embOS

Real-Time Operating System

CPU & Compiler specifics
for 8051 using IAR

Document: UM01057
Software Version: 5.16.1.0
Revision: 0
Date: February 11, 2022

\\—
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2014-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: February 11, 2022

Software | Revision | Date By Description
5.16.1.0 0 220211 TS New software version.
4.00a 0 140804 TS Initial version.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for 8051 and IAR

© 2014-2022 SEGGER Microcontroller GmbH

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 8
3 R R I g 1= = | = o o P 9
A =3 A = o 1= 10
1.3 The example application OS_StartLEDBIINK.Cociviiiiiiiiiiiii e 11
1.4 Stepping through the sample application ... 12
2 Build your oWn @ppliCAtIONoeeiiiiiiiiiiiie i 17
2% NN 1 g o Ta [ol u o o PP PPRPIN 18
2.2 Required files for an embOS ... s 18
2.3 Change library MO . ..o e e 18
2.4 Select another CPU ... e e e 18
G T | o] > V=SSR 19
3.1 Naming conventions for prebuilt librari@sc.cooiiiiiiiiiiiiii 20
4 CPU and compiler SPECITICSouuiiiiiieiiiiiii ittt 21
R O = U o 3 o o [PP 22
4.2 Standard system librariescciiriiiiii 22
G B O T] oo () I P 22
4.4 Extended task CONTEXE ...ciiviiiiiiiiiiii i e e e e e e a e e e eeanes 22
IS] = od ¢TSRS 23
o N = 1] =] = Yol P 24
T AV (= 0 [= ol S 24
5.3 INEermUPE SEaCK .ot e 24
5.4 STACK ChECK .o e e 24
LI |01 =T ¢ U] £ OO P PP PPPPPTRTRTR 25
6.1 What happens when an interrupt OCCUIS?civviiiiiiiiiiii i e e e 26
6.2 Defining interrupt handlers in C ... 26
6.3 Zero latenCy INTEITUPES viiiiiiii i e e 26
LR o1 o =T o W o A o Lo o | o == 26
6.5 INterrupt NESEING ..oiiviiiiii s 26
7 TeChNICAl ALAccovviiiiiiie e e 27
7.1 RESOUICE USAQGE tuutiiiiiiiit ittt taite et st et aanaeessaneessasneessaaseessannnessaansessannnnesennns 28

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to start with embQOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.
To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 10.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embQOsS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps

After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder St art . It is a good idea to use one of them as a starting point for
all of your applications. The subfolder Boar dSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from Boar dSupport subfolder.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c: \ wor k.
Copy the whole folder St art which is part of your embQOS distribution into your work
directory.
Clear the read-only attribute of all files in the new St art folder.
Open one sample workspace/project in
St art \ Boar dSuppor t\ <Devi ceManuf act ur er >\ <CPU> with your IDE (for example, by
double clicking it).
e Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

" & Start C8051F030
File Edit View Project SilabsEmulator Tools Window Help
Nl S|t 2Rlvs - T e
Workspace x —
| Debug <] |

Files

B [start_C805...
[application
CILib

(3 5etup

|— ReadMe.txt
[output

I Start_C3051F330

x

Meszages

i Total number of errors: 0
']

Ready

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBIink.c

1.3 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
a LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

12 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not

return.
©& Start CB051F930 - IAR Embedded Workbench IDE o | e
- i
File Edit VYiew Project Debug Silabs Emulater Tocols Window Help
=== A= | | - 2mEe e
S22 LE2 22X
L slads * | start_LEDBlink.c | f - X
[Del:uug v] 60 —1
Bl 0 A ¥R EEXAEXXEEEEEXEXEXEXEEXEXEXER XX XX XX REN
Files gt 62 *
63 * main
B [start_C805... v £l | =
[application G0 L ®EXEXXXXEEEXXXEXEXXXXXEEX XXX EER XXX ERERLN
ALk 66 O int main{void) {
g A7 05 IncDI(: ~% Ir
[+] L
HSE“” 68 0S_InitKern(): % Tr
[— B ReadMe.bxt 69 0S_InitHU(): P
L@ (7 output 70 BSF_Init(): % T
71 <% You need to create at least one tas
72 05 CREATETASE(ATCEBHE, "HP Task". HPTas
73 05 CREATETASK(ATCBELE, "LFP Task". LPTas
74 0O5_Start(): % St
75 return o0 =
76 -0
7 E
78
| Start_Ca051Fa30 P —— =T
Ready

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown

below.
= Start_CB051F930 - IAR Embedded Workbench IDE I (=]
File Edit VYiew Project Debug Silabs Emulater Tecls Window Help
DeWdd S|l Er|o o VYR iEP @
2 LEZLZ|X
SR * | start_LEDBlink.c & | f) - X
| Debug -| 42 0S_TASK TCEHP, TCBLE; —
43 i
Files inoE 44
B (J start_CB... v ig Stzﬁifev?i? I;:IPTaSk{vn:lld]l i
FHeOFESEEE e -
& (I Lib 48 05 Delay (50);
I:ISetup ég } ¥
|— ReadMe... o1
I:IDutput 52% static woid LPTaski{woid) {
L3 while (1) { B
i o4 ;
55 05 Delay (2007%; E
56 T
57 - ¥
58
5 9 L——_‘ P 2 X2 LR
G0 *
R * i
IStart_EE!EIE‘IFEIEEI [m main |
Ready

As OGS _Start () is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over GS _Start (), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

£ Start C8051F930 - IAR Embedded Workbench IDE EM

File Edit VYiew Project Debug Silabs Emulater Teeols Window Help
Do d@ & BR[| /Y nEe e
ClelZ2rLEL +++|><
Warkspace ‘Start_LEDBlink.c i | f) ~ X
[Debug v] 12 0S5 _TASK TCEHP, TCELP; —Tiy
43 2
Files Eno O 414
O (J start_C805... v 45 Stat:i.c woid HPFTasl{woid) {
— ik while (1) {
RS ooicocon ||| PIS
Fa Lk 48 0S5 _Delay (50):
Ha (3 setup éa 3 ¥
F— Bl ReadMe.txt £1 i
I:IDutput 52 static woid LPTaskiwoid) { =
§3 while (1) {
@ 54
55 05 Delay (2007
=1 T
| Start_Ca051Fa30 . 5?," } ol =

=

u| Expression Walue Location Type a
£ [0 [’Data:ox006: -
Ready J

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

% Start CB051F930 - IAR Embedded Workbench IDE Eﬂ‘ﬁ

File Edit VYiew Project Debug Silabs Emulater Tocols Window Help
D dd | & R o Y@ P @
I=lslzas222x |
Workspace * | Start_LEDBlink.c | T
| Debug »| [42 OS_TASK TCBHP. TCELE, —)
43 i
Files B 44
B (J Start_CB05... v 45% Stat:!.c void HFTaski{wvoid) {
i i6 while (1) {
olm]application | | | @ 47
& (I Lib 48 05 Delay (50);
& [setup ég i 3 ¥
|— ReadMe.txt o1
I:IDutput 52% static woid LPTaski{woid) {
L3 [vhile (1) {
& 54
55 05 Delay (2007;
56 |}
| Start_Ca051Fa30 b =
Z Expression Walue Location Type -
= (0 [>pata:oxo063 - 2

Ready J

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

15

CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK Del ay() function in disassembly
mode. OS_Idl e() is part of RTCSI ni t. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

= Start CBOS1F930 - IAR Embedded Workbench IDE

P

File Edit VYiew Project Debug Silabs Emulater Tocols Window Help

DS & ¢ R0 o

4 YRZED @

[Sle|=Za L2 X

Workspace * | Start_LEDBlink.c RTOSInit_CB0O51F930.c | f) ~ X
[DEbUEI "'] 217 | = functicnality should be impleme—
i o— 2148 * to be preserved. However, a sin *
Files Eromy o~ 219 * (like toggeling an output or ir
220 - =-
B @ start_c8... v 221 O void 05 _Idleivoid) { ~~ Idle loop:
— [Applicat... & 227 I <+ Wothing to ¢
—& [Lib 223 & #if (DEBUG == 0}
E 224 < Switch CPU i
— [Setup 225 | #endif
BSP.c 205 L T P
FHa [os_... 227 L 1 L4
Y 228
--— 279 [E] 036363636 363636 36 36 3 36 36 36 36 36 36 36 36 3636 363636 3636 36 36 36 36 36 36 36 36 366 N
— ReadMe... 230 *
[cutput 57 231 * 05_GetTime Cyclesi)
| start_Ca051F330 el .
=
u| Expression wWalue Location Type o
= lo | xpata:oxo063 int &
Ready
3 >

embOS for 8051 and IAR

© 2014-2022 SEGGER Microcontroller GmbH

16 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_d obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

£ Start CB051F930 - IAR Embedded Workbench IDE i—tg@ﬁ

File Edit VYiew Project Debug Silabs Emulater Tocls Window Help

CZ W&) helo - "4y % i@e e
S 82 LERLEZX
Workspace * | start_LEDBlink.c 8 | RTOSInit_C8051F930.c f) ~ X
Debug v| | 4z OS_TASK TCBHP. TCBLF; N
43 o
Files Eromy o~ 44
45 ztatic woid HFTaski{wvoid) {
B 3 start_cs... v 45% R
—E [Applicat... & 47
—# [Lib 47 05 Delay (507;
—& [Setup E ég i 3 ¥
BSP.c c1 B
DS_... 52% Stat:i.c vold LPTaski{woid) { =
mcidlrro... | | [® i B vhile Lt
—— & ReadMe... 55 0S_Delay (200);
1 [Qutput - e 3

57 L 3
| Start_Cans1F330 P — =l

Expression wWalue Location Type

b

=

i s

z XData: 0x0063 int -

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

18

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 10 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 3

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

20 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of the fol-
lowing features:

e Library mode - Li bMode
The libraries are named as follows:
0s8051_ <Li bMbde>.r51

Parameter Meaning Values
XR: Extreme Release
R: Release
S: Stack check
Li bMbde Specifies the library mode. SP: Stack check + profiling
D: Debug

DP: Debug + profiling
DT: Debug + profiling + trace

Example

0s8051 DP.r51 is the library for a project using a 8051 core with debug and profiling
support.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

22 CHAPTER 4 CPU modes

4.1 CPU modes

embQOS for 8051 supports only the Near code and Large data model with XDATA stack and
reentrant calling convention.

4.2 Standard system libraries
embOS for 8051 and IAR may be used with IAR standard libraries.

4.3 0OS_Stop()

0S_Stop() is not implemented for embOS 8051 IAR and must not be called from the ap-
plication.

4.4 Extended task context

embOS 8051 IAR does not support an extended task context.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

24 CHAPTER 5 Task stack

5.1 Task stack

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

The 8051 uses an 8-bit stack pointer which can address the 256 bytes IDATA memory. The
IAR compiler uses an additional software stack pointer which points to the XDATA memory.
While the IDATA stack is still used for e.g. a function return address the IAR compiler
switches to the software stack for most of the stack handling. The fixed IDATA task stack
size is 128 bytes which is sufficient for most of the applications.

The software stack pointer is initialized by embOS to the end of the task stack and grows
to lower addresses. The hardware stack pointer grows to higher addresses. With each task
switch the used IDATA task stack is saved to the task stack in XDATA and restored with
the next task switch. Thus the task stack is divided into two parts, one part for the saved
hardware stack in IDATA and the other part for the software stack in XDATA. We recommend
at least 256 bytes task stack as a start.

5.2 System stack

The minimum system stack size required by embOS is about 20 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to GS_St art ()), the actual stack requirements depend on the
application. We recommend a minimum stack size of 80 bytes for the system stack.

5.3 Interrupt stack

The 8051 core has no separate interrupt stack pointer. If an interrupt occurs, the 8051 core
saves the return address on the current stack which could be a task stack or system stack.

5.4 Stack check

embOS 8051 IAR does not support stack check due to the two used stacks in IDATA and
XDATA.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

26 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?

The CPU-core receives an interrupt request form the interrupt controller.

As soon as the interrupts are enabled, the interrupt is accepted and executed.

The CPU pushes the return address onto the current stack.

The CPU jumps to the vector address.

The interrupt handler is processed.

The interrupt handler ends with a return from interrupt instruction

The CPU returns to the address from the stack and continues the interrupted function.

6.2 Defining interrupt handlers in C

Interrupt handler for 8051 cores are written as normal C-functions which do not take para-
meters and do not return any value. Interrupt handler which call an embOS function need
a prologue and epilogue function as described in the generic manual and in the examples
below. Interrupt handler needs the #pr agma statement with the interrupt vector number
and the __interrupt keyword.

Example

Simple interrupt routine:

#pragma vector = 0x2B
__interrupt void SysTick_Handl er(voi d);
__interrupt void SysTick_Handl er(void) {
TMR2CN &= ~TMR2_TF2H_MASK;
OS_| NT_Ent er Nest abl e() ;
CS_TI CK_Handl e();
OS_| NT_LeaveNest abl e();
}

6.3 Zero latency interrupts

6.3.1 Zero latency interrupts with 8051

The 8051 CPU does not support execution priority thus embOS has to disable all interrupts
for internal operations. Therefore zero latency interrupts are not supported.

6.4 Interrupt priorities

The 8051 CPU has two interrupt priorities, low and high. Each interrupt can be initialized
with low or high priority.

Note

Interrupt routines with high priority must not call any embOS API functions.

6.5 Interrupt nesting

The 8051 CPU uses a priority controlled interrupt scheduling which allows nesting of in-
terrupts per default. Any interrupt with high interrupt priority may interrupt an interrupt
handler running on the low interrupt priority.

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

Chapter 7

Technical data

embOS for 8051 and IAR © 2014-2022 SEGGER Microcontroller GmbH

28

7.1 Resource Usage

CHAPTER 7

Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS

library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~1700 bytes
embOS kernel RAM ~86 bytes
Task control block RAM 15 bytes
Software timer RAM 9 bytes
Task event RAM 0 bytes
Event object RAM 5 bytes
Mutex RAM 7 bytes
Semaphore RAM 4 bytes
RWLocks RAM 13 bytes
Mailbox RAM 13 bytes
Queue RAM 15 bytes
Watchdog RAM 6 bytes
Fixed Block Size Memory Pool RAM 16 bytes

embOS for 8051 and IAR

© 2014-2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	CPU modes
	Standard system libraries
	OS_Stop()
	Extended task context

	Stacks
	Task stack
	System stack
	Interrupt stack
	Stack check

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Zero latency interrupts
	Zero latency interrupts with 8051

	Interrupt priorities
	Interrupt nesting

	Technical data
	Resource Usage

