embOS

Real-Time Operating System

CPU & Compiler specifics for RL78 using
Renesas CCRL compiler and e2 studio

Document: UM01069
Software Version: 4.32
Revision: 0
Date: March 3, 2017

Vi
SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com



http://www.segger.com/embOS.html
http://www.segger.com
http://www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed
to be entirely free of error. The information in this manual is subject to change for func-
tional or performance improvements without notice. Please make sure your manual is the
latest edition. While the information herein is assumed to be accurate, SEGGER Microcon-
troller GmbH & Co. KG (SEGGER) assumes no responsibility for any errors or omissions.
SEGGER makes and you receive no warranties or conditions, express, implied, statutory
or in any communication with you. SEGGER specifically disclaims any implied warranty of
merchantability or fithess for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of SEGGER. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2017 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective
holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
E-mail: support @egger.com

Internet: www. segger.com

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: March 3, 2017

Software | Revision | Date By Description

4.32 0 170303 MC Initial version

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0-13-1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

User | nput

Text entered at the keyboard by a user in a session transcript.

Secret | nput

Text entered at the keyboard by a user, but not echoed (e.g.
password entry), in a session transcript.

Reference

Reference to chapters, sections, tables and figures or other doc-
uments.

Emphasis

Very important sections.

embOS for RL78 and CCRL

© 2017 SEGGER Microcontroller GmbH & Co. KG



embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



Table of contents

1 USING €MDOS oo e 8
1.1 INStallation v e 9
1.2 Using ReNESAs €2 STUAIO .iuviiiiiiiiiiiii i e e 10
B T =3 A = 1= 12
1.4 The example application OS_StartLEDBIINK.C ....coiviiiiiiiiiiiii e 13
1.5 Stepping through the sample application ... e 14
2 Build your own appliCatiON .........eeeeeeiiiiee e e et e e e e e e e e e s 19
2.1 INErOdUCHION i e 20
2.2 Required files for an embOS ... s 20
2.3 Change library MO ..ot e 20
2.4 Select another CPU ... e e e e 20
G T 1 o] = V=S R 21
3.1 Naming conventions for prebuilt ibrari@s ......cccooiiiiiiiiiiii e 22
3.2 List of available lIbraries .......cooiiiiiiii i s 22
4  CPU and compiler SPECITICS ......couiiiiiiiiiiiiiiii et 25
T O = U [ Yo 1= 26
A ©o ] o= o) o [e i = 26
LT [ (=T € 0 0] £ U 27
5.1 What happens when an interrupt OCCUIS? ..oiiiiiiiiiiii i i i i i e i as 28
5.2 Defining interrupt handlers in C ..o e 28
L TC R g <] o g U] 0] R = ol P 29
5.4 Interrupt-stack SWItChING ..cociiiiiiii e 29
5.5  Zero latenCy INTEITUPES .uiiiiiiiiiii i i i e e e et 30
5.6 0OS_SetFastIntPriorifyLimit() ...ovviriiiiiiii i e 30
] = 1] SR PTRUPPRN 31
6.1 Task stack for RENESAS RL78 ..iuiiiiiiiiiiii i e e eaeans 32
6.2 System and Interrupt stack for Renesas RL78 .....cooiiiiiiiiiiiiiiiii e 32
A W =Tod oL g1 To= I o = - PR 33
/2% N\ =T o g Vo VA o <Ta [ U T =T =] ] = 34

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



Chapter 1
Using embQOS

This chapter describes how to start with and use embOS. You should follow these steps to
become familiar with embOS.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



1.1

Installation

embOS is shipped as a zip-file in electronic form.
To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find a lot of prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 12.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embQOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



CHAPTER 1 Using Renesas e2 studio

1.2 Using Renesas e2 studio

The start projects are based on e2 studio and include the necessary project files for Renesas
e2studio.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example C. \ enb0S

Copy the whole folder St art which is part of your embQOS distribution into your work
directory.

Start Renesas e2studio and select and create a workspace.

Import the sample start project into the workspace.

Build the start project

Run the application using e2studio HardwareDebug configuration using the E1 emulator
for downloading and debugging.

Start Renesas e2studio and in the Workspace Launcher click Br owse...to select the work-
space. If the Workspace Launcher is not shown on startup, select it by menu File ->
Swi tch Wor kspace.

Select the workspace directory c: \ wor kspace or any other folder of your choice:

ﬁ Workspace Launcher

Select a workspace

e2 studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: ers\Michaelworkspace\e2studio j Browse... |
[~ Use this as the default and do not ask again
Ok I Cancel |

The workspace will then be created in the selected folder.

Now import the sample start project from one board support folder. Choose menu File ->
I mport and in the I mport dialog select General -> Existing Projects into Wrkspace.

S Import =]
Select
s
Create new projects from an archive file or directory. ? - 5

Select an import source:

|:.'je filter text

(= General

----- ,@ Archive File

----- [ cmsIs Pack

""" & Convert CCRX to GNURX Project

""" & D5-5 KPIT GNUARM-RZ/NONE Project
----- TP Existing Projects into Workspace
----- L} File System

----- 4F HEW Froject

""" & Import KPTT GNUARM Project to GCC ARM Embedded

----- E Preferences

----- =% Rename & Import Existing CfC++ Project into Workspace
----- & Renesas CATSKOR Project

""" & Renesas Common Project File

|»

= CfC++ =
(= Code Generator
(= Instal
[#-= RunMehun LI
=
':Z) = Back I Mext > I Einish Cancel

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



11

Press Next , the I mport Proj ects dialog shows up.
Press Br owse...and select St art\ Boar dSupport\ or any project subfolder as the root direc-
tory for the project to import:

ﬁ Import !E

Import Projects
Select a directory to search for existing Edipse projects.

" Select root directory: I o \Work\embOS\embOS5_RL75_CCRL\CPU '\Start'n,Board5upp0rt'|,Renesas'\YRPBRLj
™~ Select archive file: I j Browse, ., |
Projects:

----- Start_RL78 (c:\WorkembOS \embOS5_RL78_CCRL\CPU\Start\BoardSupport\Renesas\YRPBRL78G 13) Select all |

Deselect all |
Refresh |

 Options
[™ search for nested projects

™ Copy projects into workspace

[™ Hide projects that already exist in the workspace

—Working sets
[T Add project to working sets

‘Warking sets: ﬂ Select. .. |

® < Back | [t = | Einish | Cancel |

Do not select the Copy projects into workspace option.

Refresh the project and build it:

S C/C++ - start_RL78/Application/05_StartLEDBlink.c - €2 studio M= E3
File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
: : T : e : : o
mi |®'Q'@.ﬂlv:h:m:cﬁ:é?:%j:@'ﬁﬁ'i'@':#'0'%':@9': Ef
: - - 4=t - |C_-‘.:< Access | i=ig ||%cfc++ % Debug
[ Project Explorer 53 = 8 & Console &3 EURETS <_E|>| LA BA _-Ex| mE--=0 E
<& = |CDT Build Console [Start_RL78]
E =D """""""""""" o ;I E
=5 Start RL78
) Includes 'Invoking: Converter’
= Application rlink  -form=stype "Start_RL78.abs" -output="Start_RL75.mot" -nomessage=1014 -NOMessage
& Setup Renesas Optimizing Linker W2.86.88 [82 Nov 2816]
Uebug Copyright (C) 2811, 2816 Renesas Electronics Corporation
makefile.init
ReadMe. txt . . .
sade make --no-print-directory post-build
C:\Tocl\C\Renesas\E2_STU~2\DEBUGC~1\RENESA~L.EXE Start_RL78.abs Start_RL78.x
Loading input file Start_RL78.abs
Parsing the ELF input file.....
15 segments required LMA fixes
Converting the DWARF information....
Constructing the ocutput ELF image....
Saving the ELF ocutput file Start_RL78.x
'Build complete.’
14:25:42 Build Finished. @ errors, @ warnings. (tock 6s.256ms)
-
<I I 3

For latest information you may read the ReadMe. t xt file which is part of every start project.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



12

1.3 First Steps

CHAPTER 1 First Steps

After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder St art . It is a good idea to use one of them as a starting point for
all of your applications. The subfolder Boar dSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from Boar dSupport subfolder:

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c: \ wor k.
Copy the whole folder St art which is part of your embQOS distribution into your work

directory.

Clear the read-only attribute of all files in the new St art folder.
Open one sample workspace/project in
St ar t\ Boar dSuppor t\ <Devi ceManuf act or >\ <CPU> with your IDE (for example, by

double clicking it).

e Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

%4 C/C++ - Start_RL78/Application/0S_StartLEDBlink.c - €2 studio =] E3

File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help

i - Q- Wu @ EH /O g -&-C-G-it-0-Q@-® -

P RO

[’ Project Explorer 3

-5 start RLTB

=

&

]

-

|'.‘_‘ ck Access i=ig ||@cfc++ % Debug

& console &1 4 @,?:A H &H '.Ex| mE--=0 E
CDT Build Console [Start_RL78] ]
° A

'Invoking: Converter’
rlink  -form=stype "Start_RL78.abs" -output="Start_RL75.mot" -nomessage=1014 -NOMessage

Renesas Optimizing Linker W2.86.8@ [82 Nov 2816]
Copyright (C) 2811, 2816 Renesas Electronics Corporation

make --no-print-directory post-build

C:\Tocl\C\Renesas\E2_STU~2\DEBUGC~1\RENESA~L.EXE Start_RL78.abs Start_RL78.x
Loading input file Start_RL78.abs

Parsing the ELF input file.....

15 segments required LMA fixes

Converting the DWARF information....

Constructing the ocutput ELF image....

Saving the ELF ocutput file Start_RL78.x

'Build complete.’

14:25:42 Build Finished. @ errors, @ warnings. (tock 6s.256ms)

<| I 3

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if

required.

embOS for RL78 and CCRL

© 2017 SEGGER Microcontroller GmbH & Co. KG



13

1.4 The example application OS_StartLEDBIink.c

The following is a printout of the example application OS_St art LEDBI i nk. c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/*********************************************************************

* SEGGER M crocontroller GrbH & Co. KG *
* The Enbedded Experts *
IR RS RS S S S S EEEE SRS S S S S SRR SRR SR EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
File . OS_StartLEDBIi nk.c

Pur pose : enbCS sanpl e programrunning two sinple tasks, each toggling
a LED of the target hardware (as configured in BSP.c).
--------- END- OF- HEADER - - - - - - - - - - oo o e oo o e e e oo

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS _TASK TCBHP, TCBLP; /* Task-control - bl ocks */

static void HPTask(void) {
while (1) {
BSP_Toggl eLED( 0) ;
CS_Del ay (50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED( 1) ;
CS_Del ay (200);
}
}

/*********************************************************************

*

* mai n()

*/

int main(void) {
CS_ I nitKern(); /* Initialize OS */
OS I nitHW); /* Initialize Hardware for OS */
BSP_Init(); /* Initialize LED ports */

/* You need to create at |east one task before calling OS Start() */
OS_CREATETASK( &TCBHP, "HP Task", HPTask, 100, StackHP);
OS_CREATETASK( &TCBLP, "LP Task", LPTask, 50, StackLP);

CS Start(); /* Start multitasking */
return O;

}

/****** End d Flle *************************************************/

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



14 CHAPTER 1 Stepping through the sample application

1.5 Stepping through the sample application

When starting the debugger, you will see the mai n() function (see example screen shot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program. OS_| ncDI () initially
disables interrupts.

OS_InitKern() is part of the embOS library and written in assembler; you can there fore
only step into it in disassembly mode. It initializes the relevant OS variables. Because of the
previous call of GS_| ncDl (), interrupts are not enabled during execution of GS_I ni t Kern() .

OS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

0s_Start () should be the last line in mai n() , because it starts multitasking and does not

return.
S Debug - Start_RL78/Application/05_StartLEDBlink.c - €2 studio M= E3
File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
LSS REIND BN e RS G20 0% i®
K K =1 E 11 | HEclc++ % Debug
[ o5_startLEDBlink.c &3 = g Iy ProjectE... 82 = O
44 static void HPTask(void) { &l =% -
45 while (1} { E-15 Start_RLTS
46 BBBE2082 BSP_ToggleLED(@); Bl Includes
47 BRBE2086 05_Delay(5@); G Applcation
P ) b (- [£] O5_StartLEDBlink.
5@ c
51 static void LPTask(void) {
52 while (1) {
53 bBeB2BEe BSP_TogglelLED(1);
54 @REE20892 05_Delay(208);
55 }
}
@* main()[]
Beea289a int main(void) {
e8a289b 0S_InitKern(); /* Initialize 0S */
BEEBE2680e 05_InitHW(); /* Initialize Hardware for 05 * 5 @ i - =| vssver.scc
eGeeaz2eal BSP_Init(); /* Initialize LED ports B Setup
/* You need to create at least one task before calling 05_Start() */ B-{#£ Debug
! Beealead 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP); make;ile init
BeBE2eca 05_CREATETASK(&TCBLP, "LP Task”, LPTask, 5@, StackltP); | D p '
eeea2ede 05_start(); /* Start multitasking ReadMe. bt
peRa26T3 return 8;
eeeazets ¥
* End OFf File / L
-
i T 20

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



15

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown
below.

S Debug - Start_RL78/Application/05_StartLEDBlink.c - €2 studio M= E3
File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
- - QR - Waivne /8823 B G EHZ06-0-%® 5] 4
g E e . Quick Access i=ig | g cjc++ % Debug
[ os_startLEDBlink.c &3 = O outine [ ProjectE... 22 = B
3: _ Ty o o = oo 1o o ;I B Q:D -
38 #:inl:]l.lde ::RTOSJ:" E-=5 start_RL78 [Debug]
12 #include "BSP.h lﬂ] Indudes
11 static 05 STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */ E(& Application _
2 static 05 _TASK TCBHP, TCBLP; /* Task-control-blocks */ - |£] 0S_StartLEDBink.c
a3 [ 05_EventObject.c
xS — static void HPTask(void) { & 05_ExtendedTask.c
45 =  while (1) { & 05_ExtendTaskContext.c
LD46 Be2s2882 B5P_ToggleLED(®); @ 05_MeasureCPU_Performance
-1-n 20082036 0s_Delay(s®); [ 05_MeasureCST_HRTimer_em
i; 1 O I A R @ Q5_MeasureCST_HRTimer_Pril
T Y | I A S @ 05_MeasureCST_Scope.c
51 - static void LPTask(veid) { 0 [#] 05_queve.c
= while {2 { & 0s_startzTasks.c
3 eeee2ese BSP_TogglelLED(1); - [ 05_StartZTasksEx.c
28002092 05_Delay(20@); - |Z] wssver.scc
b (= Setup
3 []---I’Z§ Debug
@ * main()[ | :akz:l:e.:(l:
@eee209a - int main(void) { cadtle.
ae08209b 0S_InitKern(); Initialize 0S */

ae08209e 05_InitHW(); Initialize Hardware for 05

ae0820al BSP_Init(); /* Initialize LED ports
/* You need to create at least one task before calling 05_Start() */
7 eode2Ba’ 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP); hd
;I i | 20
| Read-Only | Smart Insert | 63:4

As OS _Start () is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS _Start (), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

S Debug - Start_RL78/Application/05_StartLEDBlink.c - €2 studio M= E3
File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
- & -] - W N M3k I B30 6-0-%-®5-]4
SRR R == E Quick Access i=ig | g cjc++ % Debug
[ os_startLEDBlink.c &3 = 0 Outline Project... 64 Expres... 52 = B
#include "RTOS.h" &l =R Rlcict| e -
#include "BSP.h" Expression | Type | value
. . . ()= 05_Global Time volatlelong 0
static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks b add new e .
static 05 _TASK TCBHP, TCBLP: /* Task-control-blocks HPrESSe
— static void HPTask(void) {
= while (1) {
Baea2e82 BSP_TogglelED(@);
Baee2e86 05_Delay(5@);
}
}
— static void LPTask(void) {
= while (1) {
aaea2a8e BSP_TogglelED(1);
aaea2e92 05_Delay(20@);
}
}
@* main()[]
52 @eee2e%9a - int main(void) {
53 @808209b 05_InitKern(); Initialize 05 -
G54 B20820%e 05_InitHW(); Initialize Hardware for 05
65 @@9828al BSP_Init(); /* Initialize LED ports
66 /* You need to create at least one task before calling 05_Start()
57 @eea2ead 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP);
55 BBBe28cd 05_CREATETASK(&TCELP, "LP Task”, LPTask, 5@, StackLP); _ILI
4] | E 4] | i

Read-Only | Smart Insert | 46 16

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



16 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

S Debug - Start_RL78/Application/05_StartLEDBlink.c - €2 studio M= E3
File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
| [~ R - A NPl ENITRPSI O E N O B-0-%- 5] 4
I e B | Bhc/ct+ |45 Debug
[ os_startLEDBlink.c &3 = 8 6 Expres... 22 = B
38 #include "RTOS.h" &l =N K| it ~
39 #include "BSP.h" Expression Type | value
48 . . . ()= 05_Global Time volatilelong 1
41 static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks b add new ex 5
42 static 0S_TASK TCBHP, TCELP; /* Task-control-blocks e
43
44 — static void HPTask(void) {
4 = while (1) {
46 BBBE2082 BSP_TogglelED(@);
47 BRBE2086 05_Delay(5@);
AR }
}
— static void LPTask(void) {
= while (1) {
BaBa2BEe BSP_TogglelED(1);
4 BoeB20892 05_Delay(20@);
}
}
60 @* main()[]
62 @@ee209a - int main(void) {
53 @808209b 05_InitKern(); /* Initialize 05 b
G54 B20820%e 05_InitHW(); /* Initialize Hardware for 05
65 @@9828al BSP_Init(); /* Initialize LED ports
66 /* You need to create at least one task before calling 0S_Start()
57 Beea2ead 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP);
68 Bepe2acd 0S_CREATETASK(&TCBLP, "LP Task", LPTask, 5@, StackLP); _J:J
4] | E 4] | i

| Read-Only | Smart Insert | 53:6

Continue to step through the program, there is no other task ready for execution. embQOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the GS Del ay() function in disassembly mode.
OS Idle() ispartof RTOSI ni t. c. You may also set a breakpoint there before stepping over
the delay in LPTask() .

S Debug - Start_RL78/Setup/RTOSInit_RL78G13.c - €2 studio M= E3
File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
i [B-R - ANl BN IRPF & EH L TH-0-%-1®5 ]
: E E - K 1 | B c/c++ % Debug
[ RTOSINit_RL78G13.c & = B Bz outine [ Project.. €L Expres.. 22| = B
296 99882323 TMMK@E &= Bu; / Enable timer interrupt ;I = | d= %| oY | @(9 -
297 eeBB23380 T58 |= exeeelu; //{ Start timer
. b, Expression | Type | Value
299 // Initialize the optional communication for embOSView (>_<]= 05_Global. Time volatlelong |3
300 17 oo Add new expression
381 - #if (05_VIEW IFSELECT != 05_VIEW_DISABLED)
362 @BEe2336 05_COM_Init();
383 #endif
364 @BEE2330 05_DecRI();
385 eeBR2368 ¥
386
9 EE 05_Tdle()[]
9 —wvoid 05_Idle(void) { // Idle loop: No task is ready to execute
@ e8ee236c - while (1) { // Nothing to do ... wait for interrupt
321 = #if ((05_VIEW IFSELECT != 0S_VIEW_IF_JLINK) && (0S_DEBUG == @)
322 // Switch CPU into sleep mode
323 #endif
324 }
325 }
326
329 @* 05_GetTime_Cycles()[]
336 @eee236e - 05_U32 0S_GetTime_Cycles(void) {
337 05_U32 Time;
338 05_Ule Cnt;
339
340 eeBB2378 Time = 05_GetTime32();
341 @eea237b Cnt = 05_TIMER_RELOAD - TCR@e;
342 1 -
< | _'l_I | | 0

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



17

If you set a breakpoint in one or both of our tasks, you will see that they continue execution

after the given delay.
As can be seen by the value of embOS timer variab

le OS_d obal . Ti ne, shown in the Watch

window, HPTask() continues operation after expiration of the 50 system tick delay.

E Debug - Start_RL78/Application/05_StartLEDBlink.c - €2 studio

I[=] 3

File Edit Source Refactor Navigate Search Project Renesas Views Run  Window Help
| [~ R - A NPl ENITRPSI O E N O B-0-%- 5] 4
I e B | Bhc/ct+ |45 Debug
[ os_startLEDBlink.c &3 = 8 6 Expres... 22 = B
38 #include "RTOS.h" || EE | XK AR ¥
39 #include "BSP.h" Expression | Type | value
48 . . . ()= 05_Global Time volatile long 51
41 static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks b add new ex 5
42 static 0S_TASK TCBHP, TCELP; /* Task-control-blocks e
43
— static void HPTask(void) {
= while (1) {
PBE020852 BSP_TogglelED(@);
PBEB2856 05_Delay(5@);
}
}
— static void LPTask(void) {
5 = while (1) {
53 bBeB2BEe BSP_TogglelED(1);
54 peeB2E92 05_Delay(20@);
55 ¥
56 ¥
57
60 @* main()[]
62 @@ee209a - int main(void) {
53 @808209b 05_InitKern(); /* Initialize 05 b
G54 B20820%e 05_InitHW(); /* Initialize Hardware for 05
65 @@9828al BSP_Init(); /* Initialize LED ports
66 /* You need to create at least one task before calling 05_Start()
57 Beea2ead 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP);
68 Bepe2acd 0S_CREATETASK(&TCBLP, "LP Task", LPTask, 5@, StackLP); 4
1| 3 1| | |
Read-Only | Smart Insert | 4611

embOS for RL78 and CCRL

© 2017 SEGGER Microcontroller GmbH & Co. KG



18 CHAPTER 1 Stepping through the sample application

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



19

Chapter 2

Build your own application

This chapter provides all information to set up your own embQOS project.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



20

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

To build your own application, you should always start with one of the supplied sample
workspaces and projects. Therefore, select an embOS workspace as described in chapter
First Steps on page 12 and modify the project to fit your needs. Using an embOS start
project as starting point has the advantage that all necessary files are included and all
settings for the project are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from subfolder | nc\ . This header file declares all embOS API functions and data
types and has to be included in any source file using embQOS functions.

e RTCSInit.c from one target specific BoardSupport\<Manufacturer>\<MCU>\
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt and optional communication for embOSView via UART or
JTAG.

One embOQS library from the subfolder Li b\ .
Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i nit () function, en-
sure that non-initialized variables are initialized with zero, according to C standard. This is
required for some embOS internal variables. Your mai n() function has to initialize embOS
by a call of GS_I ni tKern() and GS_I ni t HW) prior any other embOS functions are called.
You should then modify or replace the OS_Start LEDBI i nk. ¢ source file in the subfolder
Application\.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should use an embQOS debug library. For your final application you may
wish to use an embQOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

e If your selected library is already available in your project, just select the appropriate
configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate Os_LI BMODE * define as preprocessor option and/ or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the Boar dSupport\ folder.
To select a CPU which is already supported, just select the appropriate workspace from a
CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), 05 COM Init(), the interrupt service routines for embOS system timer tick and com-
munication to embOSView and the low level initialization.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



21

Chapter 3

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



22 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.
The libraries are named as follows:
0sRL78<Menory_Mdel ><Far _ROW<Cor e>_<Li bvbde>.lib

Parameter Meaning Values
Merory_ Model Specifies the selected memory |S smaI.I
model m : medium
f : Sets near/far attribute for
. ROM data to far
Far _ROM Default attribute of ROM dat
ar_ etault attribute o ata n : Sets near/far attribute for
ROM data to near
2 : RL78 core without instructions
to support a hardware
. multiplier/divider (S2)
Core CPU core variant 3 : RL78 core with instructions
to support a hardware
multiplier/divider (S3)
xr : Extreme Release
: Release
s : Stack check
Li bMbde Specifies the library mode sp : Stack check + profiling
d : Debug
dp : Debug + profiling
dt : Debug + profiling + trace
Example

osRL78sf2_dp. |i b is the library for a project using small memory model and far ROM data
for the RL78_2 core variant with debug and profiling support.

3.2 List of available libraries

Memory model | Far ROM Core Library types Library
small near RL78_2 | Extreme release 0SRL78sn2_xr.lib
small near RL78_2 | Release osRL78sn2_r.lib
small near RL78 2 | Stack-check osRL78sn2_s.lib
small near RL78 2 | Stack-check + Profiling osRL78sn2_sp.lib
small near RL78_2 | Debug osRL78sn2_d.lib
small near RL78_2 | Debug + Profiling 0sRL78sn2_dp.lib
small near RL78 2 | Debug + Profiling + Trace osRL78sn2 dt.lib
small far RL78 2 | Extreme release osRL78sf2 xr.lib
small far RL78_2 | Release osRL78sf2_r.lib
small far RL78_2 | Stack-check osRL78sf2_s.lib
small far RL78 2 | Stack-check + Profiling osRL78sf2_sp.lib
small far RL78 2 | Debug osRL78sf2 d.lib
small far RL78_2 | Debug + Profiling 0sRL78sf2_dp.lib
small far RL78_2 | Debug + Profiling + Trace osRL78sf2_dt.lib

embOS for RL78 and CCRL

© 2017 SEGGER Microcontroller GmbH & Co. KG




23

Memory model Far ROM Core Library types Library
medium near RL78_2 | Extreme release osRL78m2_xr.lib
medium near RL78 2 | Release osRL78m2 r.lib
medium near RL78 2 | Stack-check osRL78m2_s.lib
medium near RL78_2 | Stack-check + Profiling osRL78m2_sp.lib
medium near RL78_2 | Debug osRL78m2_d.lib
medium near RL78 2 | Debug + Profiling osRL78m2_dp.lib
medium near RL78 2 | Debug + Profiling + Trace osRL78m2 dt.lib
medium far RL78_2 | Extreme release osRL78nf2_xr.lib
medium far RL78_2 | Release osRL78nf2 r.lib
medium far RL78 2 | Stack-check osRL78nf2 s.lib
medium far RL78 2 | Stack-check + Profiling osRL78nf2 sp.lib
medium far RL78_2 | Debug osRL78nf2_d.lib
medium far RL78_2 | Debug + Profiling osRL78nf2_dp.lib
medium far RL78 2 | Debug + Profiling + Trace osRL78nf2 dt.lib
small near RL78 3 | Extreme release osRL78sn3 xr.lib
small near RL78_3 | Release 0sRL78sn3_r.lib
small near RL78_3 | Stack-check 0osRL78sn3_s.lib
small near RL78 3 | Stack-check + Profiling 0osRL78sn3 sp.lib
small near RL78 3 | Debug osRL78sn3 d.lib
small near RL78_3 | Debug + Profiling 0osRL78sn3_dp.lib
small near RL78_3 | Debug + Profiling + Trace 0sRL78sn3_dt.lib
small far RL78 3 | Extreme release osRL78sf3 xr.lib
small far RL78 3 | Release osRL78sf3 r.lib
small far RL78_3 | Stack-check 0sRL78sf3_s.lib
small far RL78_3 | Stack-check + Profiling 0sRL78sf3_sp.lib
small far RL78 3 | Debug osRL78sf3 d.lib
small far RL78 3 | Debug + Profiling osRL78sf3 dp.lib
small far RL78_3 | Debug + Profiling + Trace osRL78sf3 dt.lib
medium near RL78_3 | Extreme release osRL78m3_xr.lib
medium near RL78 3 | Release osRL78m3 r.lib
medium near RL78_ 3 | Stack-check osRL78m3 s.lib
medium near RL78_3 | Stack-check + Profiling 0osRL78m3_sp.lib
medium near RL78_3 | Debug osRL78m3_d.lib
medium near RL78 3 | Debug + Profiling osRL78m3 dp.lib
medium near RL78 3 | Debug + Profiling + Trace osRL78m3 dt.lib
medium far RL78_3 | Extreme release osRL78nf3_xr.lib
medium far RL78_3 | Release osRL78nf3 r.lib
medium far RL78 3 | Stack-check osRL78nf3 s.lib
medium far RL78_ 3 | Stack-check + Profiling osRL78nf3 sp.lib
medium far RL78_3 | Debug osRL78nf3_d.lib
medium far RL78_3 | Debug + Profiling osRL78nf3_dp.lib
medium far RL78 3 | Debug + Profiling + Trace osRL78nf3 dt.lib

embOS for RL78 and CCRL

© 2017 SEGGER Microcontroller GmbH & Co. KG



24 CHAPTER 3 List of available libraries

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



25

Chapter 4

CPU and compiler specifics

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



26 CHAPTER 4 CPU modes

4.1 CPU modes

embOS for Renesas RL78 supports all memory models that the CCRL compiler supports.
For the RL78 CPUs, there are two memory models and two ROM data models, which results
in four different combinations for the memory model options.

The CCRL compiler offers two memory models:

Memory Model Default memory attribute Code location
small __hear 0x000000 to OXO0FFFF
medium _ far 0x000000 to OXOFFFFF

The CCRL compiler offers two ROM data models:

ROM Data Model Default memory attribute Data placement
near __near 0x0F0000 to OxOFFFFF
far _ far 0x000000 to OxOFFFFF

4.2 Core options

The CCRL compiler supports two different core variants which are also supported by embOS.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



27

Chapter 5

Interrupts

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



28 CHAPTER 5 What happens when an interrupt occurs?

5.1 What happens when an interrupt occurs?

The CPU-core receives an interrupt request from the interrupt controller.

As soon as the interrupts are enabled, the interrupt is accepted and executed.

The corresponding interrupt service routine (ISR) is started.

The first thing you should do in the ISR is to call OS_Enterlnterrupt() or

OS_Ent er Nest abl el nt errupt () . These functions tell embQOS, that you are executing an

ISR. In case of calling OS_Ent er Nest abl el nt errupt () embOS will reenable interrupts

again to allow nesting.

e The ISR stores all registers which are modified by the ISR on the current stack. Current
stack is either a task stack or the system stack.

e If you are using OS_Enter|nt Stack() in the ISR, it will switch the stack pointer to
the system stack. Please be aware, that a function calling GS_Ent er | nt St ack() is not
allowed to have local variables.

e If you used CS EnterlntStack() at the beginning of your ISR, you must call
0S_Leavel nt St ack() at the end of this function. The stack pointer will be restored to
its original value.

e Depending on which function you have called at the beginning of your ISR, you must

call OS_Leavel nterrupt () or OS_LeaveNestabl el nterrupt () and the ISR will return

from interrupt. If the ISR caused a task switch, it will take place immediately when
leaving the ISR.

5.2 Defining interrupt handlers in C

The definition of an interrupt function using embOS calls is very much the same as for
a normal interrupt service routine (ISR). If your ISR will use embOS system calls, or
if you enable interrupts again in your ISR, you will have to call OS Enterlnterrupt()
or OS_Ent er Nest abl el nterrupt () at the start and OS_Leavel nterrupt () or OS_LeaveN
establ el nterrupt () at the end of your ISR. In case you want to execute the ISR on the
system stack, you must call GS_Enterl nt St ack() right after OS_EnterInterrupt() and
OS_Leavel nt St ack() right before OS_Leavel nterrupt ().

Example

Simple interrupt routine:

#pragma interrupt OS_|I SR Tick (vect=INTTMO)
static void OS ISR Tick (void) {

OS_Enter Nestabl el nterrupt ();

OS_ENTER | NT_STACK() ;

OS_TI CK _Handl e();

OS_LEAVE_| NT_STACK() ;

OS_LeaveNest abl el nterrupt ();

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



29

5.3 Interrupt-stack

The routines OS_Enterlnt Stack() and OS_Leavel nt Stack() can be used to switch the
stack pointer to the system stack during execution of the ISR. If you are not using these
routines, the ISR uses the active stacks. The active stack is either a task stack or the
system stack.

5.4 Interrupt-stack switching

Since the Renesas RL78 CPUs do not have a separate stack pointer for interrupts, every
interrupt runs on the current stack. To reduce the stack load of tasks, embOS offers its own
interrupt stack which is located in the system stack. To use the embOS interrupt stack,
call Gs_EnterlntStack() at the beginning of an interrupt handler just after the call of
OS Enterlnterrupt () and call OS_Leavel nt St ack() at the end just before OS_Leavel n-
terrupt ().

Please note, that an interrupt handler using interrupt stack switching must not use local
variables. It should call a function.

Example

Interrupt-routine using embOS interrupt stack:

static void OS_ | SR Rx_Handl er (voi d) {

i nt Dummy;
if (ASI SO & 0x07) { /* Check any reception error */
Dummy = RXBO; /* Reset error, discard Byte 27
} else {
OS_OnRx( RXBO) ; /* Process data */
}

}

#pragma interrupt OS_COM | SR RxErr (vect=I NTSRE2)
static void OS_ COM | SR RxErr(void) {

OS _EnterNestablelnterrupt(); /* W will enable interrupts */
CS_Enter | nt Stack(); /* W will use interrupt stack */
OS_| SR Rx_Handl er () ; /* Acall to a handler is required! */
OS_Leavel nt St ack(); /[* Interrupt stack sw tching does */

OS_LeaveNest abl el nterrupt(); /* not allow |ocal variables in ISR */

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



30 CHAPTER 5 Zero latency interrupts

5.5 Zero latency interrupts

Instead of disabling interrupts when embQOS does atomic operations, the inter- rupt level of
the CPU is set per default to 1. Therefore all interrupts with the priorities 0 and 1 can still be
processed. Please note, that lower priority numbers define a higher priority. All interrupts
with priority levels 0 and 1 are never disabled. These interrupts are named zero latency
interrupts.

You must not execute any embOS function from within a zero latency interrupt
function.

5.6 OS_SetFastIintPriorityLimit()

The interrupt priority limit for zero latency interrupts is set to 1 by default. This means, all
interrupts with priority 0 and 1 will never be disabled by embOS.

Description

OS SetFastIntPriorityLimt() is used to set the interrupt priority limit between zero
latency interrupts and lower priority embOS interrupts.

Prototype
void OS SetFastIntPriorityLimt (OS_UNT Priority);
Parameters

Parameter Description

The lowest value useable as priority for zero latency interrupts. All
Priority interrupts with higher priority are never disabled by embOS. Valid
range: 0 < Priority < 2.

Additional Information

To modify the default priority limit, CS_Set FastInt PriorityLi nmt() should be called be-
fore embOS was started.

This table shows which interrupt priority values are valid for a given priority limit.

Priority limit embOS interrupts Zero latency interrupts
0 1,2,3
1 (default) 2,3 0,1
2 3 0,1,2

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



31

Chapter 6

Stacks

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



32 CHAPTER 6 Task stack for Renesas RL78

6.1 Task stack for Renesas RL78

The stack pointer of the RL78 CPUs is a 16bit register and can therefore point to any near
memory location. The stacks for the tasks may be located in any RAM location which can
be addressed by the stack pointer. The required amount of stack for a task depends on the
embOS library mode, the application and functions called by the task. As long as interrupt
stack switching is not used, all interrupts may also run on the task stack. The minimum
amount of stack required by embOS to save the task specific registers is about 24 bytes.
We recommend at a minimum task stack size of 64 bytes. Using embOSView together with
a stack check library may be used to analyze the amount of stack used and needed for
every task.

6.2 System and Interrupt stack for Renesas RL78

The main stack is used as system stack. Your application uses this stack before execut-
ing OS_Start (), during execution of embOS internal functions and during the timer tick
routines. Furthermore, software timers use the system stack. If your interrupt service rou-
tines perform stack switching by calling OS_Ent er | nt St ack() , they will also use the system
stack. The stack segment also has to be located in the internal RAM which is addressable
by the stack pointer.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



33

Chapter 7

Technical data

This chapter lists technical data of embOS used with RL78 CPUs.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



34 CHAPTER 7 Memory requirements

7.1 Memory requirements

These values are neither precise nor guaranteed, but they give you a good idea of the
memory requirements. They vary depending on the current version of embOS. The mini-
mum ROM requirement for the kernel itself is about 1.500 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embQOS library mode.

embOS resource RAM [bytes]
Task control block 14
Software timer 12
Resource semaphore 8
Counting semaphore 4
Mailbox 14
Queue 18
Task event 0
Event object 16

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG



	About this document
	Table of contents
	Using embOS
	Installation
	Using Renesas e2 studio
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries
	List of available libraries

	CPU and compiler specifics
	CPU modes
	Core options

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt-stack
	Interrupt-stack switching
	Zero latency interrupts
	OS_SetFastIntPriorityLimit()

	Stacks
	Task stack for Renesas RL78
	System and Interrupt stack for Renesas RL78

	Technical data
	Memory requirements


