
embOS
Real-Time Operating System

CPU & Compiler specifics
for ARM Aarch64 using GCC

Document: UM01073
Software Version: 5.10.0.0

Revision: 0
Date: June 5, 2020

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2020 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: June 5, 2020

Software Revision Date By Description

5.10.0.0 0 200605 MC First version.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

4

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

6

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..8

1.1 Installation ..9
1.2 First Steps .. 10
1.3 The example application OS_StartLEDBlink.c ... 11
1.4 Stepping through the sample application ...12

2 Build your own application ..16

2.1 Introduction ...17
2.2 Required files for an embOS ..17
2.3 Change library mode .. 17
2.4 Select another CPU .. 17

3 Libraries ...18

3.1 Naming conventions for prebuilt libraries .. 19

4 CPU and compiler specifics ..20

4.1 Thread-safe system libraries ..21
4.2 Reentrancy, thread local storage .. 22
4.3 Reentrancy, thread safe heap management ... 24

5 Stacks ... 25

5.1 Task stack ...26
5.2 System stack ...26
5.3 Stack specifics ... 26

6 Interrupts ... 27

6.1 What happens when an interrupt occurs? ..28
6.2 Defining interrupt handlers in C ...28
6.3 Interrupt handling with embOS ..29
6.4 Fast Interrupt (FIQ) ... 36

7 VFP and NEON support ... 37

7.1 Vector Floating Point and NEON support ..38

8 Technical data ...40

8.1 Memory requirements ...41

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

This chapter describes how to start with and use embOS. You should follow these steps to
become familiar with embOS.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 10.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

12 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen shot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can there fore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the 50 system tick delay.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

This chapter provides all information to set up your own embOS project.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

17 CHAPTER 2 Introduction

2.1 Introduction
To build your own application, you should always start with one of the supplied sample
workspaces and projects. Therefore, select an embOS workspace as described in chapter
First Steps on page 10 and modify the project to fit your needs. Using an embOS start
project as starting point has the advantage that all necessary files are included and all
settings for the project are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from subfolder Inc\.

This header file declares all embOS API functions and data types and has to be included
in any source file using embOS functions.

• RTOSInit*.c from one target specific BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt and optional communication for embOSView via UART or
JTAG.

• OS_Error.c from one target specific subfolder BoardSupport\<Manufacturer>\<MCU>.
The error handler is used if any debug library is used in your project.

• One embOS library from the subfolder Lib\.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should use an embOS debug library. For your final application you may
wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/ or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the BoardSupport\ folder.
To select a CPU which is already supported, just select the appropriate workspace from a
CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), OS_COM_Init(), the interrupt service routines for embOS system timer tick and com-
munication to embOSView and the low level initialization.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 3

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

19 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

libos<Architecture><ExecState><Endianness><Libmode>.a

Parameter Meaning Values

Architecture Specifies the ARM architecture A8 : Always ARMv8-A

ExecState Specifies the execution state A : Always Aarch64

Endianness Byte order
B : Big endian
L : Little endian

Libmode Specifies the library mode

XR : Extreme Release
R : Release
S : Stack check
SP : Stack check + profiling
D : Debug
DP : Debug + profiling + stack check
DT : Debug + profiling + Stack check

 + trace

Example

libosA8ALDP.a is the library for an ARMv8-A core, Aarch64 execution state, little endian
mode, with debug and profiling support.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

21 CHAPTER 4 Thread-safe system libraries

4.1 Thread-safe system libraries
embOS ARM64 GCC may be used with standard GNU system libraries for most of all projects
without any modification.

Heap management and file operation functions of standard system libraries are not reen-
trant and require a special initialization or additional modules when used with embOS, if
non-thread-safe functions are used from different tasks.

Alternatively, for heap management, embOS delivers its own thread-safe functions which
may be used. These functions are described in the embOS generic manual.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

22 CHAPTER 4 Reentrancy, thread local storage

4.2 Reentrancy, thread local storage
The GCC newlib supports usage of thread-local storage located in a _reent structure as
local variable for every task. Several library objects and functions need local variables which
have to be unique to a thread. Thread-local storage will be required when these functions
are called from multiple threads. embOS for GNU is prepared to support the thread-local
storage, but does not use it per default. This has the advantage of no additional overhead as
long as thread-local storage is not needed by the application or specific tasks. The embOS
implementation of thread-local storage allows activation of TLS separately for every task.
Only tasks that call functions using TLS need to activate the TLS by defining a local variable
and calling an initialization function when the task is started. The _reent structure is stored
on the task stack and have to be considered when the task stack size is defined. The
structure may contain up to 800 bytes.

Typical Library objects that need thread-local storage when used in multiple tasks are:
• error functions -- errno, strerror.
• locale functions -- localeconv, setlocale.
• time functions -- asctime, localtime, gmtime, mktime.
• multibyte functions -- mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions -- rand, srand.
• etc functions -- atexit, strtok.
• C++ exception engine.

4.2.1 OS_TASK_SetContextExtensionTLS()

Description

OS_TASK_SetContextExtensionTLS() may be called from a task which needs thread local
storage to initialize and use Thread-local storage.

Prototype

void OS_TASK_SetContextExtensionTLS(struct _reent* pReentStruct);

Parameters

Parameter Description

pReentStruct
Pointer to the thread local storage. It is the address of the variable of
type struct _reent which holds the thread local data.

Additional information

OS_TASK_SetContextExtensionTLS() shall be the first function called from a task when
TLS should be used in the specific task. The function must not be called multiple times from
one task. The thread-local storage has to be defined as local variable in the task.

After using this function, any further task context extensions cannot be added by calling
OS_TASK_SetContextExtension(), but can be added using OS_TASK_AddContextExten-
sion() instead.

Example

void Task(void) {
 struct _reent TaskReentStruct;

 OS_TASK_SetContextExtensionTLS(&TaskReentStruct);
 while (1) {
 ... /* Task functionality. */
 }
}

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

23 CHAPTER 4 Reentrancy, thread local storage

Please ensure sufficient task stack to hold the _reent structure variable.

For details on the _reent structure, _impure_ptr, and library functions which require pre-
cautions on reentrance, refer to the GNU documentation.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

24 CHAPTER 4 Reentrancy, thread safe heap management

4.3 Reentrancy, thread safe heap management
The heap management functions in the system libraries are not thread-safe without im-
plementation of additional locking functions. The GCC library calls two hook functions to
lock and unlock the mutual access of the heap-management functions. The empty locking
functions from the system library may be overwritten by the application to implement a
locking mechanism.

A locking is required when multiple tasks access the heap, or when objects are created
dynamically on the heap by multiple tasks. The locking functions are implemented in the
source module OS_MallocLock.c which is included in the “Setup” subfolder in every embOS
start project. If thread safe heap management is required, the module has to be compiled
and linked with the application.

4.3.1 __malloc_lock(), lock the heap against mutual access
__malloc_lock() is the locking function which is called by the system library whenever the
heap management has to be locked against mutual access. The implementation delivered
with embOS claims a resource semaphore.

4.3.2 __malloc_unlock()
__malloc_unlock() is the is the counterpart to __malloc_lock(). It is called by the sys-
tem library whenever the heap management locking can be released. The implementation
delivered with embOS releases the resource semaphore.

None of these functions has to be called directly by the application. They are called from
the system library functions when required. The functions are delivered in source form to
allow replacement of the dummy functions in the system library.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 5

Stacks

This chapter describes how embOS uses the different stacks of the ARM CPU.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

26 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack size required for a task is the sum of the stack size
of all routines, plus a basic stack size, plus any size used by exceptions. The basic stack
size is the size of memory required to store the CPU registers.

The minimum basic task stack size is about 288 bytes. Because any function call uses some
amount of stack and every exception also pushes at least 256 bytes onto the current stack,
the task stack size has to be large enough to handle these, too. We recommend at least
640 bytes stack as a start.

5.2 System stack
embOS executes in exception level 3 and uses __el3_stack as system stack. The minimum
system stack size required by embOS is about 512 bytes (stack check & profiling build).
However, since the system stack is also used by the application before the start of multi-
tasking (the call to OS_Start()), and because software timers and exceptions also use the
system stack, the actual stack requirements depend on the application.

The size of the system stack can be changed by modifying the stack size define in your
linker file. We recommend a minimum stack size of 768 bytes for the __el3_stack.

5.3 Stack specifics
The system stack has to be declared in the linker script file:
• __el3_stack is the EL3 system stack.

The __el3_stack is used during startup, during main() and OS_Idle(), as well as embOS
internal functions. Tasks are executed in exception level 3 as well, but they do not use
the __el3_stack. Tasks utilize a dedicated stack instead, which typically is defined in the
application as a variable in any RAM location.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

28 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an IRQ.
• As soon as the IRQs in PSTATE are enabled, the interrupt is executed.
• The CPU saves PC and PSTATE into the registers ELR_EL3 and SPSR_EL3. IRQ, FIQ, as

well as SError exceptions are disabled in PSTATE.
• The CPU jumps to VBAR_EL3 + 0x280 (i.e. offset 0x280 in the vector table, which is

implemented in RTOSVect.S), thus fetches the embOS_IRQHandler() and executes it.
• embOS_IRQHandler(): save core registers.
• embOS_IRQHandler(): save ELR_EL3 and SPSR_EL3.
• embOS_IRQHandler(): call OS_irq_handler() (implemented in RTOSInit_*.c).
• OS_irq_handler(): inform embOS that interrupt code is running by a call to

OS_INT_Enter().
• OS_irq_handler(): check for interrupt source and execute appropriate ISR.
• OS_irq_handler(): inform embOS that interrupt handling ended by a call to

OS_INT_Leave().
• OS_irq_handler(): return to embOS_IRQHandler().
• embOS_IRQHandler(): restore core registers.
• Return from interrupt, which restores PC from ELR_EL3 and PSTATE from SPSR_EL3 (re-

enabling IRQ, FIQ, as well as SError if appropriate).

Please ensure that embOS_IRQHandler() is called for IRQs and embOS_IRQHandler() for
synchronous exceptions (each on exception level 3 using the current stack pointer).

6.2 Defining interrupt handlers in C
The low-level interrupt handler embOS_IRQHandler calls the high-level interrupt handler
OS_irq_handler() in RTOSInit*.c. That handler first calls OS_INT_Enter() to inform em-
bOS that interrupt code is running and, subsequently, examines the source of the interrupt
in order to call an appropriate, user-defined interrupt handler function.

These handler functions must be implemented as regular C-functions which do not take
parameters and do not return any value. Depending on the interrupting source, it may
also be required to reset the interrupt pending condition of any related peripheral in these
handler functions.

After returning from the appropriate interrupt handler function, the high-level interrupt
handler OS_irq_handler() in RTOSInit*.c calls OS_INT_Leave() and returns to the low-
level interrupt handler embOS_IRQHandler().

Example

A simple, user-defined interrupt handler function could therefore be implemented as fol-
lows:

void Timer_irq_func(void) {
 if (__INTPND & 0x0800) { // Interrupt pending ?
 __INTPND = 0x0800; // reset pending condition
 DoSomething(); // handle interrupt
 }
}

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

29 CHAPTER 6 Interrupt handling with embOS

6.3 Interrupt handling with embOS
To handle interrupts with vectored interrupt controller, embOS offers the following func-
tions.

Function Description

OS_ARM_InstallISRHandler() Installs an interrupt handler
OS_ARM_EnableISR() Enables a specific interrupt
OS_ARM_DisableISR() Disables a specific interrupt
OS_ARM_ISRSetPrio() Sets the priority of a specific interrupt
OS_ARM_ClearPendingFlag() Clears an interrupt pending flag
OS_ARM_IsPending() Checks if an interrupt is pending

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

30 CHAPTER 6 Interrupt handling with embOS

6.3.1 OS_ARM_InstallISRHandler()

Description

OS_ARM_InstallISRHandler() is used to install a specific interrupt handler.

Prototype

OS_ISR_HANDLER* OS_ARM_InstallISRHandler(int ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Parameters

Parameter Description

ISRIndex Index of the interrupt source.
pISRHandler Address of the interrupt handler function.

Return Value

OS_ISR_HANDLER*: The address of the interrupt handler that was previously installed at the
addressed interrupt source.

Additional Information

This function just installs the interrupt handler, but neither modifies the priority nor auto-
matically enables the interrupt.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

31 CHAPTER 6 Interrupt handling with embOS

6.3.2 OS_ARM_EnableISR()

Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt source.

Prototype

void OS_ARM_EnableISR(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be enabled.

Additional Information

This function just enables the interrupt inside the interrupt controller. It does not enable
the interrupt in any peripheral.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

32 CHAPTER 6 Interrupt handling with embOS

6.3.3 OS_ARM_DisableISR()

Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt source.

Prototype

void OS_ARM_DisableISR(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be disabled.

Additional Information

This function just disables the interrupt controller. It does not disable the interrupt of any
peripherals. This has to be done elsewhere.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

33 CHAPTER 6 Interrupt handling with embOS

6.3.4 OS_ARM_ISRSetPrio()

Description

OS_ARM_ISRSetPrio() is used to set or modify the priority of a specific interrupt source by
programming the interrupt controller.

Prototype

int OS_ARM_ISRSetPrio(int ISRIndex,
 int Prio);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Return Value

Previously assigned priority for the addressed interrupt source.

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt con-
troller. Refer to CPU-specific manuals about allowed priority levels.

Example

// Install UART interrupt handler
OS_ARM_InstallISRHandler(UART_ID, &COM_ISR); // UART interrupt vector
OS_ARM_ISRSetPrio(UART_ID, UART_PRIO); // UART interrupt priotity
OS_ARM_EnableISR(UART_ID); // Enable UART interrupt

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

34 CHAPTER 6 Interrupt handling with embOS

6.3.5 OS_ARM_ClearPendingFlag()

Description

OS_ARM_ClearPendingFlag() is used to clear an interrupt pending flag

Prototype

void OS_ARM_ClearPendingFlag(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be cleared

Additional Information

This function just clears the interrupt pending flag inside the interrupt controller. It does
not clear the interrupt pending flag in any peripheral.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

35 CHAPTER 6 Interrupt handling with embOS

6.3.6 OS_ARM_IsPending()

Description

OS_ARM_IsPending() is used to check if an interrupt is pending

Prototype

unsigned int OS_ARM_IsPending(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be checked

Return value

= 0 Interrupt is not pending.
=! 0 Interrupt is pending.

Additional Information

This function just checks the interrupt pending flag inside the interrupt controller. It does
not check the interrupt pending flag in any peripheral.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

36 CHAPTER 6 Fast Interrupt (FIQ)

6.4 Fast Interrupt (FIQ)
FIQ cannot be used with embOS functions, but is reserved for high speed user functions.

Note the following:
• FIQ is never disabled by embOS.
• Never call any embOS function from an FIQ handler.
• Do not assign any embOS interrupt handler to FIQ.

Note

When you decide to use FIQ, ensure that an interrupt vector for FIQ handling is in-
cluded in your application.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 7

VFP and NEON support

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

38 CHAPTER 7 Vector Floating Point and NEON support

7.1 Vector Floating Point and NEON support
Some ARM MCUs come with integrated vectored floating point unit VFP and NEON unit.
When activating the VFP or NEON support in the project options, the compiler and linker
will add efficient code which uses the VFP when floating point operations are used or NEON
instructions where possible in the application.

With embOS, the VFP and NEON registers have to be saved and restored when task switch-
es are performed. For efficiency reasons, embOS does not save and restore the VFP and
NEON registers for every task automatically. The context switching time and stack load are
therefore not affected when the VFP/NEON unit is not used or needed. Saving and restoring
the VFP/NEON registers can be enabled for every task individually by extending the task
context of the tasks, where VFP or NEON is used.

7.1.1 OS_TASK_SetContextExtensionVFP()

Description

OS_TASK_SetContextExtensionVFP() has to be called as first function in a task, when the
VFP is used in the task and the VFP regsisters have to be added to the task context.

Prototype

void OS_TASK_SetContextExtensionVFP(void);

Additional information

OS_TASK_SetContextExtensionVFP() extends the task context to save and restore the VFP
registers during context switches. There is no need to extend the task context for every
task. Only those tasks using the VFP for calculation have to be extended.

After using this function, any further task context extensions cannot be added by calling
OS_TASK_SetContextExtension(), but can be added using OS_TASK_AddContextExten-
sion() instead.

7.1.2 OS_TASK_SetContextExtensionNEON()

Description

OS_TASK_SetContextExtensionNEON() has to be called as first function in a task, when the
NEON unit is used in the task and the NEON regsisters have to be added to the task context.

Prototype

void OS_TASK_SetContextExtensionNEON(void);

Additional information

OS_TASK_SetContextExtensionNEON() extends the task context to save and restore the
NEON registers during context switches. There is no need to extend the task context for
every task. Only those tasks using the NEON for calculation have to be extended.

After using this function, any further task context extensions cannot be added by calling
OS_TASK_SetContextExtension(), but can be added using OS_TASK_AddContextExten-
sion() instead.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

39 CHAPTER 7 Vector Floating Point and NEON support

7.1.3 Using VFP/NEON in interrupt service routines
Using the VFP/NEON in interrupt service routines requires additional functions to save and
restore the VFP/NEON registers.

As the compiler might not add additional code to save and restore the VFP/NEON registers
on entry and exit of interrupt service routines, it is the users responsibility to save the VFP/
NEON registers on entry of an interrupt service routine when the VFP or NEON is used in
the ISR.

embOS delivers functions to save and restore the VFP or NEON context in an interrupt
service routine.

7.1.3.1 OS_VFP_Save() / OS_NEON_Save()

Description

OS_VFP_Save() / OS_NEON_Save() has to be called as first function in an interrupt service
routine, when the VFP/NEON is used in the interrupt service routine. The function saves
the VFP/NEON registers on the stack.

Prototype

void OS_VFP_Save (void);

void OS_NEON_Save(void);

Additional information

OS_VFP_Save() / OS_NEON_Save() declares a local variable which reserves space for all
temporary floating point registers and stores the registers in the variable. After calling the
OS_VFP_Save()/OS_NEON_Save() function, the interrupt service routine may use the VFP or
NEON unit for calculation without destroying the saved content of the VFP/NEON registers.

To restore the registers, the ISR has to call OS_VFP_Restore()/OS_NEON_Restore() at the
end.

The function may be used in any ISR regardless the priority. It is not restricted to low
priority interrupt functions.

7.1.3.2 OS_VFP_Restore() / OS_NEON_Restore()

Description

OS_VFP_Restore() / OS_NEON_Restore() has to be called as last function in an interrupt
service routine, when the VFP/NEON registers were saved by a call of OS_VFP_Save()/
OS_NEON_Save() at the beginning of the ISR. The function restores the VFP/NEON registers
from the stack.

Prototype

void OS_VFP_Restore (void);

void OS_NEON_Restore(void);

Additional information

OS_VFP_Restore() / OS_NEON_Restore() restores the temporary VFP registers which were
saved by a previous call of OS_VFP_Save() / OS_NEON_Restore(). It has to be used together
with OS_VFP_Save() / OS_NEON_Restore() and should be the last function called in the ISR.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

Chapter 8

Technical data

This chapter lists technical data of embOS used with ARM CPUs.

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

41 CHAPTER 8 Memory requirements

8.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of the
memory requirements. They vary depending on the current version of embOS. The mini-
mum ROM requirement for the kernel itself is about 2.500 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 48
Software timer 32
Mutex 32
Semaphore 16
Mailbox 32
Queue 40
Task event 0
Event object 24

embOS for ARM Aarch64 and GCC © 2020 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Thread-safe system libraries
	Reentrancy, thread local storage
	OS_TASK_SetContextExtensionTLS()

	Reentrancy, thread safe heap management
	__malloc_lock(), lock the heap against mutual access
	__malloc_unlock()

	Stacks
	Task stack
	System stack
	Stack specifics

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt handling with embOS
	OS_ARM_InstallISRHandler()
	OS_ARM_EnableISR()
	OS_ARM_DisableISR()
	OS_ARM_ISRSetPrio()
	OS_ARM_ClearPendingFlag()
	OS_ARM_IsPending()

	Fast Interrupt (FIQ)

	VFP and NEON support
	Vector Floating Point and NEON support
	OS_TASK_SetContextExtensionVFP()
	OS_TASK_SetContextExtensionNEON()
	Using VFP/NEON in interrupt service routines
	OS_VFP_Save() / OS_NEON_Save()
	OS_VFP_Restore() / OS_NEON_Restore()

	Technical data
	Memory requirements

