
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01053
Software version 4.04

Revision: 0
Date: November 21, 2014

CPU & Compiler
specifics for Altera SoC

using ARM DS-5
and GNU compiler

Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: November 21, 2014

Software Revision Date By Description
4.04 0 141121 MC NEON support added.
4.02a 1 141021 MC Minor corrections.
4.02a 0 141007 MC Update to latest embOS generic sources 4.02a
3.88h 0 140109 AW Initial version, based on embOS sources 3.88h
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

4

UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 2.1: Typographic conventions
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Using embOS ARM GNU Altera ..9

1.1 Installation ...10
1.2 First steps ..11
1.3 The example application Start_2Tasks.c ...14
1.4 Stepping through the sample application ..15

2 Build your own application ...19

2.1 Introduction..20
2.2 Required files for embOS for Altera SoC and DS-5..20
2.3 Change library mode..20

3 CPU specifics...21

3.1 CPU modes ...22
3.2 Available embOS libraries ...22

4 Compiler specifics..23

4.1 Standard system libraries ...24
4.2 Reentrancy, thread local storage..24
4.3 Heap definition with embOS ..27
4.4 Reentrancy, thread safe heap management...28
4.5 Vector floating point support VFP ...29
4.6 Cortex A VFP and Neon support ...31

5 Stacks ..35

5.1 Task stack for ARM ..36
5.2 System stack for ARM ..36
5.3 Interrupt stack for ARM ..36
5.4 Stack specifics of the ARM family ...36

6 Interrupts..37

6.1 What happens when an interrupt occurs?..38
6.2 Defining interrupt handlers in C ...39
6.3 Interrupt handling with vectored interrupt controller.....................................40
6.4 Interrupt-stack switching..48
6.5 Fast Interrupt (FIQ) ...49

7 STOP / WAIT Mode ...51

7.1 Introduction..52

8 Technical data..53

8.1 Memory requirements ..54

9 Files shipped with embOS ...55
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

8

UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Using embOS ARM GNU Altera
This chapter describes how to start with and use embOS ARM GNU Altera with the
ARM DS-5 workbench and GNU tool chain.
You should follow these steps to become familiar with embOS.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Using embOS ARM GNU Altera
1.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.

To install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, keep all files in their respective sub directories. Make
sure the files are not read only after copying. If you received a zip-file, extract it to
any folder of your choice, preserving the directory structure of the zip-file.

Assuming that you are using the Eclipse for DS-5 to develop your application, no fur-
ther installation steps are required. You will find a prepared sample start project
which you should use and modify to write your application. So follow the instructions
of section �First steps� on page 11.

You should do this even if you do not intend to use the Eclipse based workbench for
your application development to become familiar with embOS.

If you will not work with the Eclipse based workbench, you should: Copy the whole
folder "Start" of the embOS shipment into your work directory. A makefile is found in
the board specific subfolder. The project can be built by using the makefile. It may be
required to setup your environment, so that the compiler is found in the path. embOS
does in no way rely on the Eclipse based DS-5 workbench, it may be used without the
project manager using batch files or a make utility without any problem.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

11
1.2 First steps
After installation of embOS you are able to create and run your first multitasking
application. You received a ready to go sample project and it is a good idea to use
this as a starting point for your applications.
Your embOS distribution contains one folder "Start\BoardSupport" which contains the
sample project files and every additional file used to build your application.

The following chapters describe a session using the sample project for the Altera
Cyclone V SoC on the SoCrates Cyclone V Evaluation Board.
The project is located at "Start\BoardSupport\Altera\CycloneV_SOCrates".

To get your new application running, you should proceed as follows:

� Create a work directory for your application, for example c:\embOS.
� Copy the whole folder Start, which is part of your embOS distribution, into your

work directory.
� Clear the read-only attribute of all files in the new Start folder.
� Start the Eclipse for DS-5 workbench and select and create a workspace.
� Import the sample project into the workspace
� Build the start project
� Run the application using the USB Blaster II debugger for downloading and

debugging.

Start the DS-5 workbench and in the workspace launcher click "Browse..." to select
the workspace. If the workspace launcher is not shown on startup, select it by menu
"File -> Switch Workspace".
Select the workspace directory "Start\BoardSupport\Altera" or any other folder on
your hard disk.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Using embOS ARM GNU Altera
The workspace will then be created in the selected folder.
Now import the sample start project from the folder CycloneV_SOCrates.
Choose menu "File -> Import" and in "Import" dialog select "General -> Existing
Projects into workspace".

Press "Next", the Import Projects dialog shows up.

Press "Browse..." and select "Start\Boardsupport\Altera\CycloneV_SOCrates" as the
root directory for the project to import:

Press "OK".

Refresh the project and build it:
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

13
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Using embOS ARM GNU Altera
1.3 The example application Start_2Tasks.c
The following is a printout of the example application Start_2Tasks.c. It is a good
starting point for your application. (Note that the file actually shipped with your port
of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS, two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH & Co.KG
* Solutions for real time microcontroller applications

File : Start_2Tasks.c
Purpose : Skeleton program for OS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 BSP_Init(); /* Initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

15
1.4 Stepping through the sample application
The embOS start project comes with a debug configuration embOS_Start, which can
be used to download and debug the start project in the SDRAM of the eval bord.
When starting the debugger, you will usually see the main() function (very similar to
the example screenshot below). With some debug configurations, you may look at
the startup code at the program entry point. In this case, you should set a breakpoint
at main() and start the execution to reach main().

Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library; you can therefore step into it in disas-
sembly mode only. It initializes the relevant OS variables. Because of the previous
call of OS_IncDI(), interrupts are not enabled during execution of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.

OS_Start() should be the last line in main, because it starts multitasking and does
not return.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Using embOS ARM GNU Altera
Before you step into OS_Start(), you should set two breakpoints in the two tasks as
shown below:

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. Click Continue (F8), step over OS_Start(), or step into OS_Start() in
disassembly mode until you reach the highest priority task.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

17
If you continue stepping, or press Continue, you will arrive in the task with lower pri-
ority:

Continuing to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or timer
executing). You will arrive there when you step into the OS_Delay() function in dis-
assembly mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint
there before you step over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 1 Using embOS ARM GNU Altera
As can be seen by the value of the embOS timer variable OS_Global.Time, shown in
the Watch window, HPTask continues operation after expiration of the 10 ms delay.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

19
Chapter 2

Build your own application
This chapter provides all information to setup your own embOS project.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Build your own application
2.1 Introduction
To build your own application, you should always start with the supplied sample
project. Therefore, select and build an embOS workspace as described in First steps
on page 9 and modify the project to fit your needs. Using a sample project as start-
ing point has the advantage that all necessary files are included and all settings for
the project are already done.
You may add your own code and sources by just copying the files in the root or appli-
cation folder of the project and modifiy the make file.

2.2 Required files for embOS for Altera SoC and DS-5
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions. The include path in the make
file has to be setup to find the RTOS.h file.

� RTOSInit_*.c from the target specific folder. In our sample project, RTOSOInit
is located in
Start\BoardSupport\Altera\CycloneV_SOCrates\Setup\
RTOSInit contains hardware-dependent initialization code for embOS. It initial-
izes the system timer, the interrupt controller, the MMU, the timer interrupt and
optional communication for embOSView via UART.

� One embOS library from the subfolder Lib\.
� OS_Error.c from target specific subfolder

BoardSupport\Altera\CyloneV_SOCrates\Setup\.
The error handler is used if any library other than a Release build library is used
in your project.

� startup.S from the BoardSupport\Altera\CyloneV_SOCrates\Setup\ folder.
It contains the startup code wich is required to perform a low level CPU configu-
ration, initializes the MMU and caches by a call of the __low_level_init() func-
tion from RTOSInit and sets up initialized and zero initialized variables.

� Preloader, second level loader and debug scripts are required to get the current
version of embOS ARM GNU Altera running on the target using the debugger. All
required files are located in the Setup folder.

When you decide to write your own startup code, ensure, that at least the SVC and
IRQ stack pointeres are initialized using the stack addresses described later on.
Ensure, __low_level_init() is called before the variables are initialized. Ensure
that non-initialized variables are initialized with zero, according to C standard. This is
required for some embOS internal variables.
Finally ensure, that main() is called with the CPU running in supervisor or system
mode. Interrupts should be disabled when entering main().
Your main() function has to initialize embOS by a call of OS_InitKern() and
OS_InitHW() prior any other embOS embOS functions except OS_IncDI() are called.
You should then modify or replace the sample Start_2Task.c source file in the sub-
folder Application\, or modify the makefile to compile and link another application.

2.3 Change library mode
For your application you might want to choose another library. For debugging and
program development you should use an embOS debug library. For your final applica-
tion, you may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

� Include the wished library by modification of the makefile.
� Check and set the appropriate OS_LIBMODE_* define as compiler flag in the make-

file.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 3

CPU specifics
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 CPU specifics
3.1 CPU modes
embOS for ARM cores with GNU compiler supports all memory and code model com-
binations that the GNU compiler for ARM supports.
As this version of embOS for ARM is dedicated to Altera SoC, which is a Cortex-A9
multi core, the shipment comes with libaries for ARM9 CPUs only, which can be used
with Cortex-A9.
The source version of embOS allows generation of all supported libraries.

3.2 Available embOS libraries
embOS for ARM GNU Altera comes with 7 different libraries, compiled for ARMv5
architecture. These can be used with Cortex A9 cores. Cortex A specific code for MMU
and VFP support is included in the libraries.
The library names follow the naming conventions described below.

3.2.1 Naming conventions for prebuilt embOS libraries
embOS ARM GNU Altera is shipped with different prebuilt libraries with different com-
binations of the following features:

� Instruction set architecture - Arch
� CPU mode - CpuMode
� Byte order - ByteOrder
� Library mode - LibMode

The libraries are named as follows:

libos<CpuMode><Arch><ByteOrder><Interwork><Libmode>.a

* = Not delivered with embOS ARM GNU Altera, but can be generated with the source
version of embOS.

Example

libosA5LNDP.a is the library for a project using an ARM9 or Cortex A9 core, ARM
mode, little endian mode, no interworking, with debug and profiling support.

Parameter Meaning Values

CpuMode Specifies the CPU mode. A: ARM mode
T: Thumb mode *

Arch Specifies the CPU variant 4: ARM 7 (architecture 4) *
5: ARM 9 (architecture 5)

ByteOrder Specifies target endianess. B: Big endian *
L: Little endian

Interwork
Specifies if interwork option
is enabled. N: No interworking.

LibMode Specifies the library mode XR: Extreme Release
R: Release
S: Stack check
SP: Stack check + Profiling
D: Debug
DP: Debug + Profiling
DT: Debug + Profiling + Trace
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 4

Compiler specifics
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 4 Compiler specifics
4.1 Standard system libraries
embOS for ARM GNU Altera may be used with standard GNU system libraries for
most of all projects without any modification.

Heap management and file operation functions of standard system libraries are not
reentrant and require a special initialization or additional modules when used with
embOS, if non thread safe functions are used from different tasks.

Alternatively, for heap management, embOS delivers its own thread safe functions
which may be used. These functions are described in the embOS generic manual.

4.2 Reentrancy, thread local storage
The GCC newlib supports usage of thread-local storage located in a _reent structure
as local variable for every task.
Several library objects and functions need local variables which have to be unique to
a thread. Thread-local storage will be required when these functions are called from
multiple threads.
embOS for GNU is prepared to support the thread-local storage, but does not use it
per default. This has the advantage of no additional overhead as long as thread-local
storage is not needed by the application or specific tasks.
The embOS implementation of thread-local storage allows activation of TLS sepa-
rately for every task.
Only tasks that call functions using TLS need to activate the TLS by defining a local
variable and calling an initialization function when the task is started.
The _reent structure is stored on the task stack and have to be considered when the
task stack size is defined. The structure may contain up to 800 bytes.

Typical Library objects that need thread-local storage when used in multiple tasks
are:

� error functions -- errno, strerror.
� locale functions -- localeconv, setlocale.
� time functions -- asctime, localtime, gmtime, mktime.
� multibyte functions -- mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
� rand functions -- rand, srand.
� etc functions -- atexit, strtok.
� C++ exception engine.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

25
4.2.1 OS_ExtendTaskContext_TLS()
Description

OS_ExtendTaskContext_TLS() may be called from a task which needs thread local
storage to initialize and use Thread-local storage.

Prototype
void OS_ExtendTaskContext_TLS(struct _reent * pReentStruct)

Parameter

pReentStruct is a pointer to the thread local storage. It is the address of the variable
of type struct _reent which holds the thread local data.

Return value

None.

Additional Information

OS_ExtendTaskContext_TLS() shall be the first function called from a task when TLS
should be used in the specific task. The function must not be called multiple times
from one task. The thread-local storage has to be defined as local variable in the
task.
The structure stored on the task stack is really big and my take up to 800 bytes or
more. This additional space has to be considered when the task stack sizes are
defined.

Example

void Task(void) {
 struct _reent TaskReentStruct;

 OS_ExtendTaskContext_TLS(&TaskReentStruct);*/
 while (1) {
 ... /* Task functionality */
 }
}

Please ensure sufficient task stack to hold the _reent structure variable.

For details on the _reent structure, _impure_ptr, and library functions which require
precautions on reentrance, refer to the GNU documentation.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 4 Compiler specifics
4.2.2 OS_ExtendTaskContext_TLS_VFP()
Description

OS_ExtendTaskContext_TLS_VFP() has to be called as first function in a task, when
thread-local storage and thread safe floatingpoint processor support is needed in the
task.

Prototype
void OS_ExtendTaskContext_TLS_VFP(struct _reent * pReentStruct)

Parameter

pReentStruct is a pointer to the thread local storage. It is the address of the variable
of type struct _reent which holds the thread local data.

Return value

None.

Additional Information

OS_ExtendTaskContext_TLS_VFP() shall be the first function called from a
task when TLS and VFP should be used in the specific task.
The function must not be called multiple times from one task.
The thread-local storage should be defined as local variable in the task.
The task specific TLS management is generated as embOS task extension
together with the storage needed for the VFP registers. The VFP registers are auto-
matically saved onto the task stack when the task is suspended, and restored, when
the task is resumed. Additional task extension by a call of OS_ExtendTaskContext()
is impossible.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

27
4.3 Heap definition with embOS
The standard memory layout most commonly used with GNU tool chains can not be
used with embOS.
The standard GNU memory layout defines the end address of data as the start of the
heap and the end of RAM as the top address of the system stack.
The default management function _sbrk() checks if there is enough margin between
current stack and current heap address, by comparing the stack pointer value
against the highest address of the heap.
This requires, that the stack pointer is always higher than the last address in the
heap.
This does not work with embOS, because task stacks are located in the normal data
area, or are allocated from the heap. When tasks are running, the stack pointer is
always lower than the start of the heap, or is lower then the current heap pointer
when more space from the heap is requested by the application.

With embOS, the heap has to be defined as separate section in the linker script file,
and the _sbrk() function delivered with embOS has to be used.
_sbrk() is defined in OS_Syscalls.c which can be found in the Setup folder of the
start project.
When dynamic memory allocation with heap shall be used in the application,
OS_Syscalls.c has to be compiled and linked.

The heap section has to be defined in the linker file.
The heap area has to start with the linker generated variable __heap_start__ (lower
address) and has to end with __heap_end__ (upper address). The location in memory
does not care, it may be anywhere in RAM.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 4 Compiler specifics
4.4 Reentrancy, thread safe heap management
The heap management functions in the system libraries are not thread-safe without
implementation of additional locking functions.
The GCC library calls two hook functions to lock and unlock the mutual access of the
heap-management functions.
The empty locking functions from the system library may be overwritten by the appli-
cation to implement a locking mechanism.

A locking is required when multiple tasks access the heap, or when objects are cre-
ated dynamically on the heap by multiple tasks.
The locking functions are implemented in the source module OS_MallocLock.c which
is included in the "Setup" subfolder in every embOS start project.
If thread safe heap management is required, the module has to be compiled and
linked with the application.

4.4.1 __malloc_lock(), lock the heap against mutual access
__malloc_lock() is the locking function which is called by the system library when-
ever the heap management has to be locked against mutual access.
The implementation delivered with embOS claims a resource semaphore.

4.4.2 __malloc_unlock()
__malloc_unlock() is the is the counterpart to __malloc_lock().
It is called by the system library whenever the heap management locking can be
released. The implementation delivered with embOS releases the resource sema-
phore.

None of these functions has to be called directly by the application. They are called
from the system library functions when required.
The functions are delivered in source form to allow replacement of the dummy func-
tions in the system library.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

29
4.5 Vector floating point support VFP
Some ARM MCUs come with an integrated vectored floating point unit VFP.
When selecting the CPU and activating the VFP support in the project options, the
compiler and linker will add efficient code which uses the VFP when floating point
operations are used in the application.
With embOS, the VFP registers have to be saved and restored when preemptive or
cooperative task switches are performed.
For efficiency reasons, embOS does not save and restore the VFP registers for every
task automatically. The context switching time and stack load are therefore not
affected when the VFP unit is not used or needed.
Saving and restoring the VFP registers can be enabled for every task individually by
extending the task context of the tasks which need and use the VFP.

4.5.1 OS_ExtendTaskContext_VFP()
Description

OS_ExtendTaskContext_VFP() has to be called as first function in a task, when the
VFP is used in the task and the VFP registers have to be added to the task context.

Prototype
void OS_ExtendTaskContext_VFP(void)

Return value

None.

Additional Information

OS_ExtendTaskContext_VFP() extends the task context to save and restore the VFP
registers during context switches.
Additional task context extension for a task by calling OS_ExtendTaskContext() is
not allowed and will call the embOS error handler OS_Error() in debug builds of
embOS.
There is no need to extend the task context for every task. Only those tasks using
the VFP for calculation have to be extended.
When Thread-local Storage (TLS) is also needed in a task, the new embOS function
OS_ExtendTaskContext_TLS_VFP() has to be called to extend the task context for
TLS and VFP.

4.5.2 Using the VFP in interrupt service routines
Using the VFP in interrupt service routines requires additional functions to save and
restore the VFP registers.
As the GCC compiler does not add additional code to save and restore the VFP regis-
ters on entry and exit of interrupt service routines, it is the users responsibility to
save the VFP registers on entry of an interrupt service routine when the VFP is used
in the ISR.
embOS delivers two functions to save and restore the VFP context in an interrupt ser-
vice routine.

4.5.2.1 OS_VFP_Save()
Description

OS_VFP_Save() has to be called as first function in an interrupt service routine, when
the VFP is used in the interrupt service routine. The function saves the temporary
VFP registers on the stack.

Prototype

void OS_VFP_Save(void)
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 4 Compiler specifics
Return value

None.

Additional Information

OS_VFP_Save() declares a local variable which reserves space for all temporary float-
ing point registers and stores the registers in the variable.
After calling the OS_VFP_Save() function, the interrupt service routine may use the
VFP for calculation without destroying the saved content of the VFP registers.
To restore the registers, the ISR has to call OS_VFP_Restore() at the end.
The function may be used in any ISR regardless the priority.

4.5.2.2 OS_VFP_Restore()
Description

OS_VFP_Restore() has to be called as last function in an interrupt service routine,
when the VFP registers were saved by a call of OS_VFP_Save() at the beginning of
the ISR. The function restores the temporary VFP registers from the stack.

Prototype
void OS_VFP_Restore(void)

Return value

None.

Additional Information

OS_VFP_Restore() restores the temporary VFP registers which were saved by a pre-
vious call of OS_VFP_Save().
It has to be used together with OS_VFP_Save() and should be the last function called
in the ISR.

Example of an interrupt service routine using VFP:

void ADC_ISR_Handler(void) {
 OS_VFP_Save(); // Save VFP registers
 DoSomeFloatOperation();
 OS_VFP_Restore(); // Restore VFP registers
}

UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

31
4.6 Cortex A VFP and Neon support
Some Cortex A ARM MCUs come with VFP/Neon unit.
When selecting the CPU and activating the VFP/Neon support, the compiler and linker
will add efficient code which uses the VFP/Neon unit when floating point operations
are used in the application.
With embOS, the VFP/Neon registers have to be saved and restored when preemptive
task switches are performed.
For efficiency reasons, embOS does not save and restore the VFP/Neon registers for
every task automatically. The context switching time and stack load are not affected.
Saving and restoring the VFP/Neon registers can be enabled for every task individu-
ally be extending the task context of the tasks, where VFP/Neon unit is used.

4.6.1 OS_ExtendTaskContext_NEON()
Description

OS_ExtendTaskContext_NEON() has to be called as first function in a task, when the
VFP/Neon unit is used in the task and the VFP/Neon regsisters have to be added to
the task context.

Prototype
void OS_ExtendTaskContext_NEON(void)

Return value

None.

Additional Information

OS_ExtendTaskContext_NEON() extends the task context to save and restore the
VFP/Neon registers for Cortex A CPUs during context switches.
Additional task context extension for a task by calling OS_ExtendTaskContext() is
not allowed and will call the embOS error handler OS_Error() in debug builds of
embOS.
There is no need to extend the task context for every task. Only those tasks using
the VFP/Neon unit for calculation have to be extended.

4.6.2 Using the VFP/NEON in interrupt service routines
Using the VFP/Neon in interrupt service routines requires additional functions to save
and restore the VFP/Neon registers.
As the GCC compiler does not add additional code to save and restore the VFP/Neon
registers on entry and exit of interrupt service routines, it is the users responsibility
to save the VFP/Neon registers on entry of an interrupt service routine when the VFP/
Neon is used in the ISR.
embOS delivers two functions to save and restore the VFP/Neon context in an inter-
rupt service routine.

4.6.2.1 OS_NEON_Save()
Description

OS_NEON_Save() has to be called as first function in an interrupt service routine,
when the VFP/Neon is used in the interrupt service routine. The function saves the
temporary VFP/Neon registers on the stack.

Prototype
void OS_NEON_Save(void)
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 4 Compiler specifics
Return value

None.

Additional Information

OS_NEON_Save() declares a local variable which reserves space for all temporary
floating point registers and stores the registers in the variable.
After calling the OS_NEON_Save() function, the interrupt service routine may use the
VFP/Neon for calculation without destroying the saved content of the VFP/Neon regis-
ters.
To restore the registers, the ISR has to call OS_NEON_Restore() at the end.
The function may be used in any ISR regardless the priority.

4.6.2.2 OS_NEON_Restore()
Description

OS_NEON_Restore() has to be called as last function in an interrupt service routine,
when the VFP/Neon registers were saved by a call of OS_NEON_Save() at the begin-
ning of the ISR. The function restores the temporary VFP/Neon registers from the
stack.

Prototype
void OS_NEON_Restore(void)

Return value

None.

Additional Information

OS_NEON_Restore() restores the temporary VFP/Neon registers which were saved by
a previous call of OS_NEON_Save().
It has to be used together with OS_NEON_Save() and should be the last function
called in the ISR.

Example of an interrupt service routine using VFP/NEON:

void ADC_ISR_Handler(void) {
 OS_NEON_Save(); // Save VFP/NEON registers
 DoSomeNeonOperation();
 OS_NEON_Restore(); // Restore VFP/NEON registers
}

UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

33
4.6.3 Compiler and linker options.
The selection of different CPU cores or options like VFP support has to be done by
linker, compiler and assembler options.
The options have to be passed to the tool by definitions in the make-file.
The options passed to the tools have to be defined for compiler, linker and assembler
separately and have to be the same for all tools.
Beside other options, the most important options are the options to select the CPU
core.

4.6.3.1 Options to select the Cortex-A9 core
-mfloat-abi=softfp "-mfpu=vfp" -march=armv7-a -mtune=cortex-a9 -mcpu=cortex-
a9
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 4 Compiler specifics
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

35
Chapter 5

Stacks
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 5 Stacks
5.1 Task stack for ARM
All embOS tasks execute in system mode. Every embOS task has its own individual
stack which can be located in any memory area. The required stacksize for a task is
the sum of the stack-size used by all functions for local variables and parameter
passing, plus basic stack size.
The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS routines.
For the ARM 7/9, this minimum basic task stack size is about 68 bytes.

5.2 System stack for ARM
The embOS system executes in supervisor mode. The minimum system stack size
required by embOS is about 136 bytes (stack check & profiling build). However, since
the system stack is also used by the application before the start of multitasking (the
call to OS_Start()), and because software-timers and "C"-level interrupt handlers
also use the systemstack, the actual stack requirements depend on the application.
The size of the system stack can be changed by modifying "SVC_STACK_SIZE" in
your *.ld linker script file.
For embOS, it is required, that the SVC stack is located in a specified section of spec-
ified size. The linker script has to define the symbol __stack_svc_start__ at the
beginning of thes stack (lower address) and __stack_svc_end__ at the end of the
IRQ stack (upper address).

5.3 Interrupt stack for ARM
If a normal hardware exception occurs, the ARM core switches to IRQ mode,which
uses a separate stack pointer. To enable support for nested interrupts, saving reg-
siters onto the IRQ stack is necessary. embOS camoes with its own interrupt handler
that switches to supervisor mode after saving scratch registers, LR_irq and SPSR_irq
onto the IRQ stack.
As a result, only registers mentioned above are saved onto the IRQ stack. For the
interrupt routine itself, the supervisor stack is used. The size of the interrupt stack
can be changed by modifying "IRQ_STACK_SIZE" in your *.ld linker script file.
Every interrupt requires 28bytes on the interrupt stack.
The maximum interrupt stack size required by the application can be calculated as
isMaximum interrupt nesting level * 28 bytes.lp For task switching from within an
interrupt handler, it is required, that the end address of the interrupt stack is aligned
to an 8 byte boundary. This alignment is forced during stack pointer initialization in
the startup routine. Therefore, an additional margin of about 8 bytes should be
added to the calculated maximum interrupt stack size. For standard applications, we
recommend at least 92 to 128 bytes of IRQ stack.
For embOS stack checking and for the scheduler, it is required, that the IRQ stack is
located in a specified section of specified size.
The linker script has to define the symbol __stack_irq_start__ at the beginning of
thes stack (lower address) and __stack_irq_end__ at the end of the IRQ stack
(upper address).

5.4 Stack specifics of the ARM family
Interrupts require space on the supervisor and interrupt stack. The interrupt stack is
used to store contents of scratch registers, the ISR itself uses supervisor stack. The
Supervisor stack is also used during startup, main(), embOS internal functions and
software timers.
All other stacks are not initialized and not used by embOS. If required by the applica-
tion, the startup function and linker command files have to be modified to initialize
the stacks.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

37
Chapter 6

Interrupts
ARM7/ARM9/Cortex-A cores jump to a fixed location as a result of an exception or
interrupt. Some microcontrollers may have an integrated vectored interrupt control-
ler.
The following chapter describes how interrupts are handled by the core and how
interrupt handler functions have to be defined in embOS.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 6 Interrupts
6.1 What happens when an interrupt occurs?
� The CPU-core receives an interrupt request.
� As soon as interrupts are enabled, the interrupt is accepted.
� The CPU switches to the interrupt stack.
� The CPU saves the PC and flags into the registers LR_irq and SPSR_irq.
� The CPU jumps to the vector address 0x18 (or to offset 0x18 in the vector table)

and continues execution from there.
� embOS IRQ_Handler(): save scratch registers.
� embOS IRQ_Handler(): save LR_irq and SPSR_irq.
� embOS IRQ_Handler(): switch to supervisor mode.
� embOS IRQ_Handler(): execute OS_irq_handler() (defined in RTOSINIT_*.C).
� embOS OS_irq_handler(): check for interrupt source and execute timer inter-

rupt, serial communication or user ISR.
� embOS IRQ_Handler(): switch to IRQ mode.
� embOS IRQ_Handler(): restore LR_irq and SPSR_irq.
� embOS IRQ_Handler(): pop scratch registers.
� Return from interrupt.

When using an ARM derivate with vectored interrupt controller, ensure that
IRQ_Handler() is called from every interrupt. This is automatically done, when using
an embOS start project which comes with embOS. The interrupt vector itself will
then be examined by the C-level interrupt handler in RTOSInit*.c.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

39
6.2 Defining interrupt handlers in C
Interrupt handlers called from the embOS interrupt handler in RTOSInit*.c are just
normal C-functions which do not take parameters and do not return any value.

The default C interrupt handler OS_irq_handler() in RTOSInit*.c first calls
OS_Enterinterrupt() or OS_EnterNestableInterrupt() to inform embOS that
interrupt code is running. Then this handler examines the source of interrupt and
calls the related interrupt handler function.

Finally, the default interrupt handler OS_irq_handler() in RTOSInit*.c calls
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt() and returns to the primary
interrupt handler IRQ_Handler().

Depending on the interrupting source, it may be required to reset the interrupt pend-
ing condition of the related peripherals.

Example

Simple interrupt routine:

void Timer_irq_func(void) {
 if (__INTPND & 0x0800) { // Interrupt pending ?
 __INTPND = 0x0800; // reset pending condition
 OSTEST_X_ISR0(); // handle interrupt
 }
}

UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 6 Interrupts
6.3 Interrupt handling with vectored interrupt control-
ler

For ARM derivates with built in vectored interrupt controller, embOS uses a special
interrupt handling procedure and delivers additional functions to install and setup
interrupt handler functions.

When using an ARM derivate with vectored interrupt controller, ensure that
IRQ_Handler() is called from every interrupt. This is default when the startup code
and hardware initialization delivered with embOS is used. The interrupt vector itself
will then be examined by the C-level interrupt handler OS_irq_handler() in
RTOSInit*.c.

You should not program the interrupt controller for IRQ handling directly. You should
use the functions delivered with embOS.

The reaction to an interrupt with vectored interrupt controller is as follows:

� embOS interrupt handler IRQ_Handler() is called by CPU or interrupt controller.
� IRQ_Handler() saves registers and switches to supervisor mode.
� IRQ_Handler() calls OS_irq_handler() (in RTOSInit*.c).
� OS_irq_handler() examines the interrupting source by reading the interrupt

vector or vector number from the interrupt controller.
� OS_irq_handler() informs embOS that interrupt code is running by a call of

OS_EnterInterrupt() which does not re-enable interrupts, or a call
of OS_EnterNestableInterrupt() which re-enables interrupts.

� OS_irq_handler() calls the interrupt handler function which is addressed by the
interrupt vector or interrupt ID and a vector table.

� OS_irq_handler() resets the interrupt controller to re-enable acceptance of new
interrupts.

� OS_irq_handler() calls OS_LeaveInterrupt()/ OS_LeaveNestableInterrupt()
which disables interrupts and informs embOS that interrupt handling has fin-
ished.

� OS_irq_handler() returns to IRQ_Handler().
� IRQ_Handler() restores registers and performs a return from interrupt.

Note: Different ARM CPUs may have different versions of vectored interrupt con-
troller hardware, and usage of embOS supplied functions varies depending on the
type of interrupt controller. Refer to the samples delivered with embOS which are
used in the CPU specific RTOSInit module.
The ARM Generic interrupt controller (GIC) is supported by embOS and the embOS
library deivers functions to access and control the GIC. These functions should not be
called by the application directly, the embOS functions for handling vectored inter-
rupt controller should be used.

To handle interrupts with vectored interrupt controller, embOS offers the following
functions.

Function Description

OS_ARM_InstallISRHandler() Installs an interrupt handler
OS_ARM_EnableISR() Enables a specific interrupt
OS_ARM_DisableISR() Disables a specific interrupt
OS_ARM_ISRSetPrio() Sets the priority of a specific interrupt

OS_ARM_AssignISRSource()
Assigns a hardware interrupt channel to an inter-
rupt vector. Available if required for specific CPU.

OS_ARM_EnableISRSource()
Enables an interrupt channel of a VIC type interrupt
controller. Available if required for specific CPU.

OS_ARM_DisableISRSource()
Disables an interrupt channel of a VIC type inter-
rupt controller. Available if required for specific CPU.

Table 6.1: Interrupt handler functions for ARM derivates with built in vectored interrupt controller
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

41
6.3.1 OS_ARM_InstallISRHandler(): Install an interrupt han-
dler

Description

OS_ARM_InstallISRHandler() is used to install a specific interrupt vector when ARM
CPUs with vectored interrupt controller are used.

Prototype
OS_ISR_HANDLER * OS_ARM_InstallISRHandler (int ISRIndex,
 OS_ISR_HANDLER * pISRHandler);

Return value

OS_ISR_HANDLER *: The address of the previously installed interrupt function, which
was installed at the addressed vector number before.

Additional Information

This function just installs the interrupt vector but does not modify the priority and
does not automatically enable the interrupt.
If the interrupt controller delivers IDs only, the interrupt vector is written into a vec-
tor table in RAM. The vector table is a static variable in the RTOSInit module.

Parameter Description

ISRIndex
Index of the interrupt source, normally the interrupt vector num-
ber.

pISRHandler Address of the interrupt handler function.
Table 6.2: OS_ARM_InstallSRHandler() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 6 Interrupts
6.3.2 OS_ARM_EnableISR(): Enable a specific interrupt
Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller.

Prototype
void OS_ARM_EnableISR (int ISRIndex);

Additional Information

This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.

Note: For ARM CPUs with VIC type interrupt controller, this function just enables
the interrupt vector itself. To enable the hardware assigned to that vector, you have
to call OS_ARM_EnableISRSource() also.
For ARM CPUs with GIC, this function enables the interrupt source in the GIC and
assigns the running CPU core to the requested interrupt source in the interrupt dis-
tributor when multicore CPUs are used. It does not enable any perpheral.

Parameter Description

ISRIndex Index of the interrupt source which should be enabled.
Table 6.3: OS_ARM_EnableISR() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

43
6.3.3 OS_ARM_DisableISR(): Disable a specific interrupt
Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller which is not of the VIC type.

Prototype
void OS_ARM_DisableISR (int ISRIndex);

Additional Information

This function just disables the interrupt controller. It does not disable the interrupt of
any peripherals. This has to be done elsewhere.

Note: When using an ARM CPU with built in interrupt controller of VIC type, use
OS_ARM_DisableISRSource() to disable a specific interrupt.

For ARM CPUs with GIC, this function disables the interrupt source in the GIC only. It
does not modifiy the interrupt distributor and does not disable any perpheral.

Parameter Description

ISRIndex Index of the interrupt source which should be disabled.
Table 6.4: OS_ARM_DisableISR() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 6 Interrupts
6.3.4 OS_ARM_ISRSetPrio(): Set priority of a specific inter-
rupt

Description

OS_ARM_ISRSetPrio() is used to set or modify the priority of a specific interrupt
source by programming the interrupt controller.

Prototype
int OS_ARM_ISRSetPrio (int ISRIndex,
 int Prio);

Return value

Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt
controller. Refer to CPU-specific manuals about allowed priority levels.

Parameter Description

ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Table 6.5: OS_ARM_ISRSetPrio() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

45
6.3.5 OS_ARM_AssignISRSource(): Assign a hardware inter-
rupt channel to an interrupt vector

Description

OS_ARM_AssignISRSource() is used to assign a hardware interrupt channel to an
interrupt vector in an interrupt controller of VIC type.

Prototype
void OS_ARM_AssignISRSource (int ISRIndex,
 int Source);

Additional Information

This function assigns a hardware interrupt line to an interrupt vector of VIC type
only. It cannot be used for other types of vectored interrupt controllers. The hard-
ware interrupt channel number of specific peripherals depends on specific CPU deri-
vates and has to be taken from the hardware manual of the CPU.

This function is available for CPUs with the VIC type of vectored interrupt controller,
it is not available on CPUs with other types of vectored interrupt controller.

Parameter Description

ISRIndex Index of the interrupt source which should be modified.

Source
The source channel number which should be assigned to the spec-
ified interrupt vector.

Table 6.6: OS_ARM_AssignISRSource() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 6 Interrupts
6.3.6 OS_ARM_EnableISRSource(): Enable an interrupt chan-
nel of a VIC-type interrupt controller

Description

OS_ARM_EnableISRSource() is used to enable an interrupt input channel of an inter-
rupt controller of VIC type.

Prototype
void OS_ARM_EnableISRSource (int SourceIndex);;

Additional Information

This function enables a hardware interrupt input of a VIC-type interrupt controller. It
cannot be used for other types of vectored interrupt controllers. The hardware inter-
rupt channel number of specific peripherals depends on specific CPU derivates and
has to be taken from the hardware manual of the CPU.

This function is available for CPUs with the VIC type of vectored interrupt controller,
it is not available on CPUs with other types of vectored interrupt controller.

Parameter Description

SourceIndex Index of the interrupt channel which should be enabled.
Table 6.7: OS_ARM_EnableISRSource() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

47
6.3.7 OS_ARM_DisableISRSource(): Disable an interrupt
channel of a VIC-type interrupt controller

Description

OS_ARM_DisableISRSource() is used to disable an interrupt input channel of an
interrupt controller of VIC type.

Prototype
void OS_ARM_DisableISRSource (int SourceIndex);;

Additional Information

This function disables a hardware interrupt input of a VIC-type interrupt controller. It
cannot be used for other types of vectored interrupt controllers. The hardware inter-
rupt channel number of specific peripherals depends on specific CPU derivates and
has to be taken from the hardware manual of the CPU.

This function is available for CPUs with the VIC type of vectored interrupt controller,
it is not available on CPUs with other types of vectored interrupt controller.

Example

/* Install UART interrupt handler */
OS_ARM_InstallISRHandler(UART_ID, &COM_ISR); // UART interrupt vector
OS_ARM_ISRSetPrio(UART_ID, UART_PRIO); // UART interrupt priotity
OS_ARM_EnableISR(UART_ID); // Enable UART interrupt

/* Install UART interrupt handler with VIC type interrupt controller*/
OS_ARM_InstallISRHandler(UART_INT_INDEX, &COM_ISR); // UART interrupt vector
OS_ARM_AssignISRSource(UART_INT_INDEX, UART_INT_SOURCE);
OS_ARM_EnableISR(UART_INT_INDEX); // Enable UART interrupt vector
OS_ARM_EnableISRSource(UART_INT_SOURCE); // Enable UART interrupt source

Parameter Description

SourceIndex Index of the interrupt channel which should be disabled.
Table 6.8: OS_ARM_DisableISRSource() parameter list
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 6 Interrupts
6.4 Interrupt-stack switching
Because ARM core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source compatibility
to other processors only and have no functionality.

The ARM interrupt stack is used for the primary interrupt handler in RTOSVect.asm
only.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

49
6.5 Fast Interrupt (FIQ)
The FIQ interrupt cannot be used with embOS functions, it is reserved for high speed
user functions.

Note the following:

� FIQ is never disabled by embOS.
� Never call any embOS function from an FIQ handler.
� Do not assign any embOS interrupt handler to FIQ.

Note: When you decide to use FIQ, ensure the FIQ stack is initialized during
startup and that an interrupt vector for FIQ handling is included in your application.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 6 Interrupts
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

51
Chapter 7

STOP / WAIT Mode
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 7 STOP / WAIT Mode
7.1 Introduction
In case your controller supports some kind of power saving mode, it is possible to
use it also with embOS, as long as the timer keeps working and timer interrupts are
processed. To enter that mode, you usually have to implement some special
sequence in the function OS_Idle(), which you can find in embOS module
RTOSInit.c.
Per default, in non debug builds, the CPU clock should be switched off in OS_Idle().
UM0xxxx User & Reference Guide for © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

53
Chapter 8

Technical data
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 8 Technical data
8.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. The
minimum ROM requirement for the kernel itself is about 1.700 bytes.

In the table below, which is for release build, you can find minimum RAM size
requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]

Task control block 52

Resource semaphore 16

Counting semaphore 8

Mailbox 24

Software timer 20
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

55
Chapter 9

Files shipped with embOS
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 9 Files shipped with embOS
List of files shipped with embOS

Any additional files shipped serve as example.

Directory File Explanation

root *.pdf
Generic API and target specific docu-
mentation.

root Release.html Version control document.

root embOSView.exe
Utility for runtime analysis, described in
the generic documentation.

Start\
BoardSupport\

Sample project files for Eclips DS-5
workbench, contained in manufacturer
specific sub folders.

Start\Inc
RTOS.h
BSP.h

Include file for embOS, to be included in
every C-file using embOS functions.

Start\Lib libos*.a
embOS libraries for usage with GNU
compiler.

Start\BoardSup-
port\..\Setup

OS_Error.c
embOS runtime error handler used in
stack check or debug builds.

Start\BoardSup-
port\...\Setup\

.
CPU specific hardware routines, setup
files, linker files, debug support files.
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

57
Index
Symbols
__heap_end__27
__heap_start__27
__malloc_lock()28
__malloc_unlock()28
__stack_irq_end__36
__stack_irq_start__36
__stack_svc_end__36
__stack_svc_start__36
_sbrk() ...27

A
Available embOS libraries22

C
Compiler options33
CPU modes ...22

F
FIQ ..49

H
Heap management27
Heap management, thread safe28

I
Installation ...10
Interrupt stack36
Interrupts ...37
IRQ_STACK ...36
IRQ_STACK_SIZE36

M
Memory requirements54

O
OS_ARM_AssignISRSource()45
OS_ARM_DisableISR()43
OS_ARM_DisableISRSource()47
OS_ARM_EnableISR()42

OS_ARM_EnableISRSource() 46
OS_ARM_InstallISRHandler() 41
OS_ARM_ISRSetPrio() 44
OS_ExtendTaskContext_NEON() 31
OS_ExtendTaskContext_TLS() 25
OS_ExtendTaskContext_TLS_VFP() 26
OS_ExtendTaskContext_VFP() 29
OS_irq_handler() 39
OS_MallocLock.c 28
OS_NEON_Restore() 32
OS_NEON_Save() 31
OS_Syscalls.c 27
OS_VFP_Restore() 30
OS_VFP_Save() 29

R
Reentrancy ... 24

S
Stacks ... 35

Interrupt stack 36
System stack 36

SVC_STACK_SIZE 36
Syntax, conventions used 5
System libraries 24
System stack 36

V
Vector Floating Point (NEON) 31
Vector Floating Point (VFP) 28
Vector Floating Point support 29, 31
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

58 Index
UM01053 User & Reference Guide for embOS ARM GNU Altera© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Using embOS ARM GNU Altera
	1.1 Installation
	1.2 First steps
	1.3 The example application Start_2Tasks.c
	1.4 Stepping through the sample application

	Build your own application
	2.1 Introduction
	2.2 Required files for embOS for Altera SoC and DS-5
	2.3 Change library mode

	CPU specifics
	3.1 CPU modes
	3.2 Available embOS libraries
	3.2.1 Naming conventions for prebuilt embOS libraries

	Compiler specifics
	4.1 Standard system libraries
	4.2 Reentrancy, thread local storage
	4.2.1 OS_ExtendTaskContext_TLS()
	4.2.2 OS_ExtendTaskContext_TLS_VFP()

	4.3 Heap definition with embOS
	4.4 Reentrancy, thread safe heap management
	4.4.1 __malloc_lock(), lock the heap against mutual access
	4.4.2 __malloc_unlock()

	4.5 Vector floating point support VFP
	4.5.1 OS_ExtendTaskContext_VFP()
	4.5.2 Using the VFP in interrupt service routines

	4.6 Cortex A VFP and Neon support
	4.6.1 OS_ExtendTaskContext_NEON()
	4.6.2 Using the VFP/NEON in interrupt service routines
	4.6.3 Compiler and linker options.

	Stacks
	5.1 Task stack for ARM
	5.2 System stack for ARM
	5.3 Interrupt stack for ARM
	5.4 Stack specifics of the ARM family

	Interrupts
	6.1 What happens when an interrupt occurs?
	6.2 Defining interrupt handlers in C
	6.3 Interrupt handling with vectored interrupt controller
	6.3.1 OS_ARM_InstallISRHandler(): Install an interrupt handler
	6.3.2 OS_ARM_EnableISR(): Enable a specific interrupt
	6.3.3 OS_ARM_DisableISR(): Disable a specific interrupt
	6.3.4 OS_ARM_ISRSetPrio(): Set priority of a specific interrupt
	6.3.5 OS_ARM_AssignISRSource(): Assign a hardware interrupt channel to an interrupt vector
	6.3.6 OS_ARM_EnableISRSource(): Enable an interrupt channel of a VIC-type interrupt controller
	6.3.7 OS_ARM_DisableISRSource(): Disable an interrupt channel of a VIC-type interrupt controller

	6.4 Interrupt-stack switching
	6.5 Fast Interrupt (FIQ)

	STOP / WAIT Mode
	7.1 Introduction

	Technical data
	8.1 Memory requirements

	Files shipped with embOS
	Index

