
embOS
Real-Time Operating System

CPU & Compiler specifics for RL78 using
Renesas CCRL compiler and e2 studio

Document: UM01069
Software Version: 4.32

Revision: 0
Date: March 3, 2017

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

http://www.segger.com/embOS.html
http://www.segger.com
http://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed
to be entirely free of error. The information in this manual is subject to change for func-
tional or performance improvements without notice. Please make sure your manual is the
latest edition. While the information herein is assumed to be accurate, SEGGER Microcon-
troller GmbH & Co. KG (SEGGER) assumes no responsibility for any errors or omissions.
SEGGER makes and you receive no warranties or conditions, express, implied, statutory
or in any communication with you. SEGGER specifically disclaims any implied warranty of
merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of SEGGER. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2017 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective
holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
E-mail: support@segger.com
Internet: www.segger.com

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: March 3, 2017

Software Revision Date By Description

4.32 0 170303 MC Initial version

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

4

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0–13–1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.
Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.
User Input Text entered at the keyboard by a user in a session transcript.

Secret Input
Text entered at the keyboard by a user, but not echoed (e.g.
password entry), in a session transcript.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

Emphasis Very important sections.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

6

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

7

Table of contents

1 Using embOS ..8

1.1 Installation ..9
1.2 Using Renesas e2 studio ... 10
1.3 First Steps .. 12
1.4 The example application OS_StartLEDBlink.c ... 13
1.5 Stepping through the sample application ...14

2 Build your own application ..19

2.1 Introduction ...20
2.2 Required files for an embOS ..20
2.3 Change library mode .. 20
2.4 Select another CPU .. 20

3 Libraries ...21

3.1 Naming conventions for prebuilt libraries .. 22
3.2 List of available libraries ... 22

4 CPU and compiler specifics ..25

4.1 CPU modes ... 26
4.2 Core options ..26

5 Interrupts ... 27

5.1 What happens when an interrupt occurs? ..28
5.2 Defining interrupt handlers in C ...28
5.3 Interrupt-stack ...29
5.4 Interrupt-stack switching .. 29
5.5 Zero latency interrupts ... 30
5.6 OS_SetFastIntPriorityLimit() .. 30

6 Stacks ... 31

6.1 Task stack for Renesas RL78 ... 32
6.2 System and Interrupt stack for Renesas RL78 ... 32

7 Technical data ...33

7.1 Memory requirements ...34

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

8

Chapter 1

Using embOS

This chapter describes how to start with and use embOS. You should follow these steps to
become familiar with embOS.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

9

1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find a lot of prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 12.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Using Renesas e2 studio

1.2 Using Renesas e2 studio
The start projects are based on e2 studio and include the necessary project files for Renesas
e2studio.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example C:\embOS
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Start Renesas e2studio and select and create a workspace.
• Import the sample start project into the workspace.
• Build the start project
• Run the application using e2studio HardwareDebug configuration using the E1 emulator

for downloading and debugging.

Start Renesas e2studio and in the Workspace Launcher click Browse… to select the work-
space. If the Workspace Launcher is not shown on startup, select it by menu File ->
Switch Workspace.

Select the workspace directory c:\workspace or any other folder of your choice:

The workspace will then be created in the selected folder.

Now import the sample start project from one board support folder. Choose menu File ->
Import and in the Import dialog select General -> Existing Projects into Workspace.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

11

Press Next, the Import Projects dialog shows up.
Press Browse… and select Start\BoardSupport\ or any project subfolder as the root direc-
tory for the project to import:

Do not select the Copy projects into workspace option.

Refresh the project and build it:

For latest information you may read the ReadMe.txt file which is part of every start project.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 First Steps

1.3 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder:

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufactor>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

13

1.4 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
--------- END-OF-HEADER --
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 BSP_Init(); /* Initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

/****** End Of File ***/

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Stepping through the sample application

1.5 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen shot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program. OS_IncDI() initially
disables interrupts.

OS_InitKern() is part of the embOS library and written in assembler; you can there fore
only step into it in disassembly mode. It initializes the relevant OS variables. Because of the
previous call of OS_IncDI(), interrupts are not enabled during execution of OS_InitKern().

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

15

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_Delay() function in disassembly mode.
OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before stepping over
the delay in LPTask().

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

17

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the 50 system tick delay.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 1 Stepping through the sample application

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

19

Chapter 2

Build your own application

This chapter provides all information to set up your own embOS project.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Introduction

2.1 Introduction
To build your own application, you should always start with one of the supplied sample
workspaces and projects. Therefore, select an embOS workspace as described in chapter
First Steps on page 12 and modify the project to fit your needs. Using an embOS start
project as starting point has the advantage that all necessary files are included and all
settings for the project are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from subfolder Inc\. This header file declares all embOS API functions and data

types and has to be included in any source file using embOS functions.
• RTOSInit.c from one target specific BoardSupport\<Manufacturer>\<MCU>\

subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt and optional communication for embOSView via UART or
JTAG.

• One embOS library from the subfolder Lib\.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, en-
sure that non-initialized variables are initialized with zero, according to C standard. This is
required for some embOS internal variables. Your main() function has to initialize embOS
by a call of OS_InitKern() and OS_InitHW() prior any other embOS functions are called.
You should then modify or replace the OS_StartLEDBlink.c source file in the subfolder
Application\.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should use an embOS debug library. For your final application you may
wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/ or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the BoardSupport\ folder.
To select a CPU which is already supported, just select the appropriate workspace from a
CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), OS_COM_Init(), the interrupt service routines for embOS system timer tick and com-
munication to embOSView and the low level initialization.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

21

Chapter 3

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

osRL78<Memory_Model><Far_ROM><Core>_<LibMode>.lib

Parameter Meaning Values

Memory_Model
Specifies the selected memory
model

s : small
m : medium

Far_ROM Default attribute of ROM data

f : Sets near/far attribute for
 ROM data to far

n : Sets near/far attribute for
 ROM data to near

Core CPU core variant

2 : RL78 core without instructions
 to support a hardware
 multiplier/divider (S2)

3 : RL78 core with instructions
 to support a hardware
 multiplier/divider (S3)

LibMode Specifies the library mode

xr : Extreme Release
r : Release
s : Stack check
sp : Stack check + profiling
d : Debug
dp : Debug + profiling
dt : Debug + profiling + trace

Example

osRL78sf2_dp.lib is the library for a project using small memory model and far ROM data
for the RL78_2 core variant with debug and profiling support.

3.2 List of available libraries
Memory model Far ROM Core Library types Library

small near RL78_2 Extreme release osRL78sn2_xr.lib

small near RL78_2 Release osRL78sn2_r.lib

small near RL78_2 Stack-check osRL78sn2_s.lib

small near RL78_2 Stack-check + Profiling osRL78sn2_sp.lib

small near RL78_2 Debug osRL78sn2_d.lib

small near RL78_2 Debug + Profiling osRL78sn2_dp.lib

small near RL78_2 Debug + Profiling + Trace osRL78sn2_dt.lib

small far RL78_2 Extreme release osRL78sf2_xr.lib

small far RL78_2 Release osRL78sf2_r.lib

small far RL78_2 Stack-check osRL78sf2_s.lib

small far RL78_2 Stack-check + Profiling osRL78sf2_sp.lib

small far RL78_2 Debug osRL78sf2_d.lib

small far RL78_2 Debug + Profiling osRL78sf2_dp.lib

small far RL78_2 Debug + Profiling + Trace osRL78sf2_dt.lib

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

23

Memory model Far ROM Core Library types Library

medium near RL78_2 Extreme release osRL78mn2_xr.lib

medium near RL78_2 Release osRL78mn2_r.lib

medium near RL78_2 Stack-check osRL78mn2_s.lib

medium near RL78_2 Stack-check + Profiling osRL78mn2_sp.lib

medium near RL78_2 Debug osRL78mn2_d.lib

medium near RL78_2 Debug + Profiling osRL78mn2_dp.lib

medium near RL78_2 Debug + Profiling + Trace osRL78mn2_dt.lib

medium far RL78_2 Extreme release osRL78mf2_xr.lib

medium far RL78_2 Release osRL78mf2_r.lib

medium far RL78_2 Stack-check osRL78mf2_s.lib

medium far RL78_2 Stack-check + Profiling osRL78mf2_sp.lib

medium far RL78_2 Debug osRL78mf2_d.lib

medium far RL78_2 Debug + Profiling osRL78mf2_dp.lib

medium far RL78_2 Debug + Profiling + Trace osRL78mf2_dt.lib

small near RL78_3 Extreme release osRL78sn3_xr.lib

small near RL78_3 Release osRL78sn3_r.lib

small near RL78_3 Stack-check osRL78sn3_s.lib

small near RL78_3 Stack-check + Profiling osRL78sn3_sp.lib

small near RL78_3 Debug osRL78sn3_d.lib

small near RL78_3 Debug + Profiling osRL78sn3_dp.lib

small near RL78_3 Debug + Profiling + Trace osRL78sn3_dt.lib

small far RL78_3 Extreme release osRL78sf3_xr.lib

small far RL78_3 Release osRL78sf3_r.lib

small far RL78_3 Stack-check osRL78sf3_s.lib

small far RL78_3 Stack-check + Profiling osRL78sf3_sp.lib

small far RL78_3 Debug osRL78sf3_d.lib

small far RL78_3 Debug + Profiling osRL78sf3_dp.lib

small far RL78_3 Debug + Profiling + Trace osRL78sf3_dt.lib

medium near RL78_3 Extreme release osRL78mn3_xr.lib

medium near RL78_3 Release osRL78mn3_r.lib

medium near RL78_3 Stack-check osRL78mn3_s.lib

medium near RL78_3 Stack-check + Profiling osRL78mn3_sp.lib

medium near RL78_3 Debug osRL78mn3_d.lib

medium near RL78_3 Debug + Profiling osRL78mn3_dp.lib

medium near RL78_3 Debug + Profiling + Trace osRL78mn3_dt.lib

medium far RL78_3 Extreme release osRL78mf3_xr.lib

medium far RL78_3 Release osRL78mf3_r.lib

medium far RL78_3 Stack-check osRL78mf3_s.lib

medium far RL78_3 Stack-check + Profiling osRL78mf3_sp.lib

medium far RL78_3 Debug osRL78mf3_d.lib

medium far RL78_3 Debug + Profiling osRL78mf3_dp.lib

medium far RL78_3 Debug + Profiling + Trace osRL78mf3_dt.lib

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 3 List of available libraries

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

25

Chapter 4

CPU and compiler specifics

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 4 CPU modes

4.1 CPU modes
embOS for Renesas RL78 supports all memory models that the CCRL compiler supports.
For the RL78 CPUs, there are two memory models and two ROM data models, which results
in four different combinations for the memory model options.

The CCRL compiler offers two memory models:

Memory Model Default memory attribute Code location

small __near 0x000000 to 0x00FFFF
medium __far 0x000000 to 0x0FFFFF

The CCRL compiler offers two ROM data models:

ROM Data Model Default memory attribute Data placement

near __near 0x0F0000 to 0x0FFFFF
far __far 0x000000 to 0x0FFFFF

4.2 Core options
The CCRL compiler supports two different core variants which are also supported by embOS.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

27

Chapter 5

Interrupts

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 5 What happens when an interrupt occurs?

5.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request from the interrupt controller.
• As soon as the interrupts are enabled, the interrupt is accepted and executed.
• The corresponding interrupt service routine (ISR) is started.
• The first thing you should do in the ISR is to call OS_EnterInterrupt() or

OS_EnterNestableInterrupt(). These functions tell embOS, that you are executing an
ISR. In case of calling OS_EnterNestableInterrupt() embOS will reenable interrupts
again to allow nesting.

• The ISR stores all registers which are modified by the ISR on the current stack. Current
stack is either a task stack or the system stack.

• If you are using OS_EnterIntStack() in the ISR, it will switch the stack pointer to
the system stack. Please be aware, that a function calling OS_EnterIntStack() is not
allowed to have local variables.

• If you used OS_EnterIntStack() at the beginning of your ISR, you must call
OS_LeaveIntStack() at the end of this function. The stack pointer will be restored to
its original value.

• Depending on which function you have called at the beginning of your ISR, you must
call OS_LeaveInterrupt() or OS_LeaveNestableInterrupt() and the ISR will return
from interrupt. If the ISR caused a task switch, it will take place immediately when
leaving the ISR.

5.2 Defining interrupt handlers in C
The definition of an interrupt function using embOS calls is very much the same as for
a normal interrupt service routine (ISR). If your ISR will use embOS system calls, or
if you enable interrupts again in your ISR, you will have to call OS_EnterInterrupt()
or OS_EnterNestableInterrupt() at the start and OS_LeaveInterrupt() or OS_LeaveN-
estableInterrupt() at the end of your ISR. In case you want to execute the ISR on the
system stack, you must call OS_EnterIntStack() right after OS_EnterInterrupt() and
OS_LeaveIntStack() right before OS_LeaveInterrupt().

Example

Simple interrupt routine:

#pragma interrupt OS_ISR_Tick (vect=INTTM00)
static void OS_ISR_Tick (void) {
 OS_EnterNestableInterrupt();
 OS_ENTER_INT_STACK();
 OS_TICK_Handle();
 OS_LEAVE_INT_STACK();
 OS_LeaveNestableInterrupt();
}

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

29

5.3 Interrupt-stack
The routines OS_EnterIntStack() and OS_LeaveIntStack() can be used to switch the
stack pointer to the system stack during execution of the ISR. If you are not using these
routines, the ISR uses the active stacks. The active stack is either a task stack or the
system stack.

5.4 Interrupt-stack switching
Since the Renesas RL78 CPUs do not have a separate stack pointer for interrupts, every
interrupt runs on the current stack. To reduce the stack load of tasks, embOS offers its own
interrupt stack which is located in the system stack. To use the embOS interrupt stack,
call OS_EnterIntStack() at the beginning of an interrupt handler just after the call of
OS_EnterInterrupt() and call OS_LeaveIntStack() at the end just before OS_LeaveIn-
terrupt().

Please note, that an interrupt handler using interrupt stack switching must not use local
variables. It should call a function.

Example

Interrupt-routine using embOS interrupt stack:

static void OS_ISR_Rx_Handler(void) {
 int Dummy;
 if (ASIS0 & 0x07) { /* Check any reception error */
 Dummy = RXB0; /* Reset error, discard Byte */
 } else {
 OS_OnRx(RXB0); /* Process data */
 }
}

#pragma interrupt OS_COM_ISR_RxErr (vect=INTSRE2)
static void OS_COM_ISR_RxErr(void) {
 OS_EnterNestableInterrupt(); /* We will enable interrupts */
 OS_EnterIntStack(); /* We will use interrupt stack */
 OS_ISR_Rx_Handler(); /* A call to a handler is required! */
 OS_LeaveIntStack(); /* Interrupt stack switching does */
 OS_LeaveNestableInterrupt(); /* not allow local variables in ISR */
}

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 5 Zero latency interrupts

5.5 Zero latency interrupts
Instead of disabling interrupts when embOS does atomic operations, the inter- rupt level of
the CPU is set per default to 1. Therefore all interrupts with the priorities 0 and 1 can still be
processed. Please note, that lower priority numbers define a higher priority. All interrupts
with priority levels 0 and 1 are never disabled. These interrupts are named zero latency
interrupts.
You must not execute any embOS function from within a zero latency interrupt
function.

5.6 OS_SetFastIntPriorityLimit()
The interrupt priority limit for zero latency interrupts is set to 1 by default. This means, all
interrupts with priority 0 and 1 will never be disabled by embOS.

Description

OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between zero
latency interrupts and lower priority embOS interrupts.

Prototype

void OS_SetFastIntPriorityLimit (OS_UINT Priority);

Parameters

Parameter Description

Priority
The lowest value useable as priority for zero latency interrupts. All
interrupts with higher priority are never disabled by embOS. Valid
range: 0 ≤ Priority ≤ 2.

Additional Information

To modify the default priority limit, OS_SetFastIntPriorityLimit() should be called be-
fore embOS was started.

This table shows which interrupt priority values are valid for a given priority limit.

Priority limit embOS interrupts Zero latency interrupts

0 1, 2, 3 0
1 (default) 2, 3 0, 1
2 3 0, 1, 2

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

31

Chapter 6

Stacks

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 6 Task stack for Renesas RL78

6.1 Task stack for Renesas RL78
The stack pointer of the RL78 CPUs is a 16bit register and can therefore point to any near
memory location. The stacks for the tasks may be located in any RAM location which can
be addressed by the stack pointer. The required amount of stack for a task depends on the
embOS library mode, the application and functions called by the task. As long as interrupt
stack switching is not used, all interrupts may also run on the task stack. The minimum
amount of stack required by embOS to save the task specific registers is about 24 bytes.
We recommend at a minimum task stack size of 64 bytes. Using embOSView together with
a stack check library may be used to analyze the amount of stack used and needed for
every task.

6.2 System and Interrupt stack for Renesas RL78
The main stack is used as system stack. Your application uses this stack before execut-
ing OS_Start(), during execution of embOS internal functions and during the timer tick
routines. Furthermore, software timers use the system stack. If your interrupt service rou-
tines perform stack switching by calling OS_EnterIntStack(), they will also use the system
stack. The stack segment also has to be located in the internal RAM which is addressable
by the stack pointer.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

33

Chapter 7

Technical data

This chapter lists technical data of embOS used with RL78 CPUs.

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 7 Memory requirements

7.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of the
memory requirements. They vary depending on the current version of embOS. The mini-
mum ROM requirement for the kernel itself is about 1.500 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 14

Software timer 12

Resource semaphore 8

Counting semaphore 4

Mailbox 14

Queue 18

Task event 0

Event object 16

embOS for RL78 and CCRL © 2017 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of contents
	Using embOS
	Installation
	Using Renesas e2 studio
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries
	List of available libraries

	CPU and compiler specifics
	CPU modes
	Core options

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt-stack
	Interrupt-stack switching
	Zero latency interrupts
	OS_SetFastIntPriorityLimit()

	Stacks
	Task stack for Renesas RL78
	System and Interrupt stack for Renesas RL78

	Technical data
	Memory requirements

