
embOS
Real-Time Operating System

CPU & Compiler specifics
for RISC-V using IAR

Document: UM01084
Software Version: 5.18.0.0

Revision: 0
Date: November 18, 2022

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: November 18, 2022

Software Revision Date By Description

5.18.0.0 0 221118 MC Initial version.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

4

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

6

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..9

1.1 Installation .. 10
1.2 First Steps .. 11
1.3 The example application OS_StartLEDBlink.c ... 12
1.4 Stepping through the sample application ...13

2 Build your own application ..16

2.1 Introduction ...17
2.2 Required files for an embOS ..17
2.3 Change library mode .. 17
2.4 Select another CPU .. 17

3 Libraries ...18

3.1 Naming conventions for prebuilt libraries .. 19

4 CPU and compiler specifics ..20

4.1 IAR C-Spy stack check warning ... 21
4.2 Standard system libraries ..21
4.3 Interrupt and thread safety ...21
4.4 Thread-Local Storage TLS ... 22
4.5 RISC-V privilege levels ... 25
4.6 RISC-V harts ... 26

5 Stacks ... 27

5.1 Task stack for RISC-V ...28
5.2 System stack for RISC-V .. 28
5.3 Interrupt stack .. 28

6 Interrupts ... 29

6.1 RISC-V interrupt sources .. 30
6.2 RISC-V interrupt priorities ...30
6.3 Zero-latency interrupts ... 30
6.4 RISC-V core-local interrupt modes ... 31
6.5 Interrupt handling with embOS for RISC-V ..32
6.6 Interrupt-stack switching .. 60

7 RTT and SystemView ...61

7.1 SEGGER Real Time Transfer .. 62

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

8

7.2 SEGGER SystemView ..62

8 Technical data ...63

8.1 Resource Usage ... 64

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to start with embOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Note

The BSP projects at /Start/BoardSupport/<DeviceManufacturer>/<Device> as-
sume that the /Start/Lib and /Start/Inc folders are located relative to the BSP
folder. If you copy a BSP folder to another location, you will need to adjust these
paths in the project.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

17 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

19 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows: osrv<Arch>_<LibMode>.a

Parameter Meaning Values

Arch Specifies the RISC-V ISA
32imac: RV32I with ’M’, ’A’ and ’C’ extensions
32imc: RV32I with ’M’ and ’C’ extensions

LibMode Specifies the library mode

xr: Extreme Release
r: Release
s: Stack check
sp: Stack check + profiling
d: Debug
dp: Debug + profiling
dt: Debug + profiling + trace

Example

osrv32imac_dp.a is the library for a project using an RV32IMAC core with debug and
profiling support.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

21 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning
IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. This warning can be disabled by removing the check mark for Tools > Options… >
Stack > ’Warn when stack pointer is out of bounds’.

4.2 Standard system libraries
embOS may be used with IAR’s standard system libraries.

The system libraries come with built-in hook functions, which can be used to make calls of
all non-thread-safe standard functions thread-safe . If non-thread-safe functions are used
from different tasks, embOS functions may be used to implement the hook functions and
guarantee mutual exclusion.

4.3 Interrupt and thread safety
Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system libraries provide functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe.

The Setup directory in each embOS BSP contains the file OS_ThreadSafe.c which overwrites
these functions. By default they disable and restore embOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_Idle() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_Idle() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_INTERRUPT_SAFE.
• When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, OS_Idle()

and software timers.
• When defined to 0 thread safety is guaranteed only in tasks. In this case you must not

call e.g. heap functions from within an ISR, OS_Idle() or embOS software timers.

4.3.1 Enabling thread-safe IAR system libraries
By default, IAR does not use thread-safe system libraries. As a result the implemented hook
functions are not linked into the application. To use the thread-safe system libraries the
option “Enable thread support in library” must be set in Project -> Options… ->
General Options -> Library Configuration. Alternatively, the option --threaded_lib
can be passed to the linker. To enable thread-safe C++ constructors and destructors the
option --guard_calls needs to be passed to the compiler.

For more information on IAR’s multithread support, please refer to the IAR Embedded Work-
bench manuals.

To use the automatic thread-safe locking functions the function OS_INIT_SYS_LOCKS() must
be called.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

22 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS
The DLib for IAR supports usage of thread-local storage. Several library objects and func-
tions need local variables which have to be unique to a thread. Thread-local storage will be
required when these functions are called from multiple threads.

embOS for IAR is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task is
started. For each task that uses TLS the memory for the thread-local storage is allocated by
the IAR runtime environment on the heap. Therefore, thread-safe heap management should
be used together with TLS. For information on thread-safety, please refer to Interrupt and
thread safety on page 21.

When the task terminates by a call of OS_TASK_Terminate(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:
• error functions - errno, strerror.
• locale functions - localeconv, setlocale.
• time functions - asctime, localtime, gmtime, mktime.
• multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions - rand, srand.
• etc functions - atexit, strtok.
• C++ exception engine.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

23 CHAPTER 4 Thread-Local Storage TLS

4.4.1 OS_TLS_Set()

Description

OS_TLS_Set() is used by a task to initialize Thread-local storage for the current task.

Prototype

void OS_TLS_Set(void);

Additional information

OS_TLS_Set() shall be the first function called from a task when TLS should be used
in the specific task. This function has to be only used in combination with OS_TASK_Ad-
dContextExtension() or OS_TASK_SetContextExtension() and OS_TLS_ContextExten-
sion as argument to these functions. When OS_TLS_SetTaskContextExtension() is used,
OS_TLS_Set() will be called automatically.

Example

static void Task(void) {
 OS_TLS_Set();
 OS_TASK_SetContextExtension(&OS_TLS_ContextExtension);
 while (1) {
 }
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

24 CHAPTER 4 Thread-Local Storage TLS

4.4.2 OS_TLS_SetTaskContextExtension()

Description

OS_TLS_SetTaskContextExtension() may be called from a task to initialize thread-local
storage for the current task and set the respective task context extension.

Prototype

void OS_TLS_SetTaskContextExtension(void);

Additional information

OS_TLS_SetTaskContextExtension() shall be the first function called from a task when
TLS should be used in the specific task. If the task already contains a task context extension,
OS_TLS_SetTaskContextExtension() cannot be used. Instead, OS_TASK_AddContextEx-
tension() needs to be called with OS_TLS_ContextExtension as argument. Furthermore,
OS_TLS_Set() needs to be called to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 42; // errno specific to HPTask
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 1; // errno specific to LPTask
 OS_TASK_Delay(200);
 }
}

int main(void) {
 errno = 0; // errno not specific to any task
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

25 CHAPTER 4 RISC-V privilege levels

4.5 RISC-V privilege levels
The RISC-V Privileged Architecture Version 1.10 defines three distinct privilege levels:
• Machine mode
• Supervisor mode
• User mode

Only machine mode is mandatory when implementing the architecture; it constitutes the
highest privilege level. User mode and supervisor mode are intended for conventional ap-
plication and Unix-like operating system usage, respectively. A fourth privilege level, hy-
pervisor mode, existed in Version 1.9.1 of the Privileged Architecture, but was subsequently
removed.

embOS for RISC-V currently supports machine mode only.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

26 CHAPTER 4 RISC-V harts

4.6 RISC-V harts
A RISC-V-compatible core might support multiple RISC-V-compatible hardware threads
(often referred to as “harts”) through multi-threading.
Each hart is assigned an ID, which might not necessarily be numbered contiguously. How-
ever, at least one hart must have a hart ID of 0.

Applications executing on RISC-V platforms implementing multiple harts must be aware of
the executing hart.
For example, a reset handler shall be executed by one hart only and therefore must have ac-
cess to the current hart’s ID to ensure this. Another example is accessing memory-mapped
registers like mtimecmp (used to generate machine timer interrupts using the RISC-V re-
al-time counter): Here, applications must use a memory offset specific to the hart that
executes the application to ensure the interrupt request is generated on that same hart.
For this purpose, embOS for RISC-V offers a specific API function.

4.6.1 API functions for hart identification

Function Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_GetHartID() Returns the ID of the executing hart. ● ● ● ● ●

4.6.1.1 OS_GetHartID()

Description

OS_GetHartID() returns the ID of the executing hart.

Prototype

OS_REG_TYPE OS_GetHartID(void);

Return value

ID of the executing hart.

Example

//
// Set MTIMECMP register for this specific hart to 1000 cycles.
//
(*(unsigned long long*)(MTIMECMP_BASE_ADDR + (8u * OS_GetHartID()))) = 1000uL;

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

28 CHAPTER 5 Task stack for RISC-V

5.1 Task stack for RISC-V
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For RISC-V CPUs, this minimum basic task stack size is about 160 bytes. Because any
function call uses some amount of stack and every exception also pushes at least 80 bytes
onto the current stack, the task stack size has to be large enough to handle one exception,
too. We recommend at least 512 bytes stack as a start.

Note

Stacks for RV32I devices need to be 16-byte aligned. embOS ensures that task stacks
are properly aligned. However, since this can result in unused bytes, the application
should ensure that task stacks are properly aligned. This can be achieved defining an
array using the compilers #pragma data_alignment=16 keyword.

5.2 System stack for RISC-V
The minimum system stack size required by embOS is about 192 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application.

The size of the system stack can be changed by modifying the project settings. We recom-
mend a minimum stack size of 768 bytes for the system stack.

5.3 Interrupt stack
RISC-V does not support a dedicated hardware interrupt stack. This means that any inter-
rupt might use any task stack or the system stack depending on which context it is inter-
rupting. Consequently, each task stack would need to be large enough to handle (multiple)
interrupts. However, since assigning additional memory to each individual task stack would
consume large amounts of RAM, embOS for RISC-V offers API functions to switch to the
system stack on interrupt entry.

The respective functions OS_INT_EnterIntStack() and OS_INT_LeaveIntStack() are de-
scribed in the generic embOS manual.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

30 CHAPTER 6 RISC-V interrupt sources

6.1 RISC-V interrupt sources
The RISC-V Privileged Architecture Version 1.10 defines 16 generic core-local interrupt
sources.
Of these, 3 address machine mode and are mandatory when implementing the architecture,
while further 6 are mandatory only when their respective privilege level is implemented (i.e.
3 sources with user mode and 3 sources with supervisor mode). The remaining 7 generic
core-local interrupt sources must not be implemented, but are reserved for future use.

In addition to these generic core-local interrupt sources, further core-local interrupt sources
may be implemented with any specific RISC-V platform (up to 16 with RV32I).

Consequently, any RISC-V-compliant platform includes one software interrupt, one timer
interrupt and one external interrupt for each privilege level it implements, as well as a
variable number of platform-specific core-local interrupts.

While the timer interrupt serves interrupt requests generated by any RISC-V platforms’
mandatory real-time counter, the software interrupt, as its name suggests, serves interrupt
requests generated by software.
The external interrupt, on the other hand, is used to serve a variable number of global
interrupts which themselves are managed by a dedicated interrupt controller. Some imple-
mentors of the architecture include core-local interrupt management with the same inter-
rupt controller, but most often core-local interrupt sources are managed locally.

By default, all interrupts (often referred to as “traps”) are served in machine mode.
Although machine mode interrupt service routines could technically redirect interrupts to
the appropriate mode, this currently is not supported with embOS for RISC-V. Neither is
the “Machine Trap Delegation” hardware feature.

6.2 RISC-V interrupt priorities
Multiple simultaneous interrupts at the same privilege level are handled in the following
decreasing priority order: External interrupts, software interrupts, timer interrupts, then
finally any synchronous traps.

External interrupts may further be prioritized by the dedicated interrupt controller depend-
ing on its implementation, while the priority of non-standard core-local interrupt sources
relative to external, timer, and software interrupt sources is platform-specific.

For example, with SiFive’s “RISC-V Coreplex IP”, the platform-specific core-local interrupt
sources take precedence over any other interrupt source and are themselves prioritized
by their index. Considering machine mode only, a comprehensive priority table for that
platform (in decreasing order of priority) would therefore read as follows:

Trap name

Local interrupt 15
Local interrupt 14
…
Local interrupt 1
Local interrupt 0
Machine external interrupts (with configurable external priority)
Machine software interrupt
Machine timer interrupt
Synchronous trap

6.3 Zero-latency interrupts
Zero-latency interrupts are not supported with the current version of embOS for RISC-V.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

31 CHAPTER 6 RISC-V core-local interrupt modes

6.4 RISC-V core-local interrupt modes
Typically, core-local interrupt handling is performed in direct mode:
In this mode, a RISC-V platform will route all core-local interrupts through a low-level in-
terrupt service routine, which ultimately calls the appropriate high-level interrupt service
routines for the respective core-local interrupt sources. For this purpose, the low-level in-
terrupt service routine’s address needs to be held in the mtvec register, which typically is
set during start-up.

Alternatively, core-local interrupt handling may also be performed in vectored mode:
In this mode, a RISC-V platform will route all core-local interrupts through a properly aligned
vector table containing jumps to the appropriate interrupt service routines for the respective
core-local interrupt sources. For this purpose, the vector table’s base address needs to be
held in the mtvec register, which then typically needs to be set explicitly by the application.
The application then also needs to tell the hardware to utilize vectored mode by setting the
least-significant bit of that register.

Note

In vectored mode, both synchronous exceptions and user mode software interrupts
are ambiguously vectored to the same exception handler.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

32 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5 Interrupt handling with embOS for RISC-V
Core-local interrupt handling

Addressing core-local interrupt handling, embOS for RISC-V offers API functions for:
• Generic RISC-V core-local interrupt handling (refer to Core-local interrupt handling on

page 33)
• NucleiSys’ “Enhanced Core-Local Interrupt Controller” (refer to Core-local and global

interrupt handling using ECLIC on page 54)

When using embOS API functions on core-local interrupt sources, these may be specified
using the following enumeration (where missing numerical values indicate reserved core-
local interrupt sources):

Core-local
interrupt source

Numerical value

IRQ_U_SOFTWARE 0
IRQ_S_SOFTWARE 1
IRQ_M_SOFTWARE 3
IRQ_U_TIMER 4
IRQ_S_TIMER 5
IRQ_M_TIMER 7
IRQ_U_EXTERNAL 8
IRQ_S_EXTERNAL 9
IRQ_M_EXTERNAL 11
IRQ_LOCAL0 16
IRQ_LOCAL1 17
IRQ_LOCAL2 18
IRQ_LOCAL3 19
IRQ_LOCAL4 20
IRQ_LOCAL5 21
IRQ_LOCAL6 22
IRQ_LOCAL7 23
IRQ_LOCAL8 24
IRQ_LOCAL9 25
IRQ_LOCAL10 26
IRQ_LOCAL11 27
IRQ_LOCAL12 28
IRQ_LOCAL13 29
IRQ_LOCAL14 30
IRQ_LOCAL15 31

Global interrupt handling

Addressing global interrupt handling, embOS for RISC-V offers API functions for:
• Generic “RISC-V Platform-Level Interrupt Controller” implementations (refer to Global

interrupt handling using PLIC on page 39)
• Lattice’s “Programmable Interrupt Controller” (refer to Global interrupt handling using

PIC on page 45)
• NucleiSys’ “Enhanced Core-Local Interrupt Controller” (refer to Core-local and global

interrupt handling using ECLIC on page 54)

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

33 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1 Core-local interrupt handling

6.5.1.1 Implementing core-local interrupt handlers in "C"

6.5.1.1.1 Low-level interrupt service routine

In direct mode, the individual interrupt service routines for distinct core-local interrupt
sources need to be dispatched by a common low-level service routine. With embOS for
RISC-V, this low-level routine is split into an assembler part called trap_entry(), which
saves and restores the interrupted context, and a “C”-function called OS_TrapHandler(),
which performs the actual dispatching of high-level service routines.
In vectored mode, embOS for RISC-V will not call trap_entry() at all, while OS_TrapHan-
dler() is called exclusively to handle synchronous traps and user mode software interrupts
(which ambiguously share the same vector in that mode).

embOS for RISC-V sample projects will typically implement OS_TrapHandler() in their
respective RTOSInit*.c as shown in the example below, allowing for customization of that
function. As this exemplary implementation of OS_TrapHandler() does not call any embOS
API functions, it does not need to include a prologue and an epilogue as described in the
generic embOS manual.

Example

#if (USE_VECTORED_INT_MODE == 0)
static OS_IRQ_HANDLER* _apfIRQHandler[NUM_LOCAL_INTERRUPTS];
#endif

OS_REG_TYPE OS_TrapHandler(OS_REG_TYPE mcause, OS_REG_TYPE mepc) {
 if (mcause & MCAUSE_INT) {
#if (USE_VECTORED_INT_MODE == 0)
 //
 // Caused by interrupt: call appropriate high-level handler.
 //
 _apfIRQHandler[mcause & MCAUSE_CAUSE]();
#else
 //
 // In vectored mode, user mode software interrupt ambiguously shares
 // a vector with synchronous exceptions. If user mode software interrupt
 // is to be used by the application, its handler could be called here.
 //
 _ISR_NotInstalled();
#endif
 } else {
 //
 // Caused by synchronous trap: call fault handler.
 //
 _ExceptionHandler(mcause, mepc);
 }
 return mepc;
}

Note

mepc contains the address of the instruction that was executed when the interrupt
was taken. It must eventually be returned by OS_TrapHandler() to continue regular
program execution at that address once the interrupt completes.
In case of interrupts, mepc must never be modified by OS_TrapHandler() before
returning it. In case of a synchronous traps, however, mepc can be used to examine
the cause for the trap and to react accordingly (e.g. redirecting program execution
elsewhere).

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

34 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.1.2 High-level interrupt service routines

The individual interrupt service routines for distinct core-local interrupt sources shall include
a prologue and an epilogue as described in the generic embOS manual (both in direct mode
and in vectored mode). A high-level service routine for any core-local interrupt source may
therefore be implemented as shown in the example below.

Example

void ISR_Local0(void) {
 OS_INT_Enter();
 //
 // Perform any functionality here.
 //
 OS_INT_Leave();
}

Note

A CLINT’s high-level interrupt service routine for machine external interrupts is, at the
same time, the low-level interrupt service routine for the (external) interrupt controller
(e.g. PLIC).

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

35 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2 API functions for core-local interrupt handling
For core-local interrupt handling, embOS offers the following functions:

Function Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_CLINT_ClearIntPending()
Clears pending state of the speci-
fied core-local interrupt source. ● ● ● ●

OS_CLINT_DisableInt()
Disables the specified core-local in-
terrupt source. ● ● ● ●

OS_CLINT_EnableInt()
Enables the specified core-local in-
terrupt source. ● ● ● ●

OS_CLINT_GetIntPending()
Returns the current pending status
of the specified core-local interrupt
source.

● ● ● ● ●

OS_CLINT_Init()
Initializes core-local interrupt han-
dling. ●

OS_CLINT_InstallISR()
Installs the specified interrupt ser-
vice routine in a RAM vector table. ● ●

OS_CLINT_SetIntPending()
Sets the specified core-local inter-
rupt source to pending state. ● ● ● ●

OS_CLINT_SetDirectMode()
Configures core-local interrupt han-
dling to direct mode. ●

OS_CLINT_SetVectoredMode()
Configures core-local interrupt han-
dling to vectored mode. ●

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

36 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2.1 OS_CLINT_ClearIntPending()

Description

OS_CLINT_ClearIntPending() clears pending state of the specified core-local interrupt
source.
Machine external and machine timer interrupt pending bits are read-only. The primary use
of this function therefore is to clear machine software interrupts.

Prototype

void OS_CLINT_ClearIntPending(CLINT_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the core-local interrupt source by its index.

6.5.1.2.2 OS_CLINT_DisableInt()

Description

OS_CLINT_DisableInt() disables the specified core-local interrupt source.

Prototype

void OS_CLINT_DisableInt(CLINT_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the core-local interrupt source by its index.

6.5.1.2.3 OS_CLINT_EnableInt()

Description

OS_CLINT_EnableInt() enables the specified core-local interrupt source.

Prototype

void OS_CLINT_EnableInt(CLINT_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the core-local interrupt source by its index.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

37 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2.4 OS_CLINT_GetIntPending()

Description

OS_CLINT_GetIntPending() returns the current pending state of the specified core-local
interrupt source.

Prototype

OS_BOOL OS_CLINT_GetIntPending(CLINT_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the core-local interrupt source by its index.

Return value

= 0: Specified interrupt source is not pending.
= 1: Specified interrupt source is pending.

6.5.1.2.5 OS_CLINT_Init()

Description

OS_CLINT_Init() initializes core-local interrupt handling.
Must be called prior to OS_Start() and before calling any other OS_CLINT_*() function.

Prototype

void OS_CLINT_Init(OS_U8 NumInterrupts,
 OS_IRQ_HANDLER* apfISR[]);

Parameters

Parameter Description

NumInterrupts
Number of supported core-local interrupt sources.
Requires a minimum of 16 and may not exceed 32 (with RV32I).

apfISR
Pointer to a RAM vector table base. When using vectored mode or a
ROM vector table in direct mode, this parameter must be NULL.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

38 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2.6 OS_CLINT_InstallISR()

Description

OS_CLINT_InstallISR() installs the specified interrupt service routine for the specified
core-local interrupt source in a RAM vector table that was configured via OS_CLINT_Init().
This function must not be called when using vectored mode or a ROM vector table in direct
mode.

Prototype

OS_IRQ_HANDLER* OS_CLINT_InstallISR(CLINT_IRQn IRQIndex,
 OS_IRQ_HANDLER* pfISR);

Parameters

Parameter Description

IRQIndex Specifies the core-local interrupt source by its index.
pfISR Pointer to the interrupt service routine to be installed.

Return value

Pointer to the previously installed interrupt service routine.

6.5.1.2.7 OS_CLINT_SetIntPending()

Description

OS_CLINT_SetIntPending() sets the specified core-local interrupt source to pending state.
Machine external and machine timer interrupt pending bits are read-only. The primary use
of this function therefore is to trigger machine software interrupts.

Prototype

void OS_CLINT_SetIntPending(CLINT_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the core-local interrupt source by its index.

6.5.1.2.8 OS_CLINT_SetDirectMode()

Description

Configures core-local interrupt handling to direct mode.
Must be called prior to OS_Start().

Prototype

void OS_CLINT_SetDirectMode(void);

6.5.1.2.9 OS_CLINT_SetVectoredMode()

Description

Configures core-local interrupt handling to vectored mode.
Must be called prior to OS_Start() and expects the vector table to be called vtrap_entry.

Prototype

void OS_CLINT_SetVectoredMode(void);

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

39 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2 Global interrupt handling using PLIC
The generic “RISC-V Platform-Level Interrupt Controller” (PLIC) is defined by the RISC-V
Privileged Architecture Version 1.10.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

40 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.1 Implementing global interrupt handlers in "C"

6.5.2.1.1 Low-level interrupt service routine

The individual interrupt service routines for global interrupt sources need to be dispatched
by a common low-level service routine. Since this low-level service routine needs to call
embOS API functions, it must include a prologue and an epilogue as described in the generic
embOS manual. Typically, embOS for RISC-V sample projects using PIC will implement the
low-level service routine in their respective RTOSInit*.c as shown in the example below.

static OS_IRQ_HANDLER* _apfIRQHandler[PLIC_NUM_INTERRUPTS];

void ISR_M_External(void) {
 OS_U32 IRQIndex;

 OS_INT_Enter();
 IRQIndex = OS_PLIC_ClaimInt(); // Claim highest-priority global IRQ.
 if (IRQIndex != 0u) { // "0" indicates no IRQ was pending.
 _apfIRQHandler[IRQIndex](); // Call appropriate handler.
 OS_PLIC_CompleteInt(IRQIndex); // Signal interrupt completion to PLIC.
 }
 OS_INT_Leave();
}

Note

A low-level interrupt service routine for the PLIC is, at the same time, the CLINT high-
level interrupt service routine for machine external interrupts.

6.5.2.1.2 High-level interrupt service routines

The individual interrupt service routines for distinct global interrupt sources do not need to
include a prologue and an epilogue as described in the manual, since these were already
included in the low-level service routine. A high-level service routine for any global interrupt
source may therefore be implemented as shown in the example below.

void ISR_External_S0(void) {
 //
 // Perform any functionality here.
 //
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

41 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2 API functions for using PLIC

Function Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_PLIC_ClaimInt()
Retrieves the index of highest-pri-
ority pending global interrupt and
clears pending condition

●

OS_PLIC_CompleteInt() Notifies PLIC of ISR completion ●

OS_PLIC_DisableInt()
Disables the specified global inter-
rupt source ● ● ● ●

OS_PLIC_EnableInt()
Enables the specified global inter-
rupt source ● ● ● ●

OS_PLIC_GetIntPriority()
Returns the current interrupt priori-
ty for the specified interrupt source ● ● ● ● ●

OS_PLIC_GetIntThreshold()
Returns the current interrupt priori-
ty threshold ● ● ● ● ●

OS_PLIC_Init()
Configures PLIC base address and
RAM vector table address ●

OS_PLIC_InstallISR() Installs an global interrupt handler ● ●

OS_PLIC_SetIntPriority()
Sets the priority of the specified
global interrupt ● ● ● ●

OS_PLIC_SetIntThreshold()
Configures the IRQ threshold,
masking lower-priority global inter-
rupts

● ● ● ●

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

42 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2.1 OS_PLIC_ClaimInt()

Description

OS_PLIC_ClaimInt() is used to retrieve the ID of the highest-priority pending global in-
terrupt. Clears the corresponding source’s pending bit.

Prototype

OS_U32 OS_PLIC_ClaimInt(void);

Return value

OS_U32: Interrupt index

6.5.2.2.2 OS_PLIC_CompleteInt()

Description

OS_PLIC_CompleteInt() is used to signal ISR completion to the PLIC.

Prototype

void OS_PLIC_CompleteInt(OS_U32 IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index

6.5.2.2.3 OS_PLIC_DisableInt()

Description

OS_PLIC_DisableInt() is used to disable the specified global interrupt.

Prototype

void OS_PLIC_DisableInt(OS_U32 IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index

6.5.2.2.4 OS_PLIC_EnableInt()

Description

OS_PLIC_EnableInt() is used to enable the specified global interrupt.

Prototype

void OS_PLIC_EnableInt(OS_U32 IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

43 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2.5 OS_PLIC_GetIntPriority()

Description

OS_PLIC_GetIntPriority() retrieves the current priority for the specified global interrupt
source.

Prototype

OS_U32 OS_PLIC_GetIntPriority(OS_U32 IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index

Return value

OS_U32: Current interrupt priority of the specified interrupt source

6.5.2.2.6 OS_PLIC_GetIntThreshold()

Description

OS_PLIC_GetIntThreshold() retrieves the current global interrupt priority threshold.

Prototype

OS_U32 OS_PLIC_GetIntThreshold(void);

Return value

OS_U32: Current interrupt priority threshold

6.5.2.2.7 OS_PLIC_Init()

Description

OS_PLIC_Init() is used to configure the RAM vector table base address for global inter-
rupts.

Prototype

void OS_PLIC_Init(OS_U32 BaseAddr,
 OS_U16 NumInterrupts,
 OS_U32 NumPriorities,
 OS_IRQ_HANDLER* apfISR[]);

Parameters

Parameter Description

BaseAddr PLIC base address
NumInterrupts Number of supported global interrupt sources
NumPriorities Number of supported global interrupt priorities
apfISR Pointer to RAM vector table base

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

44 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2.8 OS_PLIC_InstallISR()

Description

OS_PLIC_InstallISR() is used to install the specified global interrupt handler in the RAM
vector table.

Prototype

OS_IRQ_HANDLER* OS_PLIC_InstallISR(OS_U32 IRQIndex,
 OS_IRQ_HANDLER* pfISR);

Parameters

Parameter Description

IRQIndex Interrupt index
pfISR Address of interrupt handler

Return value

OS_IRQ_HANDLER*: Address of the previously installed interrupt handler, or NULL if not
applicable.

6.5.2.2.9 OS_PLIC_SetIntPriority()

Description

OS_PLIC_SetIntPriority() is used to configure the interrupt priority for the specified
global interrupt.

Prototype

OS_U32 OS_PLIC_SetIntPriority(OS_U32 IRQIndex,
 OS_U32 Prio);

Parameters

Parameter Description

IRQIndex Interrupt index
Prio Interrupt priority

Return value

OS_U32: Previous priority which was assigned before

6.5.2.2.10 OS_PLIC_SetIntThreshold()

Description

OS_PLIC_SetIntThreshold() is used to configure the interrupt priority threshold. All pri-
orities less than or equal to Threshold will be masked.

Prototype

void OS_PLIC_SetIntThreshold(OS_U32 Threshold);

Parameters

Parameter Description

Threshold Desired interrupt priority threshold

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

45 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3 Global interrupt handling using PIC

6.5.3.1 Global interrupt sources
An implementation of Lattice’s “Programmable Interrupt Controller” (PIC) may support a
minimum of 1 and a maximum of 8 global interrupt sources. When using embOS API func-
tions for global interrupt sources, these may be specified using the following enumeration:

Global interrupt source Numerical value

IRQ_S0 0
IRQ_S1 1
IRQ_S2 2
IRQ_S3 3
IRQ_S4 4
IRQ_S5 5
IRQ_S6 6
IRQ_S7 7

6.5.3.2 Global interrupt priority
With a PIC implementation, all global interrupt sources are executed at the same priority.
Which interrupt service routine is executed first when several interrupts are pending at the
same time depends on the low-level interrupt service routine.

6.5.3.3 Global interrupt polarity
The polarity of any global interrupt source may be configured using the following enumer-
ation:

PIC interrupt polarity Numerical value

PIC_INTPOLARITY_HIGH 0
PIC_INTPOLARITY_LOW 1

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

46 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.4 Implementing global interrupt handlers in "C"

6.5.3.4.1 Low-level interrupt service routine

The individual interrupt service routines for global interrupt sources need to be dispatched
by a common low-level service routine. Since this low-level service routine needs to call
embOS API functions, it must include a prologue and an epilogue as described in the generic
embOS manual. Typically, embOS for RISC-V sample projects using PIC will implement the
low-level service routine in their respective RTOSInit*.c as shown in the example below.

#if (EXTEND_GLOBAL_ISR_CONTEXT == 0)
static OS_IRQ_HANDLER* _apfIRQHandler[PIC_NUM_INTERRUPTS];
#else
static OS_IRQ_HANDLER_CONTEXT* _apfIRQHandler[PIC_NUM_INTERRUPTS];
#endif

void ISR_M_External(void) {
 PIC_IRQn IRQIndex;

 OS_INT_Enter();
 //
 // By sequentially serving all pending global interrupts at once, this
 // exemplary implementation aims at accelerating interrupt handling since
 // interrupted contexts do not need to be saved and restored repeatedly.
 // By iterating from IRQ_S0 to PIC_NUM_INTERRUPTS, this exemplary implementation
 // prioritizes global interrupt sources by their index (in ascending order).
 //
 for (IRQIndex = IRQ_S0; IRQIndex < PIC_NUM_INTERRUPTS; IRQIndex++) {
 if (OS_PIC_GetIntPending(IRQIndex) == 1u) {
#if (EXTEND_GLOBAL_ISR_CONTEXT == 0)
 _apfIRQHandler[IRQIndex]();
#else
 _apfIRQHandler[IRQIndex]->pfISR(_apfIRQHandler[IRQIndex]->pContext);
#endif
 OS_PIC_ClearIntPending(IRQIndex);
 }
 }
 OS_INT_Leave();
}

Note

A low-level interrupt service routine for the PIC is, at the same time, the CLINT high-
level interrupt service routine for machine external interrupts.

6.5.3.4.2 High-level interrupt service routines

The individual interrupt service routines for distinct global interrupt sources do not need to
include a prologue and an epilogue as described in the manual, since these were already
included in the low-level service routine. A high-level service routine for any global interrupt
source may therefore be implemented as shown in the example below.

#if (EXTEND_GLOBAL_ISR_CONTEXT == 0)
void ISR_External_S0(void) {
#else
void ISR_External_S0(void* pContext) {
#endif
 //
 // Perform any functionality here.
 //
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

47 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5 API functions for using PIC

Function Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_PIC_ClearIntPending()
Clears pending state of the speci-
fied global interrupt source. ● ● ● ●

OS_PIC_DisableInt()
Disables the specified global inter-
rupt source. ● ● ● ●

OS_PIC_EnableInt()
Disables the specified global inter-
rupt source. ● ● ● ●

OS_PIC_GetIntPending()
Returns the current pending sta-
tus of the specified global interrupt
source.

● ● ● ● ●

OS_PIC_GetIntPolarity()
Returns the current polarity of the
specified global interrupt source. ● ● ● ● ●

OS_PIC_Init() Initializes PIC interrupt handling. ●

OS_PIC_Init_Ex()
Initializes extended PIC interrupt
handling. ●

OS_PIC_InstallISR()
Installs the specified interrupt ser-
vice routine in a RAM vector table. ● ●

OS_PIC_InstallISR_Ex()
Installs the specified extended in-
terrupt service routine in a RAM
vector table.

● ●

OS_PIC_SetIntPending()
Sets the specified global interrupt
source to pending state. ● ● ● ●

OS_PIC_SetIntPolarity()
Sets the specified polarity for the
specified global interrupt source. ● ● ● ●

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

48 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.1 OS_PIC_ClearIntPending()

Description

OS_PIC_ClearIntPending() clears pending state of the specified global interrupt source.

Prototype

void OS_PIC_ClearIntPending(PIC_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

6.5.3.5.2 OS_PIC_DisableInt()

Description

OS_PIC_DisableInt() disables the specified global interrupt source.

Prototype

void OS_PIC_DisableInt(PIC_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

6.5.3.5.3 OS_PIC_EnableInt()

Description

OS_PIC_EnableInt() enables the specified global interrupt source.

Prototype

void OS_PIC_EnableInt(PIC_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

49 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.4 OS_PIC_GetIntPending()

Description

OS_PIC_GetIntPending() returns the current pending status of the specified global inter-
rupt source.

Prototype

OS_BOOL OS_PIC_GetIntPending(PIC_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

Return value

= 0: Specified interrupt source is not pending.
= 1: Specified interrupt source is pending.

6.5.3.5.5 OS_PIC_GetIntPolarity()

Description

OS_PIC_GetIntPolarity() returns the currently configured polarity of the specified global
interrupt source.

Prototype

PIC_INTPOLARITY OS_PIC_GetIntPolarity(PIC_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

Return value

= OS_PIC_INTPOLARITY_HIGH: Specified interrupt source is configured to active high.
= OS_PIC_INTPOLARITY_LOW: Specified interrupt source is configured to active low.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

50 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.6 OS_PIC_Init()

Description

OS_PIC_Init() initializes PIC interrupt handling.
Must not be called when using (OS_PIC_Init_Ex(), but must otherwise be called prior to
OS_Start() and before calling any other OS_PIC_*() function.

Prototype

void OS_PIC_Init(OS_U32 BaseAddr,
 OS_U8 NumInterrupts,
 OS_IRQ_HANDLER* apfISR[]);

Parameters

Parameter Description

BaseAddr PIC base address.

NumInterrupts
Number of supported global interrupt sources.
Requires a minimum of 1 and may not exceed 8.

apfISR
Pointer to a RAM vector table base. When using a ROM vector table,
this parameter must be NULL.

Example

static OS_IRQ_HANDLER* _apfIRQHandler[PIC_NUM_INTERRUPTS];
void foo(void) {
 OS_PIC_Init(PIC_BASE_ADDR, PIC_NUM_INTERRUPTS, _apfIRQHandler);
}

6.5.3.5.7 OS_PIC_Init_Ex()

Description

OS_PIC_Init_Ex() initializes extended PIC interrupt handling.
Must not be called when using (OS_PIC_Init(), but must otherwise be called prior to
OS_Start() and before calling any other OS_PIC_*() function.

Prototype

void OS_PIC_Init_Ex(OS_U32 BaseAddr,
 OS_U8 NumInterrupts,
 OS_IRQ_HANDLER_CONTEXT* apfISR[]);

Parameters

Parameter Description

BaseAddr PIC base address.

NumInterrupts
Number of supported global interrupt sources.
Requires a minimum of 1 and may not exceed 8.

apfISR
Pointer to an extended RAM vector table base. When using a ROM
vector table, this parameter must be NULL.

Example

static OS_IRQ_HANDLER_CONTEXT* _apfIRQHandler[PIC_NUM_INTERRUPTS];
void foo(void) {
 OS_PIC_Init_Ex(PIC_BASE_ADDR, PIC_NUM_INTERRUPTS, _apfIRQHandler);
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

51 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.8 OS_PIC_InstallISR()

Description

OS_PIC_InstallISR() installs the specified interrupt service routine for the specified global
interrupt source in a RAM vector table that was configured via OS_PIC_Init().
This function must not be called when using a ROM vector table.

Prototype

OS_IRQ_HANDLER* OS_PIC_InstallISR(PIC_IRQn IRQIndex,
 OS_IRQ_HANDLER* pfISR);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.
pfISR Pointer to the interrupt service routine to be installed.

Return value

Pointer to the previously installed interrupt service routine.

Example

static void _ISR_External2(void) {
 //
 // Perform any functionality.
 //
}

void foo(void) {
 (void)OS_PIC_InstallISR(IRQ_S2, _ISR_External2);
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

52 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.9 OS_PIC_InstallISR_Ex()

Description

OS_PIC_InstallISR_Ex() installs the specified extended interrupt service routine for
the specified global interrupt source in a RAM vector table that was configured via
OS_PIC_Init_Ex().
This function must not be called when using a ROM vector table.

Prototype

OS_IRQ_HANDLER_EX* OS_PIC_InstallISR_Ex(PIC_IRQn IRQIndex,
 OS_IRQ_HANDLER_EX* pfISR,
 void* pContext);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.
pfISR Pointer to the extended interrupt service routine to be installed.

pContext
Pointer to the context that should be passed to the interrupt service
routine.

Return value

Pointer to the previously installed extended interrupt service routine.

Example

static void _ISR_External2(void* pContext) {
 if (((int)pContext) == 42) {
 //
 // Perform some functionality.
 //
 } else {
 //
 // Perform some other functionality.
 //
 }
}

void foo(void) {
 (void)OS_PIC_InstallISR_Ex(IRQ_S2, _ISR_External2, (void*)42);
}

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

53 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.10 OS_PIC_SetIntPending()

Description

OS_PIC_SetIntPending() sets the specified global interrupt source to pending state.

Prototype

void OS_PIC_SetIntPending(PIC_IRQn IRQIndex);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

6.5.3.5.11 OS_PIC_SetIntPolarity()

Description

OS_PIC_SetIntPolarity() configures the specified polarity for the specified global inter-
rupt source.

Prototype

void OS_PIC_SetIntPolarity(PIC_IRQn IRQIndex,
 PIC_INTPOLARITY Polarity);

Parameters

Parameter Description

IRQIndex Specifies the interrupt source by its index.

Polarity
Polarity to configure (PIC_INTPOLARITY_HIGH or PIC_INTPOLARI-
TY_LOW).

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

54 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4 Core-local and global interrupt handling using ECLIC
When using NucleiSys’ “Enhanced Core-Local Interrupt Controller” (ECLIC), both core-local
and global interrupt sources are managed by the ECLIC and behave the same way.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

55 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.1 Interrupt levels and priorities
For CLIC interrupt controllers, each interrupt has an 8-bit control register which is used
to specify the interrupt level and priority. Depending on how many of the control bits are
implemented on the device, there can be a maximum of 256 different combinations of
interrupt level and priority for an interrupt. The level is stored on the MSB side of the control
register, while the remaining bits are used for the priority. How many of the available control
bits are used for the interrupt level can be specified. By default, all control bits are used
for the interrupt level. That is, the number of level bits is set to 8.

Interrupt level

Interrupts with higher interrupt level can interrupt interrupts with lower interrupt level,
resulting in interrupt nesting. Furthermore, interrupts can be nested by synchronous ex-
ceptions. The synchronous exception is always taken with the current interrupt level. That
means that interrupts and exceptions with greater interrupt level are able to interrupt an
exception with lower interrupt level.

Interrupt priority

Interrupts with higher priority won’t interrupt interrupts with same interrupt level even
if the current active interrupt has a lower priority. The interrupt priority is used only for
interrupt arbitration if there are two pending interrupts with the same interrupt level.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

56 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2 API functions for using ECLIC
To handle ECLIC interrupts, embOS offers the following functions:

Function Description

OS_ECLIC_DisableInt() Disables the specified interrupt source.
OS_ECLIC_EnableInt() Enables the specified interrupt source.

OS_ECLIC_GetNumLevelBits()
Returns how many bits of the interrupt control reg-
ister are used for the interrupt level.

OS_ECLIC_GetIntPriority()
Returns the interrupt control value of the specified
interrupt.

OS_ECLIC_GetIntThreshold() Returns the current interrupt level threshold.
OS_ECLIC_Init() Initializes the ECLIC interrupt controller.

OS_ECLIC_SetNumLevelBits()
Specifies how many bits of the interrupt control
register shall be used for the interrupt level.

OS_ECLIC_SetIntPriority()
Sets the interrupt control value of the specified in-
terrupt.

OS_ECLIC_SetIntThreshold()
Configures the IRQ threshold, masking lower-level
interrupts.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

57 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2.1 OS_ECLIC_DisableInt()

Description

OS_ECLIC_DisableInt() disables the specified interrupt.

Prototype

void OS_ECLIC_DisableInt(OS_UINT IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index.

6.5.4.2.2 OS_ECLIC_EnableInt()

Description

OS_ECLIC_EnableInt() enables the specified interrupt.

Prototype

void OS_ECLIC_EnableInt(OS_UINT IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index.

6.5.4.2.3 OS_ECLIC_GetNumLevelBits()

Description

OS_ECLIC_GetNumLevelBits() returns how many bits of the interrupt control register are
used for the interrupt level.

Prototype

OS_U8 OS_ECLIC_GetNumLevelBits(void);

Return value

The number of level bits.

6.5.4.2.4 OS_ECLIC_GetIntPriority()

Description

OS_ECLIC_GetIntPriority() returns the interrupt control value of the specified interrupt.

Prototype

OS_U8 OS_ECLIC_GetIntPriority(OS_UINT IRQIndex);

Parameters

Parameter Description

IRQIndex Interrupt index.

Return value

The interrupt control value containing the interrupt level and priority.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

58 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2.5 OS_ECLIC_GetIntThreshold()

Description

OS_ECLIC_GetIntThreshold() returns the current interrupt level threshold.

Prototype

OS_U8 OS_ECLIC_GetIntThreshold(void);

Return value

The current interrupt level threshold.

6.5.4.2.6 OS_ECLIC_Init()

Description

OS_ECLIC_Init() initializes the ECLIC interrupt controller.

Prototype

void OS_ECLIC_Init(void* pBaseAddr,
 void* pVectorTable,
 void* pTrapHandler);

Parameters

Parameter Description

pBaseAddr Base address of the memory mapped ECLIC SFRs.

pVectorTable

Address of the vector table containing the ISR handler
addresses. Needs to be at least 64-bit aligned. Align-
ment increases with size of the vector table (See addi-
tional information).

pTrapHandler
Address of the synchronous trap handler. Needs to be
64-bit aligned.

Additional information

The vector table address is constrained to be at least 64-byte aligned. This alignment should
be considered when linking the application.

 0 to 16 max. interrupts => 64-byte aligned
 17 to 32 max. interrupts => 128-byte aligned
 33 to 64 max. interrupts => 256-byte aligned
 65 to 128 max. interrupts => 512-byte aligned
 129 to 256 max. interrupts => 1024-byte aligned
 257 to 512 max. interrupts => 2048-byte aligned
 513 to 1024 max. interrupts => 4096-byte aligned
1025 to 2048 max. interrupts => 8192-byte aligned
2045 to 4096 max. interrupts => 16384-byte aligned

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

59 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2.7 OS_ECLIC_SetNumLevelBits()

Description

OS_ECLIC_SetNumLevelBits() Specifies how many bits of the interrupt control register
shall be used for the interrupt level.

Prototype

void OS_ECLIC_SetNumLevelBits(OS_U8 NumLevelBits);

Parameters

Parameter Description

NumLevelBits Number of level bits that shall be used. Valid value are 0-8.

6.5.4.2.8 OS_ECLIC_SetIntPriority()

Description

OS_ECLIC_SetIntPriority() sets the interrupt control bits of the specified interrupt. The
interrupt control register consists of two parts: the interrupt level and the interrupt priority,
depending on the number of level bits used. The interrupt level bits are on the MSB side,
while priority bits are on the LSB side. The number of level bits used is by default set to 8,
but can be changed by a call to OS_ECLIC_SetNumLevelBits().

Prototype

void OS_ECLIC_SetIntPriority(OS_UINT IRQIndex,
 OS_U8 InterruptPriority);

Parameters

Parameter Description

IRQIndex Interrupt index.
InterruptPri-
ority

Interrupt level and priority.

6.5.4.2.9 OS_ECLIC_SetIntThreshold()

Description

OS_ECLIC_SetIntThreshold() configures the IRQ threshold, masking lower-level inter-
rupts.

Prototype

void OS_ECLIC_SetIntThreshold(OS_U8 Threshold);

Parameters

Parameter Description

Threshold Desired interrupt priority threshold.

Example

For a device with 5 implemented control bits it is possible to use 25=32 different values for
interrupt priority arbitration. If the number of level bits is set to 3, 8 levels and 4 priorities
can be used. In order to set an interrupt to level 7 and priority 2, the value ((7 << (5 -
3)) | 2) = 30 has to be passed as interrupt priority.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

60 CHAPTER 6 Interrupt-stack switching

6.6 Interrupt-stack switching
embOS for RISC-V offers API functions for interrupt stack switching. Please refer to chapter
Interrupt stack on page 28 for more information.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

Chapter 7

RTT and SystemView

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

62 CHAPTER 7 SEGGER Real Time Transfer

7.1 SEGGER Real Time Transfer
With SEGGER’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

7.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVIEW_Conf() on the target microcontroller.
This call is performed within OS_InitHW() of the respective RTOSInit*.c file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGGER_SYSVIEW_Conf() call, the SEGGER_SYSVIEW.h include directive as well as any other
reference to SEGGER_SYSVIEW_* like SEGGER_SYSVIEW_TickCnt.

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that OS_TIME_ConfigSysTimer() was called before SEGGER_SYSVIEW_Start()
is called or the SystemView PC application is started.

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 8

Technical data

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

64 CHAPTER 8 Resource Usage

8.1 Resource Usage
The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~2000 bytes
embOS kernel RAM ~136 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLocks RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for RISC-V and IAR © 2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	Standard system libraries
	Interrupt and thread safety
	Enabling thread-safe IAR system libraries

	Thread-Local Storage TLS
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	RISC-V privilege levels
	RISC-V harts
	API functions for hart identification
	OS_GetHartID()

	Stacks
	Task stack for RISC-V
	System stack for RISC-V
	Interrupt stack

	Interrupts
	RISC-V interrupt sources
	RISC-V interrupt priorities
	Zero-latency interrupts
	RISC-V core-local interrupt modes
	Interrupt handling with embOS for RISC-V
	Core-local interrupt handling
	Implementing core-local interrupt handlers in "C"
	Low-level interrupt service routine
	High-level interrupt service routines

	API functions for core-local interrupt handling
	OS_CLINT_ClearIntPending()
	OS_CLINT_DisableInt()
	OS_CLINT_EnableInt()
	OS_CLINT_GetIntPending()
	OS_CLINT_Init()
	OS_CLINT_InstallISR()
	OS_CLINT_SetIntPending()
	OS_CLINT_SetDirectMode()
	OS_CLINT_SetVectoredMode()

	Global interrupt handling using PLIC
	Implementing global interrupt handlers in "C"
	Low-level interrupt service routine
	High-level interrupt service routines

	API functions for using PLIC
	OS_PLIC_ClaimInt()
	OS_PLIC_CompleteInt()
	OS_PLIC_DisableInt()
	OS_PLIC_EnableInt()
	OS_PLIC_GetIntPriority()
	OS_PLIC_GetIntThreshold()
	OS_PLIC_Init()
	OS_PLIC_InstallISR()
	OS_PLIC_SetIntPriority()
	OS_PLIC_SetIntThreshold()

	Global interrupt handling using PIC
	Global interrupt sources
	Global interrupt priority
	Global interrupt polarity
	Implementing global interrupt handlers in "C"
	Low-level interrupt service routine
	High-level interrupt service routines

	API functions for using PIC
	OS_PIC_ClearIntPending()
	OS_PIC_DisableInt()
	OS_PIC_EnableInt()
	OS_PIC_GetIntPending()
	OS_PIC_GetIntPolarity()
	OS_PIC_Init()
	OS_PIC_Init_Ex()
	OS_PIC_InstallISR()
	OS_PIC_InstallISR_Ex()
	OS_PIC_SetIntPending()
	OS_PIC_SetIntPolarity()

	Core-local and global interrupt handling using ECLIC
	Interrupt levels and priorities
	API functions for using ECLIC
	OS_ECLIC_DisableInt()
	OS_ECLIC_EnableInt()
	OS_ECLIC_GetNumLevelBits()
	OS_ECLIC_GetIntPriority()
	OS_ECLIC_GetIntThreshold()
	OS_ECLIC_Init()
	OS_ECLIC_SetNumLevelBits()
	OS_ECLIC_SetIntPriority()
	OS_ECLIC_SetIntThreshold()

	Interrupt-stack switching

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

