
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document revision 1
Date: January 24, 2008

CPU & Compiler specifics for
AVR32 cores using

IAR Embedded Workbench

Real Time Operating System

www.segger.com

2

embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER GmbH & Co. KG (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2007 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

Heinrich-Hertz-Str. 5
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Software versions

Refer to Release.html for information about the changes of the software versions.

Manual version Date By Explanation

1.00 080121 TS Initial version

3

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

4

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller Gmbh & Co. KG develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

5

Table of Contents
1 Introduction ..7

2 Using embOS with IAR Embedded Workbench...9

2.1 Installation ...10
2.2 First steps ..11
2.3 The sample application Main.c ...12
2.4 Stepping through the sample application using AVR-JTAGICE-MKII.................13

3 Build your own application ...17

3.1 Required files for an embOS application..18
3.2 Change library mode..19
3.3 Select an other CPU ...19

4 AVR32 specifics...21

4.1 CPU modes ...22
4.2 Available libraries ..22
4.3 Application mode and supervisor mode...22

5 Stacks ..23

5.1 Task stack for AVR32 ...24
5.2 System stack for AVR32 ...24
5.3 Interrupt stack for AVR32 ...24
5.4 Stack specifics of the AVR32 family ..24

6 Interrupts..25

6.1 What happens when an interrupt occurs ...26
6.2 Defining interrupt handlers in "C"...26
6.3 OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts
27
6.4 Interrupt stack switching ..28

7 STOP / WAIT mode ...29

7.1 Saving power ..30

8 Technical data..31

8.1 Memory requirements ..32

9 Files shipped with embOS ...33

9.1 Files included in embOS..34
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

6

embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

7

Chapter 1

Introduction
This guide describes how to use embOS Real Time Operating System for the AVR32
series of microcontrollers using IAR Embedded Workbench.

How to use this manual

This manual describes all CPU and compiler specifics of embOS using AVR32 based
controllers with IAR Embedded Workbench. Before actually using embOS, you should
read or at least glance through this manual in order to become familiar with the soft-
ware.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS for
AVR32 using IAR Embedded Workbench. If you have no experience using embOS, you
should follow this introduction, because it is the easiest way to learn how to use
embOS in your application.
Most of the other chapters in this document are intended to provide you with detailed
information about functionality and fine-tuning of embOS for the AVR32 based con-
trollers using IAR Embedded Workbench.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

8 Introduction
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 2

Using embOS with IAR Embed-
ded Workbench
The following chapter describes how to start with and use embOS for AVR32 and IAR
compiler. You should follow these steps to become familiar with embOS for AVR32
and IAR Embedded Workbench.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

10 Using embOS with IAR Embedded Workbench
2.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, please keep all files in their respective sub directories.
Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserving the
directory structure of the zip-file.

Assuming that you are using IAR Embedded Workbench project manager to develop
your application, no further installation steps are required. You will find a prepared
sample start application, which you should use and modify to write your application.
So follow the instructions of the next heading First steps on page 11.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:
Copy either all or only the library-file that you need to your work-directory. Also copy
the entire CPU specific subdirectory and the embOS header file RTOS.h. This has the
advantage that when you switch to an updated version of embOS later in a project,
you do not affect older projects that use embOS also.
embOS does in no way rely on IAR Embedded Workbench project manager, it may be
used without the project manager using batch files or a make utility without any
problem.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

11
2.2 First steps
After installation of embOS (See �Installation� on page 10.) you are able to create
your first multitasking application. You received several ready to go sample start
workspaces and projects and every other files needed in the subfolder "Start". It is a
good idea to use one of them as a starting point for all of your applications.
The subfolder "BoardSupport" contains the workspaces and projects which are
located in manufacturer- and CPU-specific subfolders:

To get your first multitasking application running, you should proceed as follows:

� Create a work directory for your application, for example C:\Work
� Copy the whole folder "Start" which is part of your embOS distribution into your

work directory
� Clear the read only attribute of all files in the new "Start" folder
� Open the sample workspace

"Start\BoardSuppord\Atmel\EVK1100\EVK1100\Start_EVK1100.eww" with the
IAR Embedded Workbench project manager (e.g. by double clicking it)

� Build the start project

After building the start project your screen should look like follows:

For additional information you should open the ReadMe.txt file which is part of every
specific project.
The ReadMe file describes the different configurations of the project and gives addi-
tional information about specific hardware settings of the supported evalboards, if
required.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

12 Using embOS with IAR Embedded Workbench
2.3 The sample application Main.c
The following is a printout of the sample application main.c. It is a good startingpoint
for your application. (Please note that the file actually shipped with your port of
embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER GmbH & Co. KG *
* Solutions for real time microcontroller applications *

File : Main.c
Purpose : Skeleton program for OS
--------------END-OF-HEADER----------------------------*/
#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

13
2.4 Stepping through the sample application using
AVR-JTAGICE-MKII

When starting the debugger, you will usually see the main function (very similar to
the screenshot below). In some debuggers, you may look at the startup code and
have to set a breakpoint at main. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into it in
disassembly mode. It initializes the relevant OS-Variables. Because of the previous
call of OS_IncDI(), interrupts are not enabled during execution of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.
OS_Start() should be the last line in main, since it starts multitasking and does not
return.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

14 Using embOS with IAR Embedded Workbench
Before you step into OS_Start(), you should set two break points in the two tasks as
shown below.

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. You may press GO, step over OS_Start(), or step into OS_Start() in dis-
assembly mode until you reach the highest priority task.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

15
If you continue stepping, you will arrive in the task with lower priority:

Continuing to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or timer
executing).
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint there before
you step over the delay in LPTask.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

16 Using embOS with IAR Embedded Workbench
If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay.
As can be seen by the value of embOS timer variable OS_Time, shown in the watch
window, HPTask continues operation after expiration of the 10 ms delay.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 3

Build your own application
To build your own application, you should always start with a copy of the sample start
workspace and project. Therefore copy the entire folder �Start� from your embOS
distribution into a working folder of your choice and then modify the start project
there. This has the advantage, that all necessary files are included and all settings
for the project are already done.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

18 Build your own application
3.1 Required files for an embOS application
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one target specific "BoardSupport*\"-subfolder.
It contains the hardware dependent initialization code for the specific CPU, the
embOS timer and optional UART for embOSView.

� One embOS library from the "Lib\"-subfolder.
� OS_Error.c from one target specific "BoardSupport*\"-subfolder.

The error handler is used if any embOS library other than the Release build
library is used in your project.

When you decide to write your own startup code, or use a __low_level_init() func-
tion, ensure that non initialized variables are initialized with zero, according to "C"
standard. This is required for some embOS internal variables.
Also ensure, that main is called with CPU running in supervisor or system mode.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are called.
You should then modify or replace the main.c source file in one target specific
"BoardSupport*\"-subfolder.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

19
3.2 Change library mode
For your application you may wish to choose an other library. For debugging and pro-
gram development you should use an embOS-debug library. For your final application
you may wish to use an embOS-release library or a stack check library.
Therefore you have to select or replace the embOS library in your project or target:

� If your wished library is already contained in your project, just select the appro-
priate configuration.

� To add a library, you may add the library to the "Lib" group of your project and
exclude all other libraries from build. You may alternatively remove unused
libraries from the "Lib" group.

� Check and set the appropriate OS_LIBMODE_* define which you would like to use
for debug and release builds and modify the OS_Config.h file accordingly.

3.3 Select an other CPU
embOS for AVR32 and IAR compiler contains CPU specific code for various AVR32
CPUs. Manufacturer- and CPU specific sample start workspaces and projects are
located in the subfolders of the "BoardSupport" folder.
To select a CPU which is already supported, just select the appropriate workspace
from a CPU specific folder.
If your CPU is currently not supported, examine all RTOSInit files in the CPU specific
subfolders and select one which almost fits your CPU. You may have to modify
OS_InitHW(), OS_COM_Init(), the interrupt service routines for embOS timer tick
and communication to embOSView and __lowlevel_init().
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

20 Build your own application
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 44

AVR32 specifics
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

22 AVR32 specifics
4.1 CPU modes
embOS supports nearly all memory and code model combinations that IAR�s C-Com-
piler supports.

4.2 Available libraries
embOS for IAR compiler comes with 7 different libraries, one for each library mode.
The libraries are named as follows:

osavr32a<CodeModel><DataModel><AllowUnalignedWordAccess><LibMode>.r82

Example:

osavr32alladp.r82 is the library for a project using AVR32 core, large code model,
large data model, do not allow unaligned word access and debug and profiling fea-
tures of embOS.

4.3 Application mode and supervisor mode
All embOS tasks run in application mode while interrupts and embOS system run in
supervisor mode. Interrupts require only space on the supervisor stack. Therefore
no extra space for interrupts on the task stacks is needed.

Parameter Meaning Values

CodeModel Code modele
S: Small code model
M: Medium code model
L: Large code model

DataModel Data model
S: Small data model
L: Large data model

AllowUnalignedWordAccess Allow unaligned word access
U: Allow unaligned access
A: Do not allow unaligned access

LibMode Library mode

XR: Extreme release
R: Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling
DT: Debug + trace
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 5

Stacks
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

24 Stacks
5.1 Task stack for AVR32
All embOS tasks execute in application mode. Every embOS task has its own individ-
ual stack which can be located in any memory area. The required stacksize for a task
is the sum of the stack size used by all functions for local variables and parameter
passing, plus basic stack size.
The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS-routines.
For the AVR32, this minimum basic task stack size is about 44 bytes.

5.2 System stack for AVR32
The embOS system executes in supervisor mode. The minimum system stack size
required by embOS is about 144 bytes (stack check & profiling build). However, since
the system stack is also used by the application before the start of multitasking (the
call to OS_Start()), and because software-timers and "C"-level interrupt handlers
also use the systemstack, the actual stack requirements depend on the application.

5.3 Interrupt stack for AVR32
If a normal hardware exception occurs, the AVR32 core switches to IRQ mode,which
uses the supervisor stack pointer.
As a result, only scratch registers are saved onto the IRQ stack.
Every interrupt requires 80 bytes on the interrupt stack.
The maximum supervisor stack size required by the application can be calculated as
maximum interrupt nesting level * 80 bytes.

5.4 Stack specifics of the AVR32 family
Interrupts require space on the supervisor stack. The supervisor stack is used to
store contents of scratch registers, the ISR itself uses supervisor stack. The Supervi-
sor stack is also used during startup, main(),embOS internal functions and software
timers.
All other stacks are not initialized and not used by embOS. If required by the applica-
tion, the startup function and linker command files have to be modified to initialize
the stacks.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 6

Interrupts
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

26 Interrupts
6.1 What happens when an interrupt occurs
� The CPU-core receives an interrupt request
� If the interrupt is not masked the interrupt is accepted
� The hardware automatically sets the mask bits in the status register
� The Status Register and Program Counter are stored on the supervisor stack
� User defined functionality in interrupt service routine
� The rete instruction signals the end of the event.
� Return from interrupt.
� For details, please refer to the AVR32 user manual

6.2 Defining interrupt handlers in "C"
Routines preceded by the keywords �#pragma handler� save & restore the temporary
registers and all registers they modify onto the stack and return with RETE.

The interrupt handler used by embOS are implemented in the CPU specific
RTOSInit_*.c file. embOS provides support for each of the four interrupt levels.

Example of an embOS interrupt handler

embOS interrupt handler have to be used for interrupt sources running at all priori-
ties up to the user definable interrupt priority level limit for fast interrupts.

#pragma handler = 0, 0
__interrupt static void _OS_ISR_Tick(void) {
 OS_CallISR(_OS_ISR_TickHandler);
}

Any interrupt handler running at priorities from 1 to 2 has to be written according the
code example above, regardless any other embOS API function is called.

The rules for an embOS interrupt handler are as follows:

� The embOS interrupt handler must not define any local variables.
� The embOS interrupt handler has to call OS_CallISR(), when interrupts should
 not be nested. It has to call OS_CallNestableISR(), when nesting should be
 allowed.
� The interrupt handler must not perform any other operation, calculation
 or function call. This has to be done by the local function called from
 OS_CallISR() or OS_CallNestableISR().

Differences between OS_CallISR() and OS_CallNestableISR()

OS_CallISR() should be used as entry function in an embOS interrupt handler, when
the corresponding interrupt should not be interrupted by another embOS interrupt.
OS_CallISR() sets the interrupt priority of the CPU to the user definable �fast�
interrupt priority level, thus locking any other embOS interrupt, Fast interrupts are
not disabled.

OS_CallNestableISR() should be used as entry function in an embOS interrupt han-
dler, when interruption by higher prioritized embOS interrupts should be allowed.
OS_CallNestableISR() does not alter the interrupt priority of the CPU, thus keeping
all interrupts with higher priority enabled.

Example of a Fast interrupt handler

Fast interrupt handler have to be used for interrupt sources running at priorities
above the user definable interrupt priority limit.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

27
#pragma handler = 12, 2
__interrupt static void _OS_ISR_FastHandler(void) {
}

The rules for a Fast interrupt handler are as follows:

� Local variables may be used.
� Other functions may be called.
� embOS functions must not be called, nor direct, neither indirect.
� The priority of the interrupt has to be above the user definable priority limit for

fast interrupts.

6.3 OS_SetFastIntPriorityLimit(): Setting the interrupt
priority limit for fast interrupts

The interrupt priority limit for fast interrupts is set to 2 by default. This means, all
interrupts with higher priority from 3 to 4 will never be disabled by embOS.

Description

OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between fast
interrupts and lower priority embOS interrupts.

Prototype

void OS_SetFastIntPriorityLimit(unsigned int Priority)

Return value

NONE.

Add. information

To disable fast interrupts at all, the priority limit may be set to 4 which is the highest
interrupt priority for interrupts. To modify the default priority limit,
OS_SetFastIntPriorityLimit() should be called before embOS was started. In the
default projects, OS_SetFastIntPriorityLimit() is called from OS_IntHW() in
RTOSInit_*.c. All interrupts running at low priority from 0 to the user definable prior-
ity limit for fast interrupts have to call OS_CallISR() or OS_CallNestableISR() regard-
less any other embOS function is called in the interrupt handler. This is required,
because interrupts with low priorities may be interrupted by other interrupts calling
embOS functions. The task switch from interrupt will only work if every embOS inter-
rupt uses the same stack layout. This can only be guaranteed when OS_CallISR() or
OS_CallNestableISR() is used.

Any interrupts running above the fast interrupt priority limit must not call any embOS
function.

Parameter Meaning

Priority

The highest value useable as priority
for embOS interrupts. All interrupts
with higher priority are never disabled
by embOS. Valid range: 0 < Priority
<= 4
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

28 Interrupts
6.4 Interrupt stack switching
Since AVR32 core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source compatibility
to other processors only and have no functionality. The AVR32 supervisor stack is
used for interrupt handler.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

29
Chapter 7

STOP / WAIT mode
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

30 STOP / WAIT mode
7.1 Saving power
In case your controller does support some kind of power saving mode, it should be
possible to use it also with embOS, as long as the timer keeps working and timer
interrupts are processed. To enter that mode, you usually have to implement some
special sequence in function OS_Idle(), which you can find in embOS module
RTOSIinit_*.c.
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

31
Chapter 8

Technical data
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

32 Technical data
8.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. Using
AVR32 mode, the minimum ROM requirement for the kernel itself is about 2.500
bytes. In the table below, you find the minimum RAM size for embOS resources. The
sizes depend on selected embOS library mode; the table below is for a release build.

embOS resource RAM [bytes]
Task control block 36
Resource semaphore 16
Counting semaphore 8
Mailbox 24
Software timer 20
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 9

Files shipped with embOS
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

34 Files shipped with embOS
9.1 Files included in embOS

Any additional files shipped serve as example.

Directory File Explanation
root *.pdf Generic API and target specific documentation

root embOSView.exe
Utility for runtime analysis, described in generic
documentation

root Release.html Version control document

Start Start*.eww
Start project files for AVR32 and IAR Embedded
Workbench

Start\Inc RTOS.h
Include file for embOS, to be included in every "C"-
file using embOS-functions

Start\Lib osavr32*.r82 embOS libraries

Start\Setup OS_Error.c
embOS runtime error handler used in stack check
or debug builds

Start\Setup RtosInit*.c CPU specific hardware routines
Start\Application *.c Sample frame program to serve as a start
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

35
Index
I
Installation ...10
Interrupt stack 24, 28
IRQ_STACK ...24

M
Memory models22
Memory requirements32

S
Stacks ..23

CSTACK ...24
Interrupt stack24
System stack24

STOP / WAIT mode29
Syntax, conventions used 3
System stack24
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

36 Index
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

Index 37
embOS for AVR32 and IAR Embedded Workbench © 2007 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction
	Using embOS with IAR Embedded Workbench
	2.1 Installation
	2.2 First steps
	2.3 The sample application Main.c
	2.4 Stepping through the sample application using AVR-JTAGICE-MKII

	Build your own application
	3.1 Required files for an embOS application
	3.2 Change library mode
	3.3 Select an other CPU

	AVR32 specifics
	4.1 CPU modes
	4.2 Available libraries
	4.3 Application mode and supervisor mode

	Stacks
	5.1 Task stack for AVR32
	5.2 System stack for AVR32
	5.3 Interrupt stack for AVR32
	5.4 Stack specifics of the AVR32 family

	Interrupts
	6.1 What happens when an interrupt occurs
	6.2 Defining interrupt handlers in "C"
	6.3 OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts
	6.4 Interrupt stack switching

	STOP / WAIT mode
	7.1 Saving power

	Technical data
	8.1 Memory requirements

	Files shipped with embOS
	9.1 Files included in embOS

	Index

