embOS

Real-Time Operating System

CPU & Compiler specifics for
RISC-V using Embedded Studio

Document: UM01083
Software Version: 5.18.0.0
Revision: 0
Date: November 18, 2022

Vi
SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2017-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: November 18, 2022

Software | Revision | Date By Description
5.18.0.0 0 221118 MC New software version.
5.16.1.0 0 220511 MC New software version.
5.12.0.0 0 210208 MM Added information about thread-local storage.

Added information about the ECLIC interrupt controller.

>.8.2.0 0 200311 MM Added information to the stack chapter.

4.38 0 171205 MC Initial version.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 9
1.1 INStallation v e 10
A =3 A = o 1= 11
1.3 The example application OS_StartLEDBIINK.Cociviiiiiiiiiiiii e 12
1.4 Stepping through the sample application ... 13
2 Build your oWn @ppliCAtIONoeeiiiiiiiiiiiie i 16
2% NN 1 g o Ta [ol u o o PP PPRPIN 17
2.2 Required files for an embOS ... s 17
2.3 Change library MO . ..o e e 17
2.4 Select another CPU ... e e e 17
G T | o] > V=SSR 18
3.1 Naming conventions for prebuilt librari@sc.cooiiiiiiiiiiiiii 19
4 CPU and compiler SPECITICSouuiiiiiieiiiiiii ittt 20
4.1 Interrupt and thread Safelycciviiiiiiii i e 21
4.2 Thread-Local StOrage TLS ...ttt e e e e e neens 22
4.3 RISC-V privilege 1eVElS ... e e e 25
N T 1 OV A o T o 3PP 26
IS] = od ¢TSRS 27
5.1 Task stack fOr RISC-V ..uiiiiiiiiiiiiiii e a s rar e s e s e e s e e e e aneannanneaneans 28
5.2 System stack for RISC-V .o i e e e aeea 28
5.3 INEermUPE SEaCK .ot e 28
LI |01 =T ¢ U] £ OO P PP PPPPPTRTRTR 29
6.1 RISC-V iNtEITUPE SOUICES . uviiieiiiitiieetrae s saee s sanesaeesanesanessanreaanesanneaaneeanes 30
6.2 RISC-V interrupt Priorities ovviiiei i e e e e e ar e rane e anneanns 30
6.3 Zero-latenCy INEeITUPES uiiiiii i e e 30
6.4 RISC-V core-local interrupt Modescviiiiiiiiiii i e 31
6.5 Interrupt handling with embQOS for RISC-V ... e 32
6.6 Interrupt-stack sWitChing ..o 60
7 RTT @nd SYSIEMVIEW ...ttt e et e e e e e e e et e e e e e et e e 61
7.1 SEGGER Real Time Transfer ..o st re e e s e e e neenes 62
7.2 SEGGER Sy StemMVIiEW 1ttt e 62

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

8 emMBDOS THRread SCrPL ...ueiiii et e e e e e e e e e e eeeeeeennees 63
8.1 INErOdUCHION i e 64
S J N o [0 (o T U 1= = 64
S B = Tox o[> 1 - - USSR 70
1S T R D=1 1 U1 ol U £7- [1= P 71

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to start with embQOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.
To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Note

The BSP projects at / St art/ Boar dSupport/ <Devi ceManuf act ur er >/ <Devi ce> as-
sume that the /Start/Lib and / Start/ | nc folders are located relative to the BSP
folder. If you copy a BSP folder to another location, you will need to adjust these
paths in the project.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps

After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder St art . It is a good idea to use one of them as a starting point for
all of your applications. The subfolder Boar dSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from Boar dSupport subfolder.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c: \ wor k.
Copy the whole folder St art which is part of your embQOS distribution into your work
directory.
Clear the read-only attribute of all files in the new St art folder.
Open one sample workspace/project in
St ar t \ Boar dSuppor t\ <Devi ceManuf act ur er >\ <CPU> with your IDE (for example, by
double clicking it).
e Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

> Start_GD32VF103 - SEGGER Embedded Studio for RISC-V V5.40 (64-bit) - Licensed to SEGGER Microcontroller GmbH =] ==
Eile Edit View Search Mavigate Project Build Debug Target Tools Window Help
Oe x| D x
‘ {2 Debug v| M & O > “_" Y Show: |Transcript | Ve Y |Tasks v v
Project tems Code | Data=RO | || [57| Building ‘Start_GD32VF103' fram solution ‘Start_GD32VF103" in configuration T 15 targets in 0.8s o
Solution ‘Start_GD32VFL03' —+ Completed 18 targets/s
4[] Project ‘Start_GD32VF103" 167K 64K j Build complete oK
F] af-\pphcation 21 files 234 [L.1K Completed
» (10 Excluded 20 fies. modified options FLASH1 RAM1L
- £] O5_StartLEDBlink.c 234 11K | = |
. ([Doc 4fies
- [Lb 2fes
> [C SEGGER Sfiles
- D Setup Efiles
ReadMe.bxt
- k4 Output Files
Disconnected (J-Link) G) Built OK INS (Mo editor)

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBIink.c

1.3 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
a LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

13

CHAPTER 1

Stepping through the sample application

1.4 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for

embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not

return.
> Start_GD32VF103 - SEGGER Embedded Studio for RISC-V /540 (64-bit) - Licensed to SEGGER Micracontroller GmbH (Stopped) = =R
File Edit View Search Navigate Project Build Debug Target Tools Window Help
Project Explorer @ B % x
= i i 5T [= = =
£t Debug O @ o b H V| v [@ int maing M B o« 52 (26 = w o=@
Project Items Code Data=RO | 1 3 static void HPTask(void} {
Solution ‘Start_GD32VF103' snile (1) {
olution 3tart_{ » BSP_ToggleLED(2);
4 [Project ‘Start_ GD32VF103' ’ 05_TAsK_Delay(52);
4 =3 Application Z1fies i
(2 Excluded 20 files, modified options 1
-] OS_StartLEDBIink.c v static void LPTask(void) {
([0 Doc sfies while (1) {
o » BSP_ToggleLED(1);
> 3 ub 2l v 05_TASK_Delay(288);
. (I SEGGER 5fies 3
> (1] Setup Bfes H
ReadMe. txt
» &3 Output Files i
main(}
Watch 1 X | & = int main(void) {
9 05_Init(); E
Ho Ky K X w | EE ™ - . 05_InitHe(); required hardware
2 e Two e TR £ L] v BSP_INLt(); // Initial D ports L
Expression Value P size Wpe B OS_TASK_CREATE(LTCBHF, "=P Task”, 122, wPTask, StackeP); 3
¥ . » OS_TASK_CREATE(&TCBLF, "LP Task" 52, LPTask, StackLP);
0S_Global.Time @ 8x20000020 4 long int D oS start(); // Start empos ’ .
» return e;
y
xxxxxxxxxxxxxxxxxxxxxxxxxxxx End of file sssssssssassassasansansssass)
)
@ Jlnk @BuiltOK NS R+W LnS58Coll7

Before you step into OS_St art (), you should set two breakpoints in the two tasks as shown

below.
> Start_GD32VF103 - SEGGER Embedded Studio for RISC-V /540 (64-bit) - Licensed to SEGGER Micracontroller GmbH (Stopped) = =R
Eile Edit View Search Navigate Project Build Debug Target Tools Window Help
O# x x
- i i 5 = = = =
£% Debug = @ o <& w5 v v | [#mtmaing g B e "ELEE 2 o
Project Items Code Data=RO | B » static veid HPTask(void) {
Solution ‘Start_GD32VF103' shile (1) {
o mr? a — . & BSP_ToggleLED(2);
4[] Project ‘Start_GD32VF103’ ’ 05_TASK_Delay(52};
4 =3 Application Z1fies i
(2 Excluded 20 files, modified options 1
-] O5_StartLEDBIink.c v static void LPTask(void} {
, Doc 4fies while (1) {
@ gy & BSP_ToggleLED(1);
> [Lib 2 v 05_TASK_Delay(282);
> (I SEGGER 5 fies 3
> (1] Setup Bfes H
ReadMe txt
» &2 Output Files i
main(})
Watch 1 X | & = int main(void) {
9 o0s_tnit(); // Initialize embos
_ zoTE T e E w v BSP_Init(); LED ports |
Expression Value Address Size Type ' gg—;ﬁ:i-g&:g;:ggig[g’ [: :ast::, :lzz, tl;last, :iactt:f; 1
+ + »] .| 'y ask , N ask, ac 'H
05_Global.Time] Bx20000020 4 long int o 05_start(); // Start embos
» return e;
» ¥
Jetstsssessatssnstenstasates End O file sssststssssssssssssstssssnss)
)
@ Jlnk @BuiltOK NS R+W LnS58Coll7

As OS _Start () is part of the embOS library, you can step through it in disassembly mode

only.

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

14

CHAPTER 1 Stepping through the sample application

Click GO, step over CS_Start(), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

. Start_GD32VF103 - SEGGER Embedded Studio for RISC-V W5.40 (64-bit) - Licensed to SEGGER Microcontroller GmbH (Stopped) = =R
File Edit View Search Navigate Project Build Debug Target Tools Window Help
Project Explorer @ B % x
= 5= = = =
£t Debug =2 & o o q v [® void HeTaska e - B e 5T (= = o | 2 @
Project Items Code Data=RO | 1 3 static void HPTask(void} {
Solution ‘Start_GD32VF103' snile (1) {
olution ‘Start_ & @ BSP_ToggleLED(2);
4 [Project ‘Start_ GD32VF103' 6.4K 5 05 _TASK Delay(5e);
4 =3 Application Z1fies 1.1K] 3
» [Excluded 20 fies, mosifies sptions i
» -] DS_StartLEDBIink.c 34 v static void LPTask(void) {
> Dot 4fies while (1) {
o — & BSP_ToggleLED(1};
> [0 b 2fies v 05_TASK_Delay(288);
> (1 SEGGER 5fies 3
> ([Setup Efles H
ReadMe. txt
> g3l Output Files W i
* main(}
Watch 1 + int main(void) {
» 0S_Init(); emb0s
X K X Ir v . 0S_InitHd(); quired hardware
oo L] v BSP_INit(); // Initialize LED ports L
Expression Value Address Size Type » 0OS_TASK_CREATE(&TCBHP, "HF Task", 182, HPTask, StacksP); 3
¥ . » OS_TASK_CREATE(&TCBLF, "LP Task" 52, LPTask, StackLP);
0S_Global.Time @ 8x20000020 4 long int D oS start(); // Start empos ' ”
» return e;
y
4 L
@ JLlnk @ BuiltOK NS R+W Ln42Coll

If you continue stepping, you will arrive at the task that has lower priority:

. Start_GD32VF103 - SEGGER Embedded Studio for RISC-V W5.40 (64-bit) - Licensed to SEGGER Microcontroller GmbH (Stopped) = =R
Eile Edit View Search Navigate Project Build Debug Target Tools Window Help
@ x x
£ Debug oo o o q v [% void LPTask() v &~ w H (Z e = ™ =M@
Project Items Code Data=RO | B » static veid HPTask(void) {
Solution ‘Start_GD32VF103' shile (1) {
olution Start. & BSP_ToggleLED(2);
4[] Project ‘Start_GD32VF103" K » 05_TASK_Delay(52};
4 =3 Application Z1fies 1.1K] 3
» [Excluded 20 fies, mosifies sptions i
- 'a 0S_StartLEDBIlink.c 234 11 » static void LPTask(void} {
2 Doc 4fies while (1) {
@ g & BSP_ToggleLED(1);
> (23 Lib 2fies » 05_TASK_Delay(2082);
> (1 SEGGER 5fies 3
> [Setup B i
ReadMe txt
> g2l Output Files * i
* main(}
Watch 1 + int main(void) {
» 0S_Init(); emb05
(ever — v] X3 X5 X X v v 05_Inith(); required hardware
Expression Value Address Size Type L OS_TASK_CREATE(&TCBHP, "HF Task", 182, WPTask, stacksp); 1
- - . 0S_TASK_CREATE(&TCELF, "LP Task", 5@, LFTask, StackLP);
05_Global.Time] Bx20000020 4 long int o 05_start(); // Start embos
» return e;
,
jEsssEssssssasassasssanssis [y of file SEAEEssEsssiEEsssssssssssEs] [
4 »
@ JLlink @BuiltOK NS R+W Ln49Coll

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

15

CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK Del ay() function in disassembly
mode. OS_Idl e() is part of RTCSI ni t. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

> Start_GD32VF103 - SEGGER Embedded Studio for RISC-V /540 (64-bit) - Licensed to SEGGER Micracontroller GmbH (Stopped) = =R
File Edit View Search Navigate Project Build Debug Target Tools Window Help

Project Explorer @ i‘] x OS_StartLEDBlink.c (ISR LT S EEN a4 e x

- 5 = = = =
% Debug = @ O <> q Y | v [% void 05 Idie] 'l * ¥ u o+~ = (22 = o o= @
Project Items Code Data=RO | 3|
- §2] OS_StartLEDBlink.c 34 11 oe 1e1e0)
» [Doc 4fes -
> (B3 Lib 2fies Function description

AR EE R

= This code is executed whenever no task, software timer, or
D SEGGER ' 5fies interrupt is ready for execution.
a4 3 Setup Efies 57K L
] BSRc 510 = Additional information i
o . The idle leoop s not have a stack of its own, therefore no
-] entrys o Jad functionali uld be implemented that reliss on the stack
- Q init.c 20 to be preserved.
- dified options 92 /
3 05_Errorc (@ opbon o void 0S_Idle(void) { // Idle loop: Mo task is ready to execute
- & 05_Threadsafe.c 160 & 252 while (1) { // Nothing to do ... wait for interrupt
> Q RTOSInit_GD32VFlwoc 19K 52 -
Watch 1 x
Expression Value Address Size Type 3
05_Global.Time] Bx20666620 4 long int ¥

m

optional communication with embOSView

] ([} +

@ J-lnk @BuiltOK INS R+W Ln454 Coll

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOQOS timer variable OS_G obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

> Start_GD32VF103 - SEGGER Embedded Studio for RISC-V /540 (64-bit) - Licensed to SEGGER Micracontroller GmbH (Stopped) = =R
Eile Edit View Search Navigate Project Build Debug Target Tools Window Help

Project Explorer @E\] x | (CEESIEEINY Rrioshnit_ GD32VFLo.c v X

= 5 [E = += =
£2 Debug o @ o b HY v [@ voio Hemasio M 4 B o« 52 (26 = w o=@
Project Items Code Data=RO | H| 0 static veid HPTask(void) {
- €] 05 _StartLEDBlink. 34 11K snile (1) {
a =5 ik o a BSP_ToggleLED(2);
- [0 Doc 4fes » 05_TASK_Delay(52};
> (Db 2fs 3
([0 SEGGER Sfies }
4 3 Setup Efies 3.7K] 404] A . static void LPTask(void} {
- -] BSRc 510 3 while (1) {
- . . L] BSP_ToggleLED(1);
" den] entry:s 50 5 3 05_Task_Delay(2e2);
- & init.c 20 3
. 2] OS_Errore medified opions a2 ¥
- €] 05 _ThreadSafe.c 1 ;
- §] RTOSInit_GD32VFLinc.c 19K 52| e W i
— * main(})
Watch1 X | v int main(void) {
» 0s_Init(); // Initialize embos
m e T M x " v 05_tnitHd(}; tiali uired hardware
_ @ 78 fwe e n L v BSP_Init(); // Initialize LED ports |
Expression Value ERTEE size Wpe B OS_TASK_CREATE(&TCBHP, "=P Task”, 122, wPTask, stacker); 3
- - . 0S_TASK_CREATE(&TCELF, "LP Task", 5@, LFTask, StackLP);
05_Global.Time 50 Bx20000020 4 long int o 05_start(); // Start embos
» return e;
» ¥
frasrzsassszassxsrsasranaass End Of file sssssssssssssssssssssssssnss

@ JLlnk @ BuiltOK NS R+W Ln42Coll

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

17

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

19

CHAPTER 3

Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows: | i bos_rv<Arch>_<Li bMbde>. a

Parameter Meaning Values
. 32imac: RV32I with ‘M’, ‘A" and 'C’ extensions
Arch Specifies the RISC-VISA | 3 imc: RV321 with ‘M’ and 'C’ extensions
Xr: Extreme Release
r: Release
S: Stack check
Li bMbde | Specifies the library mode sp: Stack check + profiling
d: Debug
dp: Debug + profiling
dt: Debug + profiling + trace

Example

| 'i bos_rv32i mac_dp. a is the library for a project using an RV32IMAC core with debug and

profiling support.

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

21 CHAPTER 4 Interrupt and thread safety

4.1 Interrupt and thread safety

Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. Embedded Studio’s system library provides functions, which can be
overwritten to implement a locking mechanism making the system library functions thread-
safe.

The Setup directory in each embOS BSP contains the file OS_Thr eadSaf e. ¢ which overwrites
these functions. By default they disable and restore embQOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_I dl e() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_| dl e() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_| NTERRUPT_SAFE.

e When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, CS I dl e()
and software timers.

e When defined to 0 thread safety is guaranteed only in tasks. In this case you must not
call e.g. heap functions from within an ISR, OS_| dl e() or embOQOS software timers.

Alternatively, embOS delivers its own thread-safe functions for heap management. These
are described in the embOS generic manual.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

22 CHAPTER 4 Thread-Local Storage TLS

4.2 Thread-Local Storage TLS

Embedded Studio’s standard library supports usage of thread-local storage. Several library
objects and functions need local variables which have to be unique to a thread. Thread-
local storage will be required when these functions are called from multiple threads.

embOS for Embedded Studio is prepared to support the tread-local storage, but does not
use it per default. This has the advantage of no additional overhead as long as thread-
local storage is not needed by the application. The embOS implementation of thread-local
storage allows activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task
is started. For each task that uses TLS the memory for the thread-local storage is allocated
on the heap. Therefore, thread-safe heap management should be used together with TLS.
For information on thread-safety, please refer to Interrupt and thread safety on page 21.

When the task terminates by a call of OS_TASK Ter ni nat e(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:

e error functions - errno, strerror.

e locale functions - localeconv, setlocale.

o time functions - asctime, localtime, gmtime, mktime.

e multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,
wctomb.

e rand functions - rand, srand.

e etc functions - atexit, strtok.

C++ exception engine.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

23

CHAPTER 4 Thread-Local Storage TLS

421 OS_TLS_Set()

Description

OS TLS Set () is used by a task to initialize Thread-local storage for the current task.

Prototype

void OS_TLS Set(void);

Additional information

OS _TLS Set () shall be the first function called from a task when TLS should be used
in the specific task. This function has to be only used in combination with 05 TASK Ad-
dCont ext Ext ensi on() or OS_TASK_Set Cont ext Ext ensi on() and OS_TLS_Cont ext Ext en-
si on as argument to these functions. When OS_TLS_ Set TaskCont ext Ext ensi on() is used,
OS_TLS Set () will be called automatically.

Example

static void Task(void) {
OS_TLS Set ();
OS_TASK_Set Cont ext Ext ensi on(&0S_TLS_Cont ext Ext ensi on) ;
while (1) {
}
}

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

24

CHAPTER 4 Thread-Local Storage TLS

4.2.2 0OS TLS SetTaskContextExtension()

Description

OS_TLS Set TaskCont ext Ext ensi on() may be called from a task to initialize thread-local
storage for the current task and set the respective task context extension.

Prototype

voi d OS_TLS_ Set TaskCont ext Ext ensi on(voi d);

Additional information

OS5 _TLS Set TaskCont ext Ext ensi on() shall be the first function called from a task when
TLS should be used in the specific task. If the task already contains a task context extension,
OS_TLS Set TaskCont ext Ext ensi on() cannot be used. Instead, OS_TASK _AddCont ext Ex-
t ensi on() needs to be called with OS_TLS Cont ext Ext ensi on as argument. Furthermore,
OS_TLS Set () needs to be called to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
OS_TLS_Set TaskCont ext Ext ensi on() ;
while (1) {
errno = 42; // errno specific to HPTask
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
OS_TLS_Set TaskCont ext Ext ensi on() ;
while (1) {
errno = 1; // errno specific to LPTask
OS_TASK_Del ay(200);

}
}
int main(void) {
errno = 0; [l errno not specific to any task
CS Init(); /1 Initialize enbOS
Cs InitHW); /1 Initialize required hardware

OS_TASK _CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK _CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enmbCS

return O;

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

25 CHAPTER 4 RISC-V privilege levels

4.3 RISC-V privilege levels

The RISC-V Privileged Architecture Version 1.10 defines three distinct privilege levels:

e Machine mode
e Supervisor mode
e User mode

Only machine mode is mandatory when implementing the architecture; it constitutes the
highest privilege level. User mode and supervisor mode are intended for conventional ap-
plication and Unix-like operating system usage, respectively. A fourth privilege level, hy-
pervisor mode, existed in Version 1.9.1 of the Privileged Architecture, but was subsequently
removed.

embOS for RISC-V currently supports machine mode only.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

26 CHAPTER 4 RISC-V harts

4.4 RISC-V harts

A RISC-V-compatible core might support multiple RISC-V-compatible hardware threads
(often referred to as “harts”) through multi-threading.

Each hart is assigned an ID, which might not necessarily be numbered contiguously. How-
ever, at least one hart must have a hart ID of 0.

Applications executing on RISC-V platforms implementing multiple harts must be aware of
the executing hart.

For example, a reset handler shall be executed by one hart only and therefore must have ac-
cess to the current hart’s ID to ensure this. Another example is accessing memory-mapped
registers like mtimecmp (used to generate machine timer interrupts using the RISC-V re-
al-time counter): Here, applications must use a memory offset specific to the hart that
executes the application to ensure the interrupt request is generated on that same hart.
For this purpose, embOS for RISC-V offers a specific API function.

4.4.1 APIfunctions for hart identification

c
%))
AR
Function Description o 54(< |2 |-
ER R E
22 |a
~
OS GetHartl) Returns the ID of the executing hart. o o 0|0

4.4.1.1 OS_GetHartID()

Description
0S_GetHart 1 D() returns the ID of the executing hart.

Prototype
OS_REG TYPE OS_Get Hart | D(voi d);
Return value

ID of the executing hart.

Example

Il

/1 Set MIIMECWP register for this specific hart to 1000 cycl es.

Il

(*(unsigned long | ong*) (Ml MECMWP_BASE_ADDR + (8u * OS_CetHartID()))) = 1000uL;

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

28 CHAPTER 5 Task stack for RISC-V

5.1 Task stack for RISC-V

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For RISC-V CPUs, this minimum basic task stack size is about 160 bytes. Because any
function call uses some amount of stack and every exception also pushes at least 80 bytes
onto the current stack, the task stack size has to be large enough to handle one exception,
too. We recommend at least 512 bytes stack as a start.

Note

Stacks for RV32I devices need to be 16-byte aligned. embOS ensures that task stacks
are properly aligned. However, since this can result in unused bytes, the application
should ensure that task stacks are properly aligned. This can be achieved by defin-
ing an array using the compilers *__attri bute_ " keyword with the “aligned(16)”
attribute.

5.2 System stack for RISC-V

The minimum system stack size required by embOS is about 192 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application.

The size of the system stack can be changed by modifying the project settings. We recom-
mend a minimum stack size of 768 bytes for the system stack.

5.3 Interrupt stack

RISC-V does not support a dedicated hardware interrupt stack. This means that any inter-
rupt might use any task stack or the system stack depending on which context it is inter-
rupting. Consequently, each task stack would need to be large enough to handle (multiple)
interrupts. However, since assigning additional memory to each individual task stack would
consume large amounts of RAM, embOS for RISC-V offers API functions to switch to the
system stack on interrupt entry.

The respective functions OS_I NT_Enter| nt Stack() and OS_I NT_Leavel nt St ack() are de-
scribed in the generic embOS manual.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

30 CHAPTER 6 RISC-V interrupt sources

6.1 RISC-V interrupt sources

The RISC-V Privileged Architecture Version 1.10 defines 16 generic core-local interrupt
sources.

Of these, 3 address machine mode and are mandatory when implementing the architecture,
while further 6 are mandatory only when their respective privilege level is implemented (i.e.
3 sources with user mode and 3 sources with supervisor mode). The remaining 7 generic
core-local interrupt sources must not be implemented, but are reserved for future use.

In addition to these generic core-local interrupt sources, further core-local interrupt sources
may be implemented with any specific RISC-V platform (up to 16 with RV32I).

Consequently, any RISC-V-compliant platform includes one software interrupt, one timer
interrupt and one external interrupt for each privilege level it implements, as well as a
variable number of platform-specific core-local interrupts.

While the timer interrupt serves interrupt requests generated by any RISC-V platforms’
mandatory real-time counter, the software interrupt, as its name suggests, serves interrupt
requests generated by software.

The external interrupt, on the other hand, is used to serve a variable number of global
interrupts which themselves are managed by a dedicated interrupt controller. Some imple-
mentors of the architecture include core-local interrupt management with the same inter-
rupt controller, but most often core-local interrupt sources are managed locally.

By default, all interrupts (often referred to as "traps”) are served in machine mode.
Although machine mode interrupt service routines could technically redirect interrupts to
the appropriate mode, this currently is not supported with embOS for RISC-V. Neither is
the "Machine Trap Delegation” hardware feature.

6.2 RISC-V interrupt priorities

Multiple simultaneous interrupts at the same privilege level are handled in the following
decreasing priority order: External interrupts, software interrupts, timer interrupts, then
finally any synchronous traps.

External interrupts may further be prioritized by the dedicated interrupt controller depend-
ing on its implementation, while the priority of non-standard core-local interrupt sources
relative to external, timer, and software interrupt sources is platform-specific.

For example, with SiFive’s "RISC-V Coreplex IP”, the platform-specific core-local interrupt
sources take precedence over any other interrupt source and are themselves prioritized
by their index. Considering machine mode only, a comprehensive priority table for that
platform (in decreasing order of priority) would therefore read as follows:

Trap name

Local interrupt 15

Local interrupt 14

Local interrupt 1

Local interrupt 0

Machine external interrupts (with configurable external priority)

Machine software interrupt

Machine timer interrupt

Synchronous trap

6.3 Zero-latency interrupts

Zero-latency interrupts are not supported with the current version of embOS for RISC-V.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

31 CHAPTER 6 RISC-V core-local interrupt modes

6.4 RISC-V core-local interrupt modes

Typically, core-local interrupt handling is performed in direct mode:

In this mode, a RISC-V platform will route all core-local interrupts through a low-level in-
terrupt service routine, which ultimately calls the appropriate high-level interrupt service
routines for the respective core-local interrupt sources. For this purpose, the low-level in-
terrupt service routine’s address needs to be held in the mtvec register, which typically is
set during start-up.

Alternatively, core-local interrupt handling may also be performed in vectored mode:

In this mode, a RISC-V platform will route all core-local interrupts through a properly aligned
vector table containing jumps to the appropriate interrupt service routines for the respective
core-local interrupt sources. For this purpose, the vector table’s base address needs to be
held in the mtvec register, which then typically needs to be set explicitly by the application.
The application then also needs to tell the hardware to utilize vectored mode by setting the
least-significant bit of that register.

Note

In vectored mode, both synchronous exceptions and user mode software interrupts
are ambiguously vectored to the same exception handler.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

32

CHAPTER 6

Interrupt handling with embOS for RISC-V

6.5 Interrupt handling with embOS for RISC-V

Core-local interrupt handling

Addressing core-local interrupt handling, embQOS for RISC-V offers API functions for:
e Generic RISC-V core-local interrupt handling (refer to Core-local interrupt handling on

page 33)

e NucleiSys’ "Enhanced Core-Local Interrupt Controller” (refer to Core-local and global

interrupt handling using ECLIC on page 54)

When using embOS API functions on core-local interrupt sources, these may be specified
using the following enumeration (where missing numerical values indicate reserved core-

local interrupt sources):

Core-local]
interrupt source Numerical value

| RQ_U_SOFTWARE 0

| RQ_S_SOFTWARE 1

| RQ_M_SOFTWARE 3

| RQ_U_TI MER 4

| RQ_S_TI MER 5

| RQ_M_TI MER 7

| RQ_U_EXTERNAL 8

| RQ_S_EXTERNAL 9

| RQ_M_EXTERNAL 11
| RQ LOCALO 16
| RQ_LOCAL1 17
| RQ_LOCAL2 18
| RQ LOCAL3 19
| RQ_LOCAL4 20
| RQ_LOCAL5 21
| RQ_LOCALG 22
| RQ_LOCAL7 23
| RQ_LCCALS 24
| RQ_LOCAL9 25
| RQ_LOCAL10 26
| RQ_LOCAL11 27
| RQ_LOCAL12 28
| RQ_LOCAL13 29
| RQ_LOCAL14 30
| RQ_LOCAL15 31

Global interrupt handling

Addressing global interrupt handling, embOS for RISC-V offers API functions for:
e Generic "RISC-V Platform-Level Interrupt Controller” implementations (refer to Global

interrupt handling using PLIC on page 39)

e [attice’s "Programmable Interrupt Controller” (refer to Global interrupt handling using

PIC on page 45)

e NucleiSys’ "Enhanced Core-Local Interrupt Controller” (refer to Core-local and global

interrupt handling using ECLIC on page 54)

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

33 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1 Core-local interrupt handling

6.5.1.1 Implementing core-local interrupt handlers in "C"

6.5.1.1.1 Low-level interrupt service routine

In direct mode, the individual interrupt service routines for distinct core-local interrupt
sources need to be dispatched by a common low-level service routine. With embOS for
RISC-V, this low-level routine is split into an assembler part called trap_entry(), which
saves and restores the interrupted context, and a "C”-function called OS_Tr apHandl er (),
which performs the actual dispatching of high-level service routines.

In vectored mode, embOS for RISC-V will not calltrap_entry() at all, while GS_Tr apHan-
dl er () is called exclusively to handle synchronous traps and user mode software interrupts
(which ambiguously share the same vector in that mode).

embOS for RISC-V sample projects will typically implement OGS _TrapHandl er () in their
respective RTOSInit*.c as shown in the example below, allowing for customization of that
function. As this exemplary implementation of OS_Tr apHandl er () does not call any embQOS
API functions, it does not need to include a prologue and an epilogue as described in the
generic embOS manual.

Example

#i f (USE_VECTORED_| NT_MODE == 0)
static OS_| RQ HANDLER* _apf | RQHandl er [NUM_LOCAL_| NTERRUPTS] ;
#endi f

OS_REG TYPE OS_TrapHandl er (OS_REG TYPE ntause, OS_REG TYPE nepc) {
if (nmcause & MCAUSE I NT) {
#i f (USE_VECTORED_| NT_MODE == 0)
Il
/1 Caused by interrupt: call appropriate high-1evel handler.
Il
_apf | RQHandl er [ntause & MCAUSE_CAUSE] () ;
#el se
Il
/1 In vectored node, user npde software interrupt anbi guously shares
/1 a vector with synchronous exceptions. |If user node software interrupt
/Il is to be used by the application, its handler could be called here.
Il
_I'SR NotlInstalled();
#endi f
} else {
Il
/'l Caused by synchronous trap: call fault handler.
Il
_Excepti onHandl er (ntause, mepc);
}

return mepc;
}

Note

mepc contains the address of the instruction that was executed when the interrupt
was taken. It must eventually be returned by GS Tr apHandl er () to continue regular
program execution at that address once the interrupt completes.

In case of interrupts, mepc must never be modified by OS TrapHandl er () before
returning it. In case of a synchronous traps, however, mepc can be used to examine
the cause for the trap and to react accordingly (e.g. redirecting program execution
elsewhere).

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

34 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.1.2 High-level interrupt service routines

The individual interrupt service routines for distinct core-local interrupt sources shall include
a prologue and an epilogue as described in the generic embOS manual (both in direct mode
and in vectored mode). A high-level service routine for any core-local interrupt source may
therefore be implemented as shown in the example below.

Example

void I SR _Local O(void) {
CS_INT_Enter();
Il
/'l Performany functionality here.
Il
OS_I NT_Leave();

Note

A CLINT's high-level interrupt service routine for machine external interrupts is, at the
same time, the low-level interrupt service routine for the (external) interrupt controller
(e.g. PLIC).

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

35

CHAPTER 6

6.5.1.2 API functions for core-local interrupt handling

For core-local interrupt handling, embQOS offers the following functions:

Interrupt handling with embOS for RISC-V

Function

Description

urew
jsel Alid
ysel Audun

Sl
lawll MS

OS_CLI NT_d ear I nt Pendi ng()

Clears pending state of the speci-
fied core-local interrupt source.

OS _CLI NT_Di sabl el nt ()

Disables the specified core-local in-
terrupt source.

OS_CLI NT_Enabl el nt ()

Enables the specified core-local in-
terrupt source.

OS_CLI NT_GCet I nt Pendi ng()

Returns the current pending status
of the specified core-local interrupt
source.

OS_CLINT_Init()

Initializes core-local interrupt han-
dling.

OS_CLINT_Instal I'l SR()

Installs the specified interrupt ser-
vice routine in a RAM vector table.

OS_CLI NT_Set | nt Pendi ng()

Sets the specified core-local inter-
rupt source to pending state.

OS_CLI NT_Set Di rect Mode()

Configures core-local interrupt han-
dling to direct mode.

OS_CLI NT_Set Vect or edMode()

Configures core-local interrupt han-
dling to vectored mode.

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

36 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2.1 OS_CLINT_ClearintPending()

Description

OS_CLINT_d earl ntPendi ng() clears pending state of the specified core-local interrupt
source.

Machine external and machine timer interrupt pending bits are read-only. The primary use
of this function therefore is to clear machine software interrupts.

Prototype
voi d OS_CLI NT_d ear | nt Pendi ng(CLI NT_I RQn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the core-local interrupt source by its index.

6.5.1.2.2 OS_CLINT_Disablelnt()

Description

OS_CLI NT_Di sabl el nt () disables the specified core-local interrupt source.

Prototype
voi d OS_CLI NT_Di sabl el nt (CLI NT_I RQn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the core-local interrupt source by its index.

6.5.1.2.3 OS_CLINT_Enablelnt()

Description

OS_CLI NT_Enabl el nt () enables the specified core-local interrupt source.

Prototype
voi d OS_CLI NT_Enabl el nt (CLI NT_I RQn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the core-local interrupt source by its index.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

37 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2.4 OS_CLINT_GetIntPending()

Description

OS_CLI NT_Get I nt Pendi ng() returns the current pending state of the specified core-local
interrupt source.

Prototype
OS_BOOL OS_CLI NT_Get I nt Pendi ng(CLI NT_I Rn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the core-local interrupt source by its index.

Return value

0: Specified interrupt source is not pending.
1: Specified interrupt source is pending.

6.5.1.2.5 OS_CLINT_Init()

Description

OS_CLINT_I nit() initializes core-local interrupt handling.
Must be called prior to OS_Start () and before calling any other OS_CLI NT_* () function.

Prototype
void OS CLINT_Init(0OSs_U8 Num nt er rupt s,
0S_| RQ HANDLER* apf | SR[]);
Parameters
Parameter Description

Number of supported core-local interrupt sources.

Numi nterrupts Requires a minimum of 16 and may not exceed 32 (with RV32I).

Pointer to a RAM vector table base. When using vectored mode or a

apf 1SR ROM vector table in direct mode, this parameter must be NULL.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

38 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.1.2.6 OS_CLINT_InstallISR()

Description

OS CLINT InstalllSR() installs the specified interrupt service routine for the specified
core-local interrupt source in a RAM vector table that was configured via OS_CLINT I nit ().
This function must not be called when using vectored mode or a ROM vector table in direct

mode.
Prototype
OS_| RQ HANDLER* OS_CLINT_Instal | | SR(CLI NT_I RQn | RQ ndex,
OS_| RQ HANDLER* pfl SR);
Parameters
Parameter Description
| RQ ndex Specifies the core-local interrupt source by its index.
pfl SR Pointer to the interrupt service routine to be installed.

Return value

Pointer to the previously installed interrupt service routine.
6.5.1.2.7 OS_CLINT_SetIntPending()

Description

OS_CLI NT_Set I nt Pendi ng() sets the specified core-local interrupt source to pending state.
Machine external and machine timer interrupt pending bits are read-only. The primary use
of this function therefore is to trigger machine software interrupts.

Prototype
voi d OS _CLI NT_Set | nt Pendi ng(CLI NT_I ROn | RQ ndex);
Parameters
Parameter Description
| RQ ndex Specifies the core-local interrupt source by its index.

6.5.1.2.8 OS_CLINT_SetDirectMode()

Description

Configures core-local interrupt handling to direct mode.
Must be called prior to OS_Start ().

Prototype

voi d OS CLI NT_Set Di rect Mode(voi d);
6.5.1.2.9 OS_CLINT_SetVectoredMode()

Description

Configures core-local interrupt handling to vectored mode.
Must be called prior to OS_Start () and expects the vector table to be called vtrap_entry.

Prototype

voi d OS_CLI NT_Set Vect or edMbde(voi d) ;

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

39 CHAPTER 6 Interrupt handling with embOS for RISC-V
6.5.2 Global interrupt handling using PLIC

The generic "RISC-V Platform-Level Interrupt Controller” (PLIC) is defined by the RISC-V
Privileged Architecture Version 1.10.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

40 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.1 Implementing global interrupt handlers in "C"

6.5.2.1.1 Low-level interrupt service routine

The individual interrupt service routines for global interrupt sources need to be dispatched
by a common low-level service routine. Since this low-level service routine needs to call
embOS API functions, it must include a prologue and an epilogue as described in the generic
embOS manual. Typically, embOS for RISC-V sample projects using PIC will implement the
low-level service routine in their respective RTOSInit*.c as shown in the example below.

static OS_| RQ HANDLER* _apf | RQHandl er [PLI C_NUM | NTERRUPTS] ;

void I SR M External (void) {
CS_U32 | RQ ndex;

CS_INT_Enter();

IRQndex = OGS PLIC daimnt(); /1 daimhighest-priority global |IRQ
if (IRQ ndex !'= 0u) { /1 "0" indicates no | RQ was pendi ng.
_apf | RQHandl er [| RQ ndex] () ; /1 Call appropriate handler.
CS PLIC Conpletelnt (I RQ ndex); // Signal interrupt conpletion to PLIC.
}

CS_ I NT_Leave();

Note

A low-level interrupt service routine for the PLIC is, at the same time, the CLINT high-
level interrupt service routine for machine external interrupts.

6.5.2.1.2 High-level interrupt service routines

The individual interrupt service routines for distinct global interrupt sources do not need to
include a prologue and an epilogue as described in the manual, since these were already
included in the low-level service routine. A high-level service routine for any global interrupt
source may therefore be implemented as shown in the example below.

void | SR External _SO(void) {
Il
/1 Performany functionality here.
Il

}

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

41

CHAPTER 6

6.5.2.2 API functions for using PLIC

Interrupt handling with embOS for RISC-V

Function

Description

urew
jsel Alid
ysel Audun

Sl
lawll MS

OS_PLI C_Cl ai mint ()

Retrieves the index of highest-pri-
ority pending global interrupt and
clears pending condition

OS PLI C Conpl etel nt()

Notifies PLIC of ISR completion

OS_PLI C_Di sabl el nt ()

Disables the specified global inter-
rupt source

OS_PLI C Enabl el nt ()

Enables the specified global inter-
rupt source

OS PLIC GetIntPriority()

Returns the current interrupt priori-
ty for the specified interrupt source

OS PLI C Getlnt Threshol d()

Returns the current interrupt priori-
ty threshold

OS PLIC Init()

Configures PLIC base address and
RAM vector table address

OS_PLIC InstalllSR()

Installs an global interrupt handler

OS PLIC SetIntPriority()

Sets the priority of the specified
global interrupt

OS PLI C Setlnt Threshol d()

Configures the IRQ threshold,
masking lower-priority global inter-
rupts

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

42 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2.1 OS_PLIC_Claimint()

Description

OS PLIC Cainmnt() is used to retrieve the ID of the highest-priority pending global in-
terrupt. Clears the corresponding source’s pending bit.

Prototype

0S_U32 OS_PLIC C ai m nt (voi d);

Return value
0S_U32: Interrupt index

6.5.2.2.2 OS_PLIC_Completelnt()

Description
OS_PLI C Conpl etel nt () is used to signal ISR completion to the PLIC.

Prototype
voi d OS_PLI C Conpl etel nt (OS_U32 | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Interrupt index

6.5.2.2.3 OS_PLIC Disablelnt()

Description
OS PLI C Disabl el nt() is used to disable the specified global interrupt.

Prototype
voi d OS _PLI C Disabl el nt(0S_U32 | RQ ndex);
Parameters
Parameter Description
| RQ ndex Interrupt index

6.5.2.2.4 OS_PLIC_Enablelnt()

Description
OS_PLI C Enabl el nt () is used to enable the specified global interrupt.

Prototype
voi d OS_PLI C Enabl el nt (0S_U32 | RQ ndex);
Parameters
Parameter Description
| RQ ndex Interrupt index

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

43 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2.5 OS_PLIC_GetIntPriority()

Description

OS PLIC GetIntPriority() retrieves the current priority for the specified global interrupt
source.

Prototype

OS U32 OS PLIC GetIntPriority(0OS_U32 | RQ ndex);

Parameters

Parameter Description
| RQ ndex Interrupt index

Return value

OS_U32: Current interrupt priority of the specified interrupt source
6.5.2.2.6 OS_PLIC _GetIntThreshold()

Description
OS_PLI C _Get |l nt Threshol d() retrieves the current global interrupt priority threshold.

Prototype

OS_U32 OS_PLIC Getlnt Threshol d(voi d);

Return value
0Ss_U32: Current interrupt priority threshold

6.5.2.2.7 OS_PLIC_Init()

Description
OS PLIC Init() is used to configure the RAM vector table base address for global inter-
rupts.
Prototype
void OS PLIC Init(0OS_U32 BaseAddr,
OS_Ul6 Num nt errupts,
oS _U32 NunPriorities,
OS_| RQ HANDLER* apfl SR[]);
Parameters
Parameter Description
BaseAddr PLIC base address

Num nt errupts | Number of supported global interrupt sources

NunPriorities | Number of supported global interrupt priorities
apfl SR Pointer to RAM vector table base

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

44 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.2.2.8 OS_PLIC_ InstallISR()

Description

OS PLIC Install I SR() is used to install the specified global interrupt handler in the RAM
vector table.

Prototype
OS_| RQ HANDLER* OS_PLIC_ InstalllSR(CS_U32 | RQ ndex,
OS_| RQ HANDLER* pfl SR);
Parameters
Parameter Description
| RQ ndex Interrupt index
pf I SR Address of interrupt handler

Return value
OS | RQ HANDLER* : Address of the previously installed interrupt handler, or NULL if not
applicable.

6.5.2.2.9 OS_PLIC_SetIntPriority()

Description

OS PLIC SetIntPriority() is used to configure the interrupt priority for the specified
global interrupt.

Prototype
CS U32 OS PLIC SetIntPriority(0s_U32 | RQ ndex,
CS U32 Prio);
Parameters
Parameter Description
| RQ ndex Interrupt index
Prio Interrupt priority

Return value

0S_U32: Previous priority which was assigned before
6.5.2.2.10 OS_PLIC_SetIntThreshold()

Description

0S _PLI C Set I nt Threshol d() is used to configure the interrupt priority threshold. All pri-
orities less than or equal to Thr eshol d will be masked.

Prototype
voi d OS_PLI C _Set I nt Threshol d(OS_U32 Threshol d);
Parameters

Parameter Description
Threshol d Desired interrupt priority threshold

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

45 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3 Global interrupt handling using PIC

6.5.3.1 Global interrupt sources

An implementation of Lattice’s "Programmable Interrupt Controller” (PIC) may support a
minimum of 1 and a maximum of 8 global interrupt sources. When using embOS API func-
tions for global interrupt sources, these may be specified using the following enumeration:

Global interrupt source Numerical value
I RQ_SO 0
| RQ_S1 1
| RQ_S2 2
| RQ_S3 3
| RQ 4 4
| RQ_S5 5
| RQ_S6 6
| RQ_S7 7

6.5.3.2 Global interrupt priority

With a PIC implementation, all global interrupt sources are executed at the same priority.
Which interrupt service routine is executed first when several interrupts are pending at the
same time depends on the low-level interrupt service routine.

6.5.3.3 Global interrupt polarity

The polarity of any global interrupt source may be configured using the following enumer-
ation:

PIC interrupt polarity Numerical value
PIC INTPOLARITY HGH |0
Pl C_ I NTPOLARI TY_LOW 1

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

46 CHAPTER 6

6.5.3.4

6.5.3.4.1 Low-level interrupt service routine

Interrupt handling with embOS for RISC-V

Implementing global interrupt handlers in "C"

The individual interrupt service routines for global interrupt sources need to be dispatched
by a common low-level service routine. Since this low-level service routine needs to call
embOS API functions, it must include a prologue and an epilogue as described in the generic
embOS manual. Typically, embOS for RISC-V sample projects using PIC will implement the
low-level service routine in their respective RTOSInit*.c as shown in the example below.

#i f (EXTEND_GLOBAL_I SR_CONTEXT == 0)
static OS_| RQ HANDLER*
#el se

_apf | RQHandl er [Pl C_NUM | NTERRUPTS] ;

static OS_| RQ HANDLER CONTEXT* _apf | RQHandl er [Pl C_NUM | NTERRUPTS] ;

#endi f

void I SR M External (void) {
Pl C_| ROn | RQ ndex;

CS_ INT_Enter();
I

/1 By sequentially serving all pending gl obal

interrupts at once, this

/1 exenplary inplenentation ains at accelerating interrupt handling since

/'l interrupted contexts do not need to be saved and restored repeatedly.

/1l By iterating fromIRQ SO to PIC NUM INTERRUPTS, this exenplary inplenmentation
/1l prioritizes global interrupt sources by their index (in ascending order).

I

for (IRQndex = IRQ SO; I RQ ndex < PI C_NUM | NTERRUPTS; | RQ ndex++) {

if (OS_PIC GetlntPending(l RQ ndex) == 1u) {

#i f (EXTEND _GLOBAL_| SR_CONTEXT == 0)
_apfl RQHandl er[1 RQ ndex] () ;

#el se
_apf 1 RQHandl er [| RQ ndex] - >pf | SR(_apf | RQHandl er [| RQ ndex] - >pCont ext) ;
#endi f
CS_PI C _d earl nt Pendi ng(| RQ ndex) ;
}
}
CS_ I NT_Leave();
}
Note

A low-level interrupt service routine for the PIC is, at the same time, the CLINT high-
level interrupt service routine for machine external interrupts.

6.5.3.4.2 High-level interrupt service routines

The individual interrupt service routines for distinct global interrupt sources do not need to
include a prologue and an epilogue as described in the manual, since these were already
included in the low-level service routine. A high-level service routine for any global interrupt
source may therefore be implemented as shown in the example below.

#1 f (EXTEND_GLOBAL_I| SR_CONTEXT == 0)
void | SR External _SO(void) {
#el se
voi d | SR Ext ernal _SO(voi d* pContext) {
#endi f
Il
/1 Performany functionality here.
Il

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

47

CHAPTER 6

6.5.3.5 API functions for using PIC

Interrupt handling with embOS for RISC-V

Function

Description

urew
jsel Alid
ysel Audun

Sl
lawll MS

OS_PI C O earl nt Pendi ng()

Clears pending state of the speci-
fied global interrupt source.

OS PIC Disablelnt()

Disables the specified global inter-
rupt source.

OS_PI C_Enabl el nt ()

Disables the specified global inter-
rupt source.

OS_PI C _Get I nt Pendi ng()

Returns the current pending sta-
tus of the specified global interrupt
source.

CS PIC GetIntPolarity()

Returns the current polarity of the
specified global interrupt source.

OS PIC Init()

Initializes PIC interrupt handling.

OS_PIC Init_Ex()

Initializes extended PIC interrupt
handling.

OS_PIC InstalllSR()

Installs the specified interrupt ser-
vice routine in a RAM vector table.

OS_PI C_Install I SR_Ex()

Installs the specified extended in-
terrupt service routine in a RAM
vector table.

OS_PI C _Set | nt Pendi ng()

Sets the specified global interrupt
source to pending state.

OS_PIC SetIntPolarity()

Sets the specified polarity for the
specified global interrupt source.

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

48 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.1 OS_PIC ClearIintPending()

Description

OS_PI C _d ear |l nt Pendi ng() clears pending state of the specified global interrupt source.

Prototype
voi d OS_PI C_d earl nt Pendi ng(PlI C_| RQn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.

6.5.3.5.2 OS_PIC_Disablelnt()

Description
OS_PI C Di sabl el nt () disables the specified global interrupt source.

Prototype
void OS _PIC Disablelnt(PlC IR | RQ ndex);
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.

6.5.3.5.3 OS_PIC_Enablelnt()

Description

OS_PI C Enabl el nt () enables the specified global interrupt source.

Prototype
voi d OS_PI C_Enabl el nt (PI C_I| RQn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

49 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.4 OS_PIC_GetIntPending()

Description

OS_PI C _Get I nt Pendi ng() returns the current pending status of the specified global inter-
rupt source.

Prototype
OS_BOOL OS_PI C _Getl nt Pendi ng(Pl C_I| Rn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.

Return value

0: Specified interrupt source is not pending.
1: Specified interrupt source is pending.

6.5.3.5.5 OS_PIC_GetIntPolarity()

Description

OS PIC GetlntPol arity() returns the currently configured polarity of the specified global
interrupt source.

Prototype

PI C_I NTPOLARI TY OS_PI C GetlntPol arity(Pl C_ | RQn | RQ ndex);

Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.

Return value

= OS_PI C_ | NTPOLARI TY_HI GH: Specified interrupt source is configured to active high.
= OS_PI C_| NTPOLARI TY_LOW Specified interrupt source is configured to active low.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

50

CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.6 OS_PIC_Init()

Description
OS _PI C I nit() initializes PIC interrupt handling.

Must not be called when using (OS PIC I nit_Ex(), but must otherwise be called prior to

CS Start () and before calling any other GS_PI C *() function.

Prototype
void OS PIC Init(0S_U32 BaseAddr,
oS U8 Num nt errupts,
OS_| RQ HANDLER* apf | SR[]);
Parameters
Parameter Description
BaseAddr PIC base address.

Number of supported global interrupt sources.

Num nterrupts Requires a minimum of 1 and may not exceed 8.

apfl SR

this parameter must be NULL.

Pointer to a RAM vector table base. When using a ROM vector table,

Example

stati ¢ OS_| RQ HANDLER* _apf | RQHandl er [Pl C_NUM | NTERRUPTS] ;
voi d foo(void) {

OS_PI C I nit (Pl C_BASE_ADDR, Pl C_ NUM | NTERRUPTS, _apfl RQHandl er);
}

6.5.3.5.7 OS_PIC_Init_Ex()

embOS for RISC-V and Embedded Studio

Description
OS_PIC Init_Ex() initializes extended PIC interrupt handling.

Must not be called when using (OS_PI C Init (), but must otherwise be called prior to

0s_Start () and before calling any other GS_PI C *() function.

Prototype
void OS PIC Init_Ex(0S_U32 BaseAddr,
os_ U8 Numl nt errupts,
OS_| RQ HANDLER CONTEXT* apflSR[]);
Parameters
Parameter Description
BaseAddr PIC base address.

Number of supported global interrupt sources.

Num nterrupts Requires a minimum of 1 and may not exceed 8.

apf | SR

vector table, this parameter must be NULL.

Pointer to an extended RAM vector table base. When using a ROM

Example

static OS_| RQ HANDLER CONTEXT* _apf! RQHandl er [Pl C_NUM | NTERRUPTS] ;
voi d foo(void) {

}

OS_PIC Init_Ex(Pl C_BASE_ADDR, Pl C_NUM | NTERRUPTS, _apf| RQHandl er);

© 2017-2022 SEGGER Microcontroller GmbH

51 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.8 OS_PIC_InstallISR()

Description

OGS PIC Installl SR() installs the specified interrupt service routine for the specified global
interrupt source in a RAM vector table that was configured via OGS PIC Init().
This function must not be called when using a ROM vector table.

Prototype
OS_| RQ HANDLER* OS_PIC InstalllSR(PIC | Rn | RQ ndex,
OS_| RQ HANDLER* pfl SR);
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.
pfl SR Pointer to the interrupt service routine to be installed.

Return value

Pointer to the previously installed interrupt service routine.
Example

static void _I SR External 2(void) {
Il
/1 Performany functionality.
Il

}

voi d foo(void) {
(void)GCs PIC Installl SR(IRQ S2, _|ISR External 2);

}

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

52 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.9 OS_PIC_InstalllISR_EXx()

Description

OS PIC Installl SR Ex() installs the specified extended interrupt service routine for
the specified global interrupt source in a RAM vector table that was configured via
CS_ PIC Init_Ex().

This function must not be called when using a ROM vector table.

Prototype

OS_| RQ HANDLER EX* OS_PI C I nstal |l SR _Ex(PlIC | Rn | RQ ndex,
OS_| RQ HANDLER _EX* pfl SR,
voi d* pCont ext) ;

Parameters

Parameter Description
| RQ ndex Specifies the interrupt source by its index.
pfl SR Pointer to the extended interrupt service routine to be installed.
Pointer to the context that should be passed to the interrupt service
pCont ext routine

Return value

Pointer to the previously installed extended interrupt service routine.

Example

static void _I SR External 2(voi d* pContext) {
if (((int)pContext) == 42) {
I
/1l Perform sonme functionality.
I
} else {
I
/1 Perform sonme other functionality.
I
}
}

void foo(void) {
(void)GCs PIC Installl SR Ex(I1RQ S2, _|ISR External 2, (void*)42);
}

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

53 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.3.5.10 OS_PIC_SetIntPending()

Description
OS_PI C_Set I nt Pendi ng() sets the specified global interrupt source to pending state.

Prototype
voi d OS_PI C_Set I nt Pendi ng(PI C_| RQn | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.

6.5.3.5.11 OS_PIC_SetIntPolarity()

Description

OS PIC SetIntPol arity() configures the specified polarity for the specified global inter-
rupt source.

Prototype

void OS PIC SetIntPolarity(PlC_ | R | RQ ndex,
Pl C_I NTPOLARI TY Pol arity);
Parameters
Parameter Description
| RQ ndex Specifies the interrupt source by its index.
: Polarity to configure (PI C_I NTPOLARI TY_HI GH or Pl C_| NTPOLARI -
Pol arity TY_LOW

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

54 CHAPTER 6 Interrupt handling with embOS for RISC-V
6.5.4 Core-local and global interrupt handling using ECLIC

When using NucleiSys’ "Enhanced Core-Local Interrupt Controller” (ECLIC), both core-local
and global interrupt sources are managed by the ECLIC and behave the same way.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

55 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.1 Interrupt levels and priorities

For CLIC interrupt controllers, each interrupt has an 8-bit control register which is used
to specify the interrupt level and priority. Depending on how many of the control bits are
implemented on the device, there can be a maximum of 256 different combinations of
interrupt level and priority for an interrupt. The level is stored on the MSB side of the control
register, while the remaining bits are used for the priority. How many of the available control
bits are used for the interrupt level can be specified. By default, all control bits are used
for the interrupt level. That is, the nhumber of level bits is set to 8.

Interrupt level

Interrupts with higher interrupt level can interrupt interrupts with lower interrupt level,
resulting in interrupt nesting. Furthermore, interrupts can be nested by synchronous ex-
ceptions. The synchronous exception is always taken with the current interrupt level. That
means that interrupts and exceptions with greater interrupt level are able to interrupt an
exception with lower interrupt level.

Interrupt priority

Interrupts with higher priority won’t interrupt interrupts with same interrupt level even
if the current active interrupt has a lower priority. The interrupt priority is used only for
interrupt arbitration if there are two pending interrupts with the same interrupt level.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

56

CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2 API functions for using ECLIC

To handle ECLIC interrupts, embQS offers the following functions:

Function

Description

OS _ECLI C Di sabl el nt()

Disables the specified interrupt source.

OS_ECLI C_Enabl el nt ()

Enables the specified interrupt source.

OS_ECLI C_Get NunLevel Bi t s()

Returns how many bits of the interrupt control reg-
ister are used for the interrupt level.

OS ECLIC GetlIntPriority()

Returns the interrupt control value of the specified
interrupt.

OS_ECLI C_Get | nt Thr eshol d()

Returns the current interrupt level threshold.

OS_ECLIC_I nit()

Initializes the ECLIC interrupt controller.

OS_ECLI C_Set Num_evel Bi ts()

Specifies how many bits of the interrupt control
register shall be used for the interrupt level.

OS ECLIC SetIntPriority()

Sets the interrupt control value of the specified in-
terrupt.

OS_ECLI C _Set I nt Threshol d()

Configures the IRQ threshold, masking lower-level
interrupts.

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

57 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2.1 OS_ECLIC_Disablelnt()

Description
OS_ECLI C Di sabl el nt () disables the specified interrupt.

Prototype
voi d OS_ECLI C_Di sabl el nt (OS_UI NT | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Interrupt index.

6.5.4.2.2 OS_ECLIC_Enablelnt()

Description
OS_ECLI C Enabl el nt () enables the specified interrupt.

Prototype
voi d OS_ECLI C_Enabl el nt (OS_UI NT | RQ ndex) ;
Parameters
Parameter Description
| RQ ndex Interrupt index.

6.5.4.2.3 OS_ECLIC_GetNumLevelBits()

Description

OS_ECLI C Get Nunlevel Bi t s() returns how many bits of the interrupt control register are
used for the interrupt level.

Prototype

OS_U8 OS_ECLI C_Get NunLevel Bi t s(voi d);

Return value

The number of level bits.
6.5.4.2.4 OS_ECLIC_GetIntPriority()

Description
OS ECLIC GetIntPriority() returns the interrupt control value of the specified interrupt.

Prototype
OS U8 OS ECLIC GetlIntPriority(Os_U NT I RQ ndex);
Parameters
Parameter Description
| RQ ndex Interrupt index.

Return value

The interrupt control value containing the interrupt level and priority.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

58 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.25 OS_ECLIC_GetIntThreshold()

Description
OS _ECLI C Get I nt Threshol d() returns the current interrupt level threshold.

Prototype

OS_U8 OS_ECLI C Get | nt Thr eshol d(voi d);

Return value

The current interrupt level threshold.
6.5.4.2.6 OS_ECLIC_Init()

Description
OS_ECLIC I nit() initializes the ECLIC interrupt controller.

Prototype

void OS_ECLIC | nit(voi d* pBaseAddr
voi d* pVector Tabl e,
voi d* pTrapHandl er);

Parameters

Parameter Description

pBaseAddr Base address of the memory mapped ECLIC SFRs.

Address of the vector table containing the ISR handler
addresses. Needs to be at least 64-bit aligned. Align-
ment increases with size of the vector table (See addi-
tional information).

pVect or Tabl e

Address of the synchronous trap handler. Needs to be

pTrapHandl er 64-bit aligned.

Additional information

The vector table address is constrained to be at least 64-byte aligned. This alignment should
be considered when linking the application.

Oto 16 max.

17 to 32 nmax.
33 to 64 nmax.
65 to 128 nax.
129 to 256 max.
257 to 512 max.
513 to 1024 nax.
1025 to 2048 nmax.
2045 to 4096 nax.

nterrupts => 64- byte aligned
nterrupts => 128-byte aligned
nterrupts => 256-byte al i gned
nterrupts => 512-byte aligned
nterrupts => 1024-byte aligned
nterrupts => 2048-byte aligned
nterrupts => 4096-byte aligned
nterrupts => 8192-byte aligned
nterrupts => 16384-byte aligned

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

59 CHAPTER 6 Interrupt handling with embOS for RISC-V

6.5.4.2.7 OS_ECLIC_SetNumLevelBits()

Description

OS_ECLI C Set Nunievel Bi ts() Specifies how many bits of the interrupt control register
shall be used for the interrupt level.

Prototype
voi d OS_ECLI C_Set Nunievel Bits(OS_U3 Numlevel Bits);
Parameters

Parameter Description

Nunlevel Bits Number of level bits that shall be used. Valid value are 0-8.

6.5.4.2.8 OS_ECLIC_SetIntPriority()

Description

OS ECLIC SetIntPriority() sets the interrupt control bits of the specified interrupt. The
interrupt control register consists of two parts: the interrupt level and the interrupt priority,
depending on the number of level bits used. The interrupt level bits are on the MSB side,
while priority bits are on the LSB side. The number of level bits used is by default set to 8,
but can be changed by a call to OS_ECLI C_Set NuniLevel Bi ts() .

Prototype

void OS ECLIC SetIntPriority(OS_U NT | RQ ndex,
Os_us InterruptPriority);

Parameters

Parameter Description

| RQ ndex Interrupt index.

InterruptPri-

ority Interrupt level and priority.

6.5.4.2.9 OS _ECLIC_SetIntThreshold()

Description

OS_ECLI C Set I nt Threshol d() configures the IRQ threshold, masking lower-level inter-
rupts.

Prototype
voi d OS_ECLI C _Set | nt Threshol d(CS_U8 Threshol d);

Parameters

Parameter Description
Thr eshol d Desired interrupt priority threshold.
Example

For a device with 5 implemented control bits it is possible to use 25=32 different values for
interrupt priority arbitration. If the number of level bits is set to 3, 8 levels and 4 priorities
can be used. In order to set an interrupt to level 7 and priority 2, the value ((7 << (5 -
3)) | 2) = 30 has to be passed as interrupt priority.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

60 CHAPTER 6 Interrupt-stack switching

6.6 Interrupt-stack switching

embOS for RISC-V offers API functions for interrupt stack switching. Please refer to chapter
Interrupt stack on page 28 for more information.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

Chapter 7
RTT and SystemView

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

62 CHAPTER 7 SEGGER Real Time Transfer

7.1 SEGGER Real Time Transfer

With SEGGER'’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

7.2 SEGGER SystemView

SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVI EW Conf () on the target microcontroller.
This call is performed within OS_| ni t H\{) of the respective RTCSI nit *. ¢ file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGCGER_SYSVI EW Conf () call, the SEGGER_SYSVI EW h include directive as well as any other
reference to SEGGER_SYSVI EW * like SEGGER_SYSVI EW Ti ckCnt .

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that GS_TI ME_Confi gSysTi mer () was called before SEGGER SYSVI EW St art ()
is called or the SystemView PC application is started.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 8
embOS Thread Script

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

64 CHAPTER 8 Introduction

8.1 Introduction

A thread script is included with every board support package shipped with embOS. This
script may be used to display various information about the system, the tasks and created
embOS objects like timers, mailboxes, queues, semaphores, memory pools, events and
watchdogs.

When creating a custom project, the thread script may be added to the respective project’s
options (“ Debug” -> “Debugger” -> “Threads Script File").

8.2 Howto useit

To enable the threads window, click on View in the menu bar and choose the option Threads
in the sub-menu More Debug W ndows. Alternatively, the threads window may also be
enabled by pressing [Ctr]l + At + H . The object lists and system information within
the threads window can be enabled or disabled via the Show Li sts dropdown menu. The
threads window gets updated every time the application is halted. It should closely resemble
the screenshot below:

a=a -

@ Reload Script () Refresh E: Shaow Lists (= Edit Script

Priority | Id MName Status Timeout | Stack Info Run Count | Time Slice | Task Events

100 0x20000054 HP Task Delayed 10 (20) 196 /512 @ 0x200000B0 2 0/2 0x0

75 0x200002B0 MP Task Delayed 111} 192 /512 @ 0x2000030C 2 0/2 0x0

65 0x20000768 Eval Task Executing 168 /512 @ 0x200007C4 1 0/2 0x0

50 0x2000050C LP Task Ready 252 /512 @ 0x20000568 3 0/2 0x0

[0x20000B90 Background Task 5 Waiting for message in Mailbox 0x20001 265 (Mailbox 1) 176 /256 @ 0x200010EC 1 0/2 0x0

5 0x20000B34 Background Task 4 Waiting for message in Queue 0x20001324 (Queue 0) 176 /256 @ 0x20000FEC 1 0/2 0xd

4 0x20000AD8 Background Task 3 Waiting for Event Object 0520001410 (Event 0} 168 / 256 @ 0x20000EEC 1 0/2 0x0

3 0x20000A7C Background Task 2 Waiting for Memory Pool 0x200013D4 (MemPool 0) 168 /256 @ 0x20000DEC 1 0/2 0x0

2 0x20000A420 Background Task 1 Waiting for Semaphore 0x200013B3 (Semaphore 0} 168 /256 @ 0x20000CEC 1 0/2 0x0

1 0x200009C4 Background Task 0 Waiting for Mutex 0x2000122C (Mutex 0) 168 /256 @ 0x20000BEC 1 0/2 0x0
Id(Timers) Mame Hook Timeout | Period
0x200011EC Timerlong Ow675 [_Timerlong_Callback] 190 (200) 200
0x2000120C TimerShort 0x891 [_TimerShort_Callback) 10 (20] 20
Id[Mailboxes) Mame Messages |Message Size | Buffer Address | Waiting Tasks In Use
0x2000124C Mailbox 0 1/5 8 0x20001273 False
0x200012B5 Mailbox1 0/8 g 0x200012E4 0x20000B90 (Background Task 5] False
Id[Queues) Mame Messages |Buffer Address | Buffer Size | Waiting Tasks
020001324 Queued 0 0x20001358 E 0x20000B34 (Background Task 4]
Id[Mutexes) MName Cwner Use Counter | Waiting Tasks
0x2000122C Mutex 0 0x200002B0 [MP Task) 2 0x200009C4 (Background Task 0)
0x20001EED 0
Id[Semaphores) Mame Count | Waiting Tasks
0x200013B5 Semaphored 0 0x20000A20 (Background Task 1)
Id[{Memory Pools) Mame Total Blocks | Block Size | Max. Usage | Buffer Address | Waiting Tasks
0x200013D4 MemPoolO 03 4 3 0x20001404 0x20000A7C (Background Task 2)
Id[Event Objects) MName Signaled | Reset Mode | Mask Mode | Waiting Tasks
020001410 Event0 0xD Semiauto OR Logic 0x20000ADS [Background Task 3)
Id(Watchdogs) MName Timeout Period
0x20001435 WatchdogHP 250 [280] 250
0x20001450 WatchdogMP 500 (510) 500
0x20001463 WatchdoglLP 740 (750) 750
0%20001430 WatchdogEval 1000 (1010} 1000
System Information Value
Active Task 0x20000765 (Eval Task]
Current Task 0x200007658 (Eval Task)
emb 5 Build Drebug + Profiling [DF)
emb OS5 Version 5.00a
System Status KL
System Time 10

Some of this information is available in debug builds of embOS only. Using other builds,
the respective entries will show “n. a.” to indicate this.

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

65 CHAPTER 8

8.2.1 Task List

Priority | Id MName Status
100 0x20000054 HP Task Delayed
75 0x200002B0 MP Task Delayed
65 0x20000768 Eval Task Executing
50 0x2000050C LP Task Ready

[0x20000E90 Background Task 5 Waiting for message in Mailbox 0x20001 265 (Mailbox 1)
5 0x20000B34 Background Task 4 Waiting for message in Queue 0x20001324 (Queue 0)

4 0x20000AD8 Background Task3 Waiting for Event Object 0x20001410 (Event 0}

3 0x20000A7C Background Task 2 Waiting for Memory Pool 0x200013D4 (MemPool 0)

2 0x20000420 Background Task1l Waiting for Semaphore 0x200013E68 (Semaphore 0]

1 0x200009C4 Background Task 0 Waiting for Mutex 0x2000122C (Mutex 0)

How to use it

Timeout | Stack Info Run Count | Time Slice | Task Events
10 (20) 196 /512 @ 0x200000B0 2 0/2 0x0
111} 192 /512 @ 0x2000030C 2 0/2 i)

168 /512 @ 0x200007C4 1 0/2 0x0

252 /512 @ 020000568 3 0/2 0x0

176 /256 @ 0x200010EC 1 0/2 00

176 /256 @ 0x20000FEC 1 0/2 0D

168 / 256 @ 0x20000EEC 1 0/2 00

168 /256 @ 0x20000DEC 1 0/2 0x0

168 /256 @ 0x20000CEC 1 0/2 0xd

168 /256 @ 0x20000BEC 1 0/2 0x0

The task list displays various information about the running tasks:

> “Thread Maxi muni).

embOS for RISC-V and Embedded Studio

Column Description
Priority This is the priority of the task
Id The address of a tasks task control block
Name The name of the task
Status The current status of the task
Timeout Time in ms till the task gets called again
Shows the maximum usage (left) of the total stack for this task
Stack Info . .
(right) in bytes
Shows how many times the task has been started since the last
Run Count
reset
. . Show the number of remaining and maximum time slices if round
Time Slice . L .
robin scheduling is available
Task Events Show the event mask of a task
Note

By default the thread script is limited to display a total of 25 tasks only. This limit
may be changed inside the respective project’s options (“ Debug” -> “Debugger”

© 2017-2022 SEGGER Microcontroller GmbH

66 CHAPTER 8 How to use it

8.2.2 Task sensitivity

In addition to the information displayed in the threads list, the threads script furthermore
allows for the investigation of the register contents and the call stack of inactive tasks. To
display this information, double click the entry of the respective task in the threads window.
The register window and the call stack window will subsequently be updated to display
information about the chosen task’s state. To view this information, the call stack and the
register window have to be enabled.

After double clicking the inactive task, the call stack window shows the last function that
has been called by this task:

Also, the register window gets updated and shows the register contents of the inactive task:

Id(Timers) Mame Hook Timeout | Period
0x200011EC Timerlong Owd75 [_Timerlong_Callback] 190 (200) 200
0x2000120C TimerShort 0w691 [_TimerShort_Callback] 10 (20) 20

The timers list displays various information about active timers:

Column Description
Id(Timers) The timer’s address
Name If available, the respective object identifier is shown here
Hook The function address that is called after the timeout
. The time delay and the point in time, when the timer finishes
Timeout .
waiting
Period The time period the timer runs
8.2.4 Mailboxes
Id[Mailboxes) Mame Messages |Message Size | Buffer Address | Waiting Tasks In Use
0x2000124C Mailbox0 1/5 g 0x20001278 False
0x200012B5 Mailbox1 0/8 g 0x200012E4 0x20000B90 (Background Task 5] False

The mailboxes list displays various information about used mailboxes:

Column Description
Id(Mailboxes) The mailbox’s address
Name If available, the respective object identifier is shown here
The number of messages in a mailbox and the maximum number
Messages .
of messages the mailbox can hold
Message Size The size of an individual message in bytes
Buffer Address The message buffer address

The list of tasks that are waiting for the mailbox (address and, if

Waiting Tasks available, name)

Id[Queues) Mame Messages | Buffer Address | Buffer Size | Waiting Tasks
020001324 Queued 0 0x20001358 T 0x20000E34 (Background Task 4)

The queues list displays various information about used queues:

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

67 CHAPTER 8 How to use it

Column Description
Id(Queues) The queue’s address
Name If available, the respective object identifier is shown here
Messages The number of messages in a queue
Buffer Address The message buffer address
Buffer Size The size of the message buffer in bytes
Waiting Tasks gc;illésglglfrgg?:)that are waiting for the queue (address and, if

8.2.6 Mutexes

Id[Mutexes) Mame Owner Use Counter | Waiting Tasks
0x2000122C Mutex 0 0x200002B0 [MP Task) 2 0x200009C4 (Background Task 0)
0x20001EED 0

The mutexes list displays various information about used mutexes:

Column Description
Id(Mutexes) The mutexes’ address
Name If available, the respective object identifier is shown here
Owner The address and name of the owner task
Use Counter Counts the number of times the mutex was claimed
. The list of tasks that are waiting for the mutex (address and, if
Waiting Tasks)
available, name)

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

68

CHAPTER 8 How to use it

8.2.7 Semaphores

Id{Semaphaores)
0x200013B3

Mame Count | Waiting Tasks
Semaphore 0 0 0x20000A20 (Background Task 1)

The semaphores list displays various information about used semaphores:

Column Description
Id(Semaphores) The semaphores’ address
Name If available, the respective object identifier is shown here
Count Counts how often this semaphore can be claimed

Waiting Tasks

The list of tasks that are waiting for the semaphore (address and,
if available, name)

8.2.8 Readers-writer lock

The readers-writer lock list displays various information about used readers-writer locks:

Column Description
Id(RW Lock) The readers-writer locks address
Name If available, the respective object identifier is shown here
Status If all tokens are taken the readers-writer lock is locked. Other-

wise it is unlocked.

Max. number of to-
kens

The maximum numbers of token which were defined when the
readers-writer lock was created.

Tokens left

The number of available tokens.

8.2.9 Memory Pools

embOS for RISC-V and Embedded Studio

Id{Memary Poals)
0x20001304

Mame Total Blocks | Block Size | Max, Usage | Buffer Address | Waiting Tasks
MemPoolO 03 4 3 0x20001404 0x20000A7 C (Background Task 2)

The memory pools list displays various information about used memory pools:

Column

Description

Id(Memory Pools)

The memory pool’s address

Name If available, the respective object identifier is shown here
Total Blocks Shows the available blocks and the maximal number of blocks
Block Size Shows the size of a single memory block

Shows the maximal count of blocks which were simultaneously
Max. Usage

allocated
Buffer Address The address of the memory pool buffer

Waiting Tasks

The list of tasks that are waiting for free memory blocks (address
and, if available, name)

© 2017-2022 SEGGER Microcontroller GmbH

69

CHAPTER 8 How to use it

8.2.10 Event Objects

Id[Event Ohbjects)
0x20001410

MName Signaled | Reset Mode | Mask Mode | Waiting Tasks
Eventd 0w Semiauto OR Logic 0x20000ADE [Background Task 3)

The event objects list displays various information about used event objects:

Column

Description

Id(Event Objects)

The event object’s address

Name If available, the respective object identifier is shown here
. The hexadecimal value of the bit mask containing the signaled
Signaled .
event bits
Reset Mode The event object’s reset mode
Mask Mode The current mask mode indicating whether OR or AND logic is

used to check if a task shall resume

Waiting Tasks

The list of tasks that are waiting for the event object (address
and, if available, name)

8.2.11 Watchdogs

Id(Watchdogs)
020001438
0x20001450
020001465
020001450

MName Timeout Period
WatchdogHP (260] 250
WatchdoghP 500
WatchdoglLP] 750
WatchdogEval 1000 (1010) 1000

The watchdogs list displays various information about used watchdogs:

Column Description
Id(Watchdogs) The watchdog’s address
Name If available, the respective object identifier is shown here
Timeout The remaining time (and the system time in parentheses) until
the watchdog has to be fed
Period The period in which the watchdog has to be fed

8.2.12 System Information

The system information list displays various information about embOS.

System Information
Active Task
Current Task

emb O35 Build

emb OS5 Version
System Status
System Time

embOS for RISC-V and Embedded Studio

Drebug + Profiling [DF)
5.00a

QK

10

© 2017-2022 SEGGER Microcontroller GmbH

Chapter 9

Technical data

embOS for RISC-V and Embedded Studio © 2017-2022 SEGGER Microcontroller GmbH

71

9.1 Resource Usage

CHAPTER 9

Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS

library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~2000 bytes
embOS kernel RAM ~136 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLocks RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for RISC-V and Embedded Studio

© 2017-2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Interrupt and thread safety
	Thread-Local Storage TLS
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	RISC-V privilege levels
	RISC-V harts
	API functions for hart identification
	OS_GetHartID()

	Stacks
	Task stack for RISC-V
	System stack for RISC-V
	Interrupt stack

	Interrupts
	RISC-V interrupt sources
	RISC-V interrupt priorities
	Zero-latency interrupts
	RISC-V core-local interrupt modes
	Interrupt handling with embOS for RISC-V
	Core-local interrupt handling
	Implementing core-local interrupt handlers in "C"
	Low-level interrupt service routine
	High-level interrupt service routines

	API functions for core-local interrupt handling
	OS_CLINT_ClearIntPending()
	OS_CLINT_DisableInt()
	OS_CLINT_EnableInt()
	OS_CLINT_GetIntPending()
	OS_CLINT_Init()
	OS_CLINT_InstallISR()
	OS_CLINT_SetIntPending()
	OS_CLINT_SetDirectMode()
	OS_CLINT_SetVectoredMode()

	Global interrupt handling using PLIC
	Implementing global interrupt handlers in "C"
	Low-level interrupt service routine
	High-level interrupt service routines

	API functions for using PLIC
	OS_PLIC_ClaimInt()
	OS_PLIC_CompleteInt()
	OS_PLIC_DisableInt()
	OS_PLIC_EnableInt()
	OS_PLIC_GetIntPriority()
	OS_PLIC_GetIntThreshold()
	OS_PLIC_Init()
	OS_PLIC_InstallISR()
	OS_PLIC_SetIntPriority()
	OS_PLIC_SetIntThreshold()

	Global interrupt handling using PIC
	Global interrupt sources
	Global interrupt priority
	Global interrupt polarity
	Implementing global interrupt handlers in "C"
	Low-level interrupt service routine
	High-level interrupt service routines

	API functions for using PIC
	OS_PIC_ClearIntPending()
	OS_PIC_DisableInt()
	OS_PIC_EnableInt()
	OS_PIC_GetIntPending()
	OS_PIC_GetIntPolarity()
	OS_PIC_Init()
	OS_PIC_Init_Ex()
	OS_PIC_InstallISR()
	OS_PIC_InstallISR_Ex()
	OS_PIC_SetIntPending()
	OS_PIC_SetIntPolarity()

	Core-local and global interrupt handling using ECLIC
	Interrupt levels and priorities
	API functions for using ECLIC
	OS_ECLIC_DisableInt()
	OS_ECLIC_EnableInt()
	OS_ECLIC_GetNumLevelBits()
	OS_ECLIC_GetIntPriority()
	OS_ECLIC_GetIntThreshold()
	OS_ECLIC_Init()
	OS_ECLIC_SetNumLevelBits()
	OS_ECLIC_SetIntPriority()
	OS_ECLIC_SetIntThreshold()

	Interrupt-stack switching

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	embOS Thread Script
	Introduction
	How to use it
	Task List
	Task sensitivity
	Timers
	Mailboxes
	Queues
	Mutexes
	Semaphores
	Readers-writer lock
	Memory Pools
	Event Objects
	Watchdogs
	System Information

	Technical data
	Resource Usage

