

embOS

Real Time Operating System

CPU & Compiler specifics for

M16C/80, M32C and NC308 compiler

Document Rev. 4

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

embOS for M16C/80, M32C and NC308 compiler 3/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. What is new?... 4

2.1. Update / Upgrade information.. 4
3. Using embOS with Renesas HEW ... 6

3.1. Installation.. 6
3.2. First steps .. 6
3.3. The sample application Main.c .. 8

4. Using Debugging tools .. 9
4.1. Debug the application using HEW M32C Simulator .. 9
4.2. Debug the application using PD308... 14
4.3. Using ROM-Monitor KD308 or KD3083 ... 17
4.4. Using E8 or E8a debugging tool .. 17

5. Build your own application... 18
5.1. Required files for an embOS application .. 18
5.2. Select a start project .. 18
5.3. Add your own code .. 18
5.4. Change memory model or library mode... 18

6. Start projects shipped with embOS .. 20
7. M16C/80 and M32C specifics ... 21

7.1. Memory models ... 21
7.2. Available libraries... 21

8. Compiler settings... 22
8.1. CPU type ... 22
8.2. Memory model ... 22
8.3. Library type .. 22

9. Stacks ... 23
9.1. Task stack for M16C/80 and M32C ... 23
9.2. System stack for M16C/80 and M32C ... 23
9.3. Interrupt stack for M16C/80 and M32C.. 23
9.4. Stack specifics of the Renesas M16C/80 and M32C family 23

10. Interrupts ... 24
10.1. What happens when an interrupt occurs? ... 24
10.2. Defining interrupt handlers in "C"... 24
10.3. Interrupt-stack.. 25
10.4. Special considerations for the M16C/80 and M32C... 25
10.5. Zero Latency interrupts with M16C80 and M32C... 25
10.6. Zero latency interrupts with M16C80/M32C CPUs .. 25
10.7. Interrupt priorities with embOS for M16C80/M32C CPUs............................... 25
10.8. Interrupt latency ... 25
10.9. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero latency
interrupts... 26

11. STOP / WAIT Mode .. 27
12. Technical data... 28

12.1. Memory requirements .. 28
13. Files shipped with embOS.. 28
14. Index ... 29

4/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS for M16C/80 and M32C Real Time
Operating System for the Renesas M16C/80 and M32C series of microcontrol-
lers using the Renesas NC308 compiler and Renesas HEW.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
M16C/80 and M32C with NC308 compiler. Before actually using embOS, you
should read or at least glance through this manual in order to become familiar
with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Renesas HEW. If you have no experience using embOS, you should fol-
low this introduction, even if you do not plan to use PD308 debugger or Rene-
sas HEW, because it is the easiest way to learn how to use embOS in your
application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
M16C/80 and M32C using NC308 compiler.

2. What is new?
• Zero latency interrupts:
Since version 3.88e of embOS for M32C, interrupt handling inside embOS
was modified. Instead of disabling interrupts when embOS does atomic opera-
tions, the interrupt level of the CPU is set to 5. Therefore all interrupts with level
6 or above can still be processed.
The interrupt level for zero latency interrupts can be set at runtime.

2.1. Update / Upgrade information

When you update / upgrade from an embOS version prior 3.88e, you may
have to change your interrupt handlers because of Zero Latency interrupt sup-
port. All interrupt handlers using embOS functions have to run on priorities
from 1 to 5 (default), or up to the selectable level which was set by the new API
function OS_SetFastIntPriorityLimit().
For further information, please read chapter �Interrupts� in this manual.

embOS for M16C/80, M32C and NC308 compiler 5/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

6/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

3. Using embOS with Renesas HEW

3.1. Installation

embOS is shipped on a 3½" disk or CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

• Copy the entire disk to your hard-drive into any folder of your choice. When

copying, please keep all files in their sub directories!
• If you received a zip-file, please extract it to any folder of your choice, pre-

serving the directory structure of the zip-file.

Assuming that you are using HEW to develop your application, no further instal-
lation steps are required. You will find prepared sample start workspaces and
projects for M16C80 and M32C CPUs, which you should use and modify to
write your application. So follow the instructions in the next chapter �First steps�.

You should do this even if you do not intend to use the workbench for your ap-
plication development in order to become familiar with embOS.

If for some reason you will not work with the HEW, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on the Renesas HEW workbench, it may be used
with batch files or a make utilities without any problem.

3.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received ready to go sample start projects and it is
a good idea to use them as a starting point of all your applications.

To get your new application running, you should proceed as follows:

• Create a work directory for your application, for example c:\work
• Copy the whole folder �Start� which is part of your embOS distribution into

your work directory
• Clear the read only attribute of all files in the new �start� folder.
• Open one sample start project in the folder �start\� with Renesas HEW (e.g.

by double clicking it) Our further examples show the Project workspace
Start\Start_M32C.hws, which is for M32C with far memory model and debug
library.

• Build the start project

Your screen should look like follows:

embOS for M16C/80, M32C and NC308 compiler 7/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

8/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

3.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)
What happens is easy to see:
• After initialization of embOS; two tasks are created and started
• The 2 tasks are activated and execute until they run into the delay, then sus-

pend for the specified time and continue execution.

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications
**
--
File : Main.c
Purpose : Skeleton program for OS
-------- END-OF-HEADER ---
*/

#include "RTOS.H"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for M16C/80, M32C and NC308 compiler 9/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

4. Using Debugging tools
All debugging tools available for M32C and M16C80 CPUs may be used to de-
bug an embOS application.

4.1. Debug the application using HEW M32C Simulator

The easiest way to debug the start project is using the M32C Simulator which is
included in Renesas HEW.
The distribution of embOS for M32C comes with a simple timer simulation
script which can be used to simulate the embOS system timer.
After building the start project, the M32C Simulator can be selected as debug-
ger by the following procedure:
• From The main menu choose �Debug -> Debug Settings�.
• In the �Debug Settings� dialog, select Target: M32C Simulator.
• In the �Debug Settings� dialog, select Default Debug Format:

IEEE695_RENESAS.
In the �Debug Settings� dialog, add the generated output of the start project
to the list �Download Modules�. The output file of the sample start project for
M32C is �Start\Start_M32C\debug\Start_M32C.x30�

The dialog should look like follows:

You will then have to setup the M32C Simulator, if not already done.
When you choose �Debug -> Connect� from the main menu, The �Init (M32C
Simulator)� dialog appears.
You have to define a CPU in the �MCU� tab. To select a CPU, click the �Re-
fer�� button.
For the Start_M32C sample, select the M32C8x.mcu file.
Depending on other options, the debugger then automatically loads the target
file.
To be sure the right target is loaded, you may choose �Debug -> Download
Modules� from the main menu and load the Start_M32C.x30 file.

10/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

The Debugger will load the file and show the startup code:

You should open or select the main.c file and set a breakpoint at main()
When you the start the CPU by �Debug -> Go� or just press F5, the simulator
stops at main. Alternatively, you may stop through the startup code to get there:

You may now step through the sample application.
• OS_IncDI() initially disables interrupts and prevents re-enabling them in
OS_InitKern().

• OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables.

• OS_InitHW() is part of RTOSInit.c and therefore part of your application.
Its primary purpose is to initialize the hardware required to generate the
timer-tick-interrupt for embOS. Step through it to see what is done.

• OS_Start() should be the last line in main, since it starts multitasking and
does not return. OS_Start() automatically enables interrupts.

embOS for M16C/80, M32C and NC308 compiler 11/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

When you step into OS_Start(), the next line executed is already in the high-
est priority task created. (you may also use disassembly mode to get there of
course, then stepping through the task switching process, but you must not step
over OS_Start()). In our small start program, HPTask() is the highest priority
task and is therefore active:

You should set a breakpoint in every task, as shown above. If you continue
stepping, you will arrive in the task with the second highest priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).
When you step into the OS_Delay(), you will arrive there:

12/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. You may open the watch window to dis-
play the embOS time variable OS_Global.Time, which shows how much time
has expired in the target system.
Now, it is time to start the embOS timer simulation script:
• From main menu choose View -> CPU -> I/O Timing Setting.

The I/O Timing setting window opens.
• Select the Timer-symbol.

The Set Timer Dialog opens
• Choose "Load..."
• Select the file Start\embOS_Timer.stm which is delivered with embOS.

The timer script generates interrupt 12 which is used for the embOS timer

embOS for M16C/80, M32C and NC308 compiler 13/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

• Close the Set Timer dialog.
• Do not close the I/O Timing settings window, because the timer only runs as

long as this window is open.

Now start the target CPU by �Debug -> Go� or press F5. The HP task will con-
tinue after the given delay of 10 ms:

14/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

4.2. Debug the application using PD308

Start the debugger and load the X30 module file. Usually you will see the main
function (very similar to the screenshot below). In some debuggers, you may
look at the startup code and have to set a breakpoint at main. Now you can
step through the program.
• OS_IncDI() Initially disables interrupts and prevents re-enabling them in
OS_InitKern().

• OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables.

• OS_InitHW() is part of RTOSInit.c and therefore part of your application.
Its primary purpose is to initialize the hardware required to generate the
timer-tick-interrupt for embOS. Step through it to see what is done.

• OS_Start() should be the last line in main, since it starts multitasking and
does not return. OS_Start() automatically enables interrupts.

When you step into OS_Start(), the next line executed is already in the highest
priority task created. (you may also use disassembly mode to get there of
course, then stepping through the task switching process). In our small start
program, Task0() is the highest priority task and is therefore active.

embOS for M16C/80, M32C and NC308 compiler 15/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

You should set a breakpoint in every task, as shown above. If you continue
stepping, you will arrive in the task with the second highest priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).

16/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. You may open the watch window to dis-
play the embOS time variable OS_Time, which shows how much time has
expired in the target system.

Please note:
As the emulator does not stop the timer when it reaches a breakpoint, the timer
continues counting and produces an interrupt as soon as the next step is exe-
cuted. This results in extra counts of the time variable OS_Time.

embOS for M16C/80, M32C and NC308 compiler 17/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

4.3. Using ROM-Monitor KD308 or KD3083

The distribution of embOS M32C for NC308 compiler is prepared for usage of
Renesas ROM Monitor KD308 or PD3083.
The ROM Monitor occupies the serial interface UART1 on some target CPUs
and the appropriate interrupt vectors.
All necessary modifications are set up in the startup file NCRT0.a30 and inter-
rupt vector definition file Sect308.inc, that are shipped with embOS.
All modifications are documented in those source files. Please read the file
header information there.
You should use the KD ROM-Monitor in free running mode.
Please note, that debugging of multitasking applications with KD ROM-Monitor
is difficult.
When the ROM-Monitor stops at a breakpoint, the interrupts are not disabled.
This may result in task switches, caused by interrupts. As a result, the ROM-
Monitor may crash. You may set the interrupt priority of the target CPU to 6 be-
fore you start single-stepping to avoid such problems. Of course, the interrupt
priority has to be changed to the previous value before you restart the applica-
tion.

4.4. Using E8 or E8a debugging tool

RENESAS�s E8a debugging tool can be used for M32C CPUs without problems.
The standard distribution of embOS for M16C80 / M32C and IAR compiler
does not contain a configuration for the E8a, but an existing configuration can
easily be changed to use E8a as debugging tool.
E8a occupies 256bytes of RAM and 2KBytes of ROM in the target CPUI. This
memory has to be reserved and can not be used by the application.
The sect308.inc file can be modified to reserve the RAM and ROM required for
E8a at the beginning of RAM and ROM. Therefore modify the .org address.

18/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

5. Build your own application
To build your own application, you should start with a sample start project. This
has the advantage, that all necessary files are included and all settings for the
project are already done.

5.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:

• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit.c from subfolder Src\.
It contains hardware dependent initialization code for the embOS timer and
optional UART for embOSView.

• OS_Error.c from subfolder Src\.
It contains the embOS runtime error handler OS_Error()which is used in
stack check or debug builds.

• One embOS library from the Lib\ subfolder
• ncrt0.a30 from subfolder Src\.

This is the startup code which is modified to be used with embOS.
• sect308.inc from subfolder Src\.

This is the interrupt vector table file which is setup to be used with embOS.
When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to �C� standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_incDI() are
called.

5.2. Select a start project

embOS comes with one start project for an M16C80 CPU and two start pro-
jects for M32C CPUs. The start projects were built and tested for standard
CPUs. For various CPU variants there may be modifications required.

5.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

5.4. Change memory model or library mode

For your application you may have to choose an other data- / memory-model.
For debugging and program development you should use an embOS -debug
library. For your final application you may wish to use an embOS -release li-
brary.
Therefore you have to replace the embOS library in your project or target:

• Build a new group for the library an add it to the selected target.
• Add the appropriate library from the Lib-subdirectory to your new group.
• Remove the previous library group from your target.

embOS for M16C/80, M32C and NC308 compiler 19/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

Finally check project options about target CPU data / memory model settings
and compiler settings according library mode used. Refer to chapter 6 about
the library naming conventions to select the correct library.

20/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

6. Start projects shipped with embOS
embOS for M32C and NC308 compiler is shipped with start projects for the
Renesas High-performance Embedded Workshop HEW.
These start projects are located in the subfolder Start\.
There is one start project for an M16C80CPU, named Start_M16C80, and two
start projects for M32c CPUs, named Start_M32C, which is for generic M32C
CPUs, and Start_M32C87, which is built for an M32C/87 CPU.

Using start projects has the advantage, that all necessary compiler settings and
defines are already done.
To develop your own application, you should use one of the start projects and
add your sources to the project.

embOS for M16C/80, M32C and NC308 compiler 21/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

7. M16C/80 and M32C specifics

7.1. Memory models

embOS supports all the memory models that the Renesas NC308-Compiler
supports.
For the M16C/80 and M32C, 2 memory models are available:

Model Code Data
Near far (24 bits always) near (16 bits)
Far far (24 bits always) far (24 bits)

7.2. Available libraries

All available libraries are placed in the subdirectory Start\lib.
The files to use are:

CPU Memorymodel Library type Library
M16C/80 Near Release Rtos80NR.lib
M16C/80 Near Stack-check Rtos80NS.lib
M16C/80 Near Stack-check + Profiling Rtos80NSP.lib
M16C/80 Near Debug Rtos80ND.lib
M16C/80 Near Debug + Profiling Rtos80NDP.lib
M16C/80 Near Debug + Profiling + Trace Rtos80NDT.lib
M16C/80 Far Release Rtos80FR.lib
M16C/80 Far Stack-check Rtos80FS.lib
M16C/80 Far Stack-check + Profiling Rtos80FSP.lib
M16C/80 Far Debug Rtos80FD.lib
M16C/80 Far Debug + Profiling Rtos80FDP.lib
M16C/80 Far Debug + Profiling + Trace Rtos80FDT.lib
M32C Near Release Rtos32NR.lib
M32C Near Stack-check Rtos32NS.lib
M32C Near Stack-check + Profiling Rtos32NSP.lib
M32C Near Debug Rtos32ND.lib
M32C Near Debug + Profiling Rtos32NDP.lib
M32C Near Debug + Profiling + Trace Rtos32NDT.lib
M32C Far Release Rtos32FR.lib
M32C Far Stack-check Rtos32FS.lib
M32C Far Stack-check + Profiling Rtos32FSP.lib
M32C Far Debug Rtos32FD.lib
M32C Far Debug + Profiling Rtos32FDP.lib
M32C Far Debug + Profiling + Trace Rtos32FDT.lib

As can be seen from the table, the library names reflect the CPU, memory
model and the library type

22/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

8. Compiler settings

8.1. CPU type

The compiler needs information about the CPU type used, to compile and as-
semble the correct code. Also the CPU type has to be specified to include the
appropriate special function register definition header file, which is required to
access the necessary peripherals.
This is done via parameter and define:

CPU Parameter Define Explanation
M16C/80 -DCPUMC80 compiles code for M16C80 and in-

cludes CPUMC80.h
M32C -M82 -DCPUM32C compiles code for M32C and includes

CPUM32C.h

The define could be omitted, when the #include directive in RtosInit.c would be
changed.

8.2. Memory model

The memory model has to be chosen by compiler settings. The settings have to
be confirm to those used for the libraries.
The following compiler settings are required for the different memory models

Model Parameter Define Explanation
Near -fNP -OS_NDATA All data are accessed in near memory

area. Pointers are 16 bits wide
Far -fFRAM -OS_FDATA All data may be placed in whole mem-

ory area. Pointers are 24 bits wide

8.3. Library type

The library type used for the application project has to be defined. This defini-
tion has to be confirm to the library, that is included to the project by linker op-
tion.

Library type Library name Define
Release RTOSxxxR -DOS_LIBMODE_R
Stack check RTOSxxxS -DOS_LIBMODE_S
Stack check + Profiling RTOSxxxSP -DOS_LIBMODE_SP
Debug RTOSxxxD -DOS_LIBMODE_D
Debug + Profiling RTOSxxxDP -DOS_LIBMODE_DP
Debug + Profiling + Trace RTOSxxxDT -DOS_LIBMODE_DT

embOS for M16C/80, M32C and NC308 compiler 23/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

9. Stacks

9.1. Task stack for M16C/80 and M32C

Every embOS task has to have its own stack. The task stacks may reside in
any memory location that can be used as RAM. The stack-size required by a
task is the sum of the stack-size of all routines that are called plus basic stack
size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the M16C/80 and M32C, this minimum stack size for a task is about 50
bytes in the far memory model.

9.2. System stack for M16C/80 and M32C

The system stack size required by embOS is about 30 bytes (60 bytes in.
profiling builds) The system stack is used by the application before the start of
multitasking (the call of OS_Start()).
Because software-timers also use the system-stack, the actual stack require-
ments depend on the application.
The size of the system stack is defined in the assembler startup file NCRT0.a30
as STACKSIZE.

9.3. Interrupt stack for M16C/80 and M32C

The M16C/80 and M32C has been designed with multitasking in mind; it has 2
stack-pointers, the USP and the ISP. The U-Flag selects the active stack-
pointer. During execution of a task or timer, the U-flag is set thereby selecting
the user-stack-pointer. If an interrupt occurs, the M16C/80 and M32C clears the
U-flag and switches to the interrupt-stack-pointer automatically this way. The
ISP is active during the entire ISR (interrupt service routine). This way, the inter-
rupt does not use the stack of the task and the stack-size does not have to be
increased for interrupt-routines. Additional stack-switching as for other CPUs is
therefore not necessary for the M16C/80 and M32C.
The size of the interrupt stack is defined in the assembler startup file
NCRT0.a30 as ISTACKSIZE. 192 bytes)

9.4. Stack specifics of the Renesas M16C/80 and M32C family

The Renesas M16C/80 and M32C family of microcontrollers can address up to
16MB of memory. Because the stack-pointer can address the entire memory
area, stacks can be located anywhere in RAM. For performance reasons you
should try to locate stacks in fast RAM.

24/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

10. Interrupts

10.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor interrupt priority

level is below or equal to the interrupt priority level, the interrupt is executed
• the CPU switches to the Interrupt stack
• the CPU saves PC and flags on the stack
• the IPL is loaded with the priority of the interrupt
• the CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR)
• ISR : save registers
• ISR : user-defined functionality
• ISR : restore registers
• ISR: Execute IRET command, restoring PC, Flags and switching to User

stack
• For details, please refer to the Renesas hardware manuals.

10.2. Defining interrupt handlers in "C"

Routines that should run as interrupt handlers have to be preceded by
#pragma INTERRUPT RoutineName
The following interrupt routine then automatically saves & restores the registers
it modifies and returns with REIT.
For a detailed description on how to define an interrupt routine in "C", also refer
to the Renesas C-Compiler's user's guide.

Example
Serial receive interrupt-routine for embOSView

#pragma INTERRUPT OS_ISR_rx
void OS_ISR_rx (void) {
 int Data;
 OS_EnterNestableInterrupt(); // We will enable interrupts
 Data = U1RB;
 if (Data & 0x6000) { // Check if errors occurred
 U1C1 &= ~(1<<2); // disable Rx
 U1C1 |= (1<<2); // enable Rx
 } else {
 OS_OnRx(Data);
 }
 OS_LeaveNestableInterrupt();
}

The interrupt vector has to be added to the interrupt vector table in Sect308.inc:

 .lword _OS_ISR_rx ; (Rx interrupt for embOSView, software int 18)

embOS for M16C/80, M32C and NC308 compiler 25/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

10.3. Interrupt-stack

Since the M16C/80 and M32C have a separate stack pointer for interrupts,
there is no need for explicit stack-switching in an interrupt routine. The routines
EnterIntStack and LeaveIntStack are supplied for source compatibility to other
processors only and have no functionality.

10.4. Special considerations for the M16C/80 and M32C

None.

10.5. Zero Latency interrupts with M16C80 and M32C

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to 4. Therefore all interrupts with level 5 or above
can still be processed.
These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

10.6. Zero latency interrupts with M16C80/M32C CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to a higher user definable level. Therefore all inter-
rupts with higher levels can still be processed.
These interrupts are named Zero latency interrupts.
The default level limit for zero latency interrupts is set to 5, meaning, any inter-
rupt with level 6 or 7 is never disabled and can be accepted anytime.
You must not execute any embOS function from within a Zero latency in-
terrupt function.

10.7. Interrupt priorities with embOS for M16C80/M32C CPUs

With introduction of Zero latency interrupts, interrupt priorities useable by the
application are divided into two groups:

• Low priority interrupts with priorities from 1 to a user definable priority
limit. These interrupts are called embOS interrupts.

• High priority interrupts with priorities above the user definable priority
limit. These interrupts are called Zero latency interrupts.

Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters.
The priority limit between embOS interrupts and Zero latency interrupts can be
set at runtime by a call of the function OS_SetFastIntPriorityLimit().

10.8. Interrupt latency

With embOS for M32C, the interrupt latencies are kept as small as possible,
because high priority interrupts are never locked by the operating system.
Because the CPU automatically disables all interrupts when accepting an inter-
rupt, the interrupt latency for interrupts with higher priority can not be zero. The
interrupt handler has to re-enable interrupts by setting the I-Flag. Using em-
bOS, this is done by a call of the function OS_EnterNestableInterrupt()
or OS_EnterInterrupt().

26/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

Differences between OS_EnterInterrupt() and OS_EnterNestableInterrupt()

OS_EnterInterrupt() shall be used for an interrupt that may use embOS func-
tions and runs on low priority (below the zero latency priority limit), but shall not
be interrupted by other low priority interrupts.
OS_EnterInterrupt() sets the IPL of the CPU up to the zero latency priority limit
and the re-enables interrupts.
OS_EnterNestableInterrupt() shall be used for an interrupt that may use
embOS functions and runs on low priority (below the zero latency priority limit),
but may be interrupted by other interrupts with higher priority. On entry, the IPL
remains unchanged and interrupts are re-enabled.

10.9. OS_SetFastIntPriorityLimit(): Set the interrupt priority limit
for Zero latency interrupts

The interrupt priority limit for Zero Latency interrupts is set to 5 by default. This
means, all interrupts with higher priority from 6 to 7 will never be disabled by
embOS.

Description
OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between
Zero latency interrupts and lower priority embOS interrupts.

Prototype
void OS_SetFastIntPriorityLimit(unsigned int Priority)

Parameter Meaning

Priority
The highest value useable as priority for embOS interrupts.
All interrupts with higher priority are never disabled by em-
bOS. Valid range: 1 <= Priority <= 7

Return value
NONE.

Add. information
To disable Zero latency interrupts at all, the priority limit may be set to 7 which
is the highest interrupt priority for interrupts.
To modify the default priority limit, OS_SetFastIntPriorityLimit() should
be called before embOS was started.

embOS for M16C/80, M32C and NC308 compiler 27/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

11. STOP / WAIT Mode
Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_Idle() routine, which is part of
the hardware dependent module RtosInit.c.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

28/29 embOS for M16C/80, M32C and NC308 compiler

  2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

12. Technical data

12.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the near memory model, release build.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1451 25
Event-management < 200 ---
Mailbox management < 550 ---
Single-byte mailbox management < 300 ---
Resource-semaphore management < 250 ---
Timer-management < 250 ---
Add. Task --- 19
Add. Resource Semaphore --- 4
Add. Mailbox --- 11
Add. Timer --- 11
Power-management --- ---

13. Files shipped with embOS!
embOS for M32C and nc308 compiler is shipped with documentation in PDF
format and release notes as html.
The start projects, source files, all libraries and additional files required for linker
or emulator / simulator are located in the sub folder �Start�.
The distribution of embOS contains the following files:

Directory File Explanation
Start\Inc RTOS.h Include file for embOS, to be included in

every "C"-file using embOS -functions
Start\Inc CPU*.h Definition of special function registers.

Needed for hardware initialization.
Start\Lib RTOS*.lib Libraries for all CPU / memory model / Li-

brary type combination
Start\Src Main.c Frame program to serve as a start
Start\Src RTOSINIT.c To be compiled & linked with your program,

initializes the hardware, can be modified
Start\Src ncrt0.a30 Startup code, modified for use with embOS
Start\Src sect308.inc Sections and interrupt vector table, set up

for embOS
Start\Src OS_Error.c The embOS runtime error handler, used in

stack check or debug builds.
Start\ embOS_Timer.stm Simple timer simulation script for M32C

Simulator to simulate embOS timer inter-
rupt

Start*\ *.* Sample start projects for HEW
Any add. files shipped serve as examples.

embOS for M16C/80, M32C and NC308 compiler 29/29

 2008 - 2013 SEGGER Microcontroller GmbH & Co. KG

14. Index
E
E8a ... 17
embOS interrupt........................... 25
I
Installation 6
Interrupt latency........................... 25
Interrupt priorities 25
Interrupt stack 23
Interrupt vector table.................... 24
Interrupts...................................... 24
Interrupt-stack.............................. 25
K
KD308.. 17

M
memory models21
memory requirements28
O
OS_Error()18
OS_SetFastIntPriorityLimit() .25, 26
R
ROM Monitor17
S
Stacks ...23
Stacks, interrupt stack23
Stacks, system stack23

Stacks, task stack 23
Start projects................................ 20
Stop-mode 27
System stack 23
T
Task stack 23
technical data............................... 28
W
Wait-mode 27
Z
Zero latency interrupt 25

	Contents
	About this document
	How to use this manual

	What is new?
	Update / Upgrade information

	Using embOS with Renesas HEW
	Installation
	First steps
	The sample application Main.c

	Using Debugging tools
	Debug the application using HEW M32C Simulator
	Debug the application using PD308
	Using ROM-Monitor KD308 or KD3083
	Using E8 or E8a debugging tool

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode

	Start projects shipped with embOS
	M16C/80 and M32C specifics
	Memory models
	Available libraries

	Compiler settings
	CPU type
	Memory model
	Library type

	Stacks
	Task stack for M16C/80 and M32C
	System stack for M16C/80 and M32C
	Interrupt stack for M16C/80 and M32C
	Stack specifics of the Renesas M16C/80 and M32C family

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack
	Special considerations for the M16C/80 and M32C
	Zero Latency interrupts with M16C80 and M32C
	Zero latency interrupts with M16C80/M32C CPUs
	Interrupt priorities with embOS for M16C80/M32C CPUs
	Interrupt latency
	OS_SetFastIntPriorityLimit(): Set the interrupt priority limit for Zero latency interrupts

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

