
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01047
Software version 4.24

Revision: 0
Date: July 19, 2016

CPU & Compiler
specifics for CortexM

using TI Code Composer
Studio

Real-Time
Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: July 19, 2016

Software Revision Date By Description

4.24 0 160719 RH
Chapters "RTT and SystemView" and "Vector Floating Point
support" added.

4.14 0 151124 MC Update to latest software version.
3.88e 0 130920 TS First version.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

4

embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 2.1: Typographic conventions
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Using embOS...9

1.1 Installation ...10
1.2 First steps ..11
1.3 The example application OS_StartLEDBlink.c ...13
1.4 Stepping through the sample application ..14

2 Build your own application ...17

2.1 Introduction..18
2.2 Required files for an embOS for Cortex M..18
2.3 Change library mode..18
2.4 Select another CPU ..18

3 Libraries ...21

3.1 CPU modes ...22
3.2 Naming conventions for prebuilt libraries ..22

4 CPU and Compiler specifics ..23

4.1 Standard system libraries ...24
4.2 Reentrancy, thread safe management ..25

5 Stacks ..27

5.1 Task stack for Cortex-M..28
5.2 System stack for Cortex-M..28
5.3 Interrupt stack for Cortex-M..28

6 Interrupts..29

6.1 What happens when an interrupt occurs?..30
6.2 Defining interrupt handlers in C ...30
6.3 Interrupt vector table...30
6.4 Interrupt-stack switching..31
6.5 Zero latency interrupts ...31
6.6 Interrupt priorities ...31
6.7 Interrupt nesting ...32
6.8 Interrupt handling with vectored interrupt controller.....................................34

7 VFP support ...37

7.1 Vector Floating Point support VFPv4 ...38

8 RTT and SystemView ..39

8.1 SEGGER Real Time Transfer ..40
8.2 SEGGER SystemView ...41

9 Technical data..43

9.1 Memory requirements ..44
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

8

embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 4

Using embOS
The following chapter describes how to start with and use embOS for Cortex-M and TI
Code Composer Studio. You should follow these steps to become familiar with embOS
for Cortex-M and CCS.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 4 Using embOS
4.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of
this file. Keep all files in their respective sub directories. Make sure the files are not
read only after copying.

Assuming that you are using TI Code Composer Studio to develop your application,
no further installation steps are required. You will find a lot of prepared sample start
projects, which you should use and modify to write your application. So follow the
instructions of section �First steps� on page 11.

You should do this even if you do not intend to use the project manager for your
application development to become familiar with embOS.

If you will not work with the TI CCS, you should: Copy either all or only the library-
file that you need to your work-directory. This has the advantage that when you
switch to an updated version of embOS later in a project, you do not affect older
projects that use embOS also. embOS does in no way rely on the TI CCS it may be
used without the project manager using batch files or a make utility without any
problem.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

11
4.2 First steps
After installation of embOS you can create your first multitasking application. You
have received ready to go sample TI CCS project files and it is a good idea to use one
of these as a starting point of all your applications.
Your embOS distribution contains one folder "Start\BoardSupport" which contains the
sample project files and every additional files used to build your application.

For the first step, you may use the project for TI TM4C129 CPU:

To get your new application running, you should proceed as follows:

� Create a work directory for your application, for example c:\work
� Copy the whole folder Start which is part of your embOS distribution into your

work directory.
� Clear the read-only attribute of all files in the new Start folder.
� Start TI Code Composer Studio and import the project with Menu->Project->Import

existing CCS Eclipse roject.

� Build the start project. It should be build without any error or warning messages.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 4 Using embOS
After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every
specific project. The ReadMe file describes the different configurations of the project
and gives additional information about specific hardware settings of the supported
eval boards, if required.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

13
4.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a
good starting point for your application. (Note that the file actually shipped with your
port of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/***
* SEGGER Microcontroller GmbH & Co. KG *
* The Embedded Experts *
**
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
--------- END-OF-HEADER --
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
static OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 BSP_Init(); /* Initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

/****** End Of File ***/
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 4 Using embOS
4.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screen-
shot below). The main() function appears as long as project option Run to main is
selected, which is enabled by default. Now you can step through the program.
OS_IncDI() initially disables interrupts.
OS_InitKern() is part of the embOS library and written in assembler; you can there-
fore only step into it in disassembly mode. It initializes the relevant OS variables.
Because of the previous call of OS_IncDI(), interrupts are not enabled during execu-
tion of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.

OS_Start() should be the last line in main, since it starts multitasking and does not
return.

Before you continue stepping, you should set two break points in the two tasks as
shown below:

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. Y
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

15
Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until
you reach the highest priority task.

If you continue stepping, you will arrive in the task that has lower priority:

Continue to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop always executed if
there is nothing else to do (no task is ready, no interrupt routine or timer executing).
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 4 Using embOS
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c.You may also set a breakpoint there before
you step over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay. Press GO to enter the highest priority task again.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the
Watch window, HPTask continues operation after expiration of the 50 system tick
delay.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 5

Build your own application
This chapter provides all information to setup your own embOS project.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 5 Build your own application
5.1 Introduction
To build your own application, you should always start with one of the supplied sam-
ple workspaces and projects. Therefore, select an embOS workspace as described in
First steps on page 9 and modify the project to fit your needs. Using a sample project
as starting point has the advantage that all necessary files are included and all set-
tings for the project are already done.

5.2 Required files for an embOS for Cortex M
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one target specific BoardSupport\<Manufac-
turer>\<MCU>\ subfolder.
It contains hardware-dependent initialization code for embOS. It initializes the
system timer interrupt and optional communication for embOSView via UART or
JTAG.

� One embOS library from the subfolder Lib\.
� OS_Error.c from one target specific subfolder BoardSupport\<Manufac-

turer>\<MCU>\.The error handler is used if any debug library is used in your
project.

� Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function,
ensure that non-initialized variables are initialized with zero, according to C stan-
dard. This is required for some embOS internal variables.
Your main() function has to initialize embOS by a call of OS_InitKern() and
OS_InitHW() prior any other embOS functions are called.
You should then modify or replace the OS_Start_LEDBlink.c source file in the sub-
folder Application\.

5.3 Change library mode
For your application you might want to choose another library. For debugging and
program development you should use an embOS debug library. For your final applica-
tion you may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

� If your selected library is already available in your project, just select the appro-
priate configuration.

� To add a library, you may add the library to the existing Lib group. Exclude all
other libraries from your build, delete unused libraries or remove them from the
configuration.

� Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/
or modify the OS_Config.h file accordingly.

5.4 Select another CPU
embOS contains CPU-specific code for various Cortex M CPUs. Manufacturer- and CPU
specific sample start workspaces and projects are located in the subfolders of the
BoardSupport folder. To select a CPU which is already supported, just select the
appropriate workspace from a CPU specific folder.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

19
If your Cortex M CPU is currently not supported, examine all RTOSInit files in the
CPU-specific subfolders and select one which almost fits your CPU. You may have to
modify OS_InitHW(), OS_COM_Init(), the interrupt service routines for embOS sys-
tem timer tick and communication to embOSView and the low level initialization.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 5 Build your own application
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 6

Libraries
This chapter describes the available embOS libraries.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 6 Libraries
6.1 CPU modes
embOS supports all memory and code model combinations that TICC / TI ARM com-
piler supports.

6.2 Naming conventions for prebuilt libraries
embOS for ARM Cortex-M and TI ARM compiler is shipped with different pre-built
libraries with different combinations of the following features:

� Instruction set architecture - Arch
� CPU mode - CpuMode
� Byte order - ByteOrder
� FPU support - FPU
� Library mode - LibMode

The libraries are named as follows:

os<Arch>_<CpuMode>_<ByteOrder>_<FPU>_<LibMode>.a

Example:

osv7M4_T_le_v4SPD16_DP.lib is the library for a project using a CortexM4F with VFP,
thumb mode, little endian mode with debug and profiling support.

Parameter Meaning Values

Arch CPU Architecture v7M4: Cortex M4F with VFP
CpuMode Specifies the CPU mode T: Always thumb

ByteOrder Endianess be: Big endian
le: Little endian

FPU FPU support v4SPD16: VFPv4SPD16

LibMode Library mode

XR: eXtreme Release
R: Release
S: Stack check
D: Debug
SP: Stack check + Profiling
DP: Debug + Profiling
DT: Debug + Trace
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 7

CPU and Compiler specifics
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

24 7 CPU and Compiler specifics
7.1 Standard system libraries
embOS for Cortex-M and TI ARM compiler may be used with standard TI ARM system
libraries for most of all projects. Heap management and file operation functions of
standard system libraries are not reentrant and can therefore not be used with
embOS, if non thread safe functions are used from different tasks. For heap manage-
ment, embOS delivers its own thread safe functions which may be used. These func-
tions are described in embOS CPU independent manual.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

25
7.2 Reentrancy, thread safe management
Using embOS with C++ projects and file operations or just normal call of heap man-
agement functions may require thread-safe system libraries if these functions
are called from different tasks. Thread-safe system libraries require some locking
mechanism which is RTOS specific.

To switch the system libraries to thread safe mode, the embOS func-
tion OS_InitSysLocks() which is includeds in the embOS libraries has to be called
before the system is started. A typical embOS initialization for thread safe usage
of system libraries with TI ARM compiler would look like follows:

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitSysLocks(); /* Activate thread safe library */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

26 7 CPU and Compiler specifics
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 8

Stacks
This chapter describes how embOS uses the different stacks of the Cortex M CPU.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 8 Stacks
8.1 Task stack for Cortex-M
Each task uses its individual stack. The stack pointer is initialized and set every time
a task is activated by the scheduler. The stack-size required for a task is the sum of
the stack-size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by calling embOS-routines.

For the Cortex M CPUs, this minimum basic task stack size is about 72 bytes.
Because any function call uses some amount of stack and every exception also
pushes at least 32 bytes onto the current stack, the task stack size has to be large
enough to handle one exception too. We recommend at least 256 bytes stack as a
start.

8.2 System stack for Cortex-M
The embOS system executes in thread mode, the scheduler executes in handler
mode. The minimum system stack size required by embOS is about 136 bytes (stack
check & profiling build). However, since the system stack is also used by the applica-
tion before the start of multitasking (the call to OS_Start()), and because software-
timers and C-level interrupt handlers also use the system-stack, the actual stack
requirements depend on the application.

The size of the system stack can be changed in the project settings.

8.3 Interrupt stack for Cortex-M
If a normal hardware exception occurs, the Cortex-M core switches to handler mode
mode, which uses the main stack pointer. With embOS, the main stack pointer is ini-
tialized to use the system-stack which is defined in the project settings. A separate
irq-stack is not used, interrupts run on the system stack. The main stack is also used
as stack by the embOS scheduler and during idle times, when no task is ready to run
and OS_Idle() is executed.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

29
Chapter 9

Interrupts
The Cortex M core comes with an built-in vectored interrupt controller which supports
up to 32 separate interrupt sources. The real number of interrupt sources depends on
the specific target CPU.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

30 9 Interrupts
9.1 What happens when an interrupt occurs?
� The CPU-core receives an interrupt request from the interrupt controller.
� As soon as the interrupts are enabled, the interrupt is accepted and executed.
� The CPU pushes temporary registers and the return address onto the current

stack.
� The CPU switches to handler mode and main stack.
� The CPU saves an exception return code and current flags onto the main stack.
� The CPU jumps to the vector address delivered by the NVIC.
� The interrupt handler is processed.
� The interrupt handler ends with a return from interrupt. by reading the exception

return code.
� The CPU switches back to the mode and stack which was active before the excep-

tion was called.
� The CPU restores the temporary registers and return address from the stack and

continues the interrupted function.

9.2 Defining interrupt handlers in C
Interrupt handlers for Cortex M cores are written as normal C-functions which do not
take parameters and do not return any value. Interrupt handler which call an embOS
function need a prolog and epilog function as described in the generic manual and in
the examples below.

Example

Simple interrupt routine:

static void _Systick(void) {
 OS_EnterNestableInterrupt(); // Inform embOS that interrupt code is running
 OS_HandleTick(); // May be interrupted by higher priority interrupts
 OS_LeaveNestableInterrupt(); // Inform embOS that interrupt handler is left
}

9.3 Interrupt vector table
After Reset, the ARM Cortex M CPU uses an initial interrupt vector table which is
located in ROM at address 0x00. It contains the address for the main stack and
addresses for all exceptions handlers.

The interrupt vector table is located in a C source or assembly file in the CPU specific
subfolder. All interrupt handler function addresses have to be inserted in the vector
table, as long as a RAM vector table is not used.

The vector table may be copied to RAM to enable variable interrupt handler installa-
tion. The compile time switch OS_USE_VARINTTABLE is used to enable usage of a
vector table in RAM.

To save RAM, the switch is set to zero per default in RTOSInit_*.c. It may be over-
written by project settings to enable the vector table in RAM. The first call of
OS_InstallISRHandler() will then automatically copy the vector table into RAM. When
using your own interrupt vector table, ensure that the addresses of the embOS
exception handlers OS_Exception() and OS_Systick() are included.
When the vector table is not located at address 0x00, the vector base register in the
NVIC controller has to be initialized to point to the vector table base address.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

31
9.4 Interrupt-stack switching
Since Cortex M core based controllers have two separate stack pointers, and embOS
runs the user application on the process stack, there is no need for explicit stack-
switching in an interrupt routine which runs on the main stack. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source code compati-
bility to other processors only and have no functionality.

9.5 Zero latency interrupts

9.5.1 Zero latency interrupts with Cortex M
Instead of disabling interrupts when embOS does atomic operations, the interrupt
level of the CPU is set to 128. Therefore all interrupt priorities higher than 128 can
still be processed. Please note that lower priority numbers define a higher priority. All
interrupts with priority level from 0 to 127 are never disabled. These interrupts are
named fast interrupts. You must not execute any embOS function from within a fast
interrupt function.

9.6 Interrupt priorities
This chapter describes interrupt priorities supported by the Cortex M core.
The priority is any number between 0 and 255 as seen by the CPU core. With embOS
and its own setup functions for the interrupt controller and priorities, there is no dif-
ference in the priority values regardless of the different preemption level of specific
devices.
Using the CMSIS functions to set up interrupt priorities requires different values for
the priorities. These values depend on the number of preemtion levels of the specific
chip. a description is found in the chapter CMSIS.

9.6.1 Interrupt priorities with Cortex M cores
The Cortex M3 support up to 256 levels of programmable priority with a maximum of
128 levels of preemption. Most Cortex M chips have fewer supported levels, for
example 8, 16, 32, and so on. The chip designer can customize the chip to obtain the
levels required. There is a minimum of 8 preemption levels. Every interrupt with a
higher preemption level may preempt any other interrupt handler running on a lower
preemption level. Interrupts with equal preemption level may not preempt each
other.

With introduction of Fast interrupts, interrupt priorities useable for interrupts using
embOS API functions are limited.

� Any interrupt handler using embOS API functions has to run with interrupt prior-
ities from 128 to 255. These embOS interrupt handlers have to start with
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and have to end with
OS_LeaveInterrupt() or OS_LeaveNestableInterrupt().

� Any Fast interrupt (running at priorities from 0 to 127) must not call any embOS
API function. Even OS_EnterInterrupt() and OS_LeaveInterrupt() must not
be called.

� Interrupt handlers running at low priorities (from 128 to 255) not calling any
embOS API function are allowed, but must not reenable interrupts! The priority
limit between embOS interrupts and Fast interrupts is fixed to 128 and can only
be changed by recompiling embOS libraries! This is done for efficiency reasons.
Basically the define OS_IPL_DI_DEFAULT in RTOS.h and the RTOS.s file must be
modified. There might be other modifications necessary. Please contact the
embOS support if you like to change this threshold.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

32 9 Interrupts
9.6.2 Priority of the embOS scheduler
The embOS scheduler runs on the lowest interrupt priority. The scheduler may be
preempted by any other interrupt with higher preemption priority level. The applica-
tion interrupts shall run on higher preemption levels to ensure short reaction time.

During initialization, the priority of the embOS scheduler is set to 0x03 for Cortex M0
and to 0xFF for Cortex M3 / M4 and M4F, which is the lowest preemption priority
regardless of the number of preemption levels.

9.6.3 Priority of the embOS system timer
The embOS system timer runs on the second lowest preemption level. Thus, the
embOS timer may preempt the scheduler. Application interrupts which require fast
reaction should run on a higher preemption priority level.

9.6.4 Priority of embOS software timers
The embOS software timer callback functions are called from the scheduler and run
on the schedulers preemption priority level which is the lowest interrupt priority
level. To ensure short reaction time of other interrupts, other interrupts should run
on a higher preemption priority level and the software timer callback functions should
be as short as possible.

9.6.5 Priority of application interrupts for Cortex M3 core
Application interrupts using embOS functions may run on any priority level between
255 to 128. However, interrupts which require fast reaction should run on higher pri-
ority levels than the embOS scheduler and the embOS system timer to allow preemp-
tion of theses interrupt handlers. Interrupt handlers which require fast reaction may
run on higher priorities than 128, but must not call any embOS function (fast inter-
rupts). We recommend that application interrupts should run on a higher preemption
level than the embOS scheduler, at least at the second lowest preemption priority
level.

As the number of preemption levels is chip specific, the second lowest preemption
priority varies depending on the chip. If the number of preemption levels is not docu-
mented, the second lowest preemption priority can be set as follows, using embOS
functions:

unsigned char Priority;
OS_ARM_ISRSetPrio(_ISR_ID, 0xFF); // Set to lowest level, ALL BITS set
Priority = OS_ARM_ISRSetPrio(_ID_TICK, 0xFF); // Read priority back
Priority -= 1; // Lower preemption level
OS_ARM_ISRSetPrio(_ISR_ID, Priority);

9.7 Interrupt nesting
The Cortex M CPU uses a priority controlled interrupt scheduling which allows nesting
of interrupts per default. Any interrupt or exception with a higher preemption priority
may interrupt an interrupt handler running on a lower preemption priority. An inter-
rupt handler calling embOS functions has to start with an embOS prolog function; it
informs embOS that an interrupt handler is running. For any interrupt handler, the
user may decide individually whether this interrupt handler may be preempted or not
by choosing the prolog function.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

33
9.7.1 OS_EnterInterrupt()
Description

OS_EnterInterrupt() disables nesting

Prototype
void OS_EnterInterrupt(void)

Return value

None.

Additional Information

OS_EnterInterrupt() has to be used as prolog function, when the interrupt handler
should not be preempted by any other interrupt handler that runs on a priority below
the fast interrupt priority. An interrupt handler that starts with
OS_EnterInterrupt() has to end with the epilog function OS_LeaveInterrupt().

Example

Interrupt-routine that can not be preempted by other interrupts.

static void _Systick(void) {
 OS_EnterInterrupt(); // Inform embOS that interrupt code is running
 OS_HandleTick(); // Can not be interrupted by higher priority interrupts
 OS_LeaveInterrupt(); // Inform embOS that interrupt handler is left
}

9.7.2 OS_EnterNestableInterrupt()
Description

OS_EnterNestableInterrupt() enables nesting.

Prototype
void OS_EnterNestableInterrupt(void)

Return value

None.

Additional Information

OS_EnterNestableInterrupt(), allow nesting. OS_EnterNestableInterrupt() may
be used as prolog function, when the interrupt handler may be preempted by any
other interrupt handler that runs on a higher interrupt priority. An interrupt handler
that starts with OS_EnterNestableInterrupt() has to end with the epilog function
OS_LeaveNestableInterrupt().

Example

Interrupt-routine that can be preempted by other interrupts.

static void _Systick(void) {
 OS_EnterNestableInterrupt(); // Inform embOS that interrupt code is running
 OS_HandleTick(); // Can be interrupted by higher priority interrupts
 OS_LeaveNestableInterrupt(); // Inform embOS that interrupt handler is left
}

9.7.3 Required embOS system interrupt handler
embOS for Cortex M core needs two exception handlers which belong to the system
itself. Both are delivered with embOS. Ensure that they are referenced in the vector
table.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

34 9 Interrupts
9.8 Interrupt handling with vectored interrupt control-
ler

For the Cortex M core, which has a built-in vectored interrupt controller, embOS
delivers additional functions to install and setup interrupt handler functions. To han-
dle interrupts with the vectored interrupt controller, embOS offers the following func-
tions:

9.8.1 OS_ARM_EnableISR(): Enable specific interrupt
Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller.

Prototype
void OS_ARM_EnableISR(int ISRIndex)

Return value

None.

Additional Information

This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.
Note that the ISRIndex counts from 0 for the first entry in the vector table.
The first peripheral index therefore has the ISRIndex 16, because the first peripheral
interrupt vector is located after the 16 generic vectors in the vector table.
This differs from index values used with CMSIS.

9.8.2 OS_ARM_DisableISR(): Disable specific interrupt
Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller which is not of the VIC type.

Prototype
void OS_ARM_DisableISR(int ISRIndex)

Return value

None.

Additional Information

This function just disables the interrupt in the interrupt controller. It does not disable
the interrupt of any peripherals. This has to be done elsewhere.
Note that the ISRIndex counts from 0 for the first entry in the vector table.

Parameter Description

ISRIndex
Index of the interrupt source which should be enabled.
Note that the index counts from 0 for the first entry in the vector
table.

Parameter Description

ISRIndex
Index of the interrupt source which should be disabled.
Note that the index counts from 0 for the first entry in the vector
table.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

35
The first peripheral index therefore has the ISRIndex 16, because the first peripheral
interrupt vector is located after the 16 generic vectors in the vector table.
This differs from index values used with CMSIS.

9.8.3 OS_ARM_ISRSetPrio(): Set priority of specific interrupt
Description

OS_ARM_ISRSetPrio() is used to set or modify the priority of a specific interrupt
source by programming the interrupt controller.

Prototype
int OS_ARM_ISRSetPrio(int ISRIndex, int Prio);

Return value

None.

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt-
controller. Please refer to CPU-specific manuals about allowed priority levels.
Note that the ISRIndex counts from 0 for the first entry in the vector table.
The first peripheral index therefore has the ISRIndex 16, because the first peripheral
interrupt vector is located after the 16 generic vectors in the vector table.
This differs from index values used with CMSIS.
The priority value is independent of the chip-specific preemption levels. Any value
between 0 and 255 can be used, were 255 always is the lowest priority and 0 is the
highest priority.
The function can be called to set the priority for all interrupt sources, regardless of
whether embOS is used or not in the specified interrupt handler.
Note that interrupt handlers running on priorities from 127 or higher must not call
any embOS function.

Parameter Description

ISRIndex
Index of the interrupt source which should be modified.
Note that the index counts from 0 for the first entry in the vector
table.

Prio
The priority which should be set for the specific interrupt.
Prio ranges from 0 (highest priority) to 255 (lowest priority).
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

36 9 Interrupts
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

37
Chapter 10

VFP support
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

38 10 VFP support
10.1 Vector Floating Point support VFPv4
Some Cortex M4 / M4F MCUs come with an integrated vectored floating point unit
VFPv4.
When selecting the CPU and activating the VFPv4 support in the project options, the
compiler and linker will add efficient code which uses the VFP when floating point
operations are used in the application.
With embOS, the VFP registers are automatically saved and restored when preemp-
tive or cooperative task switches are performed.
For efficiency reasons, embOS does not save and restore the VFP registers for tasks
which do not use the VFP unit.

10.1.1 Using embOS libraries with VFP support
When VFP support is selected as project option, one of the embOS libraries with VFP
support have to be used in the project.
The embOS libraries for VFP support require that the VFP is switched on during star-
tup and remains switched on during program execution.
Using your own startup code, ensure that the VFP is switched on during startup.
When the VFP unit is not switched on, the embOS scheduler will fail.
The debug version of embOS checks whether the VFP is switched on when embOS is
initialized by calling OS_InitKern().
When the VFP unit is not detected or not switched on, the embOS error handler
OS_Error() is called with error code OS_ERR_CPU_STATE_ILLEGAL.

10.1.2 Using the VFP in interrupt service routines
Using the VFP in interrupt service routines does not require any additional functions
to save and restore the VFP registers. The VFP registers are automatically saved and
restored by the hardware.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

39
Chapter 11

RTT and SystemView
This chapter contains information about SEGGER Real Time Transfer and SEGGER
SystemView.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

40 11 RTT and SystemView
11.1 SEGGER Real Time Transfer
SEGGER's Real Time Transfer (RTT) is the new technology for interactive user I/O in
embedded applications. RTT can be used with any J-Link model and any supported
target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default con-
figured to use RTT for debug output.
Some IDEs, such as SEGGER Embedded Studio, support RTT and display RTT output
directly within the IDE. In case the used IDE does not support RTT, SEGGER�s J-Link
RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead to visual-
ize your application�s debug output.

For more information on SEGGER Real Time Transfer, refer to
https://www.segger.com/jlink-rtt.html.

11.1.1 Shipped files related to SEGGER RTT
All files related to SEGGER RTT are shipped inside the respective start project�s Setup
folder:

File Description
SEGGER_RTT.c Generic implementation of SEGGER RTT.

SEGGER_RTT.h Generic implementation header file.

SEGGER_RTT_Conf.h Generic RTT configuration file.

SEGGER_RTT_printf.c
Generic printf() replacement to write formatted
data via RTT.

SEGGER_RTT_Syscalls_*.c

Compiler-specific low-level functions for using
printf() via RTT.
If this file is included in a project, RTT is used
for debug output. To use the standard out of your
IDE, exclude this file from build.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

41
11.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep
understanding of the runtime behavior of an application, going far beyond what
debuggers are offering. The SystemView module collects and formats the monitor
data and passes it to RTT.

SystemView is included with many embOS start projects. These projects are by
default configured to use SystemView in debug builds. The associated PC visualiza-
tion application, SystemViewer, is not shipped with embOS. Instead, the most recent
version of that application is available for download from our website.

For more information on SEGGER SystemView, including the SystemViewer down-
load, refer to https://www.segger.com/systemview.html.

11.2.1 Shipped files related to SEGGER SystemView
All files related to SEGGER SystemView are shipped inside the respective start
project�s Setup folder:

File Description

Global.h
Global type definitios required by
SEGGER SystemView.

SEGGER.h
Generic types and utility function
header.

SEGGER_SYSVIEW.c Generic implementation of SEGGER RTT.

SEGGER_SYSVIEW.h Generic implementation include file.

SEGGER_SYSVIEW_Conf.h Generic configuration file.

SEGGER_SYSVIEW_ConfDefaults.h Generic default configuration file.

SEGGER_SYSVIEW_Config_embOS.c
Target-specific configuration of
SystemView with embOS.

SEGGER_SYSVIEW_embOS.c
Generic interface implementation for
SystemView with embOS.

SEGGER_SYSVIEW_embOS.h
Generic interface implementation header
file for SystemView with embOS.

SEGGER_SYSVIEW_Int.h Generic internal header file.
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

42 11 RTT and SystemView
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

43
Chapter 12

Technical data
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 12 Technical data
12.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of
the memory-requirements. They vary depending on the current version of embOS.
The kernel itself has a minimum ROM size requirement of about 1.700 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size
requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]

Task control block 32

Resource semaphore 16

Counting semaphore 8

Mailbox 24

Software timer 20
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

45
Index
C
CPU mode ...22

I
Installation ...10
interrupt handlers30
Interrupt nesting32
Interrupt priorities31
Interrupt vector table30
Interrupts ...29
Interrupt-stack31

L
Library mode18

M
Memory requirements44

S
Select another CPU18
Stacks

Interrupt stack28
System stack28
Task stack ..28

Stepping through the sample application .14
Syntax, conventions used 5
System libraries24

V
Vector Floating Point support38
VFPv4 ..38
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

46 Index
embOS for Cortex-M and TICC © 2010 - 2016 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Using embOS
	4.1 Installation
	4.2 First steps
	4.3 The example application OS_StartLEDBlink.c
	4.4 Stepping through the sample application

	Build your own application
	5.1 Introduction
	5.2 Required files for an embOS for Cortex M
	5.3 Change library mode
	5.4 Select another CPU

	Libraries
	6.1 CPU modes
	6.2 Naming conventions for prebuilt libraries

	CPU and Compiler specifics
	7.1 Standard system libraries
	7.2 Reentrancy, thread safe management

	Stacks
	8.1 Task stack for Cortex-M
	8.2 System stack for Cortex-M
	8.3 Interrupt stack for Cortex-M

	Interrupts
	9.1 What happens when an interrupt occurs?
	9.2 Defining interrupt handlers in C
	9.3 Interrupt vector table
	9.4 Interrupt-stack switching
	9.5 Zero latency interrupts
	9.5.1 Zero latency interrupts with Cortex M

	9.6 Interrupt priorities
	9.6.1 Interrupt priorities with Cortex M cores
	9.6.2 Priority of the embOS scheduler
	9.6.3 Priority of the embOS system timer
	9.6.4 Priority of embOS software timers
	9.6.5 Priority of application interrupts for Cortex M3 core

	9.7 Interrupt nesting
	9.7.1 OS_EnterInterrupt()
	9.7.2 OS_EnterNestableInterrupt()
	9.7.3 Required embOS system interrupt handler

	9.8 Interrupt handling with vectored interrupt controller
	9.8.1 OS_ARM_EnableISR(): Enable specific interrupt
	9.8.2 OS_ARM_DisableISR(): Disable specific interrupt
	9.8.3 OS_ARM_ISRSetPrio(): Set priority of specific interrupt

	VFP support
	10.1 Vector Floating Point support VFPv4
	10.1.1 Using embOS libraries with VFP support
	10.1.2 Using the VFP in interrupt service routines

	RTT and SystemView
	11.1 SEGGER Real Time Transfer
	11.1.1 Shipped files related to SEGGER RTT

	11.2 SEGGER SystemView
	11.2.1 Shipped files related to SEGGER SystemView

	Technical data
	12.1 Memory requirements

	Index

