
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document revision 3
Date: January 17, 2008

CPU & Compiler specifics for
ARM cores using

ARM Developer Suite 1.2

Real Time Operating System

www.segger.com

2 CHAPTER

embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER GmbH & Co. KG (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2008 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

Heinrich-Hertz-Str. 5
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Software versions

Refer to Release.html for information about the changes of the software versions.

Manual version Date By Explanation

3.00 070928 OO New initial version

3

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

4 CHAPTER
EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

5

Table of Contents
1 Introduction ..7

2 Using embOS with ARM Developer Suite..9

2.1 Installation ...10
2.2 First steps ..11
2.3 The sample application Main.c ...12
2.4 Stepping through the sample application using ARM debugger13

3 Build your own application ...17

3.1 Required files for an embOS application..18
3.2 Change library mode..19
3.3 Select an other CPU ...19

4 ARM specifics ..21

4.1 CPU modes ...22
4.2 Available libraries ..22

5 Stacks ..23

5.1 Task stack for ARM ..24
5.2 System stack for ARM ..24
5.3 Interrupt stack for ARM ..24
5.4 Stack specifics of the ARM family ...24

6 Heap ..25

6.1 Heap management ..26

7 Interrupts..27

7.1 What happens when an interrupt occurs ...28
7.2 Defining interrupt handlers in "C"...28
7.3 Interrupt stack ..28
7.4 Fast interrupt FIQ ..28

8 STOP / WAIT mode ...29

8.1 Saving power ..30

9 Technical data..31

9.1 Memory requirements ..32

10 Files shipped with embOS ...33

10.1 Files included in embOS..34
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

6

embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

7

Chapter 1

Introduction
This guide describes how to use embOS Real Time Operating System for the ARM
series of microcontrollers using ARM Developer Suite.

How to use this manual

This manual describes all CPU and compiler specifics of embOS using ARM based con-
trollers with ARM Developer Suite. Before actually using embOS, you should read or
at least glance through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS for
ARM Developer Suite. If you have no experience using embOS, you should follow this
introduction, because it is the easiest way to learn how to use embOS in your appli-
cation.
Most of the other chapters in this document are intended to provide you with detailed
information about functionality and fine-tuning of embOS for the ARM based control-
lers using ARM Developer Suite.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

8 CHAPTER 1 Introduction
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 2

Using embOS with ARM Devel-
oper Suite
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 2 Using embOS with ARM Developer Suite
2.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, please keep all files in their respective sub directories.
Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserving the
directory structure of the zip-file.

Assuming that you are using ARM Developer Suite project manager to develop your
application, no further installation steps are required. You will find a prepared sample
start application, which you should use and modify to write your application. So fol-
low the instructions of the next heading First steps on page 11.

You should do this even if you do not intend to use the project manager for your
application development in order to become familiar with embOS.

If for some reason you will not work with with the project manager, you should:
Copy either all or only the library-file that you need to your work-directory. Also copy
the entire CPU specific subdirectory and the embOS header file RTOS.h. This has the
advantage that when you switch to an updated version of embOS later in a project,
you do not affect older projects that use embOS also.
embOS does in no way rely on ARM Developer Suite project manager, it may be used
without the project manager using batch files or a make utility without any problem.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

11
2.2 First steps
After installation of embOS (See �Installation� on page 10.) you are able to create
your first multitasking application. You received several ready to go sample start
workspaces and projects and every other files needed in the subfolder "Start". It is a
good idea to use one of them as a starting point for all of your applications.

To get your first multitasking application running, you should proceed as follows:

� Create a work directory for your application, for example C:\Work
� Copy the whole folder "Start" which is part of your embOS distribution into your

work directory
� Clear the read only attribute of all files in the new "Start" folder
� For first steps, open the project for the ARMEmulator

(Start\Start_ARMEmul.mcp) with ARM Developer Suite project manager (e.g. by
double clicking it)

� Build the start project

After building the start project your screen should look like follows:

For latest information you should open the Start\ReadMe.txt file.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 2 Using embOS with ARM Developer Suite
2.3 The sample application Main.c
The following is a printout of the sample application main.c. It is a good startingpoint
for your application. (Please note that the file actually shipped with your port of
embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *

File : Main.c
Purpose : Skeleton program for OS
--------------END-OF-HEADER----------------------------*/
#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

13
2.4 Stepping through the sample application using
ARM debugger

When starting the debugger, you will usually see the main function (very similar to
the screenshot below). In some debuggers, you may look at the startup code and
have to set a breakpoint at main. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore only step into it in
disassembly mode. It initializes the relevant OS-Variables. Because of the previous
call of OS_IncDI(), interrupts are not enabled during execution of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.
OS_Start() should be the last line in main, since it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two break points in the two tasks as
shown below.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 2 Using embOS with ARM Developer Suite
As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. You may press GO, step over OS_Start(), or step into OS_Start() in dis-
assembly mode until you reach the highest priority task.

If you continue stepping, you will arrive in the task with lower priority:

Continuing to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or timer
executing).
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

15
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint there before
you step over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay.
As can be seen by the value of embOS timer variable OS_Time, shown in the watch
window, HPTask continues operation after expiration of the 10 ms delay.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 2 Using embOS with ARM Developer Suite
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 3

Build your own application
To build your own application, you should always start with a copy of the sample start
workspace and project. Therefore copy the entire folder �Start� from your embOS
distribution into a working folder of your choice and then modify the start project
there. This has the advantage, that all necessary files are included and all settings
for the project are already done.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 3 Build your own application
3.1 Required files for an embOS application
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one of the CPU subfolder.
It contains the hardware dependent initialization code for the specific CPU, the
embOS timer and optional UART for embOSView.

� UserIRQ.c from one of the CPU subfolder.
It contains the application specific interrupt handler function which is called from
embOS IRQ handler. This file may not be necessary for target CPUs with built in
vectored interrupt controller.

� init_*.s from one of the CPU subfolders.
It contains the low level initialization of the hardware and setup of the various
stack pointer.

� scat_*.scf from one of the CPU subfolders.
It contains the linker settings.

� One embOS library from the "Lib\"-subfolder.
� RTOSVect.s from the "Src\"-subfolder.

It contains the low level interrupt handler entry for ARM CPUs running with
embOS.

� OS_Error.c from the "Src\"-subfolder.
The error handler is used if any embOS library other than the Release build
library is used in your project.

� vector.s from the "Src\"-subfolder.
This file contains the ARM vector table.

� heap.s from the "Src\"-subfolder.
It contains the heap size for dynamic memory allocation.

� stack.s from the "Src\"-subfolder.
This file contains a dummy variable which tells the linker where to put the stack.

� retarget.c from the "Src\"-subfolder.
Since you use your own linker file (scatter file) some functions need to be rewrit-
ten for the ARM ADS runtime library. The delivered retarget.c file is already
prepared for usage with embOS. If you want to modify this file, please refer to
the ARM ADS Compilers and Libraries Guide.

� Additional low level init code may be required according to CPU.

When you decide to write your own startup code, please use one of the init_*.s as
template. Also ensure, that main is called with CPU running in supervisor or system
mode.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are called.
You should then modify or replace the main.c source file in the "Src\"-subfolder.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

19
3.2 Change library mode
For your application you may wish to choose an other library. For debugging and pro-
gram development you should use an embOS-debug library. For your final application
you may wish to use an embOS-release library or a stack check library.
Therefore you have to select or replace the embOS library in your project or target:

� If your wished library is already contained in your project, just select the appro-
priate configuration.

� To add a library, you may add a new embOSLib group to your project and add this
library to the new group. Exclude all other library groups from build, delete
unused embOSLib groups or remove them from the configuration.

� Check and set the appropriate OS_LIBMODE_* define which you would like to use
for debug and release builds.

3.3 Select an other CPU
embOS for ARM and ADS contains CPU specific code for various ARM CPUs. The sam-
ple start workspace contains projetcs for different target CPUs.
Check whether your CPU is supported by embOS. CPU specific functions are located
in the "CPU_*"-subfolders of the start project folder.
To select a CPU which is already supported, just select the appropriate project.
If your CPU is currently not supported, examine all RTOSInit files in the CPU specific
subfolders and select one which almost fits your CPU. You may have to modify
OS_InitHW(), OS_COM_Init(), the interrupt service routines for embOS timer tick
and communication to embOSView.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 3 Build your own application
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 4

ARM specifics
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 4 ARM specifics
4.1 CPU modes
embOS supports nearly all memory and code model combinations that ARM�s ADS C-
Compiler supports.
embOS was compiled with interwork options. Therefore it is required to compile the
projects with interwork option too.

4.2 Available libraries
embOS for ARM for ADS comes with 24 different libraries, one for each CPU mode /
CPU core / endian mode and library type combination.
The libraries are named as follows:

os<m><v><e><LibMode>.alf

Example:

osT4LR.alf is the library for a project using THUMB mode, ARM 7/9 core, little
endian mode and release build library type.

Parameter Meaning Values

m Specifies the CPU mode
A: ARM mode
T: THUMB mode

v Specifies the CPU variant 4: Core type4: ARM 7/9

e Endian mode
L: Little
B: Big

LibMode Library mode

R: Release
S: Stack check
D: Debug
SP: Stack check + profiling
DP: Debug + profiling
DT: Debug + trace
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 5

Stacks
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 5 Stacks
5.1 Task stack for ARM
All embOS tasks execute in system mode. The stack-size required is the sum of the
stack-size of all routines plus basic stack size.
The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS-routines.
For the ARM, this minimum task stack size is about 64 bytes.

5.2 System stack for ARM
The embOS system executes in supervisor mode. The minimum system stack size
required by embOS is about 96 bytes (stack check build). However, since the system
stack is also used by the application before the start of multitasking (the call to
OS_Start()), and because software-timers also use the systemstack, the actual
stack requirements depend on the application.
The size of the system stack can be changed by modifying value of Len_SVC_Stack in
the file init_*.s.

5.3 Interrupt stack for ARM
If a normal hardware exception does occur, the ARM core switches to IRQ mode,
which has a separate stack pointer. To enable support for nested interrupts, execu-
tion of the ISR itself in a different CPU mode than IRQ mode is necessary. embOS
does switch to supervisor mode after saving scratch registers, LR_irq and SPSR_irq
onto the IRQ stack.
As a result, only registers mentioned above are saved on the IRQ stack. For the
interrupt routine itself, the supervisor stack is used.
The size of the interrupt stack can be changed by modifying value of Len_IRQ_Stack
in the file init_*.s. We recommend at least 128 bytes.

5.4 Stack specifics of the ARM family
Exceptions require space on the supervisor and interrupt stack. The interrupt stack is
used to store contents of scratch registers, the ISR itself uses supervisor stack.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 6

Heap
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 6 Heap
6.1 Heap management
If you intend to use heap for dynamic memory allocation, the file heap.s needs to be
modified. The variable bottom_of_heap defines how many bytes you want to allocate
for heap:

Example of heap.s
 AREA Heap, DATA, NOINIT

 EXPORT bottom_of_heap

; Create dummy variable used to locate bottom of heap

bottom_of_heap SPACE 0x1000 ; reserve 4kb heap

 END

You may also need to modify your scatter file (scat_*.scf) according to the modifi-
cation that was made to the heap.s.

Example
FLASH 0x00000000 0x1000000
{
 FLASH 0x00000000 0x1FFFF
 {
 vectors.o (Vect, +First)
 init*.o (Init)
 * (+RO)
 }

 XRAM 0x40000 0x1FFFF
 {
 * (+RW,+ZI)
 }

 HEAP +0x0 UNINIT 0x1000
 {
 heap.o (+ZI)
 }

 STACKS +0x0 UNINIT
 {
 stack.o (+RW, +ZI)
 }
}

embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 7

Interrupts
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 7 Interrupts
7.1 What happens when an interrupt occurs
� The CPU-core receives an interrupt request
� As soon as the interrupts are enabled, the interrupt is executed
� The CPU switches to the Interrupt stack
� The CPU saves PC and flags in registers LR_irq and SPSR_irq
� The CPU jumps to the vector address 0x18
� embOS OS_IRQ_SERVICE: save scratch registers
� embOS OS_IRQ_SERVICE: save LR_irq and SPSR_irq
� embOS OS_IRQ_SERVICE: switch to supervisor mode
� embOS OS_IRQ_SERVICE: execute OS_irq_handler (defined in RTOSInit_*.c)
� embOS OS_irq_handler: check for interrupt source and execute timer interrupt,

serial communication or user ISR (OS_USER_irq_func).
� embOS OS_IRQ_SERVICE: switch to IRQ mode
� embOS OS_IRQ_SERVICE: restore LR_irq and SPSR_irq
� embOS OS_IRQ_SERVICE: pop scratch registers
� Return from interrupt.

7.2 Defining interrupt handlers in "C"
The default C interrupt handler checks for all internal embOS related interrupts, such
as timer and serial communication. In case none of these sources is responsible for
the exception, a user defined function OS_USER_irq_func (usually defined in module
UserIRQ.c) is called. Unless there are good reasons to do so, you should modify the
code in OS_USER_irq_func only and leave the handler in RTOSInit_*.c as it is. The
advantage is an easier migration in case you get an update for embOS; there might
be modifications in the embOS module RTOSInit_*.c.

Example of a "simple" interrupt-routine
void OS_USER_irq_func(void) {
 if (__INTPND & 0x0800) { // Interrupt pending ?
 __INTPND = 0x0800; // reset pending condition
 OSTEST_X_ISR0(); // handle interrupt
 }
}

7.3 Interrupt stack
Since ARM core based controllers have a separate stack pointer for interrupts, there
is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source compatibility
to other processors only and have no functionality.
The ARM interrupt stack is used for primary interrupt handler in RTOSVect.s only.

7.4 Fast interrupt FIQ
FIQ interrupt can not be used with embOS functions, it is reserved for high speed
user functions.
FIQ is never disabled by embOS.
Never call any embOS function from an FIQ handler.
Do not assign any embOS interrupt handler to FIQ.
When you decide to use FIQ, please ensure that FIQ stack is initialized during startup
and an interrupt vector for FIQ handling is included in your application.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

29
Chapter 8

STOP / WAIT mode
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 8 STOP / WAIT mode
8.1 Saving power
In case your controller does support some kind of power saving mode, it should be
possible to use it also with embOS, as long as the timer keeps working and timer
interrupts are processed. To enter that mode, you usually have to implement some
special sequence in function OS_Idle(), which you can find in embOS module
RTOSIinit_*.c.
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

31
Chapter 9

Technical data
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 9 Technical data
9.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. Using
ARM mode, the minimum ROM requirement for the kernel itself is about 2.500 bytes.
In THUMB mode kernel itself does have a minimum ROM size of about 1.700 bytes.
In the table below, you find the minimum RAM size for embOS resources. The sizes
depend on selected embOS library mode; the table below is for a release build.

embOS resource RAM [bytes]
Task control block 32
Resource semaphore 8
Counting semaphore 2
Mailbox 20
Software timer 20
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 10

Files shipped with embOS
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 10 Files shipped with embOS
10.1 Files included in embOS

Any additional files shipped serve as example.

Directory File Explanation
root *.pdf Generic API and target specific documentation

root embOSView.exe
Utility for runtime analysis, described in generic
documentation

root Release.html Version control document
Start Start*.mcp Sample project files for ARM CodeWarrior IDE

Start\Inc RTOS.h
Include file for embOS, to be included in every "C"-
file using embOS-functions

Start\Lib os*.alf embOS libraries
Start\Src heap.s Sample frame for heap definition
Start\Src main.c Sample frame program to serve as a start

Start\Src OS_Error.c
embOS runtime error handler used in stack check
or debug builds

Start\Src retarget.c ARM runtime library initialization
Start\Src RTOSVect.s embOS interrupt handler
Start\Src stack.s Dummy stack placement file for linker
Start\Src Vector.s ARM vector table
Start\CPU_* *.* CPU specific hardware routines for various CPUs
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

35
Index
F
FIQ ..28

H
Heap ..25

I
Installation ...10
Interrupt stack24
Interrupts, FIQ28

M
Memory models22
Memory requirements32

S
Stacks ..23

Interrupt stack24
System stack24

STOP / WAIT mode29
Syntax, conventions used 3
System stack24
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

36 Index
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

Index 37
embOS for ARM and ARM Developer Suite © 2008 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction
	Using embOS with ARM Developer Suite
	2.1 Installation
	2.2 First steps
	2.3 The sample application Main.c
	2.4 Stepping through the sample application using ARM debugger

	Build your own application
	3.1 Required files for an embOS application
	3.2 Change library mode
	3.3 Select an other CPU

	ARM specifics
	4.1 CPU modes
	4.2 Available libraries

	Stacks
	5.1 Task stack for ARM
	5.2 System stack for ARM
	5.3 Interrupt stack for ARM
	5.4 Stack specifics of the ARM family

	Heap
	6.1 Heap management

	Interrupts
	7.1 What happens when an interrupt occurs
	7.2 Defining interrupt handlers in "C"
	7.3 Interrupt stack
	7.4 Fast interrupt FIQ

	STOP / WAIT mode
	8.1 Saving power

	Technical data
	9.1 Memory requirements

	Files shipped with embOS
	10.1 Files included in embOS

	Index

