embOS

Real Time Operating System

CPU & Compiler specifics for
ARM core with
ARM RealView Developer Suite 3.0

Document Rev. 1

) E—
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2125 embOS for ARM and RealView Developer Suite

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 3/25

Contents
L0 1 (=T 01 £ PP 3
1. ADOUL thiS AOCUMENT ...t e et e e e e e e e e e eaab e e e e e eeeeeees 4
1.1. HOW t0 USE thiS MANUAL........ceiiiiiiiiiiiiiiiiiiiiieii it 4
2. Using embOS with ARM RealView Developer SUIteccouevuiiiiiiiieeieeeeiiiie e 5
2.0 INSTAIALION. ... 5
A e | €5 B = 1T 6
2.3. The sample application MaIN.Ccouuuiiiieie e e 7
2.4. Stepping through the sample application Main.c using ARM Debugger 7
3. Build your oWn appliCatION..........coeiiieeiie e e e e e e e e aaaaaaa 11
3.1. Required files for an embOS applicationcccooviiiiiiiiiiiiiii e 11
3.2. Change liDrary MOGE........coovviiiiii e e e e e e aaa s 12
3.3, Select an Other CPU ... et 12
N 1Y/ IS =T o 1 o0 13
o I O U I 0T To [PPSR 13
4.2. Available lIDraries. ... 13
TS = T P UUUPPPPPTRTPPIN 14
5.1. Task StACK fOr ARMuiiiiiiiii s 14
5.2, System Stack fOr ARM ... 14
5.3. Interrupt Stack fOr ARMoueiiii e e e e 14
5.4. Stack specifics of the ARM family..........ccooooiiiiiiii e 14
LT o [T o PP PPRTRN 15
6.1. Heap ManagemEeNtu ettt et e e e e e e e e e e e e e e 15
A L1 (=] € (0] 0] £ PPN 16
7.1. What happens when an interrupt OCCUIS?oooeiiiiiiiiiiiie et 16
7.2. Defining interrupt handlers in "C ..o e 16
7.3. Interrupt handling without vectored interrupt controller............ccccceeeiiiiiiiieiiinnnnn. 17
7.4. Interrupt handling with vectored interrupt controller.............ccccvvieeeii e, 17
7.5. Interrupt-Stack SWILCNINGuuiiiiiieeee e 22
7.6. Fast INTerrupt FIQ ..o 22
8. STOP / WAIT MOUE ... 23
9. TECNNICAI ALA.......cc oo 23
S I \V (=T g T YA (= To (U =T 4 T L ST 23
10. Files shipped with @mbOS ... e 23
0 T 1 T = PSSR 25

0 2008 SEGGER Microcontroller GmbH & Co. KG

4/25 embOS for ARM and RealView Developer Suite

1. About this document

This guide describes how to use embOS Real Time Operating System for the
ARM series of microcontrollers using ARM RealView Developer Suite.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using ARM
based controllers with ARM RealView Developer Suite. Before actually using
embOS, you should read or at least glance through this manual in order to be-
come familiar with the software.

Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using ARM RealView Developer Suite. If you have no experience using em-
bOS, you should follow this introduction, because it is the easiest way to learn
how to use embOS in your application.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the ARM
based controllers using ARM RealView Developer Suite.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 5/25

2. Using embOS with ARM RealView Developer

Suite

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using ARM RealView Developer Suite project manager
to develop your application, no further installation steps are required. You will
find prepared sample start projects an a sample application, which you should
use and modify to write your own application. So follow the instructions of the
next chapter ‘First steps’.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with the project manager, you should:

Copy either all or only the library-file that you need to your work-directory. Then
copy the new RTCS. h file and CPU specific files also. This has the advantage
that when you switch to an updated version of embQOS later in a project, you do
not affect older projects that use embOS also.

embOS does in no way rely on ARM RealView Developer Suite project man-
ager, it may be used without the project manager using batch files or a make
utility without any problem.

0 2008 SEGGER Microcontroller GmbH & Co. KG

6/25

embOS for ARM and RealView Developer Suite

2.2. First steps

After installation of embOS (- Installation) you are able to create your first
multitasking application. You received several ready to go sample start projects
and it is a good idea to use one of these as a starting point of all your applica-

tions.

To get your new application running, you should proceed as follows:

» Create a work directory for your application, for example c:\work
* Copy the whole folder ‘Start’ which is part of your embOS distribution into

your work directory

e Clear the read only attribute of all files in the new ‘start’ folder.
» For first steps, open one of the projects with ARM RealView Developer Suite
project manager (e.g. by double clicking it)

e Build the start project

Your screen should look like follows:

{48 Metrowerks CodeWarrior

File Edit Wew Search Project Debug Tools ‘Window Help

HEesE2 =<0 0002E2h5 TR

=l

i gMain_LED.c I [=]
ST T l b} M- B+ o - Path [CAWorkiemb0SembDS_ARM_RVDS22\stathC. . \Main_LED ¢ <>
| 9 DebugReM ~l| Jr—
"
Filez |Link Drderl Targetsl i wain =
w
¥ | Fie T Code | [— * Wk Wk Wk * Wk e
g int main(wvoid) |
- OF_IncDI(); /% Initially dizakle interrupts *f
1 OF_InitEern() : f* dnitialize O wf
0 0% InitHW() ; f*% dnitialize Hardware for O w
. 1 LED Tniti): /% initialize LED ports vy
soat_ATISAMTS2EE .. nda /% ¥ou nesd to create ab least one task kefore calling OS5 Starti) */
B int_ATIISAMTS. 5 1 05 _CREATETASE (&TCEQ, "HP Task", Task0, 100, Stackn);

: B 05_Configh 1] 05 _CREATETASE (&TCELl, "LP Task", Taskl, 50, Stackl):

- RTOSIMIT_ATI1SAMT... 1 OE_Start(): /% Btart maltitasking wyi

ol scat_ATIISAMTS 256 .. nda return O;

R o lewelinit.c 1 | 57
®{3 Ine il Line 1 Cal 1 JLI H o
235 2

OI |D &I |D |1? |Err0rs and warnings for “Start_ATI154. . &I QI OI
Image component sizes
o] e i 4o e PR UL et bl
16 fles < | _'|_I
1 | A 4

For latest information you should open the file start\ReadMe.txt.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 7125

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)

What happens is easy to see:

After initialization of embOS; two tasks are created and started

The 2 tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**

* SEGGER M CROCONTROLLER SYSTEME GrbH
* Solutions for real time nmicrocontroller applications

Rk S R R Sk S Sk S S R R R b S S R R R o Sk R o kR R

File : Main.c
Pur pose : Skel eton program for enhCS
-------- END- OF- HEADER - -----===--==-mmmmmemo oo o

#i ncl ude "RTGCS. H'

OS_STACKPTR int StackO[128], Stackl[128]; /* Task stacks */
OS_TASK TCBO, TCBI; [* Task-control -bl ocks */

voi d TaskO(void) {
while (1) {
CS Del ay (10);

}

voi d Taskl(void) {
while (1) {
0S Del ay (50);

/***
*
* .

mal n
*
***/

int main(void) {
/*ensure no library functions that use sem hosting SWs are linked */
#pragma i nport(__use_no_seni hosting_sw)

CS IncDi(); /* Initially disable interrupts */
CS I nitKern(); /[* initialize OS */
CS InitHW); /* initialize Hardware for OS */
/* You need to create at |east one task here ! */

OS_CREATETASK(&TCBO, "HP Task", Task0, 100, StackO);

OS_CREATETASK(&TCB1, "LP Task", Taskl, 50, Stackl);
OS_SendString("Start project will start nultitasking '\n");

CS Start(); /[* Start multitasking */
return O;

} o}

2.4. Stepping through the sample application Main.c using ARM
Realview Debugger

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). In some debuggers, you may look at the startup code
and have to set a breakpoint at main. Now you can step through the program.
OS I ncDl () initially disables interrupts.

0 2008 SEGGER Microcontroller GmbH & Co. KG

8/25

embOS for ARM and RealView Developer Suite

OS _Ini tKern() is part of the embOS library; you can therefore only step into
it in disassembly mode. It initializes the relevant OS-Variables. Because of the
previous call of OS_I ncDl (), interrupts are not enabled during execution of
OS InitKern().

OS_Ini t HWN) is part of RTOSInit_*.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.

CS _Start () should be the last line in main, since it starts multitasking and
does not return.

72 RVDEBUG - ®@ARM_0:ARM-A-RR [Unattached]

[] File Edit “iew Target Debug Tools Help

IR IEAEEEE IR N o IR AT -

||Fite [mair_led.c [Find | =|Line | |
W =il x|
- 1“t%‘t%‘*1“*1“*1“*1‘*1‘*1‘*1‘*ﬂ'ﬂ‘ﬂ'ﬂ‘ﬁ'ﬂ‘1"1“1"1“1"1“1"1“tﬂ‘tﬂ‘tﬂ‘tﬂ‘tﬂ‘tﬂ‘ttttt*t*tfﬁfﬁfﬁfﬁfﬁw*wﬁf
. Hame Ualue
-
0% _IncDIi): A% Initially disable interrupts */
035_InitKerni): A7 initialize 03 L
05 _InitHW(): A% initialize Hardware for 03 W
LED_Tniti{): 4% initialize LED ports ®y v Py wvatent fmistenz g1 || v
A% ¥ou need to create at least one task before calling 03 3tarc() *7
0%_CREATETASK(«TCEBHP, "HP Task”™, HPTask, 100, StackHP): o =| =
0S%_CREATETASK(<TCELP, "LP Task”™, LPTask, 50, StackLP):
0%_3tarc();: A% Ztart multitasking i RO Ox002007E-L ﬁl
return 0; Rl Ox00000000
i k=3 000200600
2 Mo N1 N1 520 LI
Core D ebu
| > [LEem Z5re j main_led ¢ 1 =] _Core | Debua |
=] Hame Ualue iIl Type | Ualue
IS ¢ wainivoid) Line #62 AR FC=0x00100100
[aninown re entryivoid) | Image ATZ1SAMTSE56_DebugFlash. axf
=71 [¥]Load Inage+iymbols
Sources From Image
4 I 3 I\Call SlackALUcaISKStatics £ Thiz f LI _>| L] I 3 I\ Process ,{Map I LI _bl
il Gtopped at 0x00100100: MATN LED'\main Line &2 ;I
Stop-
| | 4| > s cmet £Stdio FileFind fLog £ =l >|vi
[Stopped nezcanal [[[

Before you step into OS_Start(), you should set two break points in the two
tasks as shown below.

72 RVDEBUG - ®@ARM_0:ARM-A-RR [Unattached]

[] File Edit “iew Target Debug Tools Help

IR IEAEEEE IR N o IR AT -

||Fite [mair_led.c [Find | =|Line | |
=il x|
static woid HPTask (woid) {
while (11 { Hame Ualue
o LED_ToggleLEDO () ;
05 _Delay (50):
i
’ 4| v wiston fwiatehz 2|]
startic woid LPTask(void) {
while (1) { J o =| =
= LED_ToggleLEDL ()
0S8 Delay (200); RO 0x002007E4 ﬁl
. [El 0x 00000000
-) k=3 000200600
. =1 MO0l N1 LI
. Jn’t*t**1“*1“*1“*1"*1"*1"*1"*1"*1"*1"*ttﬂ'tﬂ'tﬂ'ttttﬂ‘tttttttttﬁttt*t*t*t********w*w*w CD[E Debug
4| » [\ Dsm FSre j main_led.c LI >|v| _j—]
=] Hame Ualue iIl Type | Ualue
o int mainiwvoid) Line #6562 ApH PC=0x00100100
[aninown re entryivoid) | Elmage ATZ1SAMTSE56_DebugFlash. axf
=71 [¥]Load Inage+iymbols
Sources From Image
4 I 3 I\Call Stack KLDC&B AStatics £ Thiz f LI _>| L] I 3 I\ Process ,{Map I LI _bl
ElE pinstr VMATH_LEDY#51:0 =1
g Stop-
| | 4| > s cmet £Stdio FileFind fLog £ =l >|vi

Stopped [Ln51. Col 16 =

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 9/25

As OS_Start () is part of the embOS library, you can step through it in disas-
sembly mode only. You may press GO, step over OS_Start (), or step into
OS_Start () in disassembly mode until you reach the highest priority task.

;’ RYDEBUG = @ARM_D:ARM-A-RR [Unattached]

I:l File Edit “iew Target Debug Tool: Help

IR IR R Ik Al 2

[|Fite [rmain_ted = |Find | =1 Line | |
| =T =
static woid HPTask(woid) {
while {11 { Hame Ualue
. LED ToggleLEDO(): |
05_Delay (500
¥
}
o« [i watcm fwiateha £ |l |
static woid LPTaski(woid) |
while (11 { o~ x|
ol LED_TogygleLEDL(]) 7
0% Delay (200): RO 0x00000000 ﬂ
L ' =31 0x00200460
- b RZ Ox00200020
- [~ |
D= Awenononaonn
B R R T Core Dot
<[[\Dm fSre jmein e [2| con Jocs
=l Name Ualue = MType [value
=] woid HPTask(woid) Line #44 = gm FC=0x001000E4
=l voia HFTask (void) Line #42 ~| Image AT913AM7E256_DebugFlash. axf
Load Inage+Symbols
Sources From Image
4 I * r\CaII Stack ,{Locals ’<Sta‘tics £ Thiz f LI _bl A I » I\Process '{Map i LI _bl
=l Ftopped at 0xO0LOO0E4: MAIN LED\HFTask Line 44 =]
Bl lsop>
>l 4] » M ocma FStalo FFiefind FLog Ll >|vi

|Stopped |Ln 51, Col 16 ’7 Z

If you continue stepping, you will arrive in the task with lower priority:

#8 RVDEBUG - ®ARM_D:ARM-A-RR [Unattached]

[] File Edit “iew Target Debug Tools Help
IR IR R I A e S e

[|Fite [rmain_ted e [Find | =1 Line | |

;I b x
static woid HPTask(woid) | g_l _I

while (11 § Hame Ualue
ol LED_TogygleLEDO() 7
0% _Delay (50):

H
A r Py wstent fwistehz 2] [¥]

b

static woid LPTask(wvoid) {

while (1) ¢ ol =
. LED ToggleLEDL(): |
03 _Delay (200); - RO 000000000 i’
L T Rl O0x00200445
K Rz 0x00200020
- B
h=ke] [nEruluininlalnluln}
-)-'1?1\'1"*1"*1"*1"*1‘*1‘*1‘*1‘*1"*wﬂ'wﬂ'1"*wtwtwtwtttttttttttttttt*t*tﬁt********w*w*w* CD[E D h
(=B
|1 [io=m Z5re) main_led.c =l | _Core_| Debug |
=l Hame Ualue =l Type |Ua1ue
= woid LPTaskiwoid) Line #51 o gmm PC=0x001000F4
|| woid LPTaskivoid) Line #49 hd| Image AT315AM75256_DebugFlash. axf
Load Image+iymbols
Sources From Image
L] I 3 r\CaII Stack ,{Lucals KSta‘lics L Thiz f LI _bl 4 I » I\Prucess ,{Map i LI _DI
1' Fesult is: 0 O0x00000000 ;I
g S top
| |4 cmd £StdiC £FieFind flog £ 1] vi

Stopped L 50, Col 14 =

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).

You will arrive there when you step into the OS_Del ay() function in disassem-
bly mode. OS_I dl e() is part of RTOSI ni t *. c. You may also set a breakpoint
there before you step over the delay in Task1.

0 2008 SEGGER Microcontroller GmbH & Co. KG

10/25 embOS for ARM and RealView Developer Suite

RYDEBUG = @ARM_D:ARM-A-RR [Unattached]

[] File Edit “iew Target Debug Tools Help

IR IEAEEEE IR N o IR AT -

J_|Fi|e|rtosinit_at81sam?s.c: IFind | Ed| [Line | |
* functionality should be inplemented that relies on the stack LI g:l il
* to be preserved. Howewer, a simple program loop can be programmed
* [like toggeling an output or incrementing a counter) Hame Ualue
i
woid 0% Idle(woid) § 4% Idle loop: No task i= ready to exec */

fmite (1) ¢
) ’ | Pywatent feistenz £ || v]

P L A E L E e

—i|lal= =
*
« Get time [oycles] RO OxE00000L3 ﬁl
* Rl Ox00Z200013
* This routine is required for task-info wia emb053View or high == Ox00Z00020
* resolution time massurement functions. D2 A ANAAAAD LI
* It returns the system time in timer clock cycles. Core D
I ebu I
r‘tosin'rt_atEl‘l sam? Jfmain_ledc £ “ | | >|v| e
= i|| Type [value
g d ARM PC=0x001004E0
=" anknown 05_ChengeTask (void) | age ATZ1SAMTSE56_DebugFlash. axf
unknown 0% Startiwoid) Load Image+syubols
= Sources From Image
4 I » I\Call SlackALUcaISKStatics £ Thiz f LI LI 4| kN Process f ap LI _bl
il Fesult is: 0 0Ox00000000 ;I
g Stop-
| | 4| > s cmet £Stdio FileFind fLog £ =l _>|ZI

Stopped |Ln 437, Cal 2 =

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay.

As can be seen by the value of embQOS timer variable OS_Ti e, shown in the
watch window, TaskO continues operation after expiration of the 50 ms delay.

2 RYDEBUG = @ARM_D:ARM-A-RR [Unattached]

I:l File Edit “iew Tamet Debug Toaols Help

DS Sl malme meme e o+ % 2 s0w 0w %

||Fite [main_led.c [Find | == | |
Allle = =
static void HPTask (void) { =P =l
while (1) { Hame Ualue
I | LED TogogleLEDO(): |

03_Delay (50);
}

'

4| Py watent faistehz A]

static woid LPTask (woid) {

marle (L) 4 = Jed|
LED_ToggleLEDL () ;
05 _Delay (200): RO 0x600000LF il
|- B El 0x 00200460
- b Rz Ox00Z00020
- . P |

R R L L

Core D ek
4 I (3 I\. D=m ,{ Sro <r‘tosin'rt_atg1 samy }\main_led.c: / LI * I vI _‘Iﬂ]

=l Nane Ualue =l [Tupe [value
O ey id) Lin Igm FC=0x001000E4
:I woid HPTask (void)] Line #42 :I Image ATOLEAMTEZ256_ DebugFlash. axt
v Load Inage+Synbola
Sources From Image

4 | » [\Call StackALocalsKStatic& £ Thiz f LI _>| A | » % Process £ hlap LI

Rezult is: 50 Ox000000D32 2
STop

=
=
| v [\ cma FStdio FFieFind FLog Ll _»EI
Stopped |Ln 45, Col 18 Fﬁ

Lol

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 11/25

3. Build your own application

To build your own application, you should always start with a copy of the sam-
ple start project. Therefore copy the entire folder “Start” from your embOS dis-
tribution into a working folder of your choice and then modify the start project
there. This has the advantage, that all necessary files are included and all set-
tings for the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

* RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

* RTOSInit_*.c from one CPU subfolder.

It contains hardware dependent initialization code for embOS timer and
optional UART for embOSView.

» UserlRQ.c from one CPU subfolder.

It contains the application specific interrupt handler function which is called from
embOS IRQ handler. This file may not be necessary for target CPUs with built
in vectored interrupt controller.

e init_*.s from one of the CPU subfolder.

It contains the low level initialization of the hardware and setup of the various
stack pointer.

e scat_*.scat from one of the CPU subfolder.

It contains the linker settings.

* One embOSs library from the Lib\ subfolder

» RTOSVect.s from the Src\ subfolder.

It contains the low level interrupt handler entry for ARM CPUs running with
embOS.

* OS_Error.c from subfolder Src\ The error handler is used if any library other
than Release build library is used in your project.

» vector.s from the Src\ subfolder.

This file contains the ARM vector table

» retarget.c from the Src\ subfolder.

Since you use your own linker file (scatter file) some functions need to be
rewritten for the ARM RVDS runtime library. The delivered retarget.c file is
already prepared for usage with embQOS. If you want to modify this file, please
refer to the ARM RealView Compilation tools manuals.

» Additional low level init code may be required according to CPU.

When you decide to write your own startup code, please use one of the init_*.s
as template. Also ensure, that main is called with CPU running in supervisor or
system mode.

Your main() function has to initialize embOS by call of OS_I ni t Kern() and
OS I nitHW) prior any other embOS functions except OS I ncDI () are
called.

You should then modify or replace the main.c source file in the subfolder src\.

0 2008 SEGGER Microcontroller GmbH & Co. KG

12/25 embOS for ARM and RealView Developer Suite

3.2. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library or a stack
check library.

Therefore you have to select or replace the embOS library in your project or

target:

« If your wished library is already contained in your project, just select the ap-
propriate configuration.

e To add a library, you may add a new embOSLib group to your project and
add this library to the new group. Exclude all other library groups from build,
delete unused Lib groups or remove them from the configuration.

* Check and set the appropriate OS_LIBMODE_* define as preprocessor op-
tion.

3.3. Select an other CPU

embOS for ARM and IAR compiler contains CPU specific code for various
ARM CPUs. embOS comes with projects for target CPUs.

Check whether your CPU is supported by embOS. CPU specific functions are
located in the CPU_* subfolders of the start project folder.

To select a CPU which is already supported, just open the appropriate project.
If your CPU is currently not supported, examine all RTOSInit files in the CPU
specific subfolders and select one which almost fits your CPU. You may have to
modify OS_InitHW(), OS_COM _Init() and the interrupt service routines for em-
bOS timer tick and communication to embOSView.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite

13/25

4. ARM specifics

4.1. CPU modes

embOS supports nearly all memory and code model combinations that ARM

RVDK'’s C-Compiler supports.

embOS was compiled with interwork options. Therefore it is required to compile

the projects with interwork option too.

4.2. Available libraries

embOS for ARM RealView developer Suite is shipped with 24 different librar-
ies, one for each CPU mode / CPU core / endian mode and library type
combination.

The libraries are named as follows:

OS<m><v><c><e><LibMode>.a

Parameter |Meaning Values
m Specifies the CPU mode A ARM mode
T THUMB mode
v Specifies the CPU variant 4 core typed: ARM 7/9
e Endian mode L: Little
B: Big
LibMode Library mode R: Release
S Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling
DT: Debug + trace
Example:

osT4LR.a the library for a project using THUMB mode, ARM 7/9 core, little en-
dian mode and release build library type.

0 2008 SEGGER Microcontroller GmbH & Co. KG

14/25 embOS for ARM and RealView Developer Suite

5. Stacks

5.1. Task stack for ARM

All embOS tasks execute in system mode. The stack-size required is the sum
of the stack-size of all routines plus basic stack size.

The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.

For the ARM, this minimum task stack size is about 64 bytes.

5.2. System stack for ARM

The embOS system executes in supervisor mode. The minimum system stack
size required by embOS is about 96 bytes (stack check build) However, since
the system stack is also used by the application before the start of multitasking
(the call to OS_Start()), for embOS software timers and high level interrupt
handler. Therefore, the actual stack requirements depend on the application.
The size of the system stack can be changed by modifying the stack size defini-
tion of the section CSTACK in the scatter file.

5.3. Interrupt stack for ARM

If a normal hardware exception occurs, the ARM core switches to IRQ mode,
which has a separate stack pointer. To enable support for nested interrupts,
execution of the ISR itself in a different CPU mode than IRQ mode is neces-
sary. embOS switches to supervisor mode after saving scratch registers,
LR_irg and SPSR_irq onto the IRQ stack.

As a result, only registers mentioned above are saved on the IRQ stack. For the
interrupt routine itself, the supervisor stack is used.

The size of the interrupt stack can be changed by modifying the stack size defi-
nition of the section IRQ_STACK in the scatter file. We recommend at least 128
bytes.

5.4. Stack specifics of the ARM family

Exceptions require space on the supervisor and interrupt stack. The interrupt
stack is used to store contents of scratch registers, the ISR itself uses supervi-
sor stack.

When you intend to use FIQ in your system, you may have to modify the
startup code and scatter files to implement an FIQ stack.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 15/25

6. Heap

6.1. Heap management

If you intend to use heap for dynamic memory allocation, the scatter files may
have to be modified to define the required heap size.

Example

AT91SAM7S256_RAM 0x00200000 0x10000 {
CODE 0x00200000 {
vectors.o (Vect, +First)
init*.o (Init)
* (+RO
}
DATA +0x0 {
* (+RW+ZI)

HEAP +0x0 EMPTY UNINIT 0x1000 {
}

CSTACK +0x0 EMPTY UNINI'T 0x200 {
}

I RQ_STACK +0x0 EMPTY UNINIT 0x100 {
}

0 2008 SEGGER Microcontroller GmbH & Co. KG

16/25 embOS for ARM and RealView Developer Suite

7. Interrupts

7.1. What happens when an interrupt occurs?

« The CPU-core receives an interrupt request

» As soon as the interrupts are enabled, the interrupt is executed

« the CPU switches to the Interrupt stack

» the CPU saves PC and flags in registers LR_irg and SPSR_irq

» the CPU jumps to the vector address 0x18

« embOS OS_IRQ_SERVICE: save scratch registers

« embOS OS_IRQ_SERVICE: save LR_irg and SPSR_irq

« embOS OS_IRQ_SERVICE: switch to supervisor mode

* embOS OS_IRQ_SERVICE: execute OS_irg_handler (defined in
RTOSINIT_*.C)

« embOS OS _irg_handler: check for interrupt source and execute timer inter-
rupt, serial communication or user ISR.

« embOS OS IRQ_SERVICE: switch to IRQ mode

« embOS OS_IRQ_SERVICE: restore LR_irg and SPSR_irq

« embOS OS_IRQ_SERVICE: pop scratch registers

e return from interrupt

When using an ARM derivate with vectored interrupt controller, please ensure
that OS_IRQ_SERVICE is called from every interrupt. The interrupt vector itself
may then be examined by the “C”-level interrupt handler in RTOSInit*.c.

7.2. Defining interrupt handlers in "C"

Interrupt handlers called from embOS interrupt handler in RTCSI nit*. c are
just normal “C”-functions which do not take parameters and do not return any
value.

The default C interrupt handler GS_i r q_handl er () in RTOSInit*.c first calls
OS Enterinterrupt() or OS EnterNestablelnterrupt() to inform
embOS that interrupt code is running. Then this handler examines the source
of interrupt and calls the related interrupt handler function.

Finally the default interrupt handler OS_i r g_handl er () in RTOSInit*.c calls
CS Leavelnterrupt() or OS LeaveNest abl el nterrupt () and returns
to the primary interrupt handler OS_I RQ_SERVI CE() .

Depending on the interrupting source, it may be required to reset the interrupt
pending condition of the related peripherals.

Example

"Simple" interrupt-routine

void Tinmer_irqg_func(void) ({
if (__INTPND & 0x0800) { /1 Interrupt pending ?
__INTPND = 0x0800; /'l reset pending condition
OSTEST_X_1 SRO() ; /1 handl e interrupt
}
}

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 17/25

7.3. Interrupt handling without vectored interrupt controller

Standard ARM CPUs, without implementation of a vectored interrupt controller,
always branch to address 0x18 when an interrupt occurs. The application is re-
sponsible to examine the interrupting source.

The reaction to an interrupt is as follows:

* embOS OS | RQ _SERVI CE() is called.

* OS | RQ _SERVI CE() saves registers and switches to supervisor mode.

* OS | RQ SERVI CE() calls GS_irqg_handl er ()

» OS_irq_handl er () informs embOS that interrupt code is running by a call
of OS_Enterlinterrupt() andthencalls OS USER irq_func() which
has to handle all interrupt sources of the application.

* OS_irqg_handl er () checks whether embOS timer interrupt has to be han-
dled.

« OS_irq_handl er () checks whether embOS UART interrupts for commu-
nication with embOSView have to be handled.

* OS_irqg_handl er () informs embOS that interrupt handling ended by a call

of OS_Leavel nterrupt () and returns to OS_| RQ_SERVI CE() .

OS_| RQ_SERVI CE() restores registers and performs a return from interrupt.

OS _USER i rqg_func() (usually defined in module User | RQ. C) has to exam-
ine and handle all application specific interrupts.

Example

"Simple" OS_USER i rqg_func()

void OS USER irqg_func(void) {
if (__INTPND & 0x0800) { /1 Interrupt pending ?

__INTPND = 0x0800; /'l reset pending condition
OSTEST_X_| SRO() ; /1 handl e interrupt

}

if (__INTPND & 0x0400) { /1 Interrupt pending ?
__INTPND = 0x0400; /'l reset pending condition
OSTEST_X | SR1(); /1 handl e interrupt

}

}

During interrupt processing, you should not re-enable interrupts, as this would
lead in recursion.

7.4. Interrupt handling with vectored interrupt controller

For ARM derivates with built in vectored interrupt controller, embOS uses a dif-
ferent interrupt handling procedure and delivers additional functions to install
and setup interrupt handler functions.

When using an ARM derivate with vectored interrupt controller, please ensure
that OS_| RQ_SERVI CE() is called from every interrupt. This is default when
startup code and hardware initialization delivered with embOS is used.

The interrupt vector itself will then be examined by the “C”-level interrupt han-
dler OS_i rg_handl er () in RTOSInit*.c.

You should not program the interrupt controller for IRQ handling directly. You
should use the functions delivered with embOS.

0 2008 SEGGER Microcontroller GmbH & Co. KG

18/25

embOS for ARM and RealView Developer Suite

The reaction to an interrupt with vectored interrupt controller is as follows:

embOS OS_| RQ_SERVI CE() is called by CPU or interrupt controller.

OS_| RQ_SERVI CE() saves registers and switches to supervisor mode.

OS_| RQ_SERVI CE() calls Os_i rq_handl er () (in RTOSInit*.c).

OS_i rg_handl er () examines the interrupting source by reading the inter-
rupt vector from the interrupt controller.

OS_i rg_handl er () informs embOS that interrupt code is running by a call
of OS_Ent er Nest abl el nt errupt () which re-enables interrupts.

OS i rg_handl er () calls the interrupt handler function which is addressed
by the interrupt vector.

OS_i rg_handl er () resets the interrupt controller to re-enable acceptance
of new interrupts.

OS_irqg_handl er () calls OS_LeaveNest abl el nt er rupt () which dis-
ables interrupts and informs embQOS that interrupt handling finished.
OS_irqg_handl er () returnsto OS_I RQ SERVI CE() .

CS | RQ_SERVI CE() restores registers and performs a return from interrupt.

Please note, that different ARM CPUs may have different versions of vec-
tored interrupt controller hardware and usage of embOS supplied func-
tions varies depending on the type of interrupt controller. Please refer to
the samples delivered with embOS which are used in the CPU specific
RTOSInit module.

To handle interrupts with vectored interrupt controller, embOS offers the follow-
ing functions:

7.4.1. OS_ARM_InstalliISRHandler(): Install an interrupt handler

Description

OS_ARM _InstalllISRHandler() is used to install a specific interrupt vector when
ARM CPUs with vectored interrupt controller are used.

Prototype

OS | SR HANDLER* OS_ARM I nstal | I SRHandl er (int | SRl ndex,

OS_| SR_ HANDLER* pl SRHandl er) ;

Parameter Meaning
| SRI ndex Index of the interrupt source, normally the interrupt vector
number.
pl SRHandl er | Address of the interrupt handler function.

Return value

OS_ISR_HANDLER?*: the address of the previous installed interrupt function,
which was installed at the addressed vector number before.

Add. information

This function just installs the interrupt vector but does not modify the priority
and does not automatically enable the interrupt.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 19/25

7.4.2. OS_ARM_EnablelSR(): Enable specific interrupt

Description

OS_ARM_EnablelSR() is used to enable interrupt acceptance of a specific
interrupt source in a vectored interrupt controller.

Prototype
voi d OS_ARM Enabl el SR(i nt | SRI ndex)
Parameter Meaning
| SRI ndex Index of the interrupt source which should be enabled.

Return value
NONE.

Add. information

This function just enables the interrupt inside the interrupt controller. 1t does not
enable the interrupt of any peripherals. This has to be done elsewhere.

For ARM CPUs with VIC type interrupt controller, this function just en-
ables the interrupt vector itself. To enable the hardware assigned to that
vector, you have to call OS_ARM Enabl el SRSour ce() also.

7.4.3. OS_ARM _DisablelSR(): Disable specific interrupt

Description

OS_ARM DisableISR() is used to disable interrupt acceptance of a specific
interrupt source in a vectored interrupt controller which is not of the VIC type.

Prototype
voi d OS_ARM Di sabl el SR(i nt | SRl ndex) ;

Parameter Meaning

| SRI ndex Index of the interrupt source which should be disabled.

Return value
NONE.

Add. information

This function just disables the interrupt controller. It does not disable the inter-
rupt of any peripherals. This has to be done elsewhere.

When using an ARM CPU with built in interrupt controller of VIC type,
please use OS_ARM Di sabl el SRSour ce() to disable a specific interrupt.

7.4.4. OS_ARM_ISRSetPrio(): Set priority of specific interrupt

Description

OS_ARM_ISRSetPrio () is used to set or modify the priority of a specific
interrupt source by programming the interrupt controller.

Prototype

0 2008 SEGGER Microcontroller GmbH & Co. KG

20/25 embOS for ARM and RealView Developer Suite

int OS_ ARM I SRSet Prio(int |ISRIndex, int Prio);

Parameter Meaning
| SRI ndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Return value
Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Add. information

This function sets the priority of an interrupt channel by programming the inter-
rupt controller. Please refer to CPU specific manuals about allowed priority lev-
els.

This function can not be used to modify the interrupt priority for interrupt
controllers of the VIC type. The interrupt priority with VIC type controllers
depends on the interrupt vector number and can not be changed.

7.4.5. OS_ARM_AssignIlSRSource(): Assign a hardware interrupt channel
to an interrupt vector

Description

OS_ARM_AssigniSRSource() is used to assign a hardware interrupt channel to
an interrupt vector in an interrupt controller of VIC type.

Prototype
OS_ARM Assi gnl SRSour ce(int | SRl ndex, int Source);

Parameter Meaning

| SRI ndex Index of the interrupt vector which should be modified.

The source channel number which should be assigned to the

Sour ce P
specified interrupt vector.

Return value
None.

Add. information

This function assigns a hardware interrupt line to an interrupt vector of VIC type
only. It can not be used for other types of vectored interrupt controller. The
hardware interrupt channel number of specific peripherals depends on specific
CPU derivates and has to be taken from the hardware manual of the CPU.

7.4.6. OS_ARM_EnablelSRSource(): Enable an interrupt channel of a VIC
type interrupt controller

Description

OS_ARM_EnablelSRSource() is used to enable an interrupt input channel of
an interrupt controller of VIC type.

Prototype
OS_ARM Enabl el SRSour ce(i nt Sour cel ndex) ;

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 21/25

Parameter Meaning

Sour cel ndex |Index of the interrupt channel which should be enabled.

Return value
None.

Add. information

This function enables a hardware interrupt input of a VIC type interrupt control-
ler. It can not be used for other types of vectored interrupt controller. The hard-
ware interrupt channel number of specific peripherals depends on specific CPU
derivates and has to be taken from the hardware manual of the CPU.

7.4.7. OS_ARM_DisablelSRSource(): Disable an interrupt channel of a VIC
type interrupt controller

Description

OS_ARM_DisablelSRSource() is used to Disable an interrupt input channel of
an interrupt controller of VIC type.

Prototype
OS_ARM Di sabl el SRSour ce(i nt Sour cel ndex) ;

Parameter Meaning
Sour cel ndex |Index of the interrupt channel which should be disabled.

Return value
None.

Add. information

This function disables a hardware interrupt input of a VIC type interrupt control-
ler. It can not be used for other types of vectored interrupt controller. The hard-
ware interrupt channel number of specific peripherals depends on specific CPU
derivates and has to be taken from the hardware manual of the CPU.

Example of function usage:

/* Install UART interrupt handler */

OS_ARM I nstal |l | SRHandl er (UART_ID, &OM ISR); [// UART interrupt vector.
OS_ARM | SRSet Pri o(UART_I D, UART_PRIO); /1 UART interrupt priotity.
OS_ARM Enabl el SR(UART_I D) ; /1 Enabl e UART i nterrupt

/* Install UART interrupt handler with VIC type interrupt controller*/
OS_ARM I nstal I | SRHandl er (UART_I NT_I NDEX, & COM I SR); // UART interrupt vector.
OS_ARM Assi gnl SRSour ce(UART_| NT_| NDEX, UART | NT_SOURCE) ;

OS_ARM Enabl el SR(UART_| NT_I NDEX) ; /1 Enabl e UART interrupt vector.
OS_ARM Enabl el SRSour ce(UART_| NT_SOURCE) ; /1 Enabl e UART interrupt source.

0 2008 SEGGER Microcontroller GmbH & Co. KG

22/25 embOS for ARM and RealView Developer Suite

7.5. Interrupt-stack switching

Since ARM core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS _EnterlntStack() and OS_Leavel nt St ack() are supplied for source
compatibility to other processors only and have no functionality.

The ARM interrupt stack is used for primary interrupt handler in RTOSVect.asm
only.

7.6. Fast Interrupt FIQ

FIQ interrupt can not be used with embOS functions, it is reserved for high
speed user functions.

FIQ is never disabled by embOS.

Never call any embOS function from an FIQ handler.

Do not assign any embOS interrupt handler to FIQ.

When you decide to use FIQ, please ensure that FIQ stack is initialized
during startup and an interrupt vector for FIQ handling is included in your
application.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 23/25

8. STOP / WAIT Mode

In case your controller does support some kind of power saving mode, it should
be possible to use it also with embOS, as long as the timer keeps working and
timer interrupts are processed. To enter that mode, you usually have to imple-
ment some special sequence in function OS_Idle(), which you can find in
embOS module RTOSINIT.c.

9. Technical data

9.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. Using ARM mode, the minimum ROM requirement for the kernel itself
is about 2.500 bytes. In THUMB mode kernel itself does have a minimum ROM
size of about 1.700 bytes.

In the table below, you can find minimum RAM size for embOS resources.
Please note, that sizes depend on selected embOS library mode; table below
is for a release build.

embOS resource RAM [bytes]

Task control block 32

Resource semaphore 8

Counting semaphore 2

Mailbox 20

Software timer 20

10. Files shipped with embOS

Directory File Explanation

root *. pdf Generic API and target specific documen-
tation.

root Rel ease. ht Ml |Version control document.

root embQOSVi ew. exe | Utility for runtime analysis, described in
generic documentation.

START Start*. ncp Sample project files for ARM Codewarrior
IDE.

START\INC RTCS. H Include file for embOS, to be included in
every "C"-file using embOS —functions.

START\LIB 0s*. a embOS libraries

START\SRC |main.c Sample frame program to serve as a
start.

START\SRC |OS_Error.c embOS runtime error handler used in
stack check or debug builds.

START\SRC |retarget.c ARM runtime library initialization

START\SRC |RTOSVect. s embOS interrupt handler

START\SRC [Vector.s ARM vector table.

START\CPU_* [*.* CPU specific hardware routines for vari-
ous CPUs.

0 2008 SEGGER Microcontroller GmbH & Co. KG

24/25 embOS for ARM and RealView Developer Suite

Any other additional files shipped serve as example.

0 2008 SEGGER Microcontroller GmbH & Co. KG

embOS for ARM and RealView Developer Suite 25/25

C memory requirements............ou.... 23 Stacks, Interrupt stack.................. 14
CSTACK ..o 14 o] Stacks, System stack
H OS_ARM_AS gnl SRSOUFCQ() lllll 20 Stack& TasK StaCK ...vveeveeeeeeeeeeennn
Halt-modeoooeorveeererrrrienees 23 OS_ARM_DisableISR()............... 19 Stop-mode .
Y 15 OS_ARM_Disablel SRSource().... 21 SYSIOM A v
| OS_ARM_EnablelSR()................ 19 T

OS_ARM_Enablel SRSource().....20 target hardware.........cccoevvevvennee. 23
|dle-task-mOdeoovvvvvvvvvvvvnnnnee 23 OS ARM_Ingtalll SRHandler().....18 TasK SEACK vvvvvveeeeeeeeeeeeeeeeeeeeeeeeeneee 14
Installationccoceveeeeeceieccieecnee 5 OS_ARM_ISRSEPIi0() ...vvcornne. 19 U
INEENTUPL SACK oo 14,22 OS_irq_handier()cceeervrren 16 UserlRQ.C 17
INLEITUPLS.....eeceeereeee e 16 OS_IRQ_SERVICE() ...cvevvreeenn 16 T
Interrupts, FIQ ..cccovvvveiiiiiienen, 22 OS_USER _irg_func()cocrevene.. 17 W .
IRQ_STACK ...t 14 S Wait-mode........cceeveveevrenieniennn 23
M SEACKS .. 14
memory modelS........ocevevveeeeeanns 13

0 2008 SEGGER Microcontroller GmbH & Co. KG

	Contents
	About this document
	How to use this manual

	Using embOS with ARM RealView Developer Suite
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c using ARM Realview Debugger

	Build your own application
	Required files for an embOS application
	Change library mode
	Select an other CPU

	ARM specifics
	CPU modes
	Available libraries

	Stacks
	Task stack for ARM
	System stack for ARM
	Interrupt stack for ARM
	Stack specifics of the ARM family

	Heap
	Heap management

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt handling without vectored interrupt controller
	Interrupt handling with vectored interrupt controller
	OS_ARM_InstallISRHandler(): Install an interrupt handler
	OS_ARM_EnableISR(): Enable specific interrupt
	OS_ARM_DisableISR(): Disable specific interrupt
	OS_ARM_ISRSetPrio(): Set priority of specific interrupt
	OS_ARM_AssignISRSource(): Assign a hardware interrupt channel to an interrupt vector
	OS_ARM_EnableISRSource(): Enable an interrupt channel of a VIC type interrupt controller
	OS_ARM_DisableISRSource(): Disable an interrupt channel of a VIC type interrupt controller

	Interrupt-stack switching
	Fast Interrupt FIQ

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

