
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01054
Software version 4.04a

Revision: 0
Date: December 3, 2014

CPU & Compiler
specifics for PowerPC

using
CodeWarrior for MCU

Real-Time
Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2014 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: December 3, 2014

Software Revision Date By Description
4.04a 0 141203 TS New software version.
3.88h 0 140210 TS First version.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

4

UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 2.1: Typographic conventions
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Using embOS for PowerPC ...9

1.1 Installation ...10
1.2 First steps ..11
1.3 The example application Start_2Tasks.c ...13
1.4 Stepping through the sample application ..14

2 Build your own application ...17

2.1 Introduction..18
2.2 Required files for an embOS for PowerPC ..18
2.3 Change library mode..18

3 PowerPC specifics ...19

3.1 CPU modes ...20
3.2 Available libraries ..20

4 Compiler specifics..21

4.1 Standard system libraries ...22
4.2 Embedded Floating Point Unit EFPU and Signal Processing Unit SPE support ...23

5 Stacks ..25

5.1 Task stack for PowerPC ..26
5.2 System stack for PowerPC ..26
5.3 Interrupt stack for PowerPC ..26

6 Interrupts..27

6.1 What happens when an interrupt occurs?..28
6.2 Defining interrupt handlers in C ...28
6.3 Interrupt vector table...29
6.4 Interrupt priorities ...29
6.5 Interrupt nesting ...29
6.6 Zero latency interrupts ...29

7 STOP / WAIT Mode ...31

7.1 Introduction..32

8 Technical data..33

8.1 Memory requirements ..34

9 Files shipped with embOS ...35
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

8

UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Using embOS for PowerPC
This chapter describes how to start with embOS for PowerPC cores and the Freescale
Codewarrior compiler for Embedded PowerPC. You should follow these steps to
become familiar with embOS.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Using embOS for PowerPC
1.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.

To install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, keep all files in their respective sub directories. Make
sure the files are not read only after copying. If you received a zip-file, extract it to
any folder of your choice, preserving the directory structure of the zip-file.

Assuming that you are using the CodeWarrior Development Studio for Microcontrol-
lers to develop your application, no further installation steps are required. You will
find a lot of prepared sample start projects, which you should use and modify to write
your application. So follow the instructions of section �First steps� on page 11.

You should do this even if you do not intend to use the project manager for your
application development to become familiar with embOS.

If you will not work with the CodeWarrior Development Studio for Microcontrollers,
you should: Copy either all or only the library-file that you need to your work-direc-
tory. This has the advantage that when you switch to an updated version of embOS
later in a project, you do not affect older projects that use embOS also. embOS does
in no way rely on the CodeWarrior Development Studio for Microcontrollers IDE, it
may be used without the project manager using batch files or a make utility without
any problem.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

11
1.2 First steps
After installation of embOS you can create your first multitasking application. You
received several ready to go sample start projects and every other files needed in the
subfolder Start. It is a good idea to use one of them as a starting point for all of your
applications. The subfolder BoardSupport contains the projects which are located in
manufacturer- and CPU-specific subfolders.

For the first step, you may use the project for the MPC5645S CPU:

To get your new application running, you should proceed as follows:

� Create a work directory for your application, for example c:\work.
� Copy the whole folder Start which is part of your embOS distribution into your

work directory.
� Clear the read-only attribute of all files in the new Start folder.
� Create a new workspace at the location of your choice and import the project

from Start\BoardSupport\Freescale\MPC5645S_DEMO_V2:
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Using embOS for PowerPC
� Build the project. It should be build without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every
specific project. The ReadMe file describes the different configurations of the project
and gives additional information about specific hardware settings of the supported
eval boards, if required.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

13
1.3 The example application Start_2Tasks.c
The following is a printout of the example application Start_2Tasks.c. It is a good
starting point for your application. (Note that the file actually shipped with your port
of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH & Co.KG
* Solutions for real time microcontroller applications

File : Start2Tasks.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */’

void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Using embOS for PowerPC
1.4 Stepping through the sample application
When starting the debugger, you will see the main function (see example screenshot
below). The main function appears as long as the debugger option Run to main is
selected, which it is by default. Now you can step through the program. OS_IncDI()
initially disables interrupts.
OS_InitKern() is part of the embOS library and written in assembler; you can there-
fore only step into it in disassembly mode. It initializes the relevant OS variables.
Because of the previous call of OS_IncDI(), interrupts are not enabled during execu-
tion of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.

OS_Start() should be the last line in main, because it starts multitasking and does
not return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as
shown below.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

15
As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only.
Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until
you reach the highest priority task.

If you continue stepping, you will arrive in the task that has lower priority:

Continue to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or timer
executing).
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Using embOS for PowerPC
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint there before
you step over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay.

As can be seen by the value of embOS timer variable OS_Time, shown in the Watch
window, HPTask continues operation after expiration of the 50 ms delay.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 2

Build your own application
This chapter provides all information to setup your own embOS project.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Build your own application
2.1 Introduction
To build your own application, you should always start with one of the supplied sam-
ple workspaces and projects. Therefore, select an embOS workspace as described in
First steps on page 9 and modify the project to fit your needs. Using a sample project
as starting point has the advantage that all necessary files are included and all set-
tings for the project are already done.

2.2 Required files for an embOS for PowerPC
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one target specific BoardSupport\<Manufac-
turer>\<MCU>\ subfolder.
It contains hardware-dependent initialization code for embOS. It initializes the
system timer, timer interrupt and optional communication for embOSView via
UART.

� One embOS library from the subfolder Lib\.
� OS_Error.c from one target specific subfolder BoardSupport\<Manufac-

turer>\<MCU>\.
The error handler is used if any library other than Release build library is used in
your project.

� Additional low level init code may be required according to CPU.

When you decide to write your own startup code or use a __low_level_init() func-
tion, ensure that non-initialized variables are initialized with zero, according to C
standard. This is required for some embOS internal variables.
Your main() function has to initialize embOS by a call of OS_InitKern() and
OS_InitHW() prior any other embOS embOS functions are called.
You should then modify or replace the Start_2Task.c source file in the subfolder
Application\.

2.3 Change library mode
For your application you might want to choose another library. For debugging and
program development you should use an embOS-debug library. For your final appli-
cation you may wish to use an embOS-release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

� If your selected library is already available in your project, just select the appro-
priate configuration.

� To add a library, add it in the project settings. Only add one embOS library at the
same time.

� Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/
or modify the OS_Config.h file accordingly.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

19
Chapter 3

PowerPC specifics
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 3 PowerPC specifics
3.1 CPU modes
embOS for PowerPC supports all memory and code model combinations that the
Freescale CodeWarrior for MCU compiler supports.

3.2 Available libraries
embOS for PowerPC and Freescale CodeWarrior for MCU compiler comes with 7 differ-
ent libraries, one for each library mode. The library names follow the naming conven-
tion for the EWL system libraries from CodeWarrior for MCU compiler.

3.2.1 Naming conventions for prebuilt libraries compatible to
CodeWarrior for MCU compiler

embOS for PowerPC and CodeWarrior for MCU is shipped with different prebuilt librar-
ies with different combinations of the following features:

� CPU Core - Core
� Instruction set - ISA
� Library mode - LibMode

The libraries are named as follows:

libos_<Core>_<ISA>_<Libmode>.a

Example

libos_E200z4_VLE_DP.a is the library for a project using a e200z4 core, VLE mode,
with debug and profiling support.

Parameter Meaning Values

Core Specifies the CPU core E200z4: Always e200z4 core
ISA Specifies the instruction set VLE: Always variable length encoding
LibMode Specifies the library mode XR: Extreme Release

R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + trace
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 4

Compiler specifics
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 4 Compiler specifics
4.1 Standard system libraries
embOS for PowerPC and CodeWarrior for MCU may be used with CodeWarrior stan-
dard libraries.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

23
4.2 Embedded Floating Point Unit EFPU and Signal
Processing Unit SPE support

The PowerPC e200z4 core comes with an integrated Emdedded Floating Point Unit
EFPU and Signal Processing Unit SPE.
When selecting the CPU and activating the EFPU/SPE support in the project options,
the startup code enables the EFPU/SPE units.
With embOS, the EFPU/SPE registers have to be saved and restored when preemptive
or cooperative task switches are performed.
For efficiency reasons, embOS does not save and restore the EFPU/SPE registers for
every task automatically. The context switching time and stack load are therefore not
affected when the EFPU/SPE unit is not used or needed.
Saving and restoring the EFPU/SPE registers can be enabled for every task individu-
ally by extending the task context of the tasks which need and use the EFPU/SPE.

4.2.1 OS_ExtendTaskContext_EFPU_SPE()
Description

OS_ExtendTaskContext_EFPU_SPE() has to be called as first function in a task, when
the EFPU/SPE is used in the task and the EFPU/SPE registers have to be added to the
task context.

Prototype
void OS_ExtendTaskContext_EFPU_SPE(void)

Return value

None.

Additional Information

OS_ExtendTaskContext_EFPU_SPE() extends the task context to save and restore the
EFPU/SPE registers during context switches.
Additional task context extension for a task by calling OS_ExtendTaskContext() is
not allowed and will call the embOS error handler OS_Error() in debug builds of
embOS.
There is no need to extend the task context for every task. Only those tasks using
the EFPU/SPE for calculation have to be extended.

4.2.2 Using the EFPU/SPE in interrupt service routines
Using the EFPU/SPE in interrupt service routines requires additional functions to save
and restore the EFPU/SPE registers.
embOS delivers two functions to save and restore the EFPU/SPE context in an inter-
rupt service routine.

4.2.2.1 OS_EFPU_SPE_Save()
Description

OS_EFPU_SPE_Save() has to be called as first function in an interrupt service routine,
when the EFPU/SPE is used in the interrupt service routine. The function saves the
temporary EFPU/SPE registers on the stack.

Prototype
void OS_EFPU_SPE_Save(void)

Return value

None.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 4 Compiler specifics
Additional Information

OS_EFPU_SPE_Save() declares a local variable which reserves space for all tempo-
rary registers and stores the registers in the variable.
After calling the OS_EFPU_SPE_Save() function, the interrupt service routine may
use the EFPU/SPE for calculation without destroying the saved content of the EFPU/
SPE registers.
To restore the registers, the ISR has to call OS_EFPU_SPE_Restore() at the end.

4.2.2.2 OS_EFPU_SPE_Restore()
Description

OS_EFPU_SPE_Restore() has to be called as last function in an interrupt service rou-
tine, when the EFPU/SPE registers were saved by a call of OS_EFPU_SPE_Save() at
the beginning of the ISR. The function restores the temporary EFPU/SPE registers
from the stack.

Prototype
void OS_EFPU_SPE_Restore(void)

Return value

None.

Additional Information

OS_EFPU_SPE_Restore() restores the temporary EFPU/SPE registers which were
saved by a previous call of OS_EFPU_SPE_Save().
It has to be used together with OS_EFPU_SPE_Save() and should be the last function
called in the ISR.

Example of a interrupt service routine using EFPU/SPE

void ADC_ISR_Handler(void) {
 OS_EFPU_SPE_Save(); // Save EFPU/SPE registers
 DoSomeFloatOperation();
 OS_EFPU_SPE_Restore(); // Restore EFPU/SPE registers.
}

UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 5

Stacks
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 5 Stacks
5.1 Task stack for PowerPC
Each task uses its individual stack. The stack poiter is initialized and set every time a
task is activated by the scheduler. The stack-size required for a task is the sum of the
stack-size of all routines plus a basic stack size plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by calling embOS-routines.

For the PowerPC CPUs, this minimum basic task stack size is about 90 bytes. Because
any function call uses some amount of stack and every exception also pushes at least
80 bytes onto the current stack, the task stack size has to be large enough to handle
one exception too. We recommend at least 512 bytes stack as a start.

5.2 System stack for PowerPC
The minimum system stack size required by embOS is about 144 bytes (stack check
& profiling build) However, since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because software-timers
and interrupt handlers also use the system-stack, the actual stack requirements
depend on the application.

The size of the system stack can be changed by modifying project settings.
We recommend a minimum stack size of 512 bytes for the C stack.

5.3 Interrupt stack for PowerPC
The PowerPC CPU has no separate interrupt stack. The interrupt runs on the current
stack which could be task stack or C stack.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 6

Interrupts
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 6 Interrupts
6.1 What happens when an interrupt occurs?
� The CPU-core receives an interrupt request form the interrupt controller.
� As soon as the interrupts are enabled, the interrupt is accepted and executed.
� The CPU stores the machine status register and the return address into the regis-

ter SSR0 and SSR1.
� The CPU jumps to the embOS low level interrupt handler IRQ_Handler().
� IRQ_Handler() saves all scratch registers.
� IRQ_Handler() calls the embOS high level interrupt handler OS_irq_handler().
� OS_irq_handler() reads the interrupt vector address from the interrupt controller

and calls the application handler function.
� The low level interrupt handler restores all scratch register. It ends with a "rfi"

instruction and restores the machine status register and the jumps back to the
instruction where the interrupt occurred.

6.2 Defining interrupt handlers in C
Interrupt handlers called from the embOS interrupt handler in RTOSInit*.c are just
normal C-functions which do not take parameters and do not return any value.

The default C interrupt handler OS_irq_handler() in RTOSInit*.c first calls
OS_Enterinterrupt() or OS_EnterNestableInterrupt() to inform embOS that
interrupt code is running. Then this handler examines the source of interrupt
and calls the related interrupt handler function.

Finally, the default interrupt handler OS_irq_handler() in RTOSInit*.c calls
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt() and returns to the lowe level
interrupt handler IRQ_Handler().

Depending on the interrupting source, it may be required to reset the interrupt pend-
ing condition of the related peripherals.

Example

Simple interrupt routine:

static void OS_ISR_Tick (void) {
 PIT0_TFLG = 0x01u; // Clear PIT0 flag
 OS_TICK_Handle();
}

UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

29
6.2.1 OS_PPC_InstallISRHandler(): Install an interrupt han-
dler

Description

OS_PPC_InstallISRHandler() is used to setup an interrupt handler function for a spe-
cific interrupt source.

Prototype

OS_ISR_HANDLER* OS_PPC_InstallISRHandler (OS_U32 ISRIndex,
 OS_ISR_HANDLER* pISRHandler,
 OS_U8 Prio);

Table 6.1: OS_PPC_InstallISRHandler parameter list

Return value

OS_ISR_HANDLER*: The address of the previously installed interrupt function, which
was installed at the addressed vector number before.

Additional Information

This function just installs the interrupt vector and sets the priority and does not
automatically enable the interrupt.

6.3 Interrupt vector table
embOS for PowerPC uses the INTC software vector mode and a vector table in RAM.
All entries are initialized with a default handler function. The application has to call
OS_PPC_InstallISRHandler() to install an interrupt handler for a peripheral interrupt.

6.4 Interrupt priorities
The interrupt controller supports interrupt priority. The application has to call
OS_PPC_InstallISRHandler() to setup a priority for a peripheral interrupt.

6.5 Interrupt nesting
The PowerPC CPU uses a priority controlled interrupt controller which allows nesting
of interrupts. Any interrupt with a higher priority may interrupt an interrupt handler
running on a lower priority. Nesting can only be enabled globally for all interrupts. To
do set the define ALLOW_NESTED_INTERRUPTS as a project option or change this
define in the according RTOSInit.c to "1".

6.6 Zero latency interrupts
Zero latency interrupts are not supported by embOS for PowerPC.

Parameter Description

ISRIndex
Index of the interrupt source which should be modified.
Note that the index counts from 0 for the first entry in the vector
table.

pISRHandler Address of the interrupt handler function.

Prio
The priority which should be set for the specific interrupt.
Prio ranges from 0 (lowest priority) to 15 (highest priority)
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 6 Interrupts
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

31
Chapter 7

STOP / WAIT Mode
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 7 STOP / WAIT Mode
7.1 Introduction
In case your controller does support some kind of power saving mode, it should be
possible to use it also with embOS, as long as the timer keeps working and timer
interrupts are processed. To enter that mode, you usually have to implement some
special sequence in the function OS_Idle(), which you can find in embOS module
RTOSInit.c.
Per default, the wfi instruction is executed in OS_Idle() to put the CPU into a low
power mode.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 8

Technical data
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 8 Technical data
8.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. The
minimum ROM requirement for the kernel itself is about 2.500 bytes.

In the table below, which is for release build, you can find minimum RAM size
requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]

Task control block 44

Resource semaphore 16

Counting semaphore 8

Mailbox 24

Software timer 20
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

35
Chapter 9

Files shipped with embOS
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 9 Files shipped with embOS
List of files shipped with embOS

Any additional files shipped serve as example.

Directory File Explanation

root *.pdf
Generic API and target specific docu-
mentation.

root Release.html Version control document.

root embOSView.exe
Utility for runtime analysis, described in
generic documentation.

Start\
BoardSupport\

Sample project files for Freescale
CodeWarrior for MCU, contained in man-
ufacturer specific sub folders.

Start\Inc
RTOS.h
BSP.h

Include file for embOS, to be included in
every C-file using embOS functions.

Start\Lib os??_*.a
embOS libraries for Freescale compiler
for PowerPC.

Start\BoardSup-
port\..\Setup

OS_Error.c
embOS runtime error handler used in
stack check or debug builds.

Start\BoardSup-
port\...\Setup\

.
CPU specific hardware routines for vari-
ous CPUs.
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

37
Index
C
CPU modes ...20

I
Installation ...10
interrupt handlers28
Interrupt nesting29
Interrupt priorities29
Interrupt stack26
Interrupt vector table29
Interrupts ...27

L
libraries ..20

M
Memory requirements34

O
OS_ExtendTaskContext_VFP23
OS_VFP_Restore()24
OS_VFP_Save()23

S
Stacks ..25
Syntax, conventions used 5
System stack26

T
Task stack ..26

V
VFPv4 ..23
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

38 Index
UM01054 embOS for PPC and CodeWarrior © 2014 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Using embOS for PowerPC
	1.1 Installation
	1.2 First steps
	1.3 The example application Start_2Tasks.c
	1.4 Stepping through the sample application

	Build your own application
	2.1 Introduction
	2.2 Required files for an embOS for PowerPC
	2.3 Change library mode

	PowerPC specifics
	3.1 CPU modes
	3.2 Available libraries
	3.2.1 Naming conventions for prebuilt libraries compatible to CodeWarrior for MCU compiler

	Compiler specifics
	4.1 Standard system libraries
	4.2 Embedded Floating Point Unit EFPU and Signal Processing Unit SPE support
	4.2.1 OS_ExtendTaskContext_EFPU_SPE()
	4.2.2 Using the EFPU/SPE in interrupt service routines

	Stacks
	5.1 Task stack for PowerPC
	5.2 System stack for PowerPC
	5.3 Interrupt stack for PowerPC

	Interrupts
	6.1 What happens when an interrupt occurs?
	6.2 Defining interrupt handlers in C
	6.2.1 OS_PPC_InstallISRHandler(): Install an interrupt handler

	6.3 Interrupt vector table
	6.4 Interrupt priorities
	6.5 Interrupt nesting
	6.6 Zero latency interrupts

	STOP / WAIT Mode
	7.1 Introduction

	Technical data
	8.1 Memory requirements

	Files shipped with embOS
	Index

