
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01044
Software version 4.16

Revision: 0
Date: March 10, 2016

CPU & Compiler
specifics for RZ core
using KPIT GNU and

ARM DS-5

Real-Time
Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: March 10, 2016

Software Revision Date By Description
4.16 0 160310 MC New software version.
4.10b 0 150611 TS New software version.
4.06b 0 150414 TS Chapter "ARM with DS-5 CPU specifics" updated.

3.90 1 140326 AW
Chapter "Compiler specifiics" updated, thread safe system
library usage described.
Chapter "MMU and cache support " added.

3.90 0 140221 AW Update to embOS sources V3.90.
3.88h 0 140103 AW Update to embOS sources V3.88h.

3.88g 0 131211 AW
Update to embOS sources V3.88g. CPU initilization and MMU
mapping improved.

3.88f 0 131017 AW Update to embOS sources V3.88f.
3.88e 0 130925 AW Initial version of embOS RZ for KPIT GNU compiler.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

4

embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 2.1: Typographic conventions
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Using embOS...9

1.1 Installation ...10
1.2 First steps ..11
1.3 The example application OS_StartLEDBlink.c ...12
1.4 Stepping through the sample application ..13

2 Build your own application ...17

2.1 Introduction..18
2.2 Required files for an embOS application..18
2.3 Change library mode..18
2.4 Select another CPU ..18

3 Libraries ...21

3.1 Naming conventions for prebuilt embOS libraries ...22

4 CPU and Compiler specifics ..23

4.1 Standard system libraries ...24
4.2 Reentrancy, thread safe heap management...25

5 Stacks ..27

5.1 Task stack ..28
5.2 System stack ..28
5.3 Interrupt stack ..28
5.4 Stack specifics ..28

6 Interrupts..31

6.1 What happens when an interrupt occurs?..32
6.2 Defining interrupt handlers in C ...33
6.3 Interrupt handling without vectored interrupt controller34
6.4 Interrupt handling with vectored interrupt controller.....................................35
6.5 Interrupt-stack switching..43
6.6 Fast Interrupt (FIQ) ...44

7 MMU and cache support..45

7.1 MMU and cache support with embOS..46
7.2 MMU and cache handling for ARM CPUs ..47

8 Technical data..59

8.1 Memory requirements ..60

9 RTT and SystemView ..61

9.1 SEGGER Real Time Transfer ..62
9.2 SEGGER SystemView ...63
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

8

embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Using embOS
This chapter describes how to start with and use embOS. You should follow these
steps to become familiar with embOS.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Using embOS
1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of
this file. Keep all files in their respective sub directories. Make sure the files are not
read only after copying.

Assuming that you are using an IDE to develop your application, no further installa-
tion steps are required. You will find a lot of prepared sample start projects, which
you should use and modify to write your application. So follow the instructions of
section First steps.

You should do this even if you do not intend to use the IDE for your application devel-
opment to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only
the library-file that you need to your work-directory. The advantage is that when
switching to an updated version of embOS later in a project, you do not affect older
projects that use embOS, too. embOS does in no way rely on an IDE, it may be used
without the IDE using batch files or a make utility without any problem.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

11
1.2 First steps
After installation of embOS you can create your first multitasking application. You
have received several ready to go sample start workspaces and projects and every
other files needed in the subfolder Start. It is a good idea to use one of them as a
starting point for all of your applications. The subfolder BoardSupport contains the
workspaces and projects which are located in manufacturer- and CPU-specific sub-
folders.

To start with, you may use any project from BoardSupport subfolder:

To get your new application running, you should proceed as follows:

� Create a work directory for your application, for example c:\work.
� Copy the whole folder Start which is part of your embOS distribution into your

work directory.
� Clear the read-only attribute of all files in the new Start folder.
� Open one sample workspace/project in

Start\BoardSupport\<DeviceManufactor>\<CPU>
with your IDE (for example, by double clicking it).

� Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every
specific project. The ReadMe file describes the different configurations of the project
and gives additional information about specific hardware settings of the supported
eval boards, if required.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Using embOS
1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a
good starting point for your application. (Note that the file actually shipped with your
port of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/***
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
--------- END-OF-HEADER --
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 BSP_Init(); /* Initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

/****** End Of File ***/
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

13
1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen-
shot below). The main() function appears as long as project option Run to main is
selected, which it is enabled by default. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library and written in assembler; you can there-
fore only step into it in disassembly mode. It initializes the relevant OS variables.
Because of the previous call of OS_IncDI(), interrupts are not enabled during execu-
tion of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the system tick inter-
rupt for embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does
not return.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Using embOS
Before you step into OS_Start(), you should set two breakpoints in the two tasks as
shown below:

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until
you reach the highest priority task.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

15
If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop always executed if
there is nothing else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c. You may also set a breakpoint there before
stepping over the delay in LPTaskYou will arrive there when you step into the
OS_Delay() function in disassembly mode. OS_Idle() is part of RTOSInit*.c. You
may also set a breakpoint there before stepping over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Using embOS
As can be seen by the value of embOS timer variable OS_Time, shown in the Watch
window, HPTask continues operation after expiration of the 50 ms delay.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 2

Build your own application
This chapter provides all information to setup your own embOS project.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Build your own application
2.1 Introduction
To build your own application, you should always start with one of the supplied sam-
ple projects. Therefore, select and build an embOS workspace as described in First
steps on page 9 and modify the project to fit your needs. Using a sample project as
starting point has the advantage that all necessary files are included and all settings
for the project are already done.
You may add your own code and sources by just copying the files in the root folder of
the project.

2.2 Required files for an embOS application
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one target specific BoardSupport\<Manufac-
turer>\<MCU>\ subfolder.
It contains hardware-dependent initialization code for embOS. It initializes the
system timer interrupt and optional communication for embOSView via UART or
JTAG.

� One embOS library from the subfolder Lib\.
� OS_Error.c from one target specific subfolder BoardSupport\<Manufac-

turer>\<MCU>\. The error handler is used if any debug library is used in your
project.

� Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function,
ensure that non-initialized variables are initialized with zero, according to C stan-
dard. This is required for some embOS internal variables.
Your main() function has to initialize embOS by a call of OS_InitKern() and
OS_InitHW() prior any other embOS functions are called.
You should then modify or replace the OS_StartLEDBlink.c source file in the sub-
folder Application\.

2.3 Change library mode
For your application you might want to choose another library. For debugging and
program development you should use an embOS debug library. For your final applica-
tion you may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

� If your selected library is already available in your project, just select the appro-
priate configuration.

� To add a library, you may add the library to the existing Lib group. Exclude all
other libraries from your build, delete unused libraries or remove them from the
configuration.

� Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/
or modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific
sample start workspaces and projects are located in the subfolders of the BoardSup-
port folder. To select a CPU which is already supported, just select the appropriate
workspace from a CPU-specific folder.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

19
If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-spe-
cific subfolders and select one which almost fits your CPU. You may have to modify
OS_InitHW(), OS_COM_Init(), the interrupt service routines for embOS system timer
tick and communication to embOSView and the low level initialization.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Build your own application
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 3

Libraries
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 Libraries
3.1 Naming conventions for prebuilt embOS libraries
embOS is shipped with different prebuilt libraries with different combinations of the
following features.

The libraries are named as follows:

os<CpuMode><Arch><ByteOrder><Interwork><Libmode>.a

Example

osT7LNDP.a is the library for a project using an ARMvA or Cortex-R core, THUMB2
mode, little endian mode, no interworking, with debug and profiling support.

Parameter Meaning Values

CpuMode Specifies the CPU mode. A: ARM mode
T: THUMB2 mode

Arch Specifies the CPU variant 7: ARM architecture v7A

ByteOrder
Specifies the target endian-
ess

B: Big endian
L: Little endian

Interwork
Specifies if interworking is
enabled N: No interworking.

LibMode Specifies the library mode XR: Extreme Release
R: Release
S: Stack check
SP: Stack check + Profiling
D: Debug
DP: Debug + Profiling
DT: Debug + Profiling + Trace
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 4

CPU and Compiler specifics
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 4 CPU and Compiler specifics
4.1 Standard system libraries
embOS for RZ and KPIT GNU may be used with the standard "optlib" libraries for
most of all projects without any modification.
It may also be uesed with the GCC newlib (prebuilt) libraries which are delivered with
the compiler and can be selected as project option.

Heap management and file operation functions of standard "optlib" system libraries
are not reentrant and require additinal modules when used with embOS, if non
thread safe functions are used from different tasks.
For heap management, embOS delivers its own thread safe functions which may be
used. These functions are described in the embOS generic manual.

Using embOS with C++ projects and file operations or just normal call of heap man-
agement functions may require thread-safe system libraries if these functions
are called from different tasks. Thread-safe system libraries require some locking
mechanism which is RTOS specific.
The GCC newlib libraries implement hook functions for thread safe usage of system
functions. These hook functions are supported by embOS. Automatic thread safe
locking functions are always enabled. The embOS libraries compiled for and with the
KPIT compiler come with all code required to automatically handle the thread safe
system libraries of the GCC newlib.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

25
4.2 Reentrancy, thread safe heap management
The heap management functions in the system libraries are not thread-safe without
implementation of additional locking functions.
When using the GCC newlib instead of the KPIT optlib, thread safe heap management
can be implemeted by adding locking functions to the project.
The GCC newlib library calls two hook functions to lock and unlock the mutual access
of the heap-management functions.
The empty locking functions from the system library may be overwritten by the appli-
cation to implement a locking mechanism.

A locking is required when multiple tasks access the heap, or when objects are cre-
ated dynamically on the heap by multiple tasks.
The locking functions are implemented in the source module OS_MallocLock.c which
is included in the "Setup" subfolder in every embOS start project.
If thread safe heap management is required, the module has to be compiled and
linked with the application.

4.2.1 __malloc_lock(), lock the heap against mutual access
__malloc_lock() is the locking function which is called by the system library when-
ever the heap management has to be locked against mutual access.
The implementation delivered with embOS claims a resource semaphore.

4.2.2 __malloc_unlock()
__malloc_unlock() is the is the counterpart to __malloc_lock().
It is called by the system library whenever the heap management locking can
be released. The implementation delivered with embOS releases the resource
semaphore.

None of these functions has to be called directly by the application. They are called
from the system library functions when required.
The functions are delivered in source form to allow replacement of the dummy func-
tions in the system library.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 4 CPU and Compiler specifics
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 5

Stacks
This chapter describes how embOS uses the different stacks of the ARM CPU.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 5 Stacks
5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time
a task is activated by the scheduler. The stack-size required for a task is the sum of
the stack-size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by calling embOS-routines.

The minimum basic task stack size is about 44 bytes. Because any function call uses
some amount of stack, the task stack size has to be large enough. We recommend at
least 256 bytes stack as a start.

5.2 System stack
The embOS system executes in supervisor mode. The minimum system stack size
required by embOS is about 140 bytes (stack check & profiling build). However, since
the system stack is also used by the application before the start of multitasking (the
call to OS_Start()), and because software-timers and C-level interrupt handlers also
use the system-stack, the actual stack requirements depend on the application.
The size of the system stack can be changed by modifying the stack size define in
your linker file. We recommend a minimum stack size of 256 bytes for the CSTACK.

5.3 Interrupt stack
If a normal hardware exception occurs, the ARM core switches to IRQ mode, which
has a separate stack pointer. To enable support for nested interrupts, execution of
the ISR itself in a different CPU mode than IRQ mode is necessary. embOS switches
to supervisor mode after saving scratch registers, LR_irq and SPSR_irq onto the IRQ
stack.

As a result, only registers mentioned above are saved onto the IRQ stack. For the
interrupt routine itself, the supervisor stack is used. The size of the interrupt stack
can be changed by modifying the irq stack define in your linker file. We recommend
at least 128 bytes.

Every interrupt requires 28 bytes on the interrupt stack. The maximum interrupt
stack size required by the application can be calculated as is �Maximum interrupt
nesting level * 28 bytes�. For task switching from within an interrupt handler, it is
required, that the end address of the interrupt stack is aligned to an 8 byte bound-
ary. This alignment is forced during stack pointer initialization in the startup routine.
Therefore, an additional margin of about 8 bytes should be added to the calculated
maximum interrupt stack size. For standard applications, we recommend at least 128
bytes of IRQ stack.

5.4 Stack specifics
There are two stacks which have to be declared in the linker script file:

� CSTACK is the system stack.
� IRQ_STACK is the interrupt stack.

The CSTACK is used during startup, during main(), or embOS internal functions, and
for C-level interrupt handler.

The IRQ_STACK is used when an interrupt exception is triggered. The exception han-
dler saves some registers and then performs a mode switch which then uses the
CSTACK as stack for further execution.

The startup code initializes the system stack pointer and the IRQ stack pointer. When
the CPU starts, it runs in Supervisor mode.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

29
The start up code switches to IRQ mode and sets the stack pointer to the stack which
was defined as IRQ_STACK. The startup code switches to System mode and sets the
stack pointer to the stack which was defined as CSTACK.

The main() function therefore is called in system mode and uses the CSTACK. When
embOS is initialized, the supervisor stack pointer is initialized. The supervisor stack
and system stack are the same, both stack pointers point into the CSTACK.

This is no problem, because the supervisor mode is not entered as long as main() is
executed. All functions run in system mode. After embOS is started with OS_Start(),
embOS internal functions run in Supervisor mode, as long as no task is running. The
CSTACK may then be used as Supervisor stack, because it is not used anymore by
other functions. Tasks run in system mode, but they do not use the �system� stack.
Tasks have their own stack which is defined as some variable in any RAM location.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 5 Stacks
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

31
Chapter 6

Interrupts
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 6 Interrupts
6.1 What happens when an interrupt occurs?
� The CPU-core receives an interrupt request.
� As soon as the interrupts are enabled, the interrupt is executed.
� The CPU switches to the Interrupt stack.
� The CPU saves PC and flags in registers LR_irq and SPSR_irq.
� The CPU jumps to the vector address 0x18, or offset 0x18 in the vector

table, and continues execution from there.
� embOS IRQ_Handler(): save scratch registers.
� embOS IRQ_Handler(): save LR_irq and SPSR_irq.
� embOS IRQ_Handler(): switch to supervisor mode.
� embOS IRQ_Handler(): execute OS_irq_handler() (defined in RTOSINIT_*.C).
� embOS OS_irq_handler(): check for interrupt source and execute timer inter-

rupt, serial communication or user ISR.
� embOS IRQ_Handler(): switch to IRQ mode.
� embOS IRQ_Handler(): restore LR_irq and SPSR_irq.
� embOS IRQ_Handler(): pop scratch registers.
� Return from interrupt.

When using an ARM derivate with vectored interrupt controller, ensure that
IRQ_Handler() is called from every interrupt. The interrupt vector itself may then be
examined by the C-level interrupt handler in RTOSInit*.c.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

33
6.2 Defining interrupt handlers in C
Interrupt handlers called from the embOS interrupt handler in RTOSInit*.c are just
normal C-functions which do not take parameters and do not return any value.

The default C interrupt handler OS_irq_handler() in RTOSInit*.c first calls
OS_Enterinterrupt() or OS_EnterNestableInterrupt() to inform embOS that
interrupt code is running. Then this handler examines the source of interrupt and
calls the related interrupt handler function.

Finally, the default interrupt handler OS_irq_handler() in RTOSInit*.c calls
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt() and returns to the primary
interrupt handler IRQ_Handler().

Depending on the interrupting source, it may be required to reset the interrupt pend-
ing condition of the related peripherals.

Example

Simple interrupt routine:

void Timer_irq_func(void) {
 if (__INTPND & 0x0800) { // Interrupt pending ?
 __INTPND = 0x0800; // reset pending condition
 OSTEST_X_ISR0(); // handle interrupt
 }
}

embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 6 Interrupts
6.3 Interrupt handling without vectored interrupt con-
troller

Standard ARM CPUs, without implementation of a vectored interrupt controller,
always branch to address 0x18 when an interrupt occurs. The application is responsi-
ble to examine the interrupting source.

The reaction to an interrupt is as follows:

� embOS IRQ_Handler() is called.
� IRQ_Handler() saves registers and switches to supervisor mode.
� IRQ_Handler() calls OS_irq_handler().
� OS_irq_handler() informs embOS that interrupt code is running by a call of

OS_EnterInterrupt() and then calls OS_USER_irq_func() which has to handle
all interrupt sources of the application.

� OS_irq_handler() checks whether embOS timer interrupt has to be handled.
� OS_irq_handler() checks whether embOS UART interrupts for communication

with embOSView have to be handled.
� OS_irq_handler() informs embOS that interrupt handling ended by a call of

OS_LeaveInterrupt() and returns to IRQ_Handler().
� IRQ_Handler() restores registers and performs a return from interrupt.

Example

Simple OS_USER_irq_func() routine:

void OS_USER_irq_func(void) {
 if (__INTPND & 0x0800) { // Interrupt pending ?
 __INTPND = 0x0800; // Reset pending condition
 OSTEST_X_ISR0(); // Handle interrupt
 }
 if (__INTPND & 0x0400) { // Interrupt pending ?
 __INTPND = 0x0400; // Reset pending condition
 OSTEST_X_ISR1(); // Handle interrupt
 }
}

During interrupt processing, you should not re-enable interrupts, as this would lead
in recursion.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

35
6.4 Interrupt handling with vectored interrupt control-
ler

For ARM derivates with built in vectored interrupt controller, embOS uses a different
interrupt handling procedure and delivers additional functions to install and setup
interrupt handler functions.

When using an ARM derivate with vectored interrupt controller, ensure that
IRQ_Handler() is called from every interrupt. This is default when startup code and
hardware initialization delivered with embOS is used. The interrupt vector itself will
then be examined by the C-level interrupt handler OS_irq_handler() in
RTOSInit*.c.

You should not program the interrupt controller for IRQ handling directly. You should
use the functions delivered with embOS.

The reaction to an interrupt with vectored interrupt controller is as follows:

� embOS interrupt handler IRQ_Handler() is called by CPU or interrupt controller.
� IRQ_Handler() saves registers and switches to supervisor mode.
� IRQ_Handler() calls OS_irq_handler() (in RTOSInit*.c).
� OS_irq_handler() examines the interrupting source by reading the interrupt

vector from the interrupt controller.
� OS_irq_handler() informs the RTOS that interrupt code is running by a call of

OS_EnterNestableInterrupt() which re-enables interrupts.
� OS_irq_handler() calls the interrupt handler function which is addressed by the

interrupt vector.
� OS_irq_handler() resets the interrupt controller to re-enable acceptance of new

interrupts.
� OS_irq_handler() calls OS_LeaveNestableInterrupt() which disables inter-

rupts and informs embOS that interrupt handling has finished.
� OS_irq_handler() returns to IRQ_Handler().
� IRQ_Handler() restores registers and performs a return from interrupt.

Note: Different ARM CPUs may have different versions of vectored interrupt con-
troller hardware, and usage of embOS supplied functions varies depending on the
type of interrupt controller. Refer to the samples delivered with embOS which are
used in the CPU specific RTOSInit module.

To handle interrupts with vectored interrupt controller, embOS offers the following
functions.

Function Description

OS_ARM_InstallISRHandler() Installs an interrupt handler
OS_ARM_EnableISR() Enables a specific interrupt
OS_ARM_DisableISR() Disables a specific interrupt
OS_ARM_ISRSetPrio() Sets the priority of a specific interrupt

OS_ARM_AssignISRSource()
Assigns a hardware interrupt channel to an inter-
rupt vector

OS_ARM_EnableISRSource()
Enables an interrupt channel of a VIC type interrupt
controller

OS_ARM_DisableISRSource()
Disables an interrupt channel of a VIC type inter-
rupt controller

Table 6.1: Interrupt handler functions for ARM derivates with built in vectored interrupt controller
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 6 Interrupts
6.4.1 OS_ARM_InstallISRHandler
Description

OS_ARM_InstallISRHandler() is used to install a specific interrupt vector when ARM
CPUs with vectored interrupt controller are used.

Prototype
OS_ISR_HANDLER * OS_ARM_InstallISRHandler (int ISRIndex,
 OS_ISR_HANDLER * pISRHandler);

Return value

OS_ISR_HANDLER *: The address of the previously installed interrupt function, which
was installed at the addressed vector number before.

Additional Information

This function just installs the interrupt vector but does not modify the priority and
does not automatically enable the interrupt.

Parameter Description

ISRIndex
Index of the interrupt source, normally the interrupt vector num-
ber.

pISRHandler Address of the interrupt handler function.
Table 6.2: OS_ARM_InstallSRHandler() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

37
6.4.2 OS_ARM_EnableISR(): Enable a specific interrupt
Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller.

Prototype
void OS_ARM_EnableISR (int ISRIndex);

Additional Information

This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.

Note: For ARM CPUs with VIC type interrupt controller, this function just enables
the interrupt vector itself. To enable the hardware assigned to that vector, you have
to call OS_ARM_EnableISRSource() also.

Parameter Description

ISRIndex Index of the interrupt source which should be enabled.
Table 6.3: OS_ARM_EnableISR() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 6 Interrupts
6.4.3 OS_ARM_DisableISR()
Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller which is not of the VIC type.

Prototype
void OS_ARM_DisableISR (int ISRIndex);

Additional Information

This function just disables the interrupt controller. It does not disable the interrupt of
any peripherals. This has to be done elsewhere.

Note: When using an ARM CPU with built in interrupt controller of VIC type, use
OS_ARM_DisableISRSource() to disable a specific interrupt.

Parameter Description

ISRIndex Index of the interrupt source which should be disabled.
Table 6.4: OS_ARM_DisableISR() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

39
6.4.4 OS_ARM_ISRSetPrio()
Description

OS_ARM_ISRSetPrio() is used to set or modify the priority of a specific interrupt
source by programming the interrupt controller.

Prototype
int OS_ARM_ISRSetPrio (int ISRIndex,
 int Prio);

Return value

Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt
controller. Refer to CPU-specific manuals about allowed priority levels.

Parameter Description

ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Table 6.5: OS_ARM_ISRSetPrio() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 6 Interrupts
6.4.5 OS_ARM_AssignISRSource()
Description

OS_ARM_AssignISRSource() is used to assign a hardware interrupt channel to an
interrupt vector in an interrupt controller of VIC type.

Prototype
void OS_ARM_AssignISRSource (int ISRIndex,
 int Source);

Additional Information

This function assigns a hardware interrupt line to an interrupt vector of VIC type
only. It cannot be used for other types of vectored interrupt controllers. The hard-
ware interrupt channel number of specific peripherals depends on specific CPU deri-
vates and has to be taken from the hardware manual of the CPU.

Parameter Description

ISRIndex Index of the interrupt source which should be modified.

Source
The source channel number which should be assigned to the spec-
ified interrupt vector.

Table 6.6: OS_ARM_AssignISRSource() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

41
6.4.6 OS_ARM_EnableISRSource()
Description

OS_ARM_EnableISRSource() is used to enable an interrupt input channel of an inter-
rupt controller of VIC type.

Prototype
void OS_ARM_EnableISRSource (int SourceIndex);;

Additional Information

This function enables a hardware interrupt input of a VIC-type interrupt controller. It
cannot be used for other types of vectored interrupt controllers. The hardware inter-
rupt channel number of specific peripherals depends on specific CPU derivates and
has to be taken from the hardware manual of the CPU.

Parameter Description

SourceIndex Index of the interrupt channel which should be enabled.
Table 6.7: OS_ARM_EnableISRSource() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 6 Interrupts
6.4.7 OS_ARM_DisableISRSource()
Description

OS_ARM_DisableISRSource() is used to disable an interrupt input channel of an
interrupt controller of VIC type.

Prototype
void OS_ARM_DisableISRSource (int SourceIndex);;

Additional Information

This function disables a hardware interrupt input of a VIC-type interrupt controller. It
cannot be used for other types of vectored interrupt controllers. The hardware inter-
rupt channel number of specific peripherals depends on specific CPU derivates and
has to be taken from the hardware manual of the CPU.

Example

/* Install UART interrupt handler */
OS_ARM_InstallISRHandler(UART_ID, &COM_ISR); // UART interrupt vector
OS_ARM_ISRSetPrio(UART_ID, UART_PRIO); // UART interrupt priotity
OS_ARM_EnableISR(UART_ID); // Enable UART interrupt

/* Install UART interrupt handler with VIC type interrupt controller*/
OS_ARM_InstallISRHandler(UART_INT_INDEX, &COM_ISR); // UART interrupt vector
OS_ARM_AssignISRSource(UART_INT_INDEX, UART_INT_SOURCE);
OS_ARM_EnableISR(UART_INT_INDEX); // Enable UART interrupt vector
OS_ARM_EnableISRSource(UART_INT_SOURCE); // Enable UART interrupt source

Parameter Description

SourceIndex Index of the interrupt channel which should be disabled.
Table 6.8: OS_ARM_DisableISRSource() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

43
6.5 Interrupt-stack switching
Because ARM core based controllers have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source compatibility
to other processors only and have no functionality.

The ARM interrupt stack is used for the primary interrupt handler IRQ_Handler() in
the embOS library only.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 6 Interrupts
6.6 Fast Interrupt (FIQ)
The FIQ interrupt cannot be used with embOS functions, it is reserved for high speed
user functions which are also called zero latency interrupts.

Note the following:

� FIQ is never disabled by embOS.
� Never call any embOS function from an FIQ handler.
� Do not assign any embOS interrupt handler to FIQ.

Note: When you decide to use FIQ, ensure the FIQ stack is initialized during
startup and that an interrupt vector for FIQ handling is included in your application.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

45
Chapter 7

MMU and cache support
This chapter describes the MMU and cache support for ARM CPUs.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 7 MMU and cache support
7.1 MMU and cache support with embOS
embOS comes with functions to support the MMU and cache of ARMv4, ARMv5 and
ARMv7A CPUs which allow virtual-to-physical address mapping with sections of one
MByte and cache control. The MMU requires a translation table which can be located
in any data area, RAM or ROM, but has to be aligned at a 16Kbyte boundary.

The alignment may be forced by a #pragma or by the linker file. A translation table in
RAM has to be set up during run time. embOS delivers API functions to set up this
table. Assembly language programming is not required.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

47
7.2 MMU and cache handling for ARM CPUs
ARM CPUs with MMU and cache have separate data and instruction caches. embOS
delivers the following functions to setup and handle the MMU and caches.

Function Description

OS_ARM_MMU_InitTT() Initialize the MMU translation table.
OS_ARM_MMU_AddTTEntries() Add address entries to the table.
OS_ARM_MMU_Enable() Enable the MMU.

OS_ARM_MMU_GetVirtualAddr()
Translates a physical address into a virtual
address

OS_ARM_MMU_v2p()
Translates a virtual address into a physical
address.

OS_ARM_ICACHE_Enable() Enable the instruction cache.
OS_ARM_DCACHE_Enable() Enable the data cache.
OS_ARM_DCACHE_CleanRange() Clean data cache.
OS_ARM_DCACHE_InvalidateRange() Invalidate the data cache.
OS_ARM_CACHE_Sync() Syncs data and instruction cache.
OS_ARM_AddL2Cache() Sets 2nd level cache API table.

Table 7.1: MMU and cache handling for ARM CPUs
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 7 MMU and cache support
7.2.1 OS_ARM_MMU_InitTT()
Description

OS_ARM_MMU_InitTT() is used to initialize an MMU translation table which is located
in RAM. The table is filled with zero, thus all entries are marked invalid initially.

Prototype
void OS_ARM_MMU_InitTT (unsigned int * pTranslationTable);

Additional Information

This function does not need to be called, if the translation table is located in ROM.

Parameter Description

pTranslationTable Points to the base address of the translation table.
Table 7.2: OS_ARM_MMU_InitTT() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

49
7.2.2 OS_ARM_MMU_AddTTEntries()
Description

OS_ARM_MMU_AddTTEntries() is used to add entries to the MMU address translation
table. The start address of the virtual address, physical address, area size and cache
modes are passed as parameter.

Prototype
void OS_ARM_MMU_AddTTEntries (unsigned int * pTranslationTable,
 unsigned int CacheMode,
 unsigned int VIndex,
 unsigned int PIndex,
 unsigned int NumEntries);

Additional Information

This function does not need to be called, if the translation table is located in ROM.
The function adds entries for every section of one MegaByte size into the translation
table for the specified memory area.

Parameter Description

pTranslationTable Points to the base address of the translation table.

CacheMode

Specifies the cache operating mode which should be used for
the selected area. May be one of the following modes:
ARMv4/ARMv5:
OS_ARM_CACHEMODE_NC_NB - non cacheable, non bufferable
OS_ARM_CACHEMODE_C_NB - cacheable, non bufferable
OS_ARM_CACHEMODE_NC_B - non cacheable, bufferable
OS_ARM_CACHEMODE_C_B - cacheable, bufferable

ARMv7A:
OS_ARM_CACHEMODE_NC_NB - Strongly ordered
OS_ARM_CACHEMODE_C_NB - Write-Through cacheable
OS_ARM_CACHEMODE_NC_B - Shareable device
OS_ARM_CACHEMODE_C_B - Write-Back cacheable

VIndex
Virtual address index, which is the start address of the virtual
memory address range with MBytes resolution.
VIndex = (virtual address >> 20)

PIndex
Physical address index, which is the start address of the phys-
ical memory area range with MBytes resolution.
PIndex = (physical address >> 20)

NumEntries Specifies the size of the memory area in MBytes.
Table 7.3: OS_ARM_MMU_AddTTEntries() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 7 MMU and cache support
7.2.3 OS_ARM_MMU_Enable()
Description

OS_ARM_MMU_Enable() is used to enable the MMU which will then perform the
address mapping.

Prototype
void OS_ARM_MMU_Enable (unsigned int * pTranslationTable);

Additional Information

As soon as the function was called, the address translation is active. The MMU table
has to be setup before calling OS_ARM_MMU_Enable().

OS_ARM_MMU_Enable() also enables the branch prediction unit of Cortex-A CPUs.

Parameter Description

pTranslationTable Points to the base address of the translation table.
Table 7.4: OS_ARM_MMU_Enable() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

51
7.2.4 OS_ARM_MMU_GetVirtualAddr()
Description

OS_ARM_MMU_GetVirtualAddr() is used to translate a physical address into a virtual
address with specified cache mode.

Prototype
void * OS_ARM_MMU_GetVirtualAddr (unsigned long PAddr,
 unsigned int CacheMode);

Return value:

void* which is the first virtual address found.
A value of 0xFFFFFFFF indicates that no entry was found.

Additional Information

The function may be useful to examine an address of memory mapped to a virtual
address with specific cache mode.
For the CPU it may be necessary to write into a specific memory in uncached mode.
This can be done by setting up the MMU table with different virtual address for the
same physical memory with different cache modes.
For efficiency reasons, the CPU should access the memory fully cached for normal
operation.
When a peripheral or DMA accesses the same memory for reading, for exaplme an
LCD controller accesses the diplay buffer, or an Ethernet MAC access a transferbuffer,
the CPU has to write the data uncached into this memory, or has to clean the cache
after writing.
The function OS_ARM_MMU_GetVirtualAddress() can be used to find the address for
uncached access.
The MMU table has to be setup before the function is called.

Parameter Description

PAddr The physical address as unsigned long.

CacheMode

The cache mode of the requested virtual address
May be one of the defined cache modes:
OS_ARM_CACHEMODE_NC_NB
OS_ARM_CACHEMODE_C_NB
OS_ARM_CACHEMODE_NC_B
OS_ARM_CACHEMODE_C_B
OS_ARM_CACHEMODE_ANY

Table 7.5: OS_ARM_MMU_GetVirtualAddr() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 7 MMU and cache support
7.2.5 OS_ARM_MMU_v2p()
Description

OS_ARM_MMU_v2p() is used to translate a virtual address into a physical address.

Prototype
unsigned long OS_ARM_MMU_v2p (void * pVAddr);

Return value:

The physical address which is mapped to the virtual address passed as parameter.

Additional Information

The function can be used to examine the physical addresss of memory.
The CPU normally operates with virtual addresses which may differ from the physical
address of the memory.
When a peripheral or DMA has to be programmed to access the same memory, the
peripheral has to be programmed to access the physical memory.
The function OS_ARM_MMU_v2p() can be used to find the physical address of a mem-
ory area.
The MMU table has to be setup before the function is called.

Parameter Description

pVAddr Pointer which represents the virtual address.
Table 7.6: OS_ARM_MMU_v2p() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

53
7.2.6 OS_ARM_ICACHE_Enable()
Description

OS_ARM_ICACHE_Enable() is used to enable the instruction cache of the CPU.

Prototype
void OS_ARM_ICACHE_Enable (void);

Additional Information

As soon as the function was called, the instruction cache is active. It is CPU imple-
mentation defined whether the instruction cache works without MMU. Normally, the
MMU should be setup before activating instruction cache.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 7 MMU and cache support
7.2.7 OS_ARM_DCACHE_Enable()
Description

OS_ARM_DCACHE_Enable() is used to enable the data cache of the CPU.

Prototype
void OS_ARM_DCACHE_Enable (void);

Additional Information

The function must not be called before the MMU translation table was set up correctly
and the MMU was enabled. As soon as the function was called, the data cache is
active, according to the cache mode settings which are defined in the MMU transla-
tion table. It is CPU implementation defined whether the data cache is a write
through, a write back, or a write through/write back cache. Most modern CPUs will
have implemented a write through/write back cache.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

55
7.2.8 OS_ARM_DCACHE_CleanRange()
Description

OS_ARM_DCACHE_CleanRange() is used to clean a range in the data cache memory to
ensure that the data is written from the data cache into the memory.

Prototype
void OS_ARM_DCACHE_CleanRange (void * p,
 unsigned int NumBytes);

Additional Information

Cleaning the data cache is needed, when data should be transferred by a DMA or
other BUS master that does not use the data cache. When the CPU writes data into a
cacheable area, the data might not be written into the memory immediately. When
then a DMA cycle is started to transfer the data from memory to any other location or
peripheral, the wrong data will be written.

Before starting a DMA transfer, a call of OS_ARM_DCACHE_CleanRange() ensures, that
the data is transferred from the data cache into the memory and the write buffers are
drained.

The cache is cleaned line by line. Cleaning one cache line takes approximately 10
CPU cycles. The total time to invalidate a range may be calculated as:

t = (NumBytes / Cache line size) * (10 [CPU clock cycles] + Memory write time).

The real time depends on the content of the cache. If data in the cache is marked as
dirty, the cache line has to be written to memory. The memory write time depends on
the memory BUS clock and memory speed. If data has to be written to memory, the
required cycles for this memory operation has to be added to the 10 CPU clock cycles
for every cache line to be cleaned.

Notes

Unfortunately, only complete cache lines can be cleaned. Therefore, it is required,
that the base address of the memory area has to be located at a cache line size byte
boundary and the number of bytes to be cleaned has to be a multiple of the cache
line size. The debug version of embOS will call OS_Error() with error code
OS_ERR_NON_ALIGNED_INVALIDATE, if one of these restrictions is violated.

Parameter Description

p
Points to the base address of the memory area that should be
updated.

NumBytes Number of bytes which have to be written from cache to memory.
Table 7.7: OS_ARM_DCACHE_CleanRange() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 7 MMU and cache support
7.2.9 OS_ARM_DCACHE_InvalidateRange()
Description

OS_ARM_DCACHE_InvalidateRange() is used to invalidate a memory area in the data
cache. Invalidating means, mark all entries in the specified area as invalid. Invalida-
tion forces re-reading the data from memory into the cache, when the specified area
is accessed again.

Prototype
void OS_ARM_DCACHE_InvalidateRange (void * p,
 unsigned int NumBytes);

Additional Information

This function is needed, when a DMA or other BUS master is used to transfer data
into the main memory and the CPU has to process the data after the transfer.

To ensure, that the CPU processes the updated data from the memory, the cache has
to be invalidated. Otherwise the CPU might read invalid data from the cache instead
of the memory.

Special care has to be taken, before the data cache is invalidated. Invalidating a data
area marks all entries in the data cache as invalid. If the cache contained data which
was not written into the memory before, the data gets lost.

The cache is invalidated line by line. Invalidating one cache line takes approximately
10 CPU cycles. The total time to invalidate a range may be calculated as:

t = (NumBytes / Cache line size) * 10 [CPU clock cycles].

Notes

Unfortunately, only complete cache lines can be invalidated. Therefore, it is required,
that the base address of the memory area has to be located at a cache line size byte
boundary and the number of bytes to be invalidated has to be a multiple of the cache
line size. The debug version of embOS will call OS_Error() with error code
OS_ERR_NON_ALIGNED_INVALIDATE, if one of these restrictions is violated.

Parameter Description

p
Points to the base address of the memory area that should be
updated.

NumBytes Number of bytes which have to be written from cache to memory.
Table 7.8: OS_ARM_DCACHE_InvalidateRange() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

57
7.2.10 OS_ARM_CACHE_Sync()
Description

OS_ARM_CACHE_Sync() cleans the data cache and invalidates the instruction cache to
to ensure cache coherency.

Prototype
void OS_ARM_CACHE_Sync (void)

Additional Information

This function is for example needed, when code is copied into RAM and code is then
executed from RAM.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 7 MMU and cache support
7.2.11 OS_ARM_AddL2Cache()
Description

OS_ARM_AddL2Cache() is used to add .

Prototype
void OS_ARM_v7A_AddL2Cache (const OS_ARM_L2CACHE_API *pCacheAPI,
 void *pParam);

Additional Information

This function is needed to enable the L2 cache. Nothing else is necessary to do since
the actual L2 cache routines are automatically called by the L1 cache routines.
For example OS_ARM_DCACHE_InvalidateRange() calls also internally the according
L2 cache routine.

Example

#define L2CACHE_BASE_ADDR 0x3FFFF000u

//
// Set API functions and base address for L2 Cache
//
OS_ARM_AddL2Cache(&OS_L2CACHE_L2C310, (void*)L2CACHE_BASE_ADDR);

Parameter Description

pCacheAPI Pointer to 2nd level Cache API table.
pParam Additional parameter (e,g. base address or cache registers).

Table 7.9: OS_ARM_AddL2Cache() parameter list
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

59
Chapter 8

Technical data
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 8 Technical data
8.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. Using
ARM mode, the minimum ROM requirement for the kernel itself is about 2.500 bytes.
In Thumb mode, the kernel itself does have a minimum ROM size of about 1.700
bytes.

In the table below, which is for XRelease build, you can find minimum RAM size
requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]

Task control block 32

Resource semaphore 16

Counting semaphore 8

Mailbox 24

Software timer 20
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

61
Chapter 9

RTT and SystemView
This chapter contains information about SEGGER Real Time Transfer and SEGGER
SystemView.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

62 9 RTT and SystemView
9.1 SEGGER Real Time Transfer
SEGGER's Real Time Transfer (RTT) is the new technology for interactive user I/O in
embedded applications. RTT can be used with any J-Link model and any supported
target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default con-
figured to use RTT for debug output.
Some IDEs, such as SEGGER Embedded Studio, support RTT and display RTT output
directly within the IDE. In case the used IDE does not support RTT, SEGGER�s J-Link
RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead to visual-
ize your application�s debug output.

For more information on SEGGER Real Time Transfer, refer to
https://www.segger.com/jlink-rtt.html.

9.1.1 Shipped files related to SEGGER RTT
All files related to SEGGER RTT are shipped inside the respective start project�s Setup
folder:

File Description
SEGGER_RTT.c Generic implementation of SEGGER RTT.

SEGGER_RTT.h Generic implementation header file.

SEGGER_RTT_Conf.h Generic RTT configuration file.

SEGGER_RTT_printf.c
Generic printf() replacement to write formatted
data via RTT.

SEGGER_RTT_Syscalls_*.c

Compiler-specific low-level functions for using
printf() via RTT.
If this file is included in a project, RTT is used
for debug output. To use the standard out of your
IDE, exclude this file from build.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

63
9.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep
understanding of the runtime behavior of an application, going far beyond what
debuggers are offering. The SystemView module collects and formats the monitor
data and passes it to RTT.

SystemView is included with many embOS start projects. These projects are by
default configured to use SystemView in debug builds. The associated PC visualiza-
tion application, SystemViewer, is not shipped with embOS. Instead, the most recent
version of that application is available for download from our website.

For more information on SEGGER SystemView, including the SystemViewer down-
load, refer to https://www.segger.com/systemview.html.

9.2.1 Shipped files related to SEGGER SystemView
All files related to SEGGER SystemView are shipped inside the respective start
project�s Setup folder:

File Description

Global.h
Global type definitios required by
SEGGER SystemView.

SEGGER.h
Generic types and utility function
header.

SEGGER_SYSVIEW.c Generic implementation of SEGGER RTT.

SEGGER_SYSVIEW.h Generic implementation include file.

SEGGER_SYSVIEW_Conf.h Generic configuration file.

SEGGER_SYSVIEW_ConfDefaults.h Generic default configuration file.

SEGGER_SYSVIEW_Config_embOS_RZA1.c
Target-specific configuration of
SystemView with embOS.

SEGGER_SYSVIEW_embOS.c
Generic interface implementation for
SystemView with embOS.

SEGGER_SYSVIEW_embOS.h
Generic interface implementation header
file for SystemView with embOS.

SEGGER_SYSVIEW_Int.h Generic internal header file.
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

64 9 RTT and SystemView
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

65
Index
Symbols
__malloc_lock()25
__malloc_unlock()25

C
Cache ..46

F
FIQ ..44

I
Installation ...10
Interrupt stack32
Interrupts ...31
interrupts ...32

M
Memory requirements60
MMU ..46

O
OS_ARM_AssignISRSource()40
OS_ARM_DCACHE_CleanRange()55
OS_ARM_DCACHE_InvalidateRange()56
OS_ARM_DCHACHE_Enable()54
OS_ARM_DisableISR()38
OS_ARM_DisableISRSource()42
OS_ARM_EnableISR()37
OS_ARM_EnableISRSource()41
OS_ARM_ICACHE_Enable()53
OS_ARM_InstallISRHandler()36
OS_ARM_ISRSetPrio()39
OS_ARM_MMU_AddTTEntries()49
OS_ARM_MMU_Enable()50
OS_ARM_MMU_GetVirtualAddr()51
OS_ARM_MMU_InitTT()48
OS_ARM_MMU_v2p()52
OS_irq_handler()33
OS_USER_irq_func()34

S
Stacks ... 27
Syntax, conventions used 5
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

66 Index
embOS for RZ and KPIT GNU © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Using embOS
	1.1 Installation
	1.2 First steps
	1.3 The example application OS_StartLEDBlink.c
	1.4 Stepping through the sample application

	Build your own application
	2.1 Introduction
	2.2 Required files for an embOS application
	2.3 Change library mode
	2.4 Select another CPU

	Libraries
	3.1 Naming conventions for prebuilt embOS libraries

	CPU and Compiler specifics
	4.1 Standard system libraries
	4.2 Reentrancy, thread safe heap management
	4.2.1 __malloc_lock(), lock the heap against mutual access
	4.2.2 __malloc_unlock()

	Stacks
	5.1 Task stack
	5.2 System stack
	5.3 Interrupt stack
	5.4 Stack specifics

	Interrupts
	6.1 What happens when an interrupt occurs?
	6.2 Defining interrupt handlers in C
	6.3 Interrupt handling without vectored interrupt controller
	6.4 Interrupt handling with vectored interrupt controller
	6.4.1 OS_ARM_InstallISRHandler
	6.4.2 OS_ARM_EnableISR(): Enable a specific interrupt
	6.4.3 OS_ARM_DisableISR()
	6.4.4 OS_ARM_ISRSetPrio()
	6.4.5 OS_ARM_AssignISRSource()
	6.4.6 OS_ARM_EnableISRSource()
	6.4.7 OS_ARM_DisableISRSource()

	6.5 Interrupt-stack switching
	6.6 Fast Interrupt (FIQ)

	MMU and cache support
	7.1 MMU and cache support with embOS
	7.2 MMU and cache handling for ARM CPUs
	7.2.1 OS_ARM_MMU_InitTT()
	7.2.2 OS_ARM_MMU_AddTTEntries()
	7.2.3 OS_ARM_MMU_Enable()
	7.2.4 OS_ARM_MMU_GetVirtualAddr()
	7.2.5 OS_ARM_MMU_v2p()
	7.2.6 OS_ARM_ICACHE_Enable()
	7.2.7 OS_ARM_DCACHE_Enable()
	7.2.8 OS_ARM_DCACHE_CleanRange()
	7.2.9 OS_ARM_DCACHE_InvalidateRange()
	7.2.10 OS_ARM_CACHE_Sync()
	7.2.11 OS_ARM_AddL2Cache()

	Technical data
	8.1 Memory requirements

	RTT and SystemView
	9.1 SEGGER Real Time Transfer
	9.1.1 Shipped files related to SEGGER RTT

	9.2 SEGGER SystemView
	9.2.1 Shipped files related to SEGGER SystemView

	Index

