
registers, which have been modified.

¢ Interrupt function does end with a RET]I instruction, which restores PC and
PSW.

5.2. Defining interrupt handlers in "C"

Keil compiler does have a specific syntax for defining interrupt functions. If you
want to use the embOS API inside your interrupt function, you have to tell the
OS, that you are executing an interrupt function. You do this by calling
OS Enterlinterrupt() or OS_Ent er Nest abl el nterrupt () at the begin-
ning of your interrupt function and by calling OS Leavel nterrupt() or
OS LeaveNest abl el nterrupt () atits end.

Example

"Simple" interrupt-routine

void OS_ I SR rx(void) interrupt Ox2b {
vol atil e unsigned char x;
OS_EnterNestablelnterrupt(); /* W wll enable interrupts */
X = SORBUF;
if (SOCON & 0x0600) {
SOCON =0x80D1;
}
el se {
OS_OnRx(x);

}
OS_LeaveNest abl el nterrupt ();

© 1996- 2002 Segger Microcontroller Systeme GmbH

16/18 embOS for C166/C167 and Keil Developer’s Kit

5.3. Interrupt-stack

C166/C167 interrupt functions use the current user stack for automatic vari-
ables and parameter passing. For register saving, the system stack is used.
The routines OS _EnterlntStack() and OS Leavel nt St ack() are sup-
plied for source compatibility to other processors only and have no functionality.

5.4. Fast interrupts with C166/C167

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 7. Therefore all interrupts with level 8 or higher
can still be processed.

These interrupts are named fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

5.5. Special considerations for C166/C167

embOS has been designed to use its APl even within interrupt functions and to
allow nesting of interrupts. Further more, a task switch caused by an interrupt
function is executed immediately when returning from interrupt instead of wait-
ing for next timer tick or OS call to take place.

Because C166/C167 does not disable further interrupts after accepting one and
also disabling interrupts does not work immediately, there are some restrictions
for interrupt functions using embOS API, because embOS has to keep track
on nesting interrupts using its API.

All interrupt functions, which use the embOS API and which want to do task
switching at the end, must have same interrupt level. Any interrupt function not
using the embOS API| must not be interrupted by an interrupt function, which
does use the embOS API and which wants to do task switching at its end.
Usually this can be achieved by giving interrupt function not using embOS API
a higher interrupt level.

The description above might be difficult to understand. Therefore, here are use-
ful recommendations:

o All embOS interrupts, which end with OS_Leavel nterrupt ()
or OS LeaveNestabl elnterrupt(), should have interrupt
level 1.

o Fast interrupts (interrupt level >=8) must not call any embOS
function.

o Any embOS interrupt with an interrupt level greater than 1 should
end with OS _Leavel nterrupt NoSwi t ch() or
OS_LeaveNest abl el nt errupt NoSwi t ch() .

o0 Any interrupt function not using the embOS API should have a
higher interrupt level than those interrupt functions using the
embOS API.

© 1996-2002 Segger Microcontroller Systeme GmbH

embOS for C166/C167 and Keil Developer’s Kit 17/18

6. STOP / WAIT Mode

In case your controller does support some kind of power saving mode, it should
be possible to use it also with embOS, as long as the timer keeps working and
timer interrupts are processed. To enter that mode, you usually have to imple-
ment some special sequence in function OS_ldle(), which you can find in
embOS module RTOSINIT.c.

/. Technical data

7.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. Using SMALL memory model, the minimum ROM requirement for the
kernel itself is about 1.400 bytes.

In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

Task control block 18
Resource semaphore 4
Counting semaphore 2
Mailbox 12
Software timer 10

8. Files shipped with embOS

Directory File Explanation

INC RTOS.H Include file for RTOS, to be included in every "C"-file
using RTOS-functions

LIB RTOS*. I'i b |Libraries for all memory models and debug options

SRC ST7U_F.A66 [Low level assembler startup code for the TQ

STK16XU board and an application running in
FLASH w/o the Keil Monitor

SRC ST7U_R.A66 [Low level assembler startup code for the TQ
STK16XU board and an application running in RAM
under control of the Keil Monitor

SRC Rtoslnit.c Initializes the hardware, can be modified if required
SRC Main.c Frame program to serve as a start

Any additional file shipped as example.

© 1996- 2002 Segger Microcontroller Systeme GmbH

18/18

embOS for C166/C167 and Keil Developer’s Kit

9. Index

H

Halt-mode.......ccoooevvvreevnieeennnn, 17
|

Idle-task-mode...........ccovvveveennnenn. 17
Installation............cccceeeevveeeeneeeennes 5
Interruptsocveeveeevieinieniieeeen, 15

Interrupt-stack........cccccceverenennennee 16 Stop-mode.......ccecevveririnininennns 17
M T

memory models target hardwarec.cocceeeeneee 17
memory requirements w

S Wait-modecccoeevveeeenirinennns 17

Stacks....veeeeeeieeeeeeeeee e 14

© 1996-2002 Segger Microcontroller Systeme GmbH

	Contents
	About this document
	How to use this manual

	Using embOS with Keil Developer’s Kit
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c using Keil Debugger

	C166/C167 specifics
	Supported controllers
	Memory models
	Available libraries
	Assembler startup code
	Register banks

	Stacks
	Stack specifics of C166/C167
	Task stack for C166/C167
	System stack for C166/C167
	Interrupt stack for C166/C167

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack
	Fast interrupts with C166/C167
	Special considerations for C166/C167

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

