
A product of SEGGER Microcontroller GmbH & Co. KG

embOS

Document: UM01042
Software version 4.06b

Revision: 0
Date: April 1, 2015

CPU & Compiler
specifics for Cortex M

using Atmel Studio

Real-Time
Operating System

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: April 1, 2015

Software Revision Date By Description
4.06b 0 150401 SC New software version.
4.04a 0 141219 SC New software version.

4.02a 0 140922 SC
New software version.
Minor corrections.

3.88c 0 130826 TS New software version.
3.88 0 130306 TS New software version.
3.86n 0 130214 TS First version.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

4

embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1: Typographic conventions
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Using embOS for Cortex M..9

1.1 Installation ...10
1.2 First steps ..11
1.3 The sample application Start2Tasks.c ...13
1.4 Stepping through the sample application ..14

2 Build your own application ...17

2.1 Introduction..18
2.2 Required files for an embOS for Cortex M..18
2.3 Change library mode..18
2.4 Select another CPU ..19

3 ARM Cortex-M specifics ..21

3.1 CPU modes ...22
3.2 Available libraries ..22

4 Compiler specifics..23

4.1 Standard system libraries ...24
4.2 Reentrancy, thread local storage..24
4.3 Reentrancy, thread safe heap management...27
4.4 Vector Floating Point support VFPv4 ...28

5 Stacks ..31

5.1 Task stack for Cortex-M..32
5.2 System stack for Cortex-M..32
5.3 Interrupt stack for Cortex-M..32

6 Interrupts..33

6.1 What happens when an interrupt occurs?..34
6.2 Defining interrupt handlers in "C"...34
6.3 Interrupt vector table...34
6.4 Interrupt-stack switching..34
6.5 Zero latency interrupts with Cortex-M ..35
6.6 Interrupt priorities ...35
6.7 Interrupt nesting ...36
6.8 Required embOS system interrupt handler ..37
6.9 Interrupt handling with vectored interrupt controller.....................................37
6.10 High priority non maskable exceptions..39

7 CMSIS..41

7.1 The generic CMSIS start projects ...42
7.2 Device specific files needed for embOS with CMSIS43
7.3 Device specific functions/variables needed for embOS with CMSIS44
7.4 CMSIS generic functions needed for embOS with CMSIS45
7.5 Customizing the embOS CMSIS generic start project46
7.6 Adding CMSIS to other embOS start projects...47
7.7 Interrupt and exception handling with CMSIS ..48
7.8 Enable and disable interrupts ..49
7.9 Setting the Interrupt priority ...50
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

8

8 STOP / WAIT Mode ...51

8.1 Introduction ... 52

9 Technical data..53

9.1 Memory requirements.. 54

10 Files shipped with embOS ...55
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Using embOS for Cortex M
The following chapter describes how to start with and use embOS for Cortex-M and
Atmel Studio with GCC compiler. You should follow these steps to become familiar
with embOS for Cortex-M and Atmel Studio.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Using embOS for Cortex M
1.1 Installation
embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of
this file. Keep all files in their respective sub directories. Make sure the files are not
read only after copying.

You will find a lot of prepared sample start projects, which you should use and modify
to write your application. So follow the instructions of section First steps on page 11.

Copy either all or only the library-file that you need to your work-directory. The
advantage is that when switching to an updated version of embOS later in a project,
you do not affect older projects that use embOS, too.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

11
1.2 First steps
After installation of embOS you are able to create your first multitasking application.
You received ready to go sample Atmel Studio project files and it is a good idea to
use one of these as a starting point of all your applications.
Your embOS distribution contains one folder "Start\BoardSupport" which contains the
sample project files and every additional files used to build your application.

To start with, you may use the project for Atmel SAM3X CPU:

To get your new application running, you should proceed as follows:

� Create a work directory for your application, for example c:\work
� Copy the whole folder Start which is part of your embOS distribution into your

work directory.
� Clear the read-only attribute of all files in the new Start folder.
� Open the sample workspace

Start\BoardSupport\Atmel\SAM3X_EK\Start_SAM3X.cproj
with the Atmel Studio project manager (for example, by double clicking it).

� Build the start project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Using embOS for Cortex M
For additional information you should open the ReadMe.txt file which is part of every
specific project. The ReadMe file describes the different configurations of the project
and gives additional information about specific hardware settings of the supported
eval boards, if required.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

13
1.3 The sample application Start2Tasks.c
The following is a printout of the example application Start_2Tasks.c. It is a good
starting point for your application. (Note that the file actually shipped with your port
of embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started.
The two tasks are activated and execute until they run into the delay, then suspend
for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH & Co.KG
* Solutions for real time microcontroller applications

File : Start2Tasks.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */’

void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Using embOS for Cortex M
1.4 Stepping through the sample application
When starting the debugger, you will see the main function (see example screenshot
below). Now you can step through the program. OS_IncDI() initially disables inter-
rupts.
OS_InitKern() is part of the embOS library and written in assembler; you can there-
fore only step into it in disassembly mode. It initializes the relevant OS variables.
Because of the previous call of OS_IncDI(), interrupts are not enabled during execu-
tion of OS_InitKern().
OS_InitHW() is part of RTOSInit_*.c and therefore part of your application. Its pri-
mary purpose is to initialize the hardware required to generate the timer-tick-inter-
rupt for embOS. Step through it to see what is done.

OS_Start() should be the last line in main, since it starts multitasking and does not
return.

Before you continue stepping, you should set two break points in the two tasks as
shown below:
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

15
As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. Y

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until
you reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

Continuing to step through the program, there is no other task ready for execution.
embOS will therefore start the idle-loop, which is an endless loop always executed if
there is nothing else to do (no task is ready, no interrupt routine or timer executing).
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Using embOS for Cortex M
You will arrive there when you step into the OS_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit*.c.You may also set a breakpoint there before
stepping over the delay in LPTask.

If you set a breakpoint in one or both of our tasks, you will see that they continue
execution after the given delay. Press GO to enter the highest priority task again.

As can be seen by the value of embOS timer variable OS_Time, shown in the watch
window, HPTask continues operation after expiration of the 50 ms delay.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 2

Build your own application
This chapter provides all information to set up your own embOS project.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Build your own application
2.1 Introduction
To build your own application, you should always start with one of the supplied sam-
ple workspaces and projects. Therefore, select an embOS workspace as described in
First steps on page 9 and modify the project to fit your needs. Using a sample project
as starting point has the advantage that all necessary files are included and all set-
tings for the project are already done.

2.2 Required files for an embOS for Cortex M
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from subfolder Inc\.
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� RTOSInit_*.c from one target specific BoardSupport\<Manufac-
turer>\<MCU>\ subfolder.
It contains hardware-dependent initialization code for embOS. It initializes the
system timer, timer interrupt and optional communication for embOSView via
UART or JTAG.

� One embOS library from the subfolder Lib\.
� OS_Error.c from one target specific subfolder BoardSupport\<Manufac-

turer>\<MCU>\.
The error handler is used if any library other than release build library is used in
your project.

� Additional low level init code may be required according to CPU.

When you decide to write your own startup code or use a __low_level_init() func-
tion, ensure that non-initialized variables are initialized with zero, according to C
standard. This is required for some embOS internal variables.
Also ensure that main() is called with the CPU running in supervisor or system mode.
Your main() function has to initialize embOS by a call of OS_InitKern() and
OS_InitHW() prior any other embOS embOS functions are called.
You should then modify or replace the Start_2Task.c source file in the subfolder
Application\.

2.3 Change library mode
For your application you may wish to choose an other library. For debugging and pro-
gram development you should use an embOS-debug library. For your final applica-
tion you may wish to use an embOS-release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:

� If your library is already contained in your project, just select the appropriate
configuration or enable the library and disable others.

� To add a library, you may add a library to the Lib group in the project and exclude
other libraries in the group from build.

� Check and set OS_DEBUG define as preprocessor option. You may modify the
OS_Config.h file to select an other library mode.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

19
2.4 Select another CPU
embOS contains CPU-specific code for various Cortex M CPUs. Manufacturer- and
CPU-specific sample start workspaces and projects are located in the subfolders of
the BoardSupport folder. To select a CPU which is already supported, just select the
appropriate workspace from a CPU-specific folder.

If your Cortex M CPU is currently not supported, examine all RTOSInit files in the
CPU-specific subfolders and select one which almost fits your CPU. You may have to
modify OS_InitHW(), OS_COM_Init(), and the interrupt service routines for embOS
timer tick and communication to embOSView and __low_level_init().

The easiest way to get embOS running on an unsupported CPU is using the generic
CMSIS start project and adding the device specific files from the CPU vendor.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Build your own application
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 3

ARM Cortex-M specifics
This chapter describes which CPU modes and libraries are available for embOS Cor-
tex-M AtmelStudio.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 ARM Cortex-M specifics
3.1 CPU modes
embOS supports all memory and code model combinations that Atmel Studio / GCC
Cortex-M compiler supports.

3.2 Available libraries
embOS for ARM Cortex-M and Atmel Studio / GCC compiler is shipped with 14 diffe-
rent libraries, one for each CPU mode / CPU core / endian mode combination.

The libraries are named as follows:

libos<CpuMode><Arch><ByteOrder><LibMode>.a

Example:

libosT7LDP.a is the library for a project using a CortexM3 or CortexM4 core without
VFP , thumb mode, little endian mode with debug and profiling support.

Parameter Meaning Values

CpuMode Specifies the CPU mode. T: Always thumb

Arch Specifies the CPU architecture.
6: Cortex M0
7: Cortex M3/M4
7V: Cortex M4F/M7

ByteOrder Specifies the endianess. B: Big endian
L: Little endian

LibMode Specifies the library mode.

XR: eXtreme Release
R: Release
S: Stack check
D: Debug
SP: Stack check + Profiling
DP: Debug + Profiling
DT: Debug + Trace
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

23
Chapter 4

Compiler specifics
This chapter contains compiler specific information about embOS Cortex-M AtmelStu-
dio.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

24 4 Compiler specifics
4.1 Standard system libraries
embOS for Cortex-M and GCC compiler may be used with standard GNU system
libraries for most of all projects without any modification.

Heap management and file operation functions of standard system libraries are not
reentrant and require a special initialization or additional modules when used with
embOS, if non thread safe functions are used from different tasks.

Alternatively, for heap management, embOS delivers its own thread safe functions
which may be used. These functions are described in the embOS generic manual.

4.2 Reentrancy, thread local storage
The GCC newlib supports usage of thread-local storage located in a _reent structure
as local variable for every task.
Several library objects and functions need local variables which have to be unique to
a thread. Thread-local storage will be required when these functions are called from
multiple threads.
embOS for GNU is prepared to support the thread-local storage, but does not use it
per default. This has the advantage of no additional overhead as long as thread-local
storage is not needed by the application or specific tasks.
The embOS implementation of thread-local storage allows activation of TLS sepa-
rately for every task.
Only tasks that call functions using TLS need to activate the TLS by defining a local
variable and calling an initialization function when the task is started.
The _reent structure is stored on the task stack and have to be considered when the
task stack size is defined. The structure may contain up to 800 bytes.

Typical Library objects that need thread-local storage when used in multiple tasks
are:

� error functions -- errno, strerror.
� locale functions -- localeconv, setlocale.
� time functions -- asctime, localtime, gmtime, mktime.
� multibyte functions -- mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
� rand functions -- rand, srand.
� etc functions -- atexit, strtok.
� C++ exception engine.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

25
4.2.1 OS_ExtendTaskContext_TLS()
Description

OS_ExtendTaskContext_TLS() may be called from a task which needs thread local
storage to initialize and use Thread-local storage.

Prototype
void OS_ExtendTaskContext_TLS(struct _reent * pReentStruct)

Parameter

pReentStruct is a pointer to the thread local storage. It is the address of the variable
of type struct _reent which holds the thread local data.

Return value

None.

Additional Information

OS_ExtendTaskContext_TLS() shall be the first function called from a task when TLS
should be used in the specific task. The function must not be called multiple times
from one task. The thread-local storage has to be defined as local variable in the
task.

Example

void Task(void) {
 struct _reent TaskReentStruct;

 OS_ExtendTaskContext_TLS(&TaskReentStruct);*/
 while (1) {
 ... /* Task functionality. */
 }
}

Please ensure sufficient task stack to hold the _reent structure variable.

For details on the _reent structure, _impure_ptr, and library functions which require
precautions on reentrance, refer to the GNU documentation.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

26 4 Compiler specifics
4.2.2 OS_ExtendTaskContext_TLS_VFP()
Description

OS_ExtendTaskContext_TLS_VFP() has to be called as first function in a task, when
thread-local storage and thread safe floatingpoint processor support is needed in the
task.

Prototype
void OS_ExtendTaskContext_TLS_VFP(struct _reent * pReentStruct)

Parameter

pReentStruct is a pointer to the thread local storage. It is the address of the variable
of type struct _reent which holds the thread local data.

Return value

None.

Additional Information

OS_ExtendTaskContext_TLS_VFP() shall be the first function called from a
task when TLS and VFP should be used in the specific task.
The function must not be called multiple times from one task.
The thread-local storage should be defined as local variable in the task.
The task specific TLS management is generated as embOS task extension
together with the storage needed for the VFP registers. The VFP registers are auto-
matically saved onto the task stack when the task is suspended, and restored, when
the task is resumed. Additional task extension by a call of OS_ExtendTaskContext()
is impossible.
The function is available in all embOS libraries with VFP support which are named
libosT7Vx_xx
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

27
4.3 Reentrancy, thread safe heap management
The heap management functions in the system libraries are not thread-safe without
implementation of additional locking functions.
The GCC library calls two hook functions to lock and unlock the mutual access of the
heap-management functions.
The empty locking functions from the system library may be overwritten by the appli-
cation to implement a locking mechanism.

A locking is required when multiple tasks access the heap, or when objects are cre-
ated dynamically on the heap by multiple tasks.
The locking functions are implemented in the source module OS_MallocLock.c which
is included in the "Setup" subfolder in every embOS start project.
If thread safe heap management is required, the module has to be compiled and
linked with the application.

4.3.1 __malloc_lock(), lock the heap against mutual access
__malloc_lock() is the locking function which is called by the system library when-
ever the heap management has to be locked against mutual access.
The implementation delivered with embOS claims a resource semaphore.

4.3.2 __malloc_unlock()
__malloc_unlock() is the is the counterpart to __malloc_lock().
It is called by the system library whenever the heap management locking can be
released. The implementation delivered with embOS releases the resource sema-
phore.

None of these functions has to be called directly by the application. They are called
from the system library functions when required.
The functions are delivered in source form to allow replacement of the dummy func-
tions in the system library.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

28 4 Compiler specifics
4.4 Vector Floating Point support VFPv4
Some Cortex M4 / M4F MCUs come with an integrated vectored floating point unit
VFPv4.
When selecting the CPU and activating the VFPv4 support in the project options, the
compiler and linker will add efficient code which uses the VFP when floating point
operations are used in the application.
With embOS, the VFP registers have to be saved and restored when preemptive or
cooperative task switches are performed.
For efficiency reasons, embOS does not save and restore the VFP registers for every
task automatically. The context switching time and stack load are therefore not
affected when the VFP unit is not used or needed.
Saving and restoring the VFP registers can be enabled for every task individually by
extending the task context of the tasks which need and use the VFP.

4.4.1 OS_ExtendTaskContext_VFP()
Description

OS_ExtendTaskContext_VFP() has to be called as first function in a task, when the
VFP is used in the task and the VFP registers have to be added to the task context.

Prototype
void OS_ExtendTaskContext_VFP(void)

Return value

None.

Additional Information

OS_ExtendTaskContext_VFP() extends the task context to save and restore the VFP
registers during context switches.
Additional task context extension for a task by calling OS_ExtendTaskContext() is
not allowed and will call the embOS error handler OS_Error() in debug builds of
embOS.
There is no need to extend the task context for every task. Only those tasks using
the VFP for calculation have to be extended.
When Thread-local Storage (TLS) is also needed in a task, the new embOS function
OS_ExtendTaskContext_TLS_VFP() has to be called to extend the task context for
TLS and VFP.

4.4.2 Using embOS libraries with VFP support
When VFP support is selected as project option, one of the embOS libraries with VFP
support has to be used in the project.
These are named libosT7Vx_xx.a.
The embOS libraries for VFP support require that the VFP is switched on during star-
tup and remains switched on during program execution.
When selecting the VFP support in the project options, the startup code has to enable
the VFP according the project options. Using CMSIS, the generic CMSIS code will
automatically activate the VFP unit.
Using your own startup code, ensure that the VFP is switched on during startup.
When the VFP unit is not switched on, the embOS scheduler will fail.
The debug version of embOS checks whether the VFP is switched on when embOS is
initailized by calling OS_InitKern().
When the VFP unit is not detected or not switched on, the embOS error handler
OS_Error() is called with error code OS_ERR_CPU_STATE_ILLEGAL.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

29
4.4.3 Using the VFP in interrupt service routines
Using the VFP in interrupt service routines requires additional functions to save and
restore the VFP registers.
The implementation of VFP support in embOS disables the automatic context saving
of VFP registers which is normally activated after reset.
embOS disables the VFP context saving feature of the Cortex M4F at all. This has the
advantage that no additional stack is needed in tasks not using the VFP unit.

As the GCC compiler does not add additional code to save and restore the VFP regis-
ters on entry and exit of interrupt service routines, it is the users responsibility to
save the VFP registers on entry of an interrupt service routine when the VFP is used
in the ISR.
embOS delivers two functions to save and restore the VFP context in an interrupt ser-
vice routine.

4.4.3.1 OS_VFP_Save()
Description

OS_VFP_Save() has to be called as first function in an interrupt service routine, when
the VFP is used in the interrupt service routine. The function saves the temporary
VFP registers on the stack.

Prototype
void OS_VFP_Save(void)

Return value

None.

Additional Information

OS_VFP_Save() declares a local variable which reserves space for all temporary
floating point registers and stores the registers in the variable.
After calling the OS_VFP_Save() function, the interrupt service routine may use the
VFP for calculation without destroying the saved content of the VFP registers.
To restore the registers, the ISR has to call OS_VFP_Restore() at the end.
The function may be used in any ISR regardless the priority. It is not restricted to low
priority interrupt functions.

4.4.3.2 OS_VFP_Restore()
Description

OS_VFP_Restore() has to be called as last function in an interrupt service routine,
when the VFP registers were saved by a call of OS_VFP_Save() at the beginning of
the ISR. The function restores the temporary VFP registers from the stack.

Prototype
void OS_VFP_Restore(void)

Return value

None.

Additional Information

OS_VFP_Restore() restores the temporary VFP registers which were saved by a pre-
vious call of OS_VFP_Save().
It has to be used together with OS_VFP_Save() and should be the last function called
in the ISR.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

30 4 Compiler specifics
Example of a low priority interrupt service routine using VFP:

void ADC_ISR_Handler(void) {
 OS_VFP_Save(); // Save VFP registers
 OS_EnterInterrupt();
 DoSomeFloatOperation();
 OS_LeaveInterrupt();
 OS_VFP_Restore(); // Restore VFP registers.
}

In low priority interrupt service routines, OS_EnterInterrupt() is called to inform
embOS that an interrupt handler is running and blocks task switches until
OS_LeaveInterrupt() is called.
After calling OS_EnterInterrupt(), or OS_EnterNestableInterrupt(), any embOS
function which is allowed to be called from an ISR may be called.

Example of a high priority interrupt service routine using VFP:

void ADC_ISR_Handler(void) {
 OS_VFP_Save(); // Save VFP registers
 DoSomeFloatOperation();
 OS_VFP_Restore(); // Restore VFP registers.
}

In interrupt service routines running at higher priority, no embOS functions except
OS_VFP_Save() and OS_VFP_Restore() may be called.
Not even OS_EnterInterrupt().

4.4.4 Compiler and linker options.
The selection of different CPU cores or options like VFP support has to be done by
linker, compiler and assembler options.
The options have to be passed to the tool by definitions in the make-files, or when
using the Eclipse IDE, the options have to be defined in the "Settings" dialog for the
project.
The options passed to the tools have to be defined for compiler, linker and assembler
separately and have to be the same for all tools.
Beside other options, the most important options are the options to select the CPU
core and the floating point support.

4.4.4.1 Options to select a Cortex M3 core
-mcpu=cortex-M3 -mthumb

4.4.4.2 Options to select a Cortex M4 core
mcpu=cortex-M4 -mthumb

4.4.4.3 Options to select a Cortex M4 core with VFP support
-mcpu=cortex-M4 -mthumb -mfpu=fpv4-sp-d16 -mfloat-abi=softfp
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

31
Chapter 5

Stacks
This chapter describes how the different stacks are used by embOS Cortex M Atmel-
Studio.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 5 Stacks
5.1 Task stack for Cortex-M
All embOS tasks execute in thread mode using the process stack pointer. The stack
itself is located in any RAM location. Each task uses its individual stack. The stack-
size required is the sum of the stack-size of all routines, plus a basic stack size, plus
size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS-routines.

For the Cortex-M CPU, this minimum basic task stack size is about 72 bytes.

Because any function call uses some amount of stack and every exception also
pushes at least 32 bytes onto the current stack, the task stack size has to be large
enough to handle one exceptions too. We recommend at least 256 bytes stack as a
start.

5.2 System stack for Cortex-M
The embOS system executes in thread mode, the scheduler executes in handler
mode. The minimum system stack size required by embOS is about 136 bytes (stack
check & profiling build). However, since the system stack is also used by the applica-
tion before the start of multitasking (the call to OS_Start()), and because software-
timers and �C�-level interrupt handlers also use the system-stack, the actual stack
requirements depend on the application.

The size of the system stack can be changed by modifying your *.ld file.

5.3 Interrupt stack for Cortex-M
If a normal hardware exception occurs, the Cortex-M core switches to handler mode
mode, which uses the main stack pointer. With embOS, the main stack pointer is ini-
tialized to use the system-stack which is defined in the linker command file. A sepa-
rate irq-stack is not used, interrupts run on the system stack.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 6

Interrupts
The Cortex-M core comes with a built-in vectored interrupt controller which supports
up to 496 separate interrupt sources. The real number of interrupt sources depends
on the specific target CPU.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 6 Interrupts
6.1 What happens when an interrupt occurs?
� The CPU-core receives an interrupt request from the interrupt controller.
� As soon as the interrupts are enabled, the interrupt is accepted and executed.
� The CPU pushes temporary registers and the return address onto the current

stack.
� The CPU switches to handler mode and main stack.
� The CPU saves an exception return code and current flags onto the main stack.
� The CPU jumps to the vector address delivered by the NVIC.
� The interrupt handler is processed.
� The interrupt handler ends with a �return from interrupt� by reading the excep-

tion return code.
� The CPU switches back to the mode and stack which was active before the excep-

tion was called.
� The CPU restores the temporary registers and return address from the stack and

continues the interrupted function.

6.2 Defining interrupt handlers in "C"
Interrupt handlers for Cortex-M are written as normal �C�-functions which do not
take parameters and do not return any value. Interrupt handler which call an embOS
function need a prolog and epilog function as described in the generic manual and in
the examples below.

Example

"Simple" interrupt-routine

static void _Systick(void) {
 OS_EnterNestableInterrupt();// Inform embOS that interrupt code is running
 OS_HandleTick(); // May be interrupted by higher priority interrupts
 OS_LeaveNestableInterrupt();// Inform embOS that interrupt handler is left
}

6.3 Interrupt vector table
After Reset, the ARM Cortex M CPU uses an initial interrupt vector table which is
located in ROM at address 0x00. It contains the address for the main stack and
addresses for all exceptions.

The interrupt vector table is located in a �C� source file in the CPU specific sub-folder.
All interrupt handler function addresses have to be inserted in the vector table.

When using your own interrupt vector table, ensure that the addresses of the
embOS exception handlers OS_Exception() and OS_Systick() are inserted in the
vector table in the correct position.

6.4 Interrupt-stack switching
Since Cortex-M core based controllers have two separate stack pointers, and embOS
runs the user application on the process stack, there is no need for explicit stack-
switching in an interrupt routine which runs on the main stack. The routines
OS_EnterIntStack() and OS_LeaveIntStack() are supplied for source code compat-
ibility to other processors only and have no functionality.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

35
6.5 Zero latency interrupts with Cortex-M
Instead of disabling interrupts when embOS does atomic operations, the interrupt
level of the CPU is set to 128. Therefore all interrupt priorities higher than 128 can
still be processed. Please note that lower priority numbers define a higher priority. All
interrupts with priority level from 0 to 127 are never disabled.

These interrupts are named Zero latency interrupts. You must not execute any
embOS function from within a fast interrupt function.

6.6 Interrupt priorities
The Cortex-M supports up to 256 levels of programmable priority with a maximum of
128 levels of preemption. Most Cortex-M chips have fewer supported levels, for
example 8, 16, 32, and so on. The chip designer can customize the chip to obtain the
levels required.

There is a minimum of 8 preemption levels. Every interrupt with a higher preemption
level may preempt any other interrupt handler running on a lower preemption level.
Interrupts with equal preemption level may not preempt each other.

With introduction of Fast interrupts, interrupt priorities useable for interrupts using
embOS API functions are limited.

� Any interrupt handler using embOS API functions has to run with interrupt prior-
ities from 128 to 255.
These embOS interrupt handlers have to start with OS_EnterInterrupt() or
OS_EnterNestableInterrupt() and have to end with OS_LeaveInterrupt() or
OS_LeaveNestableInterrupt().

� Any Fast interrupt (running at priorities from 0 to 127) must not call any embOS
API function. Even OS_EnterInterrupt() and OS_LeaveInterrupt() must not
be called.

� Interrupt handlers running at low priorities (from 128 to 255) not calling any
embOS API function are allowed, but must not re-enable interrupts!

The priority limit between embOS interrupts and Fast interrupts is fixed to 128 and
can only be changed by recompiling embOS libraries!

6.6.1 Priority of the embOS scheduler
The embOS scheduler runs on the lowest interrupt priority. The scheduler may be
preempted by any other interrupt with higher preemption priority level. The applica-
tion interrupts shall run on higher preemption levels to ensure short reaction time.

During initialization, the priority of the embOS scheduler is set to 0xFF which is
always the lowest preemption priority, regardless of the number of preemption lev-
els.

6.6.2 Priority of the embOS system timer
The embOS system timer runs on the second lowest preemption level. Thus, the
embOS timer may preempt the scheduler. Application interrupts which require fast
reaction should run on a higher preemption priority level.

6.6.3 Priority of embOS software timers
The embOS software timer callback functions are called from the scheduler and run
on the scheduler�s preemption priority level which is the lowest interrupt priority
level. To ensure short reaction time of other interrupts, other interrupts should run
on a higher preemption priority level and the software timer callback functions should
be as short as possible.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 6 Interrupts
6.6.4 Priority of application interrupts
Application interrupts using embOS functions may run on any priority level between
255 to 128. However, interrupts which require fast reaction should run on higher pri-
ority levels than the embOS scheduler and the embOS system timer to allow preemp-
tion of theses interrupt handlers. The interrupt handlers which require the fastest
reaction may run on higher priorities than 128, but must not call any embOS function
(->Fast interrupts). We recommend that application interrupts should run on a higher
preemption level than the embOS scheduler, at least at the second lowest preemption
priority level.

As the number of preemption levels is chip specific, the second lowest preemption
priority varies depending on the chip. If the number of preemption levels is not docu-
mented, the second lowest preemption priority can be set as follows, using embOS
functions:

unsigned char Priority;
OS_ARM_ISRSetPrio(_ISR_ID, 0xFF); // Set to lowest level, ALL BITS set
Priority = OS_ARM_ISRSetPrio(_ID_TICK, 0xFF); // Read priority back
Priority -= 1; // Lower preemption level
OS_ARM_ISRSetPrio(_ISR_ID, Priority);
OS_ARM_ISRSetPrio(_ISR_ID, Priority);

6.6.5 Priority grouping
The number of preemption levels may be limited by programming the priority group
level in the application interrupt and reset control register of the chip. embOS does
not modify this register, thus allowing the maximum number of preemption levels
which are implemented by the chip design.

It is recommended, not to change the priority grouping setting.

6.7 Interrupt nesting
The Cortex-M CPU uses a priority controlled interrupt scheduling which allows nesting
of interrupts per default.

Any interrupt or exception with a higher preemption priority may interrupt an inter-
rupt handler running on a lower preemption priority.

An interrupt handler calling embOS functions has to start with an embOS prolog
function that informs embOS that an interrupt handler is running. For any interrupt
handler, the user may decide individually whether this interrupt handler may be pre-
empted or not by choosing the prolog function.

6.7.1 OS_EnterInterrupt(), disable nesting
OS_EnterInterrupt() has to be used as prolog function, when the interrupt handler
should not be preempted by any other interrupt handler that runs on a priority below
the fast interrupt priority.

An interrupt handler that starts with OS_EnterInterrupt() has to end with the epi-
log function OS_LeaveInterrupt().

Example

Interrupt-routine that can not be preempted by other interrupts.

static void _Systick(void) {
 OS_EnterInterrupt();// Inform embOS that interrupt code is running
 OS_HandleTick(); // Can not be interrupted by higher priority interrupts
 OS_LeaveInterrupt();// Inform embOS that interrupt handler is left
}

embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

37
6.7.2 OS_EnterNestableInterrupt(), allow nesting
OS_EnterNestableInterrupt() may be used as prolog function, when the interrupt
handler may be preempted by any other interrupt handler that runs on a higher
interrupt priority.

An interrupt handler that starts with OS_EnterNestableInterrupt() has to end with
the epilog function OS_LeaveNestableInterrupt().

Example

Interrupt routine that allows preemption by higher prioritized interrupts.

static void _Systick(void) {
 OS_EnterNestableInterrupt();// Inform embOS that interrupt code is running
 OS_HandleTick(); // May be interrupted by higher priority interrupts
 OS_LeaveNestableInterrupt();// Inform embOS that interrupt handler is left
}

6.8 Required embOS system interrupt handler
embOS for Cortex-M needs two exception handler which belong to the system itself.
Both are delivered with embOS. Ensure that they are referenced in the vector table.

6.8.1 OS_Exception() the scheduler entry
OS_Exception() is the scheduler entrance of embOS. It runs on the lowest interrupt
priority. Whenever scheduling is required, this exception is triggered by embOS.
OS_Exception() has to be called by the PendSV exception of the Cortex-M CPU.

Ensure that the address of OS_Exception() is inserted in the vector table at the cor-
rect position. The vector tables which come with embOS are already setup and
should be used and modified for the application.

6.8.2 OS_Systick() the embOS system timer handler
OS_Systick() is the interrupt handler which manages the system time. The system
timer is initialized during OS_InitHW(). The embOS system timer uses the SYSTICK
timer of the Cortex-M CPU and runs on a low preemption priority level which is one
level higher than the lowest preemption priority level.

Ensure that the address of OS_Systick() is inserted in the vector table at the correct
position. The vector tables which come with embOS are already setup and should be
used and modified for the application.

6.9 Interrupt handling with vectored interrupt control-
ler

For Cortex-M, which has a built-in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions.

To handle interrupts with the vectored interrupt controller, embOS offers the follow-
ing functions:

6.9.1 OS_ARM_InstallISRHandler(): Install an interrupt han-
dler

Description

OS_ARM_InstallISRHandler() is used to install a specific interrupt vector when ARM
CPUs with vectored interrupt controller are used.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 6 Interrupts
Prototype
OS_ISR_HANDLER* OS_ARM_InstallISRHandler(int ISRIndex,
 OS_ISR_HANDLER * pISRHandler);

Return value

OS_ISR_HANDLER *: the address of the previous installed interrupt function, which
was installed at the addressed vector number before.

Add. information

This function just installs the interrupt vector but does not modify the priority and
does not automatically enable the interrupt.

When the interrupt vector table should be located in RAM, the first call of this func-
tion copies the vector table into RAM and programs the interrupt controller to use the
RAM table.

When the interrupt vector table should reside in ROM, the function does nothing and
always returns �NULL�.

6.9.2 OS_ARM_EnableISR(): Enable specific interrupt
Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller.

Prototype
void OS_ARM_EnableISR(int ISRIndex);

Return value

NONE.

Add. information

This function just enables the interrupt inside the interrupt controller. It does not
enable the interrupt of any peripherals. This has to be done elsewhere.

6.9.3 OS_ARM_DisableISR(): Disable specific interrupt
Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt
source in a vectored interrupt controller which is not of the VIC type.

Prototype
void OS_ARM_DisableISR(int ISRIndex);

Return value

None.

Parameter Meaning

ISRIndex Index of the interrupt source, normally the interrupt vector number.
pISRHandler Address of the interrupt handler function.

Parameter Meaning

ISRIndex Index of the interrupt source which should be enabled.

Parameter Meaning

ISRIndex Index of the interrupt source which should be disabled.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

39
Add. information

This function just disables the interrupt in the interrupt controller. It does not disable
the interrupt of any peripherals. This has to be done elsewhere.
Note that the ISRIndex counts from 0 for the first entry in the vector table.
The first peripheral index therefore has the ISRIndex 16, because the first peripheral
interrupt vector is located after the 16 generic vectors in the vector table.
This differs from index values used with CMSIS.

6.9.4 OS_ARM_ISRSetPrio(): Set priority of specific interrupt
Description

OS_ARM_ISRSetPrio () is used to set or modify the priority of a specific interrupt
source by programming the interrupt controller.

Prototype

int OS_ARM_ISRSetPrio(int ISRIndex, int Prio);

Return value

None.

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt-
controller. Please refer to CPU-specific manuals about allowed priority levels.
Note that the ISRIndex counts from 0 for the first entry in the vector table.
The first peripheral index therefore has the ISRIndex 16, because the first peripheral
interrupt vector is located after the 16 generic vectors in the vector table.
This differs from index values used with CMSIS.
The priority value is independent of the chip-specific preemption levels. Any value
between 0 and 255 can be used, were 255 always is the lowest priority and 0 is the
highest priority.
The function can be called to set the priority for all interrupt sources, regardless of
whether embOS is used in the specified interrupt handler or not.
Note that interrupt handlers running on priorities from 127 or higher must not call
any embOS function.

6.10 High priority non maskable exceptions
High priority non maskable exceptions with non configurable priority like Reset, NMI
and HardFault can not be used with embOS functions.

These exceptions are never disabled by embOS.

Never call any embOS function from an exception handler of one of these excep-
tions.

Parameter Description

ISRIndex
Index of the interrupt source which should be modified.
Note that the index counts from 0 for the first entry in the vector
table.

Prio
The priority which should be set for the specific interrupt.
Prio ranges from 0 (highest priority) to 255 (lowest priority)
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 6 Interrupts
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

41
Chapter 7

CMSIS
ARM introduced the Cortex Microcontroller Software Interface Standard (CMSIS) as a
vendor independent hardware abstraction layer for simplifying software re-use.
The standard enables consistent and simple software interfaces to the processor, for
peripherals, for real time operating systems as embOS and other middleware.
As SEGGER is one of the CMSIS partners, embOS for Cortex M is fully CMSIS compli-
ant.
embOS comes with a generic CMSIS start projects which should run on any Cortex M
CPU. All other start projects are also fully CMSIS compliant and can be used as start-
ing points for CPU specific CMSIS projects.
How to use the generic project and adding vendor specific files to this or other
projects is explained in the following chapters.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 7 CMSIS
7.1 The generic CMSIS start projects
The folder Start\BoardSupport\CMSIS contains a generic CMSIS start projects that
should run on any Cortex M core.
The subfolder DeviceSupport\ contains the device specific source and header files
which have to be replaced by the device specific files of the Cortex M vendor to make
the CMSIS sample start projects device specific.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

43
7.2 Device specific files needed for embOS with CMSIS
� Device.h: Contains the device specific exception and interrupt numbers and

names. embOS needs the Cortex M generic exception names PendSV_IRQn and
SysTick_IRQn only which are vendor independent and common for all devices.
The generic sample files delivered with embOS do not contain any peripheral
interrupt vector numbers and names as those are not needed by embOS.
To make the embOS CMSIS samples device specific and allow usage of peripheral
interrupts, the Device.h file has to be replaced by the one which is delivered from
the CPU vendor.

� System_Device.h: Declares at least the two required system timer functions
which are used to initialize the CPU clock system and one variable which allows
the application software to retrieve information about the current CPU clock
speed. The names of the clock controlling functions and variables are defined by
the CMSIS standard and are therefore identical in all vendor specific implementa-
tions.

� System_Device.c: Implements the core specific functions to initialize the CPU,
at least to initialize the core clock. The sample file delivered with embOS contains
empty dummy functions and has to be replaced by the vendor specific file which
contains the initialization functions for the core.

� Startup_Device.s: The startup file which contains the initial reset sequence and
contains exception handler and peripheral interrupt handler for all interrupts.
The handler functions are declared weak, so they can be overwritten by the
application which implements the application specific handler functionality.
The sample which comes with embOS only contains the generic exception vectors
and handler and has to be replaced by the vendor specific startup file.

The reset handler HAS TO CALL the SystemInit() function which is delivered with
the core specific system functions.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 7 CMSIS
7.3 Device specific functions/variables needed for embOS with
CMSIS

The embOS system timer is triggered by the Cortex M generic system timer. The cor-
rect core clock and pll system is device specific and has to be initialized by a low level
init function called from the startup code.
embOS calls the CMSIS function SysTick_Config() to set up the system timer. The
function relies on the correct core clock initialization performed by the low level ini-
tialization function SystemInit() and the value of the core clock frequency which has
to be written into the SystemCoreClock variable during initialization.

� SystemInit():The system init function is delivered by the vendor specific CMSIS
library and is normally called from the reset handler in the startup code. The sys-
tem init function has to initialize the core clock and has to write the CPU fre-
quency into the global variable SystemCoreClock.

� SystemCoreClock: Contains the current system core clock frequency and is ini-
tialized by the low level initialization function SystemInit() during startup.
embOS for CMSIS relies on the value in this variable to adjust its own timer and
all time related functions.

Any other files or functions delivered with the vendor specific CMSIS library may be
used by the application, but are not required for embOS.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

45
7.4 CMSIS generic functions needed for embOS with CMSIS
The embOS system timer is triggered by the Cortex M generic system timer which
has to be initialized to generate periodic interrupts in a specified interval. The config-
uration function SysTick_Config() for the system timer relies on correct initialization
of the core clock system which is performed during startup.

� SystemCoreClockUpdate: This CMSIS function has to update the SystemCore-
Clock variable according the current system timer initialization. The function is
device sepcific and may be called before the SystemCoreClock variable is
accessed or any function which relies on the correct setting of the system core
clock variable is called. embOS calls this function during the hardware initializa-
tion function OS_InitHW() before the system timer is initialized.

� SysTick_Config: This CMSIS generic function is declared an implemented in the
core_cmX.h file. It initializes and starts the SysTick counter and enables the
SysTick interrupt. For embOS it is recommended to run the SysTick interrupt at
the second lowest preemption priority. Therefore, after calling the
SysTick_Config() function from OS_InitHW(), the priority is set to the second
lowest preemption priority ba a call of NVIC_SetPriority().
The embOS function OS_InitHW() has to be called after initialization of embOS
during main and is implemented in the RTOSInit_CMSIS.c file.

� SysTick_Handler: The embOS timer interrupt handler, called periodically by the
interrupt generated from the SysTick timer. The SysTick_Handler is declared
weak in the CMSIS startup code and is replaced by the embOS Systick_Handler
function implemented in RTOSInit_CMSIS.c which comes with the embOS start
project.

� PendSV_Handler: The embOS scheduler entry function. It is declared weak in
the CMSIS startup code and is replaced by the embOS internal function contained
in the embOS library. The embOS initialization code enables the PendSV excep-
tion and initializes the priority. The application MUST NOT change the PendSV
priority.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 7 CMSIS
7.5 Customizing the embOS CMSIS generic start project
The embOS CMSIS generic start projects run on every Cortex M CPU. As the generic
device specific functions delivered with embOS do no not initialize the core clock sys-
tem and the pll, the timing is not correct, a real CPU will run very slow.
To run the sample project on a specific Cortex M CPU, replace all files in the Device-
Support\ folder by the versions delivered by the CPU vendor. The vendor and CPU
specific files should be found in the CMSIS release package, or are available from the
core vendor.
No other changes are necessary on the start project or any other files.
To run the generic CMSIS start project on a Cortex M0, you have to replace the
embOS libraries by libraries for Cortex M0 and have to add Cortex M0 specific vendor
files.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

47
7.6 Adding CMSIS to other embOS start projects
All CPU specific start projects are fully CMSIS compatible. If required or wanted in
the application, the CMSIS files for the specific CPU may be added to the project
without any modification on existing files.
Note that the OS_InitHW() function or __low_level_init() in the RTOSInit file initialize
the core clock system and pll of the specific CPU. The system clock frequency and
core clock frequency are defined in the RTOSInit file.
If the application needs access to the SystemCoreClock, the core specific CMSIS star-
tup code and core specific initialization function SystemInit has to be included in the
project.
In this case, the __low_level_init() function and the OS_InitHW() function in
RTOSInit may be replaced, or the CMSIS generic RTOSInit_CMSIS.c file may be used
in the project.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 7 CMSIS
7.7 Interrupt and exception handling with CMSIS
The embOS CPU specific projects come with CPU specific vector tables and empty
exception and interrupt handlers for the specific CPU. All handlers are named accord-
ing the names of the CMSIS device specific handlers and are declared weak and can
be replaced by an implementation in the application source files.
The CPU specific vector table and interrupt handler functions in the embOS start
projects can be replaced by the CPU specific CMSIS startup file of the CPU vendor
without any modification on other files in the project.
embOS uses the two Cortex M generic exceptions PendSV and SysTick and delivers
its own handler functions to handle these exceptions.
All peripheral interrupts are device specific and are not used with embOS except for
profiling support and system analysis with embOSView using a UART.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

49
7.8 Enable and disable interrupts
The generic CMSIS functions NVIC_EnableIRQ() and NVIC_DisableIRQ() can be used
instead of the embOS functions OS_ARM_EnableISR() and OS_ARM_DisableISR()
functions which are implemented in the CPU specific RTOSInit files delivered with
embOS.
To enable and disable interrupts in general, the embOS functions OS_IncDI() and
OS_DecRI() or other embOS functions described in the generic embOS manual
should be used instead of the intrinsic functions from the CMSIS library.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 7 CMSIS
7.9 Setting the Interrupt priority
With CMSIS, the CMSIS generic function NVIC_SetPriority() can be used instead of
the OS_ARM_ISRSetPrio() function which is implemented in the CPU specific
RTOSInit files delivered with embOS.
About interrupt priorities in an embOS project, read chapter 6.5 and 6.6.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

51
Chapter 8

STOP / WAIT Mode
This chapter contais information about usage of the low power mode.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 8 STOP / WAIT Mode
8.1 Introduction
In case your controller supports some kind of power saving mode, it should be possi-
ble to use it also with embOS, as long as the timer keeps working and timer inter-
rupts are processed. To enter that mode, you usually have to implement some special
sequence in the function OS_Idle(), which you can find in embOS module
RTOSInit.c.
Per default, the wfi instruction is executed in OS_Idle() to put the CPU into a low
power mode.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

53
Chapter 9

Technical data
This chapter contains information about technical data like memory requirements of
embOS Cortex-M Atmel Studio.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 9 Technical data
9.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. The
kernel itself has a minimum ROM size requirement of about 1.700 bytes.

In the table below, which is for release build, you can find minimum RAM size
requirements for embOS resources. Note that the sizes depend on selected embOS
library mode.

embOS resource RAM [bytes]

Task control block 28

Resource semaphore 16

Counting semaphore 8

Mailbox 24

Software timer 20
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

55
Chapter 10

Files shipped with embOS
This chapter describes which files are shipped with embOS Cortex-M AtmelStudio.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 10 Files shipped with embOS
List of files shipped with embOS

Any additional files shipped serve as example.

Directory File Explanation

root *.pdf
Generic API and target specific docu-
mentation.

root Release.html Version control document.

root embOSView.exe
Utility for runtime analysis, described in
generic documentation.

Start\
BoardSupport\

Sample workspaces and project files for
Atmel Studio, contained in manufacturer
specific sub folders.

Start\Inc
RTOS.h
BSP.h

Include file for embOS, to be included in
every C-file using embOS functions.

Start\Lib libos*.a embOS libraries.

Start\BoardSup-
port\..\Setup

OS_Error.c
embOS runtime error handler used in
stack check or debug builds.

Start\BoardSup-
port\...\Setup\

.
CPU specific hardware routines for vari-
ous CPUs.
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

57
Index
Symbols
__malloc_lock()27
__malloc_unlock()27

C
CMSIS ..41
Compiler options30
CPU mode ...22

E
Exceptions ..39

H
Heap management27

I
Idle-loop ..15
Installation ...10
Interrupts

Allow nesting37
Defining interrupt handlers34
Disable nesting36
Fast interrupt 35�36
Nesting ..36
Priority grouping36
Stack switching34
Vector table34

L
Libraries ...22
Library mode18

M
Memory requirements54

O
OS_ExtendTaskContext_TLS()25
OS_ExtendTaskContext_TLS_VFP()26
OS_ExtendTaskContext_VFP()28
OS_MallocLock.c27

OS_VFP_Restore() 29
OS_VFP_Save() 29

R
Reentrancy ... 24

S
Sample application 13
Scheduler entry 37
Select another CPU 19
Stacks

Interrupt stack 32
System stack 32
Task stack 32

Stepping through the sample application 14
Syntax, conventions used 5
System libraries 24
System timer handler 37

V
Vector Floating Point support 27�28
VFPv4 .. 28
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

58 Index
embOS for Cortex-M and Atmel Studio © 2010 - 2015 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Using embOS for Cortex M
	1.1 Installation
	1.2 First steps
	1.3 The sample application Start2Tasks.c
	1.4 Stepping through the sample application

	Build your own application
	2.1 Introduction
	2.2 Required files for an embOS for Cortex M
	2.3 Change library mode
	2.4 Select another CPU

	ARM Cortex-M specifics
	3.1 CPU modes
	3.2 Available libraries

	Compiler specifics
	4.1 Standard system libraries
	4.2 Reentrancy, thread local storage
	4.2.1 OS_ExtendTaskContext_TLS()
	4.2.2 OS_ExtendTaskContext_TLS_VFP()

	4.3 Reentrancy, thread safe heap management
	4.3.1 __malloc_lock(), lock the heap against mutual access
	4.3.2 __malloc_unlock()

	4.4 Vector Floating Point support VFPv4
	4.4.1 OS_ExtendTaskContext_VFP()
	4.4.2 Using embOS libraries with VFP support
	4.4.3 Using the VFP in interrupt service routines
	4.4.4 Compiler and linker options.

	Stacks
	5.1 Task stack for Cortex-M
	5.2 System stack for Cortex-M
	5.3 Interrupt stack for Cortex-M

	Interrupts
	6.1 What happens when an interrupt occurs?
	6.2 Defining interrupt handlers in "C"
	6.3 Interrupt vector table
	6.4 Interrupt-stack switching
	6.5 Zero latency interrupts with Cortex-M
	6.6 Interrupt priorities
	6.6.1 Priority of the embOS scheduler
	6.6.2 Priority of the embOS system timer
	6.6.3 Priority of embOS software timers
	6.6.4 Priority of application interrupts
	6.6.5 Priority grouping

	6.7 Interrupt nesting
	6.7.1 OS_EnterInterrupt(), disable nesting
	6.7.2 OS_EnterNestableInterrupt(), allow nesting

	6.8 Required embOS system interrupt handler
	6.8.1 OS_Exception() the scheduler entry
	6.8.2 OS_Systick() the embOS system timer handler

	6.9 Interrupt handling with vectored interrupt controller
	6.9.1 OS_ARM_InstallISRHandler(): Install an interrupt handler
	6.9.2 OS_ARM_EnableISR(): Enable specific interrupt
	6.9.3 OS_ARM_DisableISR(): Disable specific interrupt
	6.9.4 OS_ARM_ISRSetPrio(): Set priority of specific interrupt

	6.10 High priority non maskable exceptions

	CMSIS
	7.1 The generic CMSIS start projects
	7.2 Device specific files needed for embOS with CMSIS
	7.3 Device specific functions/variables needed for embOS with CMSIS
	7.4 CMSIS generic functions needed for embOS with CMSIS
	7.5 Customizing the embOS CMSIS generic start project
	7.6 Adding CMSIS to other embOS start projects
	7.7 Interrupt and exception handling with CMSIS
	7.8 Enable and disable interrupts
	7.9 Setting the Interrupt priority

	STOP / WAIT Mode
	8.1 Introduction

	Technical data
	9.1 Memory requirements

	Files shipped with embOS
	Index

