
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01064
Software version 4.22

Revision: 0
Date: May 27, 2016

CPU & Compiler
specifics for SH2A core
using IAR Embedded

Workbench

Real-Time
Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: May 27, 2016

Software Revision Date By Description
4.22 0 160527 TS First FrameMaker version.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

4

embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 2.1: Typographic conventions
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Vari-
ous Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Using embOS...9

1.1 Installation ...10
1.2 First steps ..11
1.3 The example application OS_StartLEDBlink.c ...12
1.4 Stepping through the sample application ..13

2 Build your own application ...17

2.1 Introduction..18
2.2 Required files for an embOS..18
2.3 Change library mode..18
2.4 Select another CPU ..18

3 Libraries ...21

3.1 Naming conventions for prebuilt libraries ..22

4 CPU and compiler specifics ...23

4.1 CPU specifics...24
4.2 Clock settings for embOS timer interrupt ..24
4.3 Clock settings for UART used for embOSView ..24
4.4 Conclusion about clock settings ...24
4.5 embOS hardware timer selection ...25
4.6 UART for embOSView...25

5 Stacks ..27

5.1 Task stack ..28
5.2 System stack ..28
5.3 Interrupt stack ..28
5.4 Reducing the stack size ..28

6 Interrupts..29

6.1 Interrupt mode ...30
6.2 What happens when an interrupt occurs?..30
6.3 Interrupt priorities ...30
6.4 Defining interrupt handlers in C ...30
6.5 Interrupt vector table...31
6.6 Register bank switching..32
6.7 Zero latency interrupts ...32
6.8 OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero latency inter-
rupt 32

7 embOS C-Spy plug-in ..33

7.1 Overview..34
7.1.1 embOS C-Spy plug-in for IAR Embedded Workbench34
7.1.2 Requirements..34
7.2 Installation ...35
7.3 Configuration ..36
7.4 Using the embOS C-Spy plug-in...37
7.4.1 Tasks...38
7.4.2 Mailboxes ...41
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

8

7.4.3 Timers ... 41
7.4.4 Resource semaphores.. 42
7.4.5 System information ... 42
7.4.6 Settings ... 42
7.4.7 About .. 43

8 Technical data..45

8.1 Memory requirements.. 46
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Using embOS
This chapter describes how to start with and use embOS. You should follow these
steps to become familiar with embOS.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Using embOS
1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of
this file. Keep all files in their respective sub directories. Make sure the files are not
read only after copying.

Assuming that you are using an IDE to develop your application, no further installa-
tion steps are required. You will find a lot of prepared sample start projects, which
you should use and modify to write your application. So follow the instructions of
section First steps.

You should do this even if you do not intend to use the IDE for your application devel-
opment to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only
the library-file that you need to your work-directory. The advantage is that when
switching to an updated version of embOS later in a project, you do not affect older
projects that use embOS, too. embOS does in no way rely on an IDE, it may be used
without the IDE using batch files or a make utility without any problem.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

11
1.2 First steps
After installation of embOS you can create your first multitasking application. You
have received several ready to go sample start workspaces and projects and every
other files needed in the subfolder Start. It is a good idea to use one of them as a
starting point for all of your applications. The subfolder BoardSupport contains the
workspaces and projects which are located in manufacturer- and CPU-specific sub-
folders.

To start with, you may use any project from BoardSupport subfolder:

To get your new application running, you should proceed as follows:

� Create a work directory for your application, for example c:\work.
� Copy the whole folder Start which is part of your embOS distribution into your

work directory.
� Clear the read-only attribute of all files in the new Start folder.
� Open one sample workspace/project in

Start\BoardSupport\Renesas\<CPU>
with your IDE (for example, by double clicking it).

� Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every
specific project. The ReadMe file describes the different configurations of the project
and gives additional information about specific hardware settings of the supported
eval boards, if required.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Using embOS
1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_Start_LEDBlink.c. It is a
good starting point for your application. (Note that the file actually shipped with your
port of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

--
File : OS_Start_LEDBlink.c
Purpose : embOS sample program toggling one LED in each task
--------- END-OF-HEADER ---
*/

#include "RTOS.h"
#include "BSP.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 BSP_Init(); /* Initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

13
1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen-
shot below). The main() function appears as long as project option Run to main is
selected, which it is enabled by default. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library and written in assembler; you can there-
fore only step into it in disassembly mode. It initializes the relevant OS variables.
Because of the previous call of OS_IncDI(), interrupts are not enabled during execu-
tion of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the system tick inter-
rupt for embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does
not return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as
shown below.

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Using embOS
Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until
you reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop always executed if
there is nothing else to do (no task is ready, no interrupt routine or timer executing).
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

15
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint there before
stepping over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the
Watch window, HPTask continues operation after expiration of the 50 system tick
delay.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Using embOS
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 2

Build your own application
This chapter provides all information to set up your own embOS project.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Build your own application
2.1 Introduction
To build your own application, you should always start with one of the supplied sam-
ple workspaces and projects. Therefore, select an embOS workspace as described in
chapter First steps and modify the project to fit your needs. Using an embOS start
project as starting point has the advantage that all necessary files are included and
all settings for the project are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one target specific BoardSupport\<Manufac-
turer>\<MCU>\ subfolder.
It contains hardware-dependent initialization code for embOS. It initializes the
system timer interrupt and optional communication for embOSView via UART or
JTAG.

� One embOS library from the subfolder Lib\.
� OS_Error.c from one target specific subfolder BoardSupport\<Manufac-

turer>\<MCU>\. The error handler is used if any debug library is used in your
project.

� Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function,
ensure that non-initialized variables are initialized with zero, according to C stan-
dard. This is required for some embOS internal variables.
Your main() function has to initialize embOS by a call of OS_InitKern() and
OS_InitHW() prior any other embOS functions are called.
You should then modify or replace the OS_Start_LEDBlink.c source file in the sub-
folder Application\.

2.3 Change library mode
For your application you might want to choose another library. For debugging and
program development you should use an embOS debug library. For your final applica-
tion you may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

� If your selected library is already available in your project, just select the appro-
priate configuration.

� To add a library, you may add the library to the existing Lib group. Exclude all
other libraries from your build, delete unused libraries or remove them from the
configuration.

� Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/
or modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific
sample start workspaces and projects are located in the subfolders of the BoardSup-
port folder. To select a CPU which is already supported, just select the appropriate
workspace from a CPU-specific folder.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

19
If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-spe-
cific subfolders and select one which almost fits your CPU. You may have to modify
OS_InitHW(), OS_COM_Init(), the interrupt service routines for embOS system timer
tick and communication to embOSView and the low level initialization.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Build your own application
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 3

Libraries
This chapter describes the available embOS libraries.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 Libraries
3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of the
following features:

� Code memory model - Code model
� Floating point unit - Doublesize
� FPU present - fpu
� Library mode - LibMode

The libraries are named as follows:

osSH<code model><doublesize><fpu>_<LibMode>.a

Example

osSHhff_SP.a is the embOS library for a project using an huge code model, 32bit
doubles, FPU with Stack check and profiling support.

Note

embOS for SH2A for IAR compiler is delivered with libraries for all code and data
memory models and other options and compiler settings. The different code and data
models are described in the IAR compiler manual.

When using the IAR Embedded Workbench, please check the following points:

� One embOS library is part of your project (included in one group of your target).
When a CPU with floating point unit is used, the library with floating point option
has to be used.

� The appropriate define according to embOS library mode is set as compiler pre-
processor option for your project. May be defined in OS_Config.h.

Parameter Meaning Values

Code model
Specifies the code memory
model.

s: Small code model
m: Medium code model
l: Large code model
h: huge code model

Doublesize Specifies the FPU mode. f: 32bit doubles
d: 64bit doubles

fpu Specifies the present of FPU f: FPU present
n: No FPU

LibMode Specifies the library mode. xr: Extreme Release
r: Release
s: Stack check
sp: Stack check + profiling
d: Debug
dp: Debug + profiling
dt: Debug + profiling + trace
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 4

CPU and compiler specifics
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

24 4 CPU and compiler specifics
4.1 CPU specifics
All hardware specific functions required for embOS are located in the CPU specific
Rtosinit_*.c files. Settings for CPU clock speed and UART settings for embOSView
are defined with most common defaults. According to your specific hardware, these
settings may have to be changed to ensure proper timer tick and UART communica-
tion with embOSView.

As far as possible, you should not modify Rtosinit_*.c, as this has the disadvan-
tage, that this modifications have to be tracked when you update to a newer version
of embOS. Various CPU derivative may be equipped with different peripherals. It may
be necessary to write your own initialization code for your specific CPU derived. You
may therefore copy one Rtosinit_*.c file which is closest to your CPU variant and
modify this new created file to handle your CPU.

4.2 Clock settings for embOS timer interrupt
OS_InitHW() routine in Rtosinit.c derives timer init values from the constant define
OS_PCLK_TIMER. Per default, the value of OS_PCLK_TIMER equals OS_FSYS /
OS_PCLK_DIVIDER / 8, which defines the CPU clock of the target system. Wrong set-
tings would result embOS timer ticks unequal to 1 ms. To adapt the embOS timer tick
frequency to your CPU, you may:

� Define OS_FSYS as project option. OS_FSYS should equal your CPU clock fre-
quency in Hertz. Note that modification of OS_FSYS may also affect the UART ini-
tialization for embOSView.

� You may alternatively define OS_PCLK_TIMER or OS_PCLK_DIVIDER as project
option (compiler preprocessor option). These values are used to calculate the
timer compare value used for embOS timer.

The CPU clock generator and PLL is initialized during startup in the function
__low_level_init() in the source file Rtosinit_*.c.

4.3 Clock settings for UART used for embOSView
OS_COM_Init() routine in RTOSInit.c derives baudrate generator init values from
the constant define OS_PCLK_UART. Per default, the value of OS_PCLK_UART equals
OS_FSYS / OS_PCLK_DIVIDER.

To ensure correct time base clock for baudrate generator used for embOSView, you
may:

� Define OS_FSYS as project option. OS_FSYS should equal your CPU clock fre-
quency in Hertz. Note that modification of OS_FSYS may also affect the timer ini-
tialization for embOS tick timer.

� You may alternatively define OS_PCLK_UART as project option (compiler prepro-
cessor option). This value is used to calculate values used to initialize UART used
for communication with embOSView.

4.4 Conclusion about clock settings
� OS_FSYS has to be defined according to your CPU clock frequency. This should

be defined as compiler preprocessor option in your project.
� OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral clock

for the embOS timer. The value defaults to OS_FSYS. It should be modified and
defined as compiler preprocessor option if modification is required.

� OS_PCLK_UART has to be defined to fit the frequency used as peripheral clock
for the UART used for communication with embOSView. The value defaults to
OS_FSYS / OS_PCLK_DIVIDER. It should be modified and defined as compiler pre-
processor option if modification is required.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

25
4.5 embOS hardware timer selection
embOS for SH2A CPUs is prepared to use one Compare Match Timer (CMT) channel
as time base timer. The initialization code and interrupt handler are delivered in
source code and are located in Rtosinit_*.c.

4.6 UART for embOSView
Any SCIF UART of the SH2A CPU may be used as communication channel for embOS-
View which enables profiling analysis during runtime. The initialization code and
interrupt handler are delivered in source code and are located in RTOSInit_*.c.
OS_UART may be defined from 0 to 3 to select, initialize and enable one of the SCIFs.
When embOSView should not be used, define OS_UART to -1. This may be done in
OS_Config.h. The UART used for embOSView requires four interrupt handler which
are defined in Rtosinit_*.c

� OS_ISR_RxErr() is the reception error interrupt handler.
� OS_ISR_RxErrB() is the second reception error interrupt handler.
� OS_ISR_Rx() is the reception interrupt.
� OS_ISR_Tx() is the transmission interrupt which is called on Tx end condition.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

26 4 CPU and compiler specifics
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 5

Stacks
This chapter describes the different stacks.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 5 Stacks
5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time
a task is activated by the scheduler. The stack-size required for a task is the sum of
the stack-size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by calling embOS-routines.

The minimum basic task stack size is about 48 bytes. Because any function call uses
some amount of stack and every exception also pushes at least 32 bytes onto the
current stack, the task stack size has to be large enough to handle one exception
too. We recommend at least 256 bytes stack as a start.

Note: The task stacks have to be aligned at EVEN addresses. To ensure proper
alignment, implement the task stack as array of int.

5.2 System stack
The minimum system stack size required by embOS is about 136 bytes (stack check
& profiling build). However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because software-tim-
ers and C-level interrupt handlers also use the system-stack, the actual stack
requirements depend on the application.
The size of the system stack can be changed by modifying the stack size define in
your linker file. We recommend a minimum stack size of 256 bytes.

5.3 Interrupt stack
The CPUs do not support a hardware interrupt stack. All interrupts primarily run on
the current stack. To reduce the amount of task-stack used by interrupts, embOS
uses register bank switching mode for interrupts and supports its own interrupt
stack. During the execution of the embOS ISR handler function OS_CallISR() and
OS_CallNestableISR(), embOS automatically switches to the system stack. Only
the first level interrupt will use some amount of task stack. At least the return
address, the status register, some CPU registers and in case a CPU with FPU is used,
the floating point registers are stored on the task stack once.

5.4 Reducing the stack size
The stack check libraries check the used stack of every task and the system stack
also. Using embOSView the total size and used size of any stack can be examined.
This may be used to reduce the stack sizes, if RAM space is a problem in your appli-
cation.

If the floating point unit is not used, a CPU without floating point unit may be
selected under project options and the embOS libraries without floating point support
may be used to reduce the interrupt stack size.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

29
Chapter 6

Interrupts
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 6 Interrupts
6.1 Interrupt mode
SH2A CPUs support a priority controlled interrupt mode and as an option an addi-
tional register bank switching mechanism. This mode supports the following fea-
tures:

� Interrupt priority registers to assign 16 priority levels to peripheral interrupts.
� Priority level controlled masking.
� Interrupts with higher priority are never disabled by entering an interrupt service

routine with lower priority.
� If bank switching is enabled for the interrupt priority of the current interrupt, the

CPU switches to an other register bank.

6.2 What happens when an interrupt occurs?
� The CPU-core receives an interrupt request from the interrupt controller.
� As soon as the interrupts are enabled, the interrupt is accepted and executed.
� The CPU stores the PC and the status register onto the current stack.
� The interrupt mask level in the status register of the CPU is updated from the

level of the interrupting device.
� The CPU jumps to the vector address delivered by the ISR.
� If bank switching is enabled for this interrupt, the CPU switches to an other reg-

ister bank.
� ISR: Save registers if register bank switching is not enabled.
� ISR: User-defined functionality.
� ISR: Restore registers, or restore register bank by switching back to previous

bank.
� ISR: Execute RTE command, restoring PC and status register from the stack.
� For more details, refer to the RENESAS manuals.

6.3 Interrupt priorities
With introduction of Zero latency interrupts, interrupt priorities usable by the appli-
cation are divided into two groups:

� Low priority interrupts with priorities from 1 to a user definable priority limit.
These interrupts are called embOS interrupts.

� High priority interrupts with priorities above the user definable priority limit.
These interrupts are called Zero latency interrupts.

� Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters.
The priority limit between embOS interrupts and Zero latency interrupts can be
set at runtime by a call of OS_SetFastIntPriorityLimit().

6.4 Defining interrupt handlers in C
Routines preceded by the keywords __interrupt save & restore the temporary regis-
ters and all registers they modify onto the stack and return with RTE. Because
embOS enables register bank switching for all interrupts, the compiler has to be
informed to add code for resetting the register bank right before the RTE command.
Therefore, the option __fast_interrupt has to be used in the declaration of inter-
rupt handler functions. The IAR toolchain automatically adds the interrupt vector into
the interrupt vector table. The corresponding interrupt vector number has to be
declared by a #pragma right in front of the interrupt function declaration. The inter-
rupt handler may be implemented in any source file. The interrupt handler used by
embOS are implemented in the CPU specific RTOSInit_*.c file.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

31
Example of an embOS interrupt handler

embOS interrupt handler have to be used for interrupt sources running at all priori-
ties up to the user definable interrupt priority level limit for Zero latency interrupts.

#pragma vector = 142
__fast_interrupt __interrupt void OS_ISR_Tick(void) {
 // __fast_interrupt option required!
 OS_CallNestableISR(_IsrTickHandler);
}

Any interrupt handler running at priorities from 1 to the selectable "Zero Latency
interrupt" priority limit has to be written according the code example above, regard-
less any other embOS API function is called.

The rules for an embOS interrupt handler are as follows:

� The embOS interrupt handler must be defined with __fast_interrupt option.
� The embOS interrupt handler must not define any local variables.
� The embOS interrupt handler has to call OS_CallISR(), when interrupts should

not be nested. It has to call OS_CallNestableISR(), when nesting should be
allowed.

� The interrupt handler must not perform any other operation, calculation
or function call. This has to be done by the local function called from
OS_CallISR() or OS_CallNestableISR().

Differences between OS_CallISR() and OS_CallNestableISR()

OS_CallISR() should be used as entry function in an embOS interrupt handler, when
the corresponding interrupt should not be interrupted by another embOS interrupt.
OS_CallISR() sets the interrupt priority of the CPU to the user definable "zero
latency" interrupt priority level, thus locking any other embOS interrupt. High priority
interrupts are not disabled. OS_CallNestableISR() should be used as entry function in
an embOS interrupt handler, when interruption by higher prioritized embOS inter-
rupts should be allowed. OS_CallNestableISR() does not alter the interrupt priority of
the CPU, thus keeping all interrupts with higher priority enabled.

Example of a Zero Latency interrupt handler

Zero latency interrupt handler have to be used for interrupt sources running at prior-
ities above the user definable interrupt priority limit.

#pragma vector = ZeroLatencyInterruptVector {
__fast_interrupt __interrupt void ZeroLatencyInterrupt (void) {
 unsigned long Count; // local variables are allowed
 Count = TPU_TCNT0;
 HandleCount(Count); // Any function call except embOS functions is allowed
}

The rules for a Zero Latency interrupt handler are as follows:

� Local variables may be used.
� Other functions may be called.
� Register bank switching by prefix __fast_interrupt may be used, but is not

required.
� embOS functions must not be called, nor directly, neither indirectly.
� The priority of the interrupt has to be above the user definable priority limit for

Zero latency interrupts.

6.5 Interrupt vector table
The IAR toolchain automatically generates the interrupt vector table. The location of
the vector table in ROM is defined in the linker settings file. The interrupt vector
number has to be assigned to the interrupt handler function by a #pragma vector
declaration right in front of the interrupt handler function in the source code. The
embOS timer interrupt handler is located in the in the source code file RTOSInit_*.c.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 6 Interrupts
6.6 Register bank switching
The SH2A-LSI has register banks that enable register saving and restoration required
in the interrupt processing to be performed at high speed. The interrupt service rou-
tine therefore does not need to push registers onto the stack, if register bank switch-
ing is enabled.
When using embOS, register bank switching has to be enabled for all interrupts. The
task switch from interrupt relies on the register bank switching in interrupt handler
functions.
The initialization sequence which enables register bank switching is included in the
OS_InitHW() function.

6.7 Zero latency interrupts
Instead of disabling interrupts when embOS does atomic operations, the interrupt
level of the CPU is set to a higher user definable level. Therefore all interrupts with
higher levels can still be processed. These interrupts are named Zero latency inter-
rupts. The default level limit for zero latency interrupts is set to 8, meaning, any
interrupt with level 9 or above is never disabled and can be accepted anytime. You
must not execute any embOS function from within a Zero latency interrupt function.

6.8 OS_SetFastIntPriorityLimit(): Set the interrupt pri-
ority limit for Zero latency interrupt

The interrupt priority limit for Zero Latency interrupts is set to 8 by default. This
means, all interrupts with higher priority from 9 to 15 will never be disabled by
embOS.

Description

OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between
Zero latency interrupts and lower priority embOS interrupts.

Prototype
void OS_SetFastIntPriorityLimit(unsigned int Priority)

Return value

None.

Additional Information

To disable Zero latency interrupts at all, the priority limit may be set to 15 which is
the highest interrupt priority for interrupts. To modify the default priority limit,
OS_SetFastIntPriorityLimit() should be called before embOS was started. All inter-
rupts with low priorities from 1 to the user definable priority limit for Zero latency
interrupts have to call OS_CallISR() or OS_CallNestableISR() regardless any other
embOS function is called in the interrupt handler. This is required, because interrupts
with low priorities may be interrupted by other interrupts calling embOS functions.
The task switch from interrupt will only work if every embOS interrupt uses the same
stack layout. This can only be guaranteed when OS_CallISR() or
OS_CallNestableISR() is used. Any interrupts running above the Zero latency inter-
rupt priority limit must not call any embOS function.

Parameter Meaning

Priority
The highest value usable as priority for embOS interrupts. All interrupts with higher
priority are never disabled by embOS. Valid range: 1 <= Priority <= 15
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 7

embOS C-Spy plug-in
This chapter gives a short overview about the embOS C-Spy plug-in for IAR Embed-
ded Workbench®.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

34 CHAPTER 7 embOS C-Spy plug-in
7.1 Overview

7.1.1 embOS C-Spy plug-in for IAR Embedded Workbench
SEGGER�s embOS C-Spy plug-in for IAR Embedded Workbench provides embOS-
awareness during debugging sessions. This enables you to inspect the state of sev-
eral embOS primitives such as the task list, resource semaphores, mailboxes, and
timers.

Since embOS version 3.62, you can check the general-purpose registers and inspect
the call stack of all available application tasks.

7.1.2 Requirements
To use the embOS C-Spy plug-in you need a version of IAR Embedded Workbench
installed and a debug target which uses embOS. Specifically:

� An embOS version 3.62 or higher is required for complete compatibility. Older
embOS versions use different internal structures and the C-Spy plug-in is there-
fore of limited use with version prior to 3.62.

� An IAR Embedded Workbench IDE with a C-SPY debugger version 5.x or higher is
required for complete compatibility.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

35
7.2 Installation
The installation procedure is very straightforward because it only requires you to
copy the contents of the embOS C-Spy plug-in package into the IAR CPU specific
plug-in folder for rtos plug-ins. The directory structure may look like this:

If not already delivered with the IAR Embedded Workbench IDE, create a directory
embOS below the CPU specific plugin\rtos\ folder and copy the files from the embOS
folder which comes with the plug-in into that folder in your IAR installation directory.
Then restart the IAR Embedded Workbench IDE.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

36 CHAPTER 7 embOS C-Spy plug-in
7.3 Configuration
By default, the embOS C-Spy plug-in is not loaded during debugging. For each
project configuration you have to explicitly enable the plug-in in the debugger section
of the project options:

The embOS C-Spy plug-in is now available in debugging sessions and may be
accessed from the main menu.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

37
7.4 Using the embOS C-Spy plug-in
During your debugging session, the embOS C-Spy plug-in is accessible from the IAR
Embedded Workbench IDE main menu. Note that if you are not running a debugging
session, there is no embOS menu item available.

From the menu you may activate the individual windows that provide embOS related
information. The sections below describe these individual windows. The amount of
information available depends on the embOS build used during debugging. If a cer-
tain part is not available, the respective menu item is either greyed out or the win-
dow column shows a N/A.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

38 CHAPTER 7 embOS C-Spy plug-in
7.4.1 Tasks
The Task List window lists all embOS tasks. It retrieves its information directly from
the embOS task list. The green arrow points to the running task, which is the task
currently executing. If no task is executing, the CPU is executing the Idle-loop. In
this case, the green arrow is in the bottom row of the window, labeled �Idle�.

The bottom row of the task list window is always labeled �Idle�. It does not actually
represent a task, but the Idle loop, which is executed if no task is ready for execu-
tion.

The individual columns are described below:

7.4.1.1 Task sensitivity
The Source Code window, the Disassembly window, the Register window, and the
Call Stack window of the C-Spy debugger are task sensitive since version 3.62 of the
embOS C-Spy plug-in. This means that they show the position in the code, the gen-
eral-purpose registers and the call stack of the selected task. By default, the selected
task is always the running task, which is the normal behavior of a debugger that the
user expects.

You can examine a particular thread by double-clicking on the corresponding row in
the window. The selected task will be underlayed in yellow. The C-Spy Debugger
rebuilds the call stack and the preserved general-purpose registers of a suspended
task. Refer to State of suspended tasks on page 39 for detailed information about
which information are available for the different task states.

Every time the CPU is started or when the Idle-row of the task window is double
clicked, the selected task is switched back to this default.

Column Description

* A green arrow points to the running task.
Prio Priority of the task.
Id The task control block address that uniquely identifies a task.
Name If available, the task name is shown here.
Status The task status as a short text.

Timeout If a task is delayed, this column shows the time remaining until the
delay expires and in parenthesis the time of expiration.

Stack Info
If available, this column shows the amount of used stack space, and
the available stack space, as well as the value of the current stack
bottom pointer.

Run count The number of task activations.

Time slice If round robin scheduling is available, this column shows the number
of remaining time slices and the number of time slice reloads.

Events The event mask of a task.
Table 7.1: Task list window items
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

39
7.4.1.2 State of suspended tasks
Blocked tasks (suspended by cooperative task switch)

Tasks which have given up execution voluntarily by calling a blocking function, such
as OS_Delay() or OS_Wait_...(). In this case, there was no need for the OS to save
the scratch registers (in case of ARM R0-R3, R12).
The Register window will show �----------� for the content of these registers.

Tasks waiting for first activation

These basically fall into the same category as blocked tasks, the call stack and regis-
ters look similar to the following screenshots. Similarly, temporary registers are
unknown. The Call Stack shows a single entry OS_StartTask. Run count is 0.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

40 CHAPTER 7 embOS C-Spy plug-in
Interrupted tasks

Tasks which have been interrupted and preempted, typically by a task with higher
priority becoming ready. In this case, the OS saved all registers, including the
scratch registers (in case of ARM R0-R3, R12). The Register window shows the val-
ues of all registers, including the scratch registers.

7.4.1.3 Call stack with embOS libraries
All embOS libraries are built with full optimization. Therefore it may happen that not
all function calls are shown in the call stack in detail. The additional embOS library
*dpl.a is built with low optimization. It may be used for application development
instead of the Debug and Profiling library.
This gives the ability to see the complete detailed call stack.

Call stack with DP library Call stack with DPL library
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

41
7.4.2 Mailboxes
A mailbox is a buffer that is managed by the real-time operating system. The buffer
behaves like a normal buffer; you can put something (called a message) in and
retrieve it later. This window shows the mailboxes and provides information about the
number of messages, waiting tasks etc.

7.4.3 Timers
A software timer is an object that calls a user-specified routine after a specified
delay. This window provides information about active software timers.

Column Description

Id The mailbox address.

Messages The number of messages in a mailbox and the maximum number of
messages as mailbox can hold.

Message size The size of an individual message in bytes.
pBuffer The message buffer address.

Waiting tasks The list of tasks that are waiting for a mailbox, that is their address
and name.

Table 7.2: Mailboxes window items

Column Description

Id The timer�s address.
Hook The function (address and name) that is called after the timeout.

Time The time delay and the point in time, when the timer finishes wait-
ing.

Period The time period the timer runs.
Active Shows whether the timer is active or not.

Table 7.3: Timers window items
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

42 CHAPTER 7 embOS C-Spy plug-in
7.4.4 Resource semaphores
Resource semaphores are used to manage resources by avoiding conflicts caused by
simultaneous use of a resource. This window provides information about available
resources.

7.4.5 System information
A running embOS contains a number of system variables that are available for
inspection. This window lists the most important ones.

7.4.6 Settings
To be safe, the embOS C-Spy plug-in imposes certain limits on the amount of infor-
mation retrieved from the target, to avoid endless requests in case of false values in
the target memory. This dialog box allows you to tweak these limits in a certain
range, for example if your task names are no longer than 32 characters you may set
the Maximum string length to 32, or if they are longer than the default you may
increase that value.

After changing settings and clicking the OK button, your changes are applied imme-
diately and should become noticeable after the next window update, for example
when hitting the next breakpoint. However, the settings are restored to their default
values on plug-in reload.

Column Description

Id The resource semaphore address.
Owner The address and name of the owner task.
Use counter Counts the number of semaphore uses.

Waiting tasks Lists the tasks (address and name) that are waiting at the sema-
phore.

Table 7.4: Resource Semaphores window items
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

43
7.4.7 About
Finally, the About dialog box contains the embOS C-Spy plug-in version number and
the date of compilation.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

44 CHAPTER 7 embOS C-Spy plug-in
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller

45
Chapter 8

Technical data
This chapter lists technical data of embOS used with the SH2A cpu.
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 8 Technical data
8.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of
the memory requirements. They vary depending on the current version of embOS.
The minimum ROM requirement for the kernel itself is about 2.000 bytes.

In the table below, which is for release build, you can find minimum RAM size
requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]

Kernel 75

Task 32

Semaphore 16

Mailbox 24

Software timer 20
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

47
Index
Symbols
#pragma vector31
__fast_interrupt30
__interrupt ...30

I
Installation ...10
interrupt handlers30
Interrupt mode30
Interrupt priorities30
Interrupt stack28
Interrupt vector table31
Interrupts ...29

M
Memory requirements46

O
OS_CallISR()31
OS_CallNestableISR()31
OS_FSYS ..24
OS_ISR_Rx()25
OS_ISR_RxErr()25
OS_ISR_RxErrB()25
OS_ISR_Tx()25
OS_PCLK_DIVIDER24
OS_PCLK_TIMER24
OS_PCLK_UART24
OS_SetFastIntPriorityLimit()32
OS_UART ..25

R
Reducing the stack size28
Register bank switching32

S
Stacks ..27
Syntax, conventions used 5
System stack28

T
Task stack .. 28

U
UART for embOSView 25

Z
Zero latency interrupts 32
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

48 Index
embOS for SH2A and IAR © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Using embOS
	1.1 Installation
	1.2 First steps
	1.3 The example application OS_StartLEDBlink.c
	1.4 Stepping through the sample application

	Build your own application
	2.1 Introduction
	2.2 Required files for an embOS
	2.3 Change library mode
	2.4 Select another CPU

	Libraries
	3.1 Naming conventions for prebuilt libraries

	CPU and compiler specifics
	4.1 CPU specifics
	4.2 Clock settings for embOS timer interrupt
	4.3 Clock settings for UART used for embOSView
	4.4 Conclusion about clock settings
	4.5 embOS hardware timer selection
	4.6 UART for embOSView

	Stacks
	5.1 Task stack
	5.2 System stack
	5.3 Interrupt stack
	5.4 Reducing the stack size

	Interrupts
	6.1 Interrupt mode
	6.2 What happens when an interrupt occurs?
	6.3 Interrupt priorities
	6.4 Defining interrupt handlers in C
	6.5 Interrupt vector table
	6.6 Register bank switching
	6.7 Zero latency interrupts
	6.8 OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero latency interrupt

	embOS C-Spy plug-in
	7.1 Overview
	7.1.1 embOS C-Spy plug-in for IAR Embedded Workbench
	7.1.2 Requirements

	7.2 Installation
	7.3 Configuration
	7.4 Using the embOS C-Spy plug-in
	7.4.1 Tasks
	7.4.2 Mailboxes
	7.4.3 Timers
	7.4.4 Resource semaphores
	7.4.5 System information
	7.4.6 Settings
	7.4.7 About

	Technical data
	8.1 Memory requirements

	Index

