
embOS
Real-Time Operating System

CPU & Compiler specifics
for Renesas RH850 and IAR

Document: UM01066
Software Version: 5.04

Revision: 0
Date: September 25, 2018

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2018 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com
Internet: www.segger.com

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: September 25, 2018

Software Revision Date By Description

5.04 0 180925 TS New software version.

4.24 0 160805 MC Initial version.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

4

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

6

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..8

1.1 Installation ..9
1.2 First Steps .. 10
1.3 The example application OS_StartLEDBlink.c ... 11
1.4 Stepping through the sample application ...12

2 Build your own application ..16

2.1 Introduction ...17
2.2 Required files for an embOS ..17
2.3 Change library mode .. 17
2.4 Select another CPU .. 17

3 Libraries ...18

3.1 Naming conventions for prebuilt libraries .. 19

4 CPU and compiler specifics ..20

4.1 CPU modes ... 21
4.2 Standard system libraries ..22
4.3 Thread-safe system libraries ..22
4.4 Thread-Local Storage TLS ... 23

5 Stacks ... 25

5.1 Task stack ...26
5.2 System stack ...26
5.3 Interrupt stack .. 26

6 Interrupts ... 27

6.1 What happens when an interrupt occurs? ..28
6.2 Defining interrupt handlers in C ...28
6.3 Interrupt vector table ... 28
6.4 Interrupt-stack switching .. 29
6.5 Interrupt nesting ..29

7 Technical data ...32

7.1 Memory requirements ...33

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

This chapter describes how to start with and use embOS. You should follow these steps to
become familiar with embOS.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find a lot of prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 10.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

12 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen shot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can there fore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the 50 system tick delay.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

This chapter provides all information to set up your own embOS project.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

17 CHAPTER 2 Introduction

2.1 Introduction
To build your own application, you should always start with one of the supplied sample
workspaces and projects. Therefore, select an embOS workspace as described in chapter
First Steps on page 10 and modify the project to fit your needs. Using an embOS start
project as starting point has the advantage that all necessary files are included and all
settings for the project are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from subfolder Inc\.

This header file declares all embOS API functions and data types and has to be included
in any source file using embOS functions.

• RTOSInit*.c from one target specific BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt and optional communication for embOSView via UART or
JTAG.

• OS_Error.c from one target specific subfolder BoardSupport\<Manufacturer>\<MCU>.
The error handler is used if any debug library is used in your project.

• One embOS library from the subfolder Lib\.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should use an embOS debug library. For your final application you may
wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/ or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the BoardSupport\ folder.
To select a CPU which is already supported, just select the appropriate workspace from a
CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), OS_COM_Init(), the interrupt service routines for embOS system timer tick and com-
munication to embOSView and the low level initialization.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 3

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

19 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of the fol-
lowing features:
• Alignment of double and long long data types - Alignment
• Size of double type - Size_of_double
• Data model - Data_Model
• Short adressing - Short_Addressing

The libraries are named as follows:

os<CPU><Code_Model><Alignment><Lib_Config><Core><Size_of_double><FPU><Da-
ta_Model><Short_adressing>_<Libmode>.a

Parameter Meaning Values

CPU Specifies the CPU variant. 85: RH850 microcontroller

Code_Model

Specifies the code model. Code
models are not supported by the
compiler, this part of the library
name is for forward compatibility
only.

n: none

Alignment
Specifies the alignment of double
and long long data types.

4: 4-byte alignment
8: 8-byte alignment

Lib_Config Specifies the library configuration. n: Normal

Core Specifies the core variant. 5: RH850 core

Size_of_double
Specifies the size of double data
type.

f: 32 bits
d: 64 bits

FPU Specifies the FPU support. : no FPU

Data_Model Specifies the data model.
s: small
m: medium
l: large

Short_adressing
Specifies the usage of short ad-
dressing.

s: short addressing
n: no short addressing

Libmode Specifies the library mode.

XR: Extreme Release
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + trace

Example

os85n8n5dsn_DP.a is the library for a project using 8-byte alignment, 64-bit doubles, and
small data model without short addressing with debug and profiling support.

os85n4n5fss_DP.a is the library for a project using 4-byte alignment, 32-bit doubles, and
small data model with short addressing with debug and profiling support.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

21 CHAPTER 4 CPU modes

4.1 CPU modes
embOS for RH850 and IAR supports small, medium and large data models with and without
short addressing. Tiny data model is currently not supported.

The IAR compiler provides a set of extended keywords which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects:

Keyword
Default in

data model
Address range

__near Tiny Â± 32 KBytes of memory around 0x0.

__brel Small
64 KBytes anywhere in RAM and 64 KBytes any-
where in ROM.

__brel23 Medium 8 MBytes in RAM and 8 MBytes in ROM.
__huge Large Full memory.

__saddr ---

EP to EP + 255 Bytes (EP = Element pointer, an
alias for register R30). Objects that can be accessed
using byte access can only occupy 128 of these
bytes. If the variable data contains an unsigned
char or unsigned short, only the first 32 bytes
can be accessed. Due to the above limitations,
short addressing is never used for embOS data ob-
jects, but may still be used by the application.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

22 CHAPTER 4 Standard system libraries

4.2 Standard system libraries
embOS for RH850 and IAR may be used with IAR standard libraries.

If non thread-safe functions are used from different tasks, embOS functions may be used
to encapsulate these functions and guarantee mutual exclusion.

The system libraries from the IAR Embedded Workbench come with built-in hook functions,
which enable thread safe calls of all system functions automatically when supported by the
operating system.

embOS compiled for IAR Embedded Workbench is prepared to use these hook functions.
Adding source code modules which are delivered with embOS activates the automatic
thread locking functionality of the new IAR DLib.

4.3 Thread-safe system libraries
Using embOS with C++ projects and file operations or just normal call of heap management
functions may require thread-safe system libraries if these functions are called from dif-
ferent tasks. Thread-safe system libraries require some locking mechanism which is RTOS
specific.

To activate thread safe system library functionality, special source modules delivered with
embOS have to be included in the project.

To enable the automatic thread safe locking functions, the source module xmtx.c which is
included in every CPU specific Setup folder of the embOS shipment has to be included in
the project and the function OS_INIT_SYS_LOCKS() must be called. Additionally the option
“Enable thread support in library” must be set in “Project>Options>General Op-
tions>Library Configuration”.

To support thread safe file i/o functionality, the source module xmtx2.c has to be added.
To support C++ dynamic lock functionality, the source module xmtx3.c has to be added.

The embOS libraries come with all code required to automatically handle the thread safe
system libraries when the source module xmtx.c, xmtx2.c and xmtx3.c from the embOS
shipment are included in the project.

Note that thread safe system library, file i/o and C++ dynamic lock support is required
only, when non thread safe functions are called from multiple tasks, or thread local storage
is used in multiple tasks.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

23 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS
The dlib of EWRH850 supports usage of thread-local storage. Several library objects and
functions need local variables which have to be unique to a thread. Thread-local storage
will be required when these functions are called from multiple threads.

embOS for RH850 is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS sepa- rately for every task.

Only tasks that call functions using TLS need to activate the TLS by calling an initial- ization
function when the task is started.

The IAR runtime environment allocates the TLS memory on the heap. Using TLS with mul-
tiple tasks shall therefore use thread safe system library functionality which is automatically
enabled when the xmtx.c module from the embOS distribution is added to the project.

Library objects that need thread-local storage when used in multiple tasks are:
• error functions -- errno, strerror.
• locale functions -- localeconv, setlocale.
• time functions -- asctime, localtime, gmtime, mktime.
• multibyte functions -- mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions -- rand, srand.
• etc functions -- atexit, strtok.
• C++ exception engine.

4.4.1 OS_TASK_SetContextExtensionTLS()

Description

OS_TASK_SetContextExtensionTLS() may be called from a task to initialize and use
Thread-local storage.

Prototype

void OS_TASK_SetContextExtensionTLS(void);

Additional information

OS_TASK_SetContextExtensionTLS() shall be the first function called from a task when
TLS should be used in the specific task. The function must not be called multiple times
from one task. The thread-local storage is allocated on the heap. To ensure thread safe
heap management, the thread safe system library functionality shall also be enabled when
using TLS.

Thread safe system library calls are automatically enabled when the source module xmtx.c
which is delivered with embOS in the BSP Setup folders is included in the project.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TASK_SetContextExtensionTLS();
 while (1) {
 errno = 42; // errno specific to HPTask
 OS_TASK_Delay(50);
 }

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

24 CHAPTER 4 Thread-Local Storage TLS

}

static void LPTask(void) {
 OS_TASK_SetContextExtensionTLS();
 while (1) {
 errno = 1; // errno specific to LPTask
 OS_TASK_Delay(200);
 }
}

int main(void) {
 errno = 0; // errno not specific to any task
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 5

Stacks

This chapter describes how embOS uses the different stacks of the RH850 CPU.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

26 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

The minimum basic task stack size is about 56 bytes. Because any function call uses some
amount of stack and every exception may push additional bytes onto the current stack,
the task stack size has to be large enough to handle one exception too. We recommend
at least 256 bytes stack as a start.

5.2 System stack
The minimum system stack size required by embOS is about 136 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software-timers and C-level
interrupt handlers may also use the system-stack, the actual stack requirements depend
on the application.

The size of the system stack can be changed by modifying the project settings. We recom-
mend a minimum stack size of 256 bytes for the CSTACK.

5.3 Interrupt stack
RH850 CPUs do not support a separate hardware interrupt stack. All interrupts primarily
run on the current stack. To reduce task stack load by interrupts, embOS may use the
system stack as interrupt stack. Interrupt handlers should use OS_INT_EnterIntStack()
and OS_INT_LeaveIntStack() to switch to the interrupt stack. Only the first level interrupt
will use some amount of task stack in this case. Please also refer to chapter Interrupts
on page 27.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

28 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request.
• As soon as the interrupts are enabled and the processors interrupt priority level is below

the current interrupt priority level of the interrupting source, the interrupt is accepted
and executed.

• The CPU calculates the exception handler address according to the current PSW value.
• The CPU saves the current PC in the EIPC register.
• The CPU saves the current PSW in the EIPSW register.
• An exception is written into EEIC and PSW is updated.
• The calculated exception handler address is stored in the PC register.
• Further interrupts are disabled, the PSW.EP bit is cleared.
• The exception handler is executed.
• ISR: Save registers.
• ISR: User-defined functionality.
• ISR: Restore registers.
• ISR: Execute the EIRET command, restoring the saved PSW and PC, thus continuing

the interrupted program.

6.2 Defining interrupt handlers in C
Routines defined with the keyword __interrupt automatically save & restore the registers
they modify and return with EIRET.

The corresponding interrupt vector number or according interrupt vector name may be
defined by a #pragma directive prior the interrupt service routine. For a detailed description
on how to define an interrupt routine in “C”, refer to the IAR C/C++ Development Guide
for the Renesas RH850 family.

Example

Simple interrupt routine:

#pragma vector=INTRLIN30UR0_vector
__interrupt void RLIN30_TX_Handler(void) {
 SendNextChar();
}

Interrupt routine using embOS functions:

#pragma vector=INTOSTM0_vector
__interrupt void _Systick(void) {
 OS_INT_EnterNestable(); // Inform embOS about ISR and enable interrupts.
 OS_INT_EnterIntStack(); // Use interrupt stack.
 OS_HandleTick();
 OS_INT_LeaveIntStack(); // Leave interrupt stack.
 OS_INT_LeaveNestable(); // Inform embOS about return from ISR.
}

6.3 Interrupt vector table
The IAR toolchain automatically generates the interrupt vector table, which by default is
populated with a default interrupt handler that calls the abort function. For each interrupt
source that has no explicit interrupt service routine, the default interrupt handler will be
called. If you write your own service routine for a specific vector, that routine will override
the default interrupt handler. The interrupt vector number has to be assigned to the inter-
rupt handler function by a #pragma vector declaration right in front of the interrupt handler
function in the source code. The header file iodevice.h, where device corresponds to the
selected device, contains predefined names for the existing interrupt vectors. The embOS

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

29 CHAPTER 6 Interrupt-stack switching

timer interrupt handler is located in the in the source code file RTOSInit_*.c. With the
RH850 microcontroller, the reset vector always starts at address 0x0, which is the base for
the exception vectors pointed to by the RBASE system register. The interrupt vector base
is pointed to by the system register INTBP. The exception vector can be moved and is then
pointed to by the system register EBASE.

6.4 Interrupt-stack switching
Since the RH850 CPUs do not have a separate stack pointer for interrupts, every interrupt
runs on the current stack. To reduce stack load of tasks, embOS offers its own interrupt
stack which is located in the system stack.

To use embOS interrupt stack, call OS_INT_EnterIntStack() at the beginning of an inter-
rupt handler just after the call of the embOS ISR entry function OS_INT_Enter() or OS_IN-
T_EnterNestable(), and OS_INT_LeaveIntStack() at the end just before calling OS_IN-
T_LeaveNestable() or OS_INT_Leave().

An interrupt handler using interrupt stack switching must not use local variables. An inter-
rupt handler using interrupt stack switching shall call a function that does the work and
handles the interrupt.

Interrupt stack switching is efficient when using multiple nestable interrupts with different
priorities, because only the first interruptible interrupt will store some registers onto the
current stack, before switching to the embOS interrupt stack. All additional interrupts with
higher priority run on the interrupt stack as long as the interrupt stack is active.

6.5 Interrupt nesting
The RH850 CPU uses a priority controlled interrupt scheduling which allows nesting of in-
terrupts per default. Any interrupt or exception with a higher preemption priority may in-
terrupt an interrupt handler running on a lower preemption priority. An interrupt handler
calling embOS functions has to start with an embOS prolog function: it informs embOS that
an interrupt handler is running. For any interrupt handler, the user may decide individually
whether this interrupt handler may be preempted or not by choosing the prolog function.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

30 CHAPTER 6 Interrupt nesting

6.5.1 OS_INT_Enter()

Description

OS_INT_Enter() disables nesting.

Prototype

void OS_INT_Enter(void);

Additional information

OS_INT_Enter() has to be used as prolog function, when the interrupt handler should
not be preempted by any other interrupt handler. An interrupt handler that starts with
OS_INT_Enter() has to end with the epilog function OS_INT_Leave().

Example

Interrupt-routine that can not be preempted by other interrupts.

#pragma vector=INTOSTM0_vector
__interrupt void _Systick(void) {
 OS_INT_Enter(); // Inform embOS that interrupt code is running
 OS_INT_EnterIntStack(); // Use interrupt stack.
 OS_HandleTick(); // Can not be interrupted by higher priority interrupts
 OS_INT_LeaveIntStack(); // Leave interrupt stack.
 OS_INT_Leave(); // Inform embOS that interrupt handler is left
}

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

31 CHAPTER 6 Interrupt nesting

6.5.2 OS_INT_EnterNestable()

Description

OS_INT_EnterNestable() enables nesting.

Prototype

void OS_INT_EnterNestable(void);

Additional information

OS_INT_EnterNestable(), allow nesting. OS_INT_EnterNestable() may be used as pro-
log function, when the interrupt handler may be preempted by any other interrupt handler
that runs on a higher interrupt priority. An interrupt handler that starts with OS_INT_En-
terNestable() has to end with the epilog function OS_INT_LeaveNestable().

Example

Interrupt-routine that can be preempted by other interrupts.

#pragma vector=INTOSTM0_vector
__interrupt void _Systick(void) {
 OS_INT_EnterNestable(); // Inform embOS that interrupt code is running
 OS_INT_EnterIntStack(); // Use interrupt stack.
 OS_HandleTick();
 // Can be interrupted by higher priority interrupts
 OS_INT_LeaveIntStack(); // Leave interrupt stack.
 OS_INT_LeaveNestable(); // Inform embOS that interrupt handler is left
}

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

Chapter 7

Technical data

This chapter lists technical data of embOS used with RH850 CPUs.

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

33 CHAPTER 7 Memory requirements

7.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of the
memory requirements. They vary depending on the current version of embOS. The mini-
mum ROM requirement for the kernel itself is about 1.700 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 36
Software timer 20
Mutex 16
Semaphore 8
Mailbox 24
Queue 32
Task event 0
Event object 12

embOS for RH850 and IAR © 2010-2018 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	CPU modes
	Standard system libraries
	Thread-safe system libraries
	Thread-Local Storage TLS
	OS_TASK_SetContextExtensionTLS()

	Stacks
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt vector table
	Interrupt-stack switching
	Interrupt nesting
	OS_INT_Enter()
	OS_INT_EnterNestable()

	Technical data
	Memory requirements

