embOS

Real-Time
Operating System

CPU & Compiler
specifics for Cortex M
using ARM DS-5

COMPLIANT

waaen S dd

Document: UMO01050

Software version 3.88f
Revision: O
Date: October 4, 2013

O
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG SEGGER Microcontroller
GmbH & Co. KG, Hilden / Germany

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

E-mail: support@segger.com
Internet: http://www.segger.com

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: October 4, 2013

Software

Revision

Date

By

Description

3.88f

0

131002

TS

First version.

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)
The C programming language
The target processor

e DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text t.hat you entt_ar at the comm_and-pr_ompt or that appears on
the display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.

Sample comment | Comments in programm examples.

Reference to chapters, sections, tables and figures or other docu-

Reference
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 2.1: Typographic conventions

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F. FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

Table of Contents

1 Build your 0OWn @ppliCALIONccooiiiiiiiiiiiii et e s 9
1.1 INErOdUCEION e 10
1.2 Required files for an embOS for CorteX M.....iiiiiiiiiiiiiii e 11
1.3 Change library MoOde e e eas 12
1.4 Select @another CPU ..o e e 13

2 UsiNg emMBDOS fOr COMEX M .. .ot eeeeeeeas 15
2.1 INSEallAation ..o e 16
2.2 T] oY (=T o 1 P 17
2.3 The example application Start_2TaskS.C ..uviiiiiiiiiiiii i e 20
2.4 Stepping through the sample application ..o 21

3 CorteX M VErsiON SPECITICSciiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e s 25
3.1 O] 5 30T =T 26
3.2 Available [Ibraries ... 27
3.2.1 Naming conventions for prebuilt libraries ..o 28

R 00 4] 01 (=] 01T o= 31
4.1 Standard system lIbrariescoiiiiiiii e 32
4.2 Thread-safe system lIbrariesoviiiii i e 32
4.3 Vector Floating Point support VFPV4 ... e 33
4.3.1 OS_EXtendTaskConteXt VFP() vttt i i i e e e e reeaans 33
4.3.2 Using embOS libraries with VFP support.......cciiiiiiiiiiii i e 33
4.3.3 Using the VFP in interrupt service routingscooviiiiiiiiii i e 34
4.3.3.1 (O STV o S Y- 1Y T () PP 34
4.3.3.2 (O STV o S =T o] o =T () 34

S = o3 TP U PR 37
5.1 Task stack for CorteX M .. e e 38
5.2 System stack fOr CorteX M ... e 39
5.3 Interrupt stack fOr CorteX M. i ees 40

OO [1 (=] ¢ U] o] £ PP UPPPTRUPPPTRPPPRIN 41
6.1 What happens when an interrupt OCCUIrS?ciiviiiiiiii e 42
6.2 Defining interrupt handlers in C ... e 43
6.3 Interrupt vector table. ... 44
6.4 Interrupt-stack sWitChingccooviiiiii s 45
6.5 Fast INEEITUPES e 46
6.5.1 Fast interrupts with CorteX MO......coiiiiiiii e 46
6.5.2 Fast interrupts with CortexX M3.. ..o e e 46
6.6 INnterrupt Priorities .o e 47
6.6.1 Interrupt priorities with Cortex MO COreoviiiiiiiiiiii e 47
6.6.2 Interrupt priorities with Cortex M3 COreivviiiiii i e 47
6.6.3 Priority of the embOS schedUuler 47
6.6.4 Priority of the embOS system timer......cooiiiiiii s 47
6.6.5 Priority of embOS software timers.....ccoviiiii s 47
6.6.6 Priority of application interrupts for Cortex MO COreccoviiviiiiiiiiiiiiiiiiieinns 48
6.6.7 Priority of application interrupts for Cortex M3 COreccovviiiiiiiiiiiiii s 48
6.6.8 Priority grouping for COrteX M3 COM@ ..ottt e e aaens 48

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

6.7 INnterrupt NESEING ...t 49
6.7.1 OS _ENnterInterrupt() «oveee i e 49
6.7.2 OS_EnterNestableINterrupt() «.oovveiiiiiii i e ae e 49
6.7.3 Required embOS system interrupt handler........c.coooiiiiiiii e 50
6.7.3.1 OS_Exception() the scheduler entry ..o s 50
6.7.3.2 0OS_Systick() the embOS system timer handler.........coooviiiiiiiiiiiiiiee 50
6.8 Interrupt handling with vectored interrupt controllercoooeviiiiiiiiiiieiinnn. 51
6.8.1 OS_ARM_EnableISR(): Enable specific interruptcoooviiiiiiiiiiiiieee, 51
6.8.2 OS_ARM_DisableISR(): Disable specific interrupt.........cccoviiiiiiiiiiiiiiiieen. 51
6.8.3 OS_ARM_ISRSetPrio(): Set priority of specific interrupt.........c.coocviiiiiiiinnnen.. 51
6.8.4 High priority non maskable eXxceptionscovviiiiiiiiiiiii 52
A O\ 1] 1 T OSSPSR 53
7.1 The generic CMSIS start ProjeCts. . ..oocv i e 54
7.2 Device specific files needed for embOS with CMSIS........ccociiiiiiiiiicie e, 55
7.3 Device specific functions/variables needed for embOS with CMSIS 56
7.4 CMSIS generic functions needed for embQOS with CMSIS.........c.ccoiiiiiiiiinnnnn. 57
7.5 Customizing the embOS CMSIS generic start project.........ccoeiviiiiiiiiinnnnn. 58
7.6 Adding CMSIS to other embOS start projectsccvvvviiiiiiiiiic e 59
7.7 Interrupt and exception handling with CMSIS.......c.ccoiiiiiiiii e 60
7.8 Enable and disable interrupts....ooiiiiii 61
7.9 Setting the Interrupt Priority . .c.ooi it e e ea s 62
8 Using embOSView With COrteX M........oooiiiiiii e 63
8.1 Enable communication to emMbOSVIiEeWviiiiii i 64
8.2 Select the communication channel in the start project.......c.coooiiiiiiiiinnn. 65
8.2.1 Select @ UART for commUNICAtioN ...iiviieiii i e nne e snnenneans 65
8.2.2 Select J-Link for COmMmMUNICAtION . .ovviivii i e e e e e enans 65
8.3 Setup embOSView for communNicationo 66
8.3.1 Select @ UART for commUNICAtioN ...iivvieiiei i ve e e e e nnnenneans 66
8.3.2 Select J-Link for commUNICAtioNviieii i e e e e e reaas 66
8.3.3 Use J-Link for communication and debugging in parallelccoooiiiiini, 67
8.3.4 Restrictions for using J-Link with embOSVieW......cciiiiiiiiiiiiii i 67
O STOP [WAIT MOUE ...couneiiii ettt e e e e et e e et e e e et e e e e b e e e eaaeeeeaans 69
9.1 1l o Yo |8 T o o TP 70
10 TeChNICAl data.........ouuuiiiiiiii e e 71
10.1 NIt Y] VA (=T 18 11 =] g g =T 0L = 72
11 Files shipped With @mbBOSccoii i e 73

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

Chapter 3

Build your own application

This chapter provides all information to setup your own embQOS project.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 3 Build your own application

3.1 Introduction

To build your own application, you should always start with one of the supplied sam-
ple workspaces and projects. Therefore, select an embOS workspace as described in
First steps on page 9 and modify the project to fit your needs. Using a sample project
as starting point has the advantage that all necessary files are included and all set-
tings for the project are already done.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

11

3.2 Required files for an embOS for Cortex M

To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

e RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

e RTOSInit_*.c from one target specific BoardSupport\<Manufac-
turer>\<MCU>\ subfolder.
It contains hardware-dependent initialization code for embOS. It initializes the
system timer, timer interrupt and optional communication for embOSView via
UART or JTAG.
One embOS library from the subfolder Lib\.
0S_Error.c from one target specific subfolder BoardSupport\<Manufac-
turer>\<MCU>\.
The error handler is used if any library other than Release build library is used in
your project.

e Additional low level init code may be required according to CPU.

When you decide to write your own startup code or use a __low_level_init () func-
tion, ensure that non-initialized variables are initialized with zero, according to C
standard. This is required for some embOS internal variables.

Also ensure, that main() is called with the CPU running in supervisor or system
mode.

Your main() function has to initialize embOS by a call of 0S_InitKern() and
OS_InitHW () prior any other embOS embOS functions are called.

You should then modify or replace the start_2Task.c source file in the subfolder
Application\.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 3 Build your own application

3.3 Change library mode

For your application you might want to choose another library. For debugging and
program development you should use an embOS-debug library. For your final appli-
cation you may wish to use an embOS-release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

e If your selected library is already available in your project, just select the appro-
priate configuration.

e To add a library, you may add a new Lib group to your project and add this
library to the new group. Exclude all other library groups from build, delete
unused Lib groups or remove them from the configuration.

e Check and set the appropriate os_LIBMODE_* define as preprocessor option and/
or modify the OS_Config.h file accordingly.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

13

3.4 Select another CPU

embOS contains CPU-specific code for various Cortex M CPUs. Manufacturer- and CPU
specific sample start workspaces and projects are located in the subfolders of the
BoardSupport folder. To select a CPU which is already supported, just select the
appropriate workspace from a CPU specific folder.

If your Cortex M CPU is currently not supported, examine all RTOoSInit files in the
CPU-specific subfolders and select one which almost fits your CPU. You may have to
modify 0S_InitHW(), OS_COM_Init (), and the interrupt service routines for embOS
timer tick and communication to embOSView.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 3 Build your own application

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

15

Chapter 1
Using embOS for Cortex M

This chapter describes how to start with and use embQOS for Cortex M cores and ARM
DS-5. You should follow these steps to become familiar with embOS.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

16

1.1

CHAPTER 1 Using embOS for Cortex M

Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.
To install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, keep all files in their respective sub directories. Make
sure the files are not read only after copying. If you received a zip-file, extract it to
any folder of your choice, preserving the directory structure of the zip-file.

Assuming that you are using the ARM DS-5 to develop your application, no further
installation steps are required. You will find a lot of prepared sample start projects,
which you should use and modify to write your application. So follow the instructions
of section First steps on page 17.

You should do this even if you do not intend to use ARM DS-5 for your application
development to become familiar with embOS.

If you will not work with the embedded workbench, you should: Copy either all or
only the library-file that you need to your work-directory. This has the advantage that
when you switch to an updated version of embOS later in a project, you do not affect
older projects that use embOS also. embOS does in no way rely on the ARM DS-5
IDE, it may be used without the project manager using batch files or a make utility
without any problem.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

1.2

First steps

17

After installation of embOS you can create your first multitasking application. You
received several ready to go sample start workspaces and projects and every other
files needed in the subfolder Start. It is a good idea to use one of them as a starting
point for all of your applications. The subfolder BoardSupport contains the work-
spaces and projects which are located in manufacturer- and CPU-specific subfolders.

For the first step, you may use the project for ST STM32F103 CPU:

.cproject
CPROJECT File

, Application
, DS5_DB
J Setup

Date modified: 13-10-0215:34
Size: 10,8 KB

Date created: 13-10-04 9:29

— (=[5 o
@Qv! |« ST » STMB2F103.STM32SK » « [43 | search sMz: 32.5 ol
Eile Edit View Tools Help
Organize - || Open Mew folder ==~ [l @
4 \J Start “* Name Date modified Type Size
4, BoardSupport o)
e . Application 13-10-04 9:29 File folder
: = . D55 _DB 13-10-04 9:29 File folder
4 .
YT R . Setup 13-10-04 9:29 File folder
! va
STMBEF(]SII;S T || .cproject 13-10-0215:34 CPROJECT File 11 KB
: e S'I_'MBZ_ = || .project 13-10-0215:00 PROJECT File 3KB
P
= = =] ReadMet 13-10-0215:39 Text Document 1KE

b

To get your new application running, you should proceed as follows:

e Create a work directory for your application, for example c:\work.
Copy the whole folder Start which is part of your embOS distribution into your

work

T O o

directory.

= Import

- e

Select

Select an

import source:

type filter text

Create new projects from an archive file or directory.

S

E=

4 [~ General
@‘ Archive File
= Existing Projects into Workspace
[, File System
£ Preferences

» = CfC++

» = CVS

» = Install

+ [= Remote Systems

» = Run/Debug

» [Scatter File Editer

» [Target Configuration Editor

» = Team

()

S

Finish

Cancel

embOS for Cortex-

M and DS-5

Clear the read-only attribute of all files in the new Start folder.
Start ARM DS-5 and set the workspace to the location of your choice.
Start the import dialog

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

18

[]
F

CHAPTER 1

Using embOS for Cortex M

Browse For Folder

Select the STM32F103_STM32_SK directory and import the project

[

Select root directory of the projects to import

]

4 | Start

4 |, BoardSupport
B CMSIS
| 5T
[Ly STM32F40G_Eval
I Ly STM32F051RE_IAR_SK
4| || STM32F103_STM32_5K |
. Application
I» Lu DS5_DB

. Setup

F

. Inc
. Lib

m

Folder: STM32F103_STM32_SK

i 3 i B & & & & & = = =

|

0K

I

Cancel]

0

If the STM32F103 CPU is not part of your DS5 CPU debugger database please add

the database which comes with the project

F = B
TS 0 0 e
type filter text Configuration Database L=l v v

G I
Ae:era Settings for the configuration database
n
CiCos Default Configuration Databases
D5-5 MName Location
RN Assemibir DS-5 Linux and bare-metal targets C:\Tool\ CLARMDSS swdebug
| Configuaiion Dalshase DS-5 Android and Linux application targets CAToohCVWARMYDSSswheclipse
i Debugger
| Console
Developer Account
< | T b
General
Scatter File Editor User Configuration Databases
streamline Mame Location Add
Target Configuration Editor C\Start\Board5 STVSTMI2FL03_STM32_SK\DS5_DB
Help 1
Install/Update :
Java Up i
PyDev I
Remote Systems Down N
Run/Debug
Team
Terminal
Rebuild database...
lRﬂ:tore Qefaulis] l Apply]
@ [ok][cance |
|5

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

e Build the project. It should be build without any error or warning messages.

After generating the project of your choice, the screen should look like this:

= CfC++ - Eclipse Platform

T

File Edit Source Refactor MNavigate Search Project Bun Window Help
i=:>') .._._i Tﬁ'ﬁﬁ' é}'@' TR #@"0'%' Eji;?‘
- - - - -
i..['j Projec i3 {n Strea =0 =g EE Qut 2 @ Ma =0
=] <)=='=> = An outline is not available.
== Start_STM32F103_STM32_SK
|_':_ Problems \Z, Tasks E Console 2 = Properties =0
CDT Build Console [Start_STM32F103_STM32_5K] L4 | B BE “| 7 B ~r~
Total R Size (RW Data + ZI Data) 3184 [3.11KE) N
Total ROM Size (Code + RO Data + RW Data) 8488 (B.29kB)

*#*** Build Finished ****

(akd

'Finished building target: Start_STM32F183_STM32_SK.axf'

%

19

For additional information you should open the rReadMe. txt file which is part of every
specific project. The ReadMe file describes the different configurations of the project
and gives additional information about specific hardware settings of the supported

eval boards, if required.

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 1 Using embOS for Cortex M

1.3 The example application Start_2Tasks.c

The following is a printout of the example application start_2Tasks.c. It is a good
starting point for your application. (Note that the file actually shipped with your port
of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/***‘k*‘k*‘k*‘k********

* SEGGER MICROCONTROLLER SYSTEME GmbH

* Solutions for real time microcontroller applications
R I R S I I I R R I S I S S R I I I R I I S I 2 R I S S I 2 S I I R I S I I k2 ki

File : Main.c
Purpose : Skeleton program for embOS
————————— END-OF-HEADER ——-=—--=——————————————m e %/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stackl[128]; /* Task stacks */
OS_TASK TCBO, TCBI1; /* Task-control-blocks */’

void HPTask (void) {
while (1) {
OS _Delay (10);
}
}

void LPTask (void) {
while (1) {
0S_Delay (50);
}
}

/*‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k*
*

* main
*

‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k***‘k*‘k********‘k*‘k*‘k**/

void main (void) {

O0S IncDI(); /* Initially disable interrupts */
0S InitKern():; /* Initialize 0S */

OS:InitHW(); /* Initialize Hardware for 0S */
/* You need to create at least one task here ! */

087CREATETASK(&TCBO, "HP Task", HPTask, 100, StackO);
OS_CREATETASK(&TCBI, "LP Task", LPTask, 50, Stackl);
0S _Start(); /* Start multitasking */

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

21

1.4 Stepping through the sample application

When starting the debugger, you will see the main function (see example screenshot
below). The main function appears as long as the C-SPY option Run to main is
selected, which it is by default. Now you can step through the program. 0S_IncDI ()
initially disables interrupts.

0S_InitKern () is part of the embOS library and written in assembler; you can there-
fore only step into it in disassembly mode. It initializes the relevant OS variables.
Because of the previous call of 0s_IncDI (), interrupts are not enabled during execu-
tion of 0S_InitKern().

0S_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for emb0OS. Step through it to see what is done.

0S_start () should be the last line in main, because it starts multitasking and does
not return.

2 DS-5 Debug - Start_STM32F103_STM32_SK/Application/Start_LEDBlink.c - Eclipse P [E=EER e
e —

File Edit Source Refactor Mavigate Search Project Run Window Help

3~ @l & #%- B ®- Hr-E-eero- = @@
<] Start_LEDBlink.c &3 =
= = = =
62 * -
G5 kEEEEE /)= 7"} e i
B4 @ B H
L]

55 int main(void) { = ? =
56 05_IncDI(); /* Initially disable interrupts */ m | E 9
67 05_InitKern(); Initialize 05 LUl g
68 0S_InitHW(); /* Initialize Hardware for 0S o
69 BSP_Init(); f* Initialize LED ports 4] o=

72 /* You need to create at least one task before calling OS_Start() */ ¥
71 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP);

72 05_CREATETASK(RTCELP, "LP Task", LPTask, 58, StackLP);

73 0S_Start(); /* Start multitasking f

74 return @; ‘

i Writable Smart Insert 1:1

Before you step into 0s_start (), you should set two breakpoints in the two tasks as
shown below.

2 D55 Debug - Start STM32F103 STM32 SK/Application/Start LEDBlinkc - Eclipse Platform | o (5 e]

File Edit Source Refactor [Navigate Search Project Bun Window Help

il Glm #- D&~ H-F-vero- = B@
|| Start_LEDBlink.c &3 =0
22T EF
44 ~
45 static void HPTask(woid) { t= & e
46 while (1) { 8y |y ¢
@47 BSP_TogglelED(@); = ? =
43 05_Delay (58); m | Jf E ¥
49} ¥ m B
Se } =
51 fi) o=
52 static void LPTask(wveid) { | g
53 while (1) { L
®54 BSP_TogglelLED(1); =21 F
55 05_Delay (2@8); . B
56}
57} |
53 &
59 f******************************* -
o b
o® Writable Smart Insert 68:21

As 0s_start () is part of the embOS library, you can step through it in disassembly
mode only.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 1 Using embOS for Cortex M

Click GO, step over 0s_start (), or step into 0s_start () in disassembly mode until
you reach the highest priority task.

2 DS-5 Debug - Start STM32F103_STM32_SK/Application/Start_LEDBlink.c - Eclipse P [E=EER
s ———

File Edit Source Refactor Mavigate Search Project Run Window Help
i - S| B I LR AL I I = ﬁ%
3 =0 3(?” Expressions 232 g % & &~ =0
. = = =
- <L=D Linked: STM32F103_STM32_SK_Debug ~
. . . 101
45 sta::}; void HPTask(void) { e | THra | Type -] .n.m]
while (1) { ® 05_Global.Time o volatile| B | 'H H
BSP_ToggleLED(8); . -
05 _Delay (58); @ Enter new expression here. ig) = @
}
& | g=
2 static void LPTask(void) { & | &
while (1) {
BSP_ToggleLED(1);| i
05_Delay (200); 5
} o
7} &
5o ‘,n’* * *E * FEE -
< m | 3 < m 3

‘ Writable ‘ Smart Insert ‘ 54:22

If you continue stepping, you will arrive in the task that has lower priority:

-
= D5-5 Debug - Start_STM32F103_STM32_SK/Application/Start_LEDBlink.c - Eclipse Plaﬁom_?m
File Edit Source Refactor Navigate Search Project Run Window Help
M-EEea ¢ D es-@if-freocra- = @&
= O |(%" Expressions 2 & X% & Y50
. = = =
44 » <§> Linked: STM32F103_STM32_SK_Debug ~
. . . 101
:E St::;;ev?i(; ?Wask(vo:ld) 1 MName | Value | Type 2 °é 2
847 BSP_ToggleLED(8); [0 05 _Global.Time ; & wolatile “.:.
43 05 _Delay (5@); © Enter new expression here, % = @
49} =
s@ } t:l;
51 & || g=
static void LPTask(wvoid) { || %
while (1) { B
BSP_TogglelED(1);] =]
05_Delay (200); |
5} T
T]
58
59 f***************** -
< | m | 3 < m r
o¥ ‘ Writable ‘ Smart Insert ‘ 54:22

Continue to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop which is always
executed if there is nothing else to do (no task is ready, no interrupt routine or timer
executing).

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

23

You will arrive there when you step into the 0s_belay () function in disassembly
mode. 0S_Idle () is part of RTOSInit*.c. You may also set a breakpoint there before

you step over the delay in LPTask.

h

2=
=]

4 07T oo i

CHHBE

.
== D5-5 Debug - Start STM32F103_STM32_SK/Setup/RTOSInit.c - Eclipse Platforr_r_‘wlglﬂg
File Edit Source Refactor Navigate Search Project Run Window Help
M-I B i#- D ieL-BiE-Fvera- = BE
[¢] Start_LEDBlink.c <] RTOSInit.c &2 = 05y Expressions &3 4 & & ¥ =0
. > 7 7 =
413 * (like toggeling an output or increme - <.===D Linked: STM32F103_STM32_SK_Debug -
(414 a:f_d a1 id) Tdie 1 . Mame | Value | Type =
415 voi ‘05_1 e(void) { // Idle loop: Mo ta © 05_Global.Time @ volatile| B
w416 while (1) { .
417 #if ((0S_USE_JLINKMEM == @) && (DEBUG == © Enter new expression here. %
418 #ifdef _ ICCARM _ // IAR
419 _asm(” wfi”);
420 #endif | =
421 #ifdef __CC_ARM // KEIL £
422 _wfi(); B
423 #endif (]
424 #ifdef GNUC__ /i GCC B8
425 _asm(" wfi"); .
226 s#endif td
427 #endif
428} h
LA —— S K1
o* | Wiritable | Smart Insert | 453:2

If you set a breakpoint in one or both of our tasks, you will see that they continue

execution after the given delay.

As can be seen by the value of embOS timer variable os_Time, shown in the Watch

window, HPTask continues operation after expiration of the 50 ms delay.

52 static void LPTask(void) {

while (1) {
BSP_TogglelED(1);
05_Delay (200);

< 1 | b

File Edit Source Refactor Mavigate Search Project Run Window Help
wifls 8le #- B & H-f-ee~ra- N @&
.| Start_LEDBlink.c 52 [RTOSInit.c 1 = 0%y Expressions &3 g K % &~ =0
44 - <}==='> Linked: STM32F103_STM32_SK_Debug ~
45 stat:i.c void HPTask(woid) { Name | Value | Tz
46 while (1) { QS Global.Ti 5@ wolatil
w47 BSP_ToggleLED(8); © Y5 Global.lime il
48 05 _Delay (58); © Enter new expression here.
49
58 }

<

(LI

u Writable

Smart Insert

54:22

embOS for Cortex-M and DS-5

& H B »

E2l N

h

oz

=3

R [T 000 (i

=

h
2 DS-5 Debug - Start_STM32F103_STM32_SK/Application/Start_LEDBlink.c - Eclipse Platrorm-@lﬂlg

C HH ®

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 1 Using embOS for Cortex M

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

25

Chapter 2

Cortex M version specifics

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 2 Cortex M version specifics

2.1 CPU modes

embOS for Cortex-M supports all memory and code model combinations that ARM
DS-5 C/C++ Compiler supports.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

27

2.2 Available libraries

embOS for Cortex-M and ARM DS-5 compiler comes with 42 different libraries, one
for each CPU mode / CPU core / endianess / library mode combination.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 2 Cortex M version specifics

2.2.1 Naming conventions for prebuilt libraries
embOS CortexM DS5 is shipped with different prebuilt libraries with different combi-
nations of the following features:

e CPU mode - cpuMode

e Instruction set architecture - Arch
e Byte order - ByteOrder

e Library mode - LibMode

The libraries are named as follows:
os<Arch><CpuMode><ByteOrder><Libmode>.1lib

Parameter Meaning Values
CpuMode Specifies the CPU mode. T: Always thumb
6: Cortex MO
Arch Specifies the CPU variant 7: Cortex M3 / Cortex M4
7V: Cortex M4F with VFP
B: Big endian
ByteOrder L: Li%tle endian
LibMode Specifies the library mode XR: Extreme Release
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + trace

Table 2.1: Naming conventions for prebuild libraries compatible to ARM DS-5

Example

osT6LDP.lib is the library for a project using a CMO core, thumb mode, little endian
mode with debug and profiling support.

Note:

The libraries for Cortex M3 can also be used for Cortex M4 targets.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

embOS for Cortex-M and DS-5

29

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 2 Cortex M version specifics

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

31

Chapter 3

Compiler specifics

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

32 3 Compiler specifics

3.1 Standard system libraries

Using embOS with C++ projects and file operations or just normal call of heap man-
agement functions may require thread-safe system libraries if these functions
are called from different tasks. Thread-safe system libraries require some locking
mechanism which is RTOS specific.

3.2 Thread-safe system libraries

The ARM DS-5 runtime libraries implement hook functions for thread safe usage of
system functions which are supported by embOS. Automatic thread safe locking
functions are always enabled. The embOS libraries compiled for and with the ARM
DS-5 compiler come with all code required to automatically handle the thread safe
system libraries.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

33

3.3 Vector Floating Point support VFPv4

Some Cortex M4 / M4F MCUs come with an integrated vectored floating point unit
VFPv4,

When selecting the CPU and activating the VFPv4 support in the project options, the
compiler and linker will add efficient code which uses the VFP when floating point
operations are used in the application.

With embOS, the VFP registers have to be saved and restored when preemptive or
cooperative task switches are performed.

For efficiency reasons, embOS does not save and restore the VFP registers for every
task automatically. The context switching time and stack load are therefore not
affected when the VFP unit is not used or needed.

Saving and restoring the VFP registers can be enabled for every task individually by
extending the task context of the tasks which need and use the VFP.

3.3.1 OS_ExtendTaskContext_VFP()

Description

0S_ExtendTaskContext VFP() has to be called as first function in a task, when the
VFP is used in the task and the VFP registers have to be added to the task context.

Prototype
void OS_ExtendTaskContext_VFP(void)

Return value
None.
Additional Information

OS_ExtendTaskContext_VFP() extends the task context to save and restore the VFP
registers during context switches.

Additional task context extension for a task by calling 0s ExtendTaskContext () is
not allowed and will call the embOS error handler 0s Error () in debug builds of
embOS.

There is no need to extend the task context for every task. Only those tasks using
the VFP for calculation have to be extended.

When Thread-local Storage (TLS) is also needed in a task, the new embOS function
0S_ExtendTaskContext TLS VFP() has to be called to extend the task context for
TLS and VFP.

3.3.2 Using embOS libraries with VFP support

When VFP support is selected as project option, one of the embOS libraries with VFP
support have to be used in the project.

These are named osT7VLxx.lib or osT7VBxx.lib.

The embOS libraries for VFP support require that the VFP is switched on during star-
tup and remains switched on during program execution.

When selecting the VFP support in the project options, the CMSIS startup code will
automatically activate the VFP unit.

Using your own startup code, ensure that the VFP is switched on during startup.
When the VFP unit is not switched on, the embOS scheduler will fail.

The debug version of embOS checks whether the VFP is switched on when embOS is
initailized by calling OS_InitKern().

When the VFP unit is not detected or not switched on, the embOS error handler
OS_Error() is called with error code OS_ERR_CPU_STATE_ILLEGAL.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

34

3 Compiler specifics

3.3.3 Using the VFP in interrupt service routines

Using the VFP in interrupt service routines requires additional functions to save and
restore the VFP registers.

The implementation of VFP support in embOS disables the automatic context saving
of VFP registers which is normally activated after reset.

embOS disables the VFP context saving feature of the Cortex M4F at all. This has the
advantage that no additional stack is needed in tasks not using the VFP unit.

As the ARM DS-5 compiler does not add additional code to save and restore the VFP
registers on entry and exit of interrupt service routines, it is the users responsibility
to save the VFP registers on entry of an interrupt service routine when the VFP is
used in the ISR.

embOS delivers two functions to save and restore the VFP context in an interrupt ser-
vice routine.

3.3.3.1 OS_VFP_Save()

Description

0s_VFP_save () has to be called as first function in an interrupt service routine, when
the VFP is used in the interrupt service routine. The function saves the temporary
VFP registers on the stack.

Prototype
void OS_VFP_Save(void)

Return value
None.
Additional Information

OS_VFP_Save() declares a local variable which reserves space for all temporary
floating point registers and stores the registers in the variable.

After calling the OS_VFP_Save() function, the interrupt service routine may use the
VFP for calculation without destroying the saved content of the VFP registers.

To restore the registers, the ISR has to call OS_VFP_Restore() at the end.

The function may be used in any ISR regardless the priority. It is not restricted to low
priority interrupt functions.

3.3.3.2 OS_VFP_Restore()

Description

0S_VFP Restore() has to be called as last function in an interrupt service routine,
when the VFP registers were saved by a call of OS_VFP_Save() at the beginning of
the ISR. The function restores the temporary VFP registers from the stack.

Prototype
void OS_VFP_Restore(void)

Return value
None.
Additional Information

OS_VFP_Restore() restores the temporary VFP registers which were saved by a pre-
vious call of OS_VFP_Save().

It has to be used together with OS_VFP_Save() and should be the last function called
in the ISR.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

35

Example of a low priority interrupt service routine using VFP:

void ADC_ISR_Handler(void) {
OS_VFP_Save(); // Save VFP registers
OS_EnterlInterrupt();
DoSomeFloatOperation();
0OS_Leavelnterrupt();
OS_VFP_Restore(); // Restore VFP registers.

b

In low priority interrupt service routines, OS_EnterInterrupt() is called to inform
embOS that an interrupt handler is running and blocks task switches until
OS_Leavelnterrupt() is called.

After calling OS_EnterInterrupt(), or OS_EnterNestablelnterrupt(), any embOS func-
tion which is allowed to be called from an ISR may be called.

Example of a high priority interrupt service routine using VFP:

void ADC_ISR_Handler(void) {
OS_VFP_Save(); // Save VFP registers
DoSomeFloatOperation();
OS_VFP_Restore(); // Restore VFP registers.

by

In interrupt service routines running at higher priority, no embQOS functions except
OS_VFP_Save() and OS_VFP_Restore may be called. Not even OS_EnterInterrupt().

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

36 3 Compiler specifics

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

37

Chapter 4
Stacks

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 4 Stacks

4.1 Task stack for Cortex M

All embOS tasks execute in thread mode using the process stack pointer. The stack
itself is located in any RAM location. Each task uses its individual stack. The stack-
size required is the sum of the stack-size of all routines plus a basic stack size plus
size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS-routines.

For the Cortex M CPU, this minimum basic task stack size is about 72 bytes. Because
any function call uses some amount of stack and every exception also pushes at least
32 bytes onto the current stack, the task stack size has to be large enough to handle
one exception too. We recommend at least 256 bytes stack as a start.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

39

4.2 System stack for Cortex M

The embOS system executes in thread mode, the scheduler executes in handler
mode. The minimum system stack size required by embOS is about 136 bytes (stack
check & profiling build) However, since the system stack is also used by the applica-
tion before the start of multitasking (the call to OS_Start()), and because software-
timers and .C.-level interrupt handlers also use the system-stack, the actual stack
requirements depend on the application.

The size of the system stack can be changed by modifying the Stack_Size symbol in
the startup assembler file.
We recommend a minimum stack size of 256 bytes for the Stack_Size symbol.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 4 Stacks

4.3 Interrupt stack for Cortex M

If a normal hardware exception occurs, the Cortex M core switches to handler mode
mode, which uses the main stack pointer. With embQOS, the main stack pointer is ini-
tialized to use the CSTACK which is defined in the linker command file. A separate
IRQ_STACK is not used, interrupts run on the system stack.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

41

Chapter 5

Interrupts

The Cortex M core comes with an built in vectored interrupt controller which supports
up to 32 separate interrupt sources. The real number of interrupt sources depends on
the specific target CPU.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

42

5.1

CHAPTER 5 Interrupts

What happens when an interrupt occurs?

The CPU-core receives an interrupt request form the interrupt controller.

As soon as the interrupts are enabled, the interrupt is accepted and executed.
The CPU pushes temporary registers and the return address onto the current
stack.

The CPU switches to handler mode and main stack.

The CPU saves an exception return code and current flags onto the main stack.
The CPU jumps to the vector address delivered by the NVIC

The interrupt handler is processed.

The interrupt handler ends with a .return from interrupt. by reading the excep-
tion return code.

The CPU switches back to the mode and stack which was active before the excep-
tion was called.

The CPU restores the temporary registers and return address from the stackand
continues the interrupted function.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

43

5.2 Defining interrupt handlers in C

Interrupt handlers for Cortex M cores are written as normal C-functions which do not
take parameters and do not return any value. Interrupt handler which call an embOS
function need a prolog and epilog function as described in the generic manual and in
the examples below.

Example

Simple interrupt routine:

static void _Systick(void) {

OS_EnterNestableInterrupt(); // Inform embOS that interrupt code is running
OS_TICK_Handle() ; // May be interrupted by higher priority interrupts
0S_LeaveNestableInterrupt(); // Inform embOS that interrupt handler is left

}

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 5 Interrupts

5.3 Interrupt vector table

After Reset, the ARM Cortex M CPU uses an initial interrupt vector table which is
located in ROM at address 0x00. It contains the address for the main stack and
addresses for all exceptions handlers.

The interrupt vector table is located in a C source or assembly file in the CPU specific
subfolder. All interrupt handler function addresses have to be inserted in the vector
table, as long as a RAM vector table is not used.

The vector table may be copied to RAM to enable variable interrupt handler installa-
tion. The compile time switch OS_USE_VARINTTABLE is used to enable usage of a
vector table in RAM.

To save RAM, the switch is set to zero per default in RTOSInit_*.c. It may be over-
written by project settings to enable the vector table in RAM. The first call of
OS_InstallISRHandler() will then automatically copy the vector table into RAM. When
using your own interrupt vector table, ensure that the addresses of the embOS
exception handlers OS_Exception() and OS_Systick() are included.

When the vector table is not located at address 0x00, the vetor base register in the
NVIC controller has to be initialized to point to the vector table base address.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

45

5.4 Interrupt-stack switching

Since Cortex M core based controllers have two separate stack pointers, and embQOS
runs the user application on the process stack, there is no need for explicit stack-
switching in an interrupt routine which runs on the main stack. The routines
OS_EnterIntStack() and OS_LeavelntStack() are supplied for source code compati-
bility to other processors only and have no functionality.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 5 Interrupts

5.5 Fast interrupts
5.5.1 Fast interrupts with Cortex M0

Since there is no posibility to read or write the current interrupt priority embQOS for
Cortex M0 does not support Fast interrupts.

5.5.2 Fast interrupts with Cortex M3

Instead of disabling interrupts when embOS does atomic operations, the interrupt
level of the CPU is set to 128. Therefore all interrupt priorities higher than 128 can
still be processed. Please note, that lower priority numbers define a higher priority.
All interrupts with priority level from 0 to 127 are never disabled. These interrupts
are named Fast interrupts. You must not execute any embOS function from within a
fast interrupt function.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

47

5.6 Interrupt priorities

5.6.1 Interrupt priorities with Cortex MO core

The Cortex MO supports up to 4 levels of programmable priority. Every interrupt with
a higher preemption level may preempt any other interrupt handler running on a
lower preemption level. Interrupts with equal preemption level may not preempt
each other.

5.6.2 Interrupt priorities with Cortex M3 core

The Cortex-M3 supports up to 256 levels of programmable priority with a maximum
of 128 levels of preemption. Most Cortex-M3 chips have fewer supported levels, for
example 8, 16, 32, and so on. The chip designer can customize the chip to obtain the
levels required. At least, there is a minimum of 8 preemption levels. Every interrupt
with a higher preemption level may preempt any other interrupt handler running on a
lower preemption level. Interrupts with equal preemption level may not preempt
each other.

With introduction of Fast interrupts, interrupt priorities useable for interrupts using
embOS API functions are limited.

e Any interrupt handler using embQOS API functions has to run with interrupt prior-
ities from 128 to 255. These embOS interrupt handlers have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and have to end with
OS_Leavelnterrupt() or OS_LeaveNestableInterrupt().

e Any Fast interrupt (running at priorities from 0 to 127) must not call any embOS
API function. Even OS_EnterInterrupt() and OS_Leavelnterrupt() must not be
called.

e Interrupt handler running at low priorities (from 128 to 255) not calling any
embOS API function are allowed, but must not reenable interrupts! The priority
limit between embOS interrupts and Fast interrupts is fixed to 128 and can only
be changed by recompiling embQOS libraries!

5.6.3 Priority of the embOS scheduler

The embOS scheduler runs on the lowest interrupt priority. The scheduler may be
preempted by any other interrupt with higher preemption priority level. The applica-
tion interrupts shall run on higher preemption levels to ensure short reaction time.

During initialization, the priority of the embOS scheduler is set to 0x03 for Cortex MO
and to OxFF for Cortex M3, which is the lowest preemption priority regardless of the
number of preemption levels.

5.6.4 Priority of the embOS system timer

The embOS system timer runs on the second lowest preemption level. Thus, the
embOS timer may preempt the scheduler. Application interrupts which require fast
reaction should run on a higher preemption priority level.

5.6.5 Priority of embOS software timers

The embOS software timer callback functions are called from the scheduler and run
on the schedulers preemption priority level which is the lowest interrupt priority
level. To ensure short reaction time of other interrupts, other interrupts should run
on a higher preemption priority level and the software timer callback functions should
be as short as possible.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

48

CHAPTER 5 Interrupts

5.6.6 Priority of application interrupts for Cortex MO core

Application interrupts may run on any priority level between 0 to 3. However, inter-
rupts, which require fast reaction should run on higher priority levels than the
embOS scheduler and the embOS system timer to allow preemption of theses inter-
rupt handlers. We recommend that application interrupts should run on a higher pre-
emption level than the embOS scheduler, at least at the second lowest preemption
priority level.

5.6.7 Priority of application interrupts for Cortex M3 core

Application interrupts using embOS functions may run on any priority level between
255 to 128. However, interrupts, which require fast reaction should run on higher pri-
ority levels than the embOS scheduler and the embOS system timer to allow preemp-
tion of theses interrupt handlers. Interrupt handler which require fastest reaction
may run on higher priorities than 128, but must not call any embOS function (->Fast
interrupts). We recommend that application interrupts should run on a higher pre-
emption level than the embOS scheduler, at least at the second lowest preemption
priority level.

As the number of preemption levels is chip specific, the second lowest preemption
priority varies depending on the chip. If the number of preemption levels is not docu-
mented, the second lowest preemption priority can be set as follows, using embOS
functions:

unsigned char Priority;

OS_ARM ISRSetPrio(_ISR_ID, OxFF); // Set to lowest level, ALL BITS set
Priority = OS_ARM ISRSetPrio(_ID_TICK, OxFF); // Read priority back
Priority -= 1; // Lower preemption level

OS_ARM_ISRSetPrio(_ISR_ID, Priority);

5.6.8 Priority grouping for Cortex M3 core

The number of preemption levels may be limited by programming the priority group
level in the application interrupt and reset control register of the chip. embOS does
not modify this register, thus allowing the maximum number of preemption levels
which are implemented by the chip design. It is recommended, not to change the pri-
ority grouping setting.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

49

5.7 Interrupt nesting

The Cortex M CPU uses a priority controlled interrupt scheduling which allows nesting
of interrupts per default. Any interrupt or exception with a higher preemption priority
may interrupt an interrupt handler running on a lower preemption priority. An inter-
rupt handler calling embOS functions has to start with an embOS prolog function that
informs embOS that an interrupt handler is running. For any interrupt handler, the
user may decide individually whether this interrupt handler may be preempted or not
by choosing the prolog function.

5.7.1 OS_Enterinterrupt()

Description
OS_EnterInterrupt(), disables nesting

Prototype
void OS_EnterInterrupt(void)

Return value
None.
Additional Information

OS_EnterInterrupt() has to be used as prolog function, when the interrupt handler
should not be preempted by any other interrupt handler that runs on a priority below
the fast interrupt priority. An interrupt handler that starts with OS_EnterInterrupt()
has to end with the epilog function OS_Leavelnterrupt().

Example

Interrupt-routine that can not be preempted by other interrupts

static void _Systick(void) {
OS_EnterInterrupt();// Inform embOS that interrupt code is running
0S_HandleTick () ; // Can not be interrupted by higher priority interrupts
0S_LeavelInterrupt();// Inform embOS that interrupt handler is left

}

5.7.2 OS_EnterNestablelnterrupt()

Description
OS_EnterNestablelnterrupt(), enables nesting

Prototype
void OS_EnterNestableInterrupt (void)

Return value
None.
Additional Information

OS_EnterNestablelnterrupt(), allow nesting. OS_EnterNestablelnterrupt() may be be
used as prolog function, when the interrupt handler may be preempted by any other
interrupt handler that runs on a higher interrupt priority. An interrupt handler that
starts with OS_EnterNestablelnterrupt() has to end with the epilog function
0OS_LeaveNestableInterrupt().

Example

Interrupt-routine that can be preempted by other interrupts

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 5 Interrupts

static void _Systick(void) {
OS_EnterNestableInterrupt();// Inform embOS that interrupt code is running
0S_HandleTick() ; // Can be interrupted by higher priority interrupts
0S_LeaveNestableInterrupt();// Inform embOS that interrupt handler is left

}

5.7.3 Required embOS system interrupt handler

embOS for Cortex M core needs two exception handler which belong to the system
itself. Both are delivered with embOS. Ensure that they are referenced in the vector
table.

5.7.3.1 OS_Exception() the scheduler entry

OS_Exception() is the scheduler entrance of embOS. It runs on the lowest interrupt
priority. Whenever scheduling is required, this exception is triggered by embOS.
OS_Exception() has to be called by the PendSV exception of the Cortex M CPU.
Ensure that the address of OS_Exception() is inserted in the vector table at the cor-
rect position. The vector tables which come with embOS are already setup and
should be used and modified for the application.

5.7.3.2 0OS_Systick() the embOS system timer handler

0S_Systick() is the interrupt handler which manages the system timer. The system
timer is initialized during OS_InitHW(). The embOS system timer uses the SYSTICK
timer of the Cortex M CPU and runs on a low preemption priority level which is one
level higher than the lowest preemption priority level. Ensure that the address of
0S_Systick() is inserted in the vector table at the correct position. The vector tables
which come with embOS are already setup and should be used and modified for the
application.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

5.8

ler

51

Interrupt handling with vectored interrupt control-

For Cortex M core, which has a built in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions. To handle inter-
rupts with the vectored interrupt controller, embOS offers the following functions:

5.8.1 OS_ARM_EnablelSR(): Enable specific interrupt

Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller.

Prototype
void OS_ARM_EnablelSR (int ISRIndex)
Parameter Description
ISRIndex Index of the interrupt source which should be enabled

Table 5.1: OS_EnterInterrupt() parameter list

Return value
None.
Additional Information

This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.

5.8.2 OS_ARM_DisablelSR(): Disable specific interrupt

Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller which is not of the VIC type.

Prototype
void OS_ARM_DisableISR (int ISRIndex)
Parameter Description
ISRIndex Index of the interrupt source which should be disabled

Table 5.2: OS_EnterInterrupt() parameter list

Return value
None.
Additional Information

This function just disables the interrupt in the interrupt controller. It does not disable
the interrupt of any peripherals. This has to be done elsewhere.

5.8.3 OS_ARM_ISRSetPrio(): Set priority of specific interrupt

Description

OS_ARM_ISRSetPrio () is used to set or modify the priority of a specific interrupt
source by programming the interrupt controller.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

52

CHAPTER 5 Interrupts

Prototype
int OS_ARM_ISRSetPrio(int ISRIndex, int Prio);
Parameter Description
ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Table 5.3: OS_EnterInterrupt() parameter list
Return value

None.

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt-
controller. Please refer to CPU specific manuals about allowed priority levels.

5.8.4 High priority non maskable exceptions

High priority non maskable exceptions with non configurable priority like Reset, NMI
and HardFault can not be used with embOS functions. These exceptions are never
disabled by embOS.

Never call any embQOS function from an exception handler of one of these exceptions.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

53

Chapter 6
CMSIS

ARM introduced the Cortex Microcontroller Software Interface Standard (CMSIS) as a
vendor independent hardware abstraction layer for simplifying software re-use.

The standard enables consistent and simple software interfaces to the processor, for
peripherals, for real time operating systems as embOS and other middleware.

As SEGGER is one of the CMSIS partners, embOS for Cortex M is fully CMSIS compli-
ant.

embOS comes with a generic CMSIS start projects which should run on any Cortex M
CPU. All other start projects are also fully CMSIS compliant and can be used as start-
ing points for CPU specific CMSIS projects.

How to use the generic project and adding vendor specific files to this or other
projects is explained in the following chapters.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 6 CMSIS

6.1 The generic CMSIS start projects

The folder Start\BoardSupport\CMSIS contains a generic CMSIS start projects that
should run on any Cortex M core.

The subfolder DeviceSupport\ contains the device specific source and header files
which have to be replaced by the device specific files of the Cortex M vendor to make
the CMSIS sample start projects device specific.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

6.2

55

Device specific files needed for embOS with CMSIS

Device.h: Contains the device specific exception and interrupt numbers and
names. embOS needs the Cortex M generic exception names PendSV_IRQn and
SysTick_IRQn only which are vendor independent and common for all devices.
The generic sample files delivered with embOS do not contain any peripheral
interrupt vector numbers and names as those are not needed by embOS.

To make the embOS CMSIS samples device specific and allow usage of peripheral
interrupts, the Device.h file has to be replaced by the one which is delivered from
the CPU vendor.

System_Device.h: Declares at least the two required system timer functions
which are used to initialize the CPU clock system and one variable which allows
the application software to retrieve information about the current CPU clock
speed. The names of the clock controlling functions and variables are defined by
the CMSIS standard and are therefore identical in all vendor specific implementa-
tions.

System_Device.c: Implements the core specific functions to initialize the CPU,
at least to initialize the core clock. The sample file delivered with embOS contains
empty dummy functions and has to be replaced by the vendor specific file which
contains the initialization functions for the core.

Startup_Device.s: The startup file which contains the initial reset sequence and
contains exception handler and peripheral interrupt handler for all interrupts.
The handler functions are declared weak, so they can be overwritten by the
application which implements the application specific handler functionality.

The sample which comes with embOS only contains the generic exception vectors
and handler and has to be replaced by the vendor specific startup file.

The reset handler HAS TO CALL the SystemInit() function which is delivered with
the core specific system functions.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 6 CMSIS

6.3 Device specific functions/variables needed for embOS with
CMSIS

The embOS system timer is triggered by the Cortex M generic system timer. The cor-
rect core clock and pll system is device specific and has to be initialized by a low level
init function called from the startup code.

embOS calls the CMSIS function SysTick_Config() to set up the system timer. The
function relies on the correct core clock initialization performed by the low level ini-
tialization function SystemlInit() and the value of the core clock frequency which has
to be written into the SystemCoreClock variable during initialization.

e Systemlnit():The system init function is delivered by the vendor specific CMSIS
library and is normally called from the reset handler in the startup code. The sys-
tem init function has to initialize the core clock and has to write the CPU fre-
quency into the global variable SystemCoreClock.

e SystemCoreClock: Contains the current system core clock frequency and is ini-
tialized by the low level initialization function SystemlInit() during startup.
embOS for CMSIS relies on the value in this variable to adjust its own timer and
all time related functions.

Any other files or functions delivered with the vendor specific CMSIS library may be
used by the application, but are not required for embOS.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

57

6.4 CMSIS generic functions needed for embOS with CMSIS

The embOS system timer is triggered by the Cortex M generic system timer which
has to be initialized to generate periodic interrupts in a specified interval. The config-
uration function SysTick_Config() for the system timer relies on correct initialization
of the core clock system which is performed during startup.

e SystemCoreClockUpdate: This CMSIS function has to update the SystemCore-
Clock variable according the current system timer initialization. The function is
device sepcific and may be called before the SystemCoreClock variable is
accessed or any function which relies on the correct setting of the system core
clock variable is called. embQOS calls this function during the hardware initializa-
tion function OS_InitHW/() before the system timer is initialized.

e SysTick_Config: This CMSIS generic function is declared an implemented in the
core_cmX.h file. It initializes and starts the SysTick counter and enables the
SysTick interrupt. For embOS it is recommended to run the SysTick interrupt at
the second Ilowest preemption priority. Therefore, after calling the
SysTick_Config() function from OS_InitHW(), the priority is set to the second
lowest preemption priority ba a call of NVIC_SetPriority().

The embOS function OS_InitHW() has to be called after initialization of embOS
during main and is implemented in the RTOSInit_CMSIS.c file.

e SysTick_Handler: The embOS timer interrupt handler, called periodically by the
interrupt generated from the SysTick timer. The SysTick_Handler is declared
weak in the CMSIS startup code and is replaced by the embOS Systick_Handler
function implemented in RTOSInit_CMSIS.c which comes with the embOS start
project.

e PendSV_Handler: The embOS scheduler entry function. It is declared weak in
the CMSIS startup code and is replaced by the embOS internal function contained
in the embOS library. The embOS initialization code enables the PendSV excep-
tion and initializes the priority. The application MUST NOT change the PendSV
priority.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 6 CMSIS

6.5 Customizing the embOS CMSIS generic start project

The embOS CMSIS generic start projects run on every Cortex M CPU. As the generic
device specific functions delivered with embOS do no not initialize the core clock sys-
tem and the pll, the timing is not correct, a real CPU will run very slow.

To run the sample project on a specific Cortex M CPU, replace all files in the Device-
Support\ folder by the versions delivered by the CPU vendor. The vendor and CPU
specific files should be found in the CMSIS release package, or are available from the
core vendor.

No other changes are necessary on the start project or any other files.

To run the generic CMSIS start project on a Cortex MO, you have to replace the
embOS libraries by librareis for Cortex M0 and have to add Cortex MO specific vendor
files.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

59

6.6 Adding CMSIS to other embOS start projects

All CPU specific start projects are fully CMSIS compatible. If required or wanted in
the application, the CMSIS files for the specific CPU may be added to the project
without any modification on existing files.

Note that the OS_InitHW() function or __Jlow_Jlevel_init() in the RTOSInit file initialize
the core clock system and pll of the specific CPU. The system clock frequency and
core clock frequency are defined in the RTOSInit file.

If the application needs access to the SystemCoreClock, the core specific CMSIS star-
tup code and core specific initialization function SystemInit has to be included in the
project.

In this case, the __Jlow_level_init() function and the OS_InitHW() function in
RTOSInit may be replaced, or the CMSIS generic RTOSInit_CMSIS.c file may be used
in the project.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 6 CMSIS

6.7 Interrupt and exception handling with CMSIS

The embOS CPU specific projects come with CPU specific vector tables and empty
exception and interrupt handlers for the specific CPU. All handlers are named accord-
ing the names of the CMSIS device specific handlers and are declared weak and can
be replaced by an implementation in the application source files.

The CPU specific vector table and interrupt handler functions in the embOS start
projects can be replaced by the CPU specific CMSIS startup file of the CPU vendor
without any modification on other files in the project.

embOS uses the two Cortex M generic exceptions PendSV and SysTick and delivers
its own handler functions to handle these exceptions.

All peripheral interrupts are device specific and are not used with embOS except for
profiling support and system analysis with embOSView using a UART.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

61

6.8 Enable and disable interrupts

The generic CMSIS functions NVIC_EnableIRQ() and NVIC_DisableIRQ() can be used
instead of the embQOS functions OS_ARM_EnableISR() and OS_ARM_DisableISR()
functions which are implemented in the CPU specific RTOSInit files delivered with
embOS.

To enable and disable interrupts in general, the embQOS functions OS_IncDI() and
OS_DecRI() or other embOS functions described in the generic embOS manual
should be used instead of the intrinsic functions from the CMSIS library.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 6 CMSIS

6.9 Setting the Interrupt priority

With CMSIS, the CMSIS generic function NVIC_SetPriority() can be used instead of
the OS_ARM_ISRSetPrio() function which is implemented in the CPU specific
RTOSInit files delivered with embOS.

About interrupt priorities in an embOS project, read chapter 6.5 and 6.6.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

63

Chapter 7
Using embOSView with Cortex M

The embOS profiling and analysis tool embOSView has been modified to be used with
any Cortex MO, M3 or M4 core together with J-Link. using a new communication
channel which is available since embOS version 3.82g for Cortex M3 and imple-
mented for Cortex MO and Cortex M4 since version 3.82m. The previous communica-
tion method using a UART is still available. The CPU specific projects come with code
for UART support as in previous versions, but use the new communication channel
per default.

The new communication channel does not rely on any peripherals and is therefore
available for all Cortex M cores without the need of any peripheral or peripheral inter-
rupt handler functions and runs on the CMSIS generic sample also.

embOSView is delivered with embOS and is described in the embOS generic manual.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 7 Using embOSView with Cortex M

7.1 Enable communication to embOSView

The communication to embOSView can be enabled by the compile time switch
OS_VIEW_ENABLE which may be defined in the project settings or in the configura-
tion file OS_Config.h.

If OS_VIEW_ENABLE is defined unequal to 0, the communication is enabled. In the
RTOSInit files the OS_VIEW_ENABLE switch is set to 1 if not defined as project
option.

The OS_Config.h file sets the compile time switch OS_VIEW_ENABLE to 0 when
DEBUG is defined as 0.

Therefore, in the embOS start projects, the communication is enabled per default
when using the DEBUG configurations, and is disabled when using the Release config-
urations.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

65

7.2 Select the communication channel in the start
project

When the communication to embOSView is enabled by setting the compile time
switch OS_VIEW_ENABLE, the communication can be handled via UART or the new
memory based communication channel using J-Link.

Since version 3.82g of embOS for Cortex M3, the communication channel using J-
Link. is activated per default in the embOS start projects.

7.2.1 Select a UART for communication

Set the compile time switch OS_VIEW_USE_UART unequal to 0 by project option/
compiler preprocessor or in the OS_Config.h file to switch the communication from J-
Link to UART.

In the RTOSInit files delivered with embOS, this switch is set to 0 if not defined by
compiler preprocessor/project option or OS_Config.h.

OS_VIEW_ENABLE has to be set unequal to 0 to enable communication.

7.2.2 Select J-Link for communication

Per default, J-Link is selected as communication device in the embOS start projects.
The compile time switch OS_VIEW_USE_UART is predefined to 0 in the CPU specific
RTOSInit files, thus selecting the J-Link communication channel when not overwritten
by project / compiler preprocessor options or in OS_Config.h.

OS_VIEW_ENABLE has to be set unequal to 0 to enable communication.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 7 Using embOSView with Cortex M

7.3 Setup embOSView for communication

When the communication to embOSView is enabled in the target application, embOS-
View can be used to analyze the running application.

The communication channel of embOSView has to be setup according the communi-
cation channel which was selected in the project.

7.3.1 Select a UART for communication

Start embOSView and chose menu Setup:

5 emb0OSYiew ¥3.82 I]
File Wiew 3Setup Trace Window 2

m Task list) [m] |
Priu:nl 1d | Iame L 1 - | = _ - "' un count | Time slice
100 0x2000067C HP Task |—|—|53235 02

50 0x20000740 LP Task 133522 njz

Comraurication |Genera|| Trace I CPU Viewl

Tope [ECSEAM—

Host interface

Baudrate I 38400 - I
O5_WERSIZN ComPort ICEIM1 "I

CPU

LibMaode

05 _Time

05_MumTasks

05 _Skatus

05_pActiveTask
O5_piZurrentTask,

SysStack, 185 [512
IntSkack

TraceBuffer

Marne

S Terminal

0k I Cancel | Apply |

| [Bytes: 124768 317439 Packets: 12844 [12843 [imern) I8 speed: 1000

In the Communication TAB chose UART in the Type selection listbox.

In the Host interface box select the Baudrate for communication and the COM port of
the PC which should be connected to the target board.

The default baudrate of all projects is 38400 kBaud. The COM port list box lists all
COM ports of the PC which are currently available.

The serial communication via UART is available in the target application if the project
was compiled with the settings OS_VIEW_USE_UART unequal to 0 and
OS_VIEW_ENABLE set unequal to 0.

The serial communication will work when the target is running stand alone or during
a debug session, when the target is connected to the Debugger via JLink.

The serial connection can be used when the target board has a spare UART port and
the OS_UART functions are enabled and included in the application.

7.3.2 Select J-Link for communication

embOS for Cortex M since version 3.82g supports a new communication channel to
embOSView which uses J-Link to communicate with the running application. embOS-
View version 3.82g or higher and a J-Link-DLL is required to use a J-Link for commu-
nication.

To select this communication channel, start embOSView and open the Setup menu:

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

67

Gm embOSYiew ¥3.820 Y]
File Wiew Setup Trace ‘Window 7

M Task list -0 x|
Priul Id | Mame: == 1 | = | =i "' Iun count I Time inceI
100 OxZDO00EFC HP Tosk kakiea 54425 ofz

50 0x20000740 LP Task 13607 ojz

Cornrurication | Generall Trace I CPU 'V'iewl

Tupe

Hostinterface————————— 1~ Target interface

& |USE IDeviceD -] Speed |1nnn Kz =] =10 |
05_VERSION = TCRAP |12?.EI.EI.1:‘|9IZ|2E| o JTaGE O 5wWD

CPU

LibMode

05 _Time

05_MNumTasks

05_Skatus

05_phctiveTask

05 _pCurrentTask

SysStack, 188 /512
IntsSkack,

TraceBuffer

L1l

whs Terminal

0k I Cancel | Apply |

| [Bytes: 135725 | 345308 Packets: 13972 | 13972 [(Mem) ITAG speed: 1000

In the Communication TAB chose J-Link Cortex-M3 (memory access) in the Type
selection listbox.

In the Host interface box select the USB or TCP/IP channel which is used to commu-
nicate to your J-Link.

In the Target interface box select the communication speed of the target interface
and the physical target connection which may be a JTAG or SWD connection.

The communication via J-Link is available in the target application if the project was
compiled with the settings OS_VIEW_USE_UART equal to 0 and OS_VIEW_ENABLE
set unequal to 0.

7.3.3 Use J-Link for communication and debugging in parallel

J-Link can be used to communicate with embOSView during a running debug session
that uses the same J-Link as debug probe. To avoid problems, the target interface
settings for J-Link should be the same in the debugger settings and in the embOS-
View Target interface settings. To use embOSView during a debug session, proceed
as follows:

Examine the target interface settings in the Debugger settings of the project.
Before starting the debugger, start embOSView and set the same target interface
as found in the debugger settings, for example SWD.

e Close embOSView
Start the debugger
Restart embOSView

J-Link will now communicate with the debugger and embOSView will communicate
with embOS via J-Link as long as the application is running.

7.3.4 Restrictions for using J-Link with embOSView

The J-Link communication with the current version of embOSView can only be used
when the vector table of the target application is located at address 0x00.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 7 Using embOSView with Cortex M

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

69

Chapter 8
STOP / WAIT Mode

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

70 CHAPTER 8 STOP / WAIT Mode

8.1 Introduction

In case your controller does support some kind of power saving mode, it should be
possible to use it also with embQOS, as long as the timer keeps working and timer
interrupts are processed. To enter that mode, you usually have to implement some
special sequence in the function 0s_1dle(), which you can find in embOS module
RTOSInit.c.

Per default, the wfi instruction is executed in OS_Idle() to put the CPU into a low
power mode.

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

71

Chapter 9

Technical data

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 9 Technical data

9.1 Memory requirements

These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. The
minimum ROM requirement for the kernel itself is about 1.700 bytes.

In the table below, which is for release build, you can find minimum RAM size

requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]
Task control block 48
Resource semaphore 16
Counting semaphore 8
Mailbox 24
Software timer 20

Table 9.1: embOS memory requirements

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

73

Chapter 10
Files shipped with embOS

embOS for Cortex-M and DS-5 © 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

74

CHAPTER 10 Files shipped with embOS

List of files shipped with embOS

Directory File Explanation
root « . paf Generlc_ API and target specific docu-
mentation.
root Release.html Version control document.
. Utility for runtime analysis, described in
root embOSView. exe . .
generic documentation.
starth Sample workspaces and project files for
B aids Ly ARM DS-5 Workbench, contained in
carasuppo manufacturer specific sub folders.
Start\Inc RTOS.h Include file for embOS, to be included in
BSP.h every C-file using embOS functions.
Start\Lib os??_*.a embOS libraries for ARM DS-5 compiler.
Start\BoardSup- embOS runtime error handler used in

port\..\Setup

OS_Error.c

stack check or debug builds.

Start\BoardSup-
port\...\Setup\

CPU specific hardware routines for vari-
ous CPUs.

Table 10.1: Files shipped with embOS

Any additional files shipped serve as example.

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

75

IndeXx

C

CMSIS i 53
CPU MOdeSs ..vviiiiiiiiii i aaeea 26
E

emMbOSVIEW i e 63
F

Fast interruptsooviiiiiiiiii 46
I

Installationcoiviiiiiiiii 16
interrupt handlerscooiiiiiiin, 43
Interrupt nestingccoviiiiiiiiieies 49
Interrupt prioritiescooviiiiiiiiiiiiee 47
Interrupt stackcccoiiiiiiiiiiii 40
Interrupt vector table ..., 44
Interrupts ...ooovviiiiii 41
Interrupt-stack ..., 45
L

[IDraries ..ooveiiiiiii e 27
M

Memory requirementscoiiiieeiiiann. 72
(0]

OS_EXceplion() .covvevivriiiiiiiiiiiieneasn 50
OS_ExtendTaskContext_VFP 33
OS_Systick() vivviiriiiiiiiii 50
OS_VFP_Restore() .ivoeviiiiiiiiiiiiiiennnnn. 34
OS_VFP_Save() .covveriiiiiiiiineiiennnennennns 34
P

Priority groupingooeviiiiiiiiniiiniiinenns 48
S

StacKS i 37
Syntax, conventions usedccoiinen 5

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

76 Index
System stack ..o 39

T

Task stack ...ooovvviiiiii 38

\"

Vector Floating Point support 33
VEPVA e 33

embOS for Cortex-M and DS-5

© 2010 - 2013 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Build your own application
	3.1 Introduction
	3.2 Required files for an embOS for Cortex M
	3.3 Change library mode
	3.4 Select another CPU

	Using embOS for Cortex M
	1.1 Installation
	1.2 First steps
	1.3 The example application Start_2Tasks.c
	1.4 Stepping through the sample application

	Cortex M version specifics
	2.1 CPU modes
	2.2 Available libraries
	2.2.1 Naming conventions for prebuilt libraries

	Compiler specifics
	3.1 Standard system libraries
	3.2 Thread-safe system libraries
	3.3 Vector Floating Point support VFPv4
	3.3.1 OS_ExtendTaskContext_VFP()
	3.3.2 Using embOS libraries with VFP support
	3.3.3 Using the VFP in interrupt service routines

	Stacks
	4.1 Task stack for Cortex M
	4.2 System stack for Cortex M
	4.3 Interrupt stack for Cortex M

	Interrupts
	5.1 What happens when an interrupt occurs?
	5.2 Defining interrupt handlers in C
	5.3 Interrupt vector table
	5.4 Interrupt-stack switching
	5.5 Fast interrupts
	5.5.1 Fast interrupts with Cortex M0
	5.5.2 Fast interrupts with Cortex M3

	5.6 Interrupt priorities
	5.6.1 Interrupt priorities with Cortex M0 core
	5.6.2 Interrupt priorities with Cortex M3 core
	5.6.3 Priority of the embOS scheduler
	5.6.4 Priority of the embOS system timer
	5.6.5 Priority of embOS software timers
	5.6.6 Priority of application interrupts for Cortex M0 core
	5.6.7 Priority of application interrupts for Cortex M3 core
	5.6.8 Priority grouping for Cortex M3 core

	5.7 Interrupt nesting
	5.7.1 OS_EnterInterrupt()
	5.7.2 OS_EnterNestableInterrupt()
	5.7.3 Required embOS system interrupt handler

	5.8 Interrupt handling with vectored interrupt controller
	5.8.1 OS_ARM_EnableISR(): Enable specific interrupt
	5.8.2 OS_ARM_DisableISR(): Disable specific interrupt
	5.8.3 OS_ARM_ISRSetPrio(): Set priority of specific interrupt
	5.8.4 High priority non maskable exceptions

	CMSIS
	6.1 The generic CMSIS start projects
	6.2 Device specific files needed for embOS with CMSIS
	6.3 Device specific functions/variables needed for embOS with CMSIS
	6.4 CMSIS generic functions needed for embOS with CMSIS
	6.5 Customizing the embOS CMSIS generic start project
	6.6 Adding CMSIS to other embOS start projects
	6.7 Interrupt and exception handling with CMSIS
	6.8 Enable and disable interrupts
	6.9 Setting the Interrupt priority

	Using embOSView with Cortex M
	7.1 Enable communication to embOSView
	7.2 Select the communication channel in the start project
	7.2.1 Select a UART for communication
	7.2.2 Select J-Link for communication

	7.3 Setup embOSView for communication
	7.3.1 Select a UART for communication
	7.3.2 Select J-Link for communication
	7.3.3 Use J-Link for communication and debugging in parallel
	7.3.4 Restrictions for using J-Link with embOSView

	STOP / WAIT Mode
	8.1 Introduction

	Technical data
	9.1 Memory requirements

	Files shipped with embOS
	Index

