
embOS
Real-Time Operating System

CPU & Compiler specifics for
S12Z using S12lisa compiler

Document: UM01071
Software Version: 5.02a

Revision: 0
Date: August 21, 2018

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2018 SEGGER Microcontroller GmbH, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

In den Weiden 11
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
E-mail: support@segger.com
Internet: www.segger.com

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: August 21, 2018

Software Revision Date By Description

5.02a 0 180821 TS Initial version.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

4

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

6

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..8

1.1 Installation ..9
1.2 First Steps .. 10
1.3 The example application OS_StartLEDBlink.c ... 11
1.4 Stepping through the sample application ...12

2 Build your own application ..15

2.1 Introduction ...16
2.2 Required files for an embOS ..16
2.3 Change library mode .. 16
2.4 Select another CPU .. 16

3 Libraries ...17

3.1 Naming conventions for prebuilt libraries .. 18

4 CPU and compiler specifics ..19

4.1 Standard system libraries ..20

5 Stacks ... 21

5.1 Task stack ...22
5.2 System stack ...22
5.3 Interrupt stack .. 22

6 Interrupts ... 23

6.1 What happens when an interrupt occurs? ..24
6.2 Defining interrupt handlers in C ...24
6.3 Interrupt vector table ... 24
6.4 Interrupt-stack switching .. 24
6.5 Zero latency interrupts ... 24

6.5.1 OS_INT_SetPriorityThreshold() ..24

7 Technical data ...26

7.1 Memory requirements ...27

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

This chapter describes how to start with and use embOS. You should follow these steps to
become familiar with embOS.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find a lot of prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 10.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

12 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen shot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can there fore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the 50 system tick delay.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

This chapter provides all information to set up your own embOS project.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

16 CHAPTER 2 Introduction

2.1 Introduction
To build your own application, you should always start with one of the supplied sample
workspaces and projects. Therefore, select an embOS workspace as described in chapter
First Steps on page 10 and modify the project to fit your needs. Using an embOS start
project as starting point has the advantage that all necessary files are included and all
settings for the project are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from subfolder Inc\.

This header file declares all embOS API functions and data types and has to be included
in any source file using embOS functions.

• RTOSInit*.c from one target specific BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt and optional communication for embOSView via UART or
JTAG.

• OS_Error.c from one target specific subfolder BoardSupport\<Manufacturer>\<MCU>.
The error handler is used if any debug library is used in your project.

• One embOS library from the subfolder Lib\.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should use an embOS debug library. For your final application you may
wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/ or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the BoardSupport\ folder.
To select a CPU which is already supported, just select the appropriate workspace from a
CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), OS_COM_Init(), the interrupt service routines for embOS system timer tick and com-
munication to embOSView and the low level initialization.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 3

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

18 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

os<Core><MemModel>_<Libmode>.lib

Parameter Meaning Values

Core Specifies the core s12z: S12Z core

MemModel Memory Model
s : small
m : medium
l : large

Libmode Specifies the library mode

XR : Extreme Release
R : Release
S : Stack check
SP : Stack check + profiling
D : Debug
DP : Debug + profiling + stack check
DT : Debug + profiling + stack check
+ trace

Example

oss12zl_DP.lib is the library for a project using S12Z core, large memory model with
debug and profiling support.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

20 CHAPTER 4 Standard system libraries

4.1 Standard system libraries
embOS for S12Z and S12lisa compiler may be used with standard system libraries for most
of all projects. Heap management and file operation functions of standard system libraries
are not reentrant and can therefore not be used with embOS, if non thread safe functions
are used from different tasks. For heap management, embOS delivers its own thread safe
functions which may be used. These functions are described in embOS CPU independent
manual.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 5

Stacks

This chapter describes how embOS uses the different stacks of the S12Z CPU.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

22 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For the S12Z core, the minimum basic task stack size is about 64 bytes. Because any
function call uses some amount of stack and every exception also pushes some bytes onto
the current stack, the task stack size has to be large enough to handle exceptions too. We
recommend at least 256 bytes stack as a start.

5.2 System stack
The minimum system stack size required by embOS is about 128 bytes (stack check & pro-
filing build). However, since the system stack is also used by the application before the start
of multitasking (the call to OS_Start()), and because software-timers and interrupt han-
dlers also use the system-stack, the actual stack requirements depend on the application.
The size of the system stack can be changed by modifying the STACKSIZE define in your
*.prm linker file. We recommend a minimum stack size of 256 bytes for the system stack.

5.3 Interrupt stack
The S12Z core has no separate interrupt stack pointer. Interrupts are executed on the
current stack which could be task stack or system stack.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

24 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request form the interrupt controller.
• As soon as the interrupts are enabled, the interrupt is accepted and executed.
• The CPU pushes temporary registers and the return address onto the current stack.
• The CPU jumps to the vector address from the vector table
• The interrupt handler is processed.
• The interrupt handler ends with a return from interrupt
• The CPU restores the temporary registers and return address from the stack and

continues the interrupted function.

6.2 Defining interrupt handlers in C
Interrupt handlers for S12Z core are written as normal C-functions which do not take pa-
rameters and do not return any value. Interrupt handler which call an embOS function need
a prolog and epilog function as described in the generic manual and in the examples below.

Example

Simple interrupt routine:

static interrupt void SysTick_Handler(void) {
 OS_INT_Enter(); // Inform embOS that interrupt code is running
 OS_TICK_Handle();
 OS_INT_Leave(); // Inform embOS that interrupt handler is left
}

6.3 Interrupt vector table
The interrupt vector table is located in a C source file. All interrupt handler function ad-
dresses have to be inserted in the vector table.

6.4 Interrupt-stack switching
Interrupt stack switching is currently not supported. Interrupts run on the current stack
which could be the CSTACK or a task stack.

6.5 Zero latency interrupts
Zero interrupt latency is supported with embOS for S12Z. Instead of disabling interrupts
when embOS does atomic operations, the interrupt level of the CPU is set to 4. Therefore all
interrupt priorities higher than 4 can still be processed. You must not execute any embOS
function from within a zero latency interrupt function.

6.5.1 OS_INT_SetPriorityThreshold()
The interrupt priority limit for fast interrupts is set to 4 by default. This means, all interrupts
with higher priority from 4 up to the maximum CPU specific priority will never be disabled by
embOS. Description OS_INT_SetPriorityThreshold() is used to set the interrupt priority
limit between zero latency interrupts and lower priority embOS interrupts.

Prototype

void OS_INT_SetPriorityThreshold(unsigned int Priority)

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

25 CHAPTER 6 Zero latency interrupts

Parameter

Parameter Description

Priority

The highest value useable as priority for embOS interrupts. All inter-
rupts with higher priority are never disabled by embOS.
Valid range:
1 ≤ Priority ≤ 7

Additional information

To disable zero latency interrupts at all, the priority limit may be set to the highest inter-
rupt priority supported by the CPU, which is 7. To modify the default priority limit, OS_IN-
T_SetPriorityThreshold() should be called before embOS was started. In the default
projects, OS_INT_SetPriorityThreshold() is not called. The start projects use the default
zero latency interrupt priority limit. Any interrupts running above the zero latency interrupt
priority limit must not call any embOS function.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

Chapter 7

Technical data

This chapter lists technical data of embOS used with S12Z CPUs.

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

27 CHAPTER 7 Memory requirements

7.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of the
memory requirements. They vary depending on the current version of embOS. The mini-
mum ROM requirement for the kernel itself is about 1.700 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 16
Software timer 11
Mutex 10
Semaphore 5
Mailbox 15
Queue 17
Task event 0
Event object 6

embOS for S12Z and S12lisa compiler © 2010-2018 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Standard system libraries

	Stacks
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt vector table
	Interrupt-stack switching
	Zero latency interrupts
	OS_INT_SetPriorityThreshold()

	Technical data
	Memory requirements

