
embOS
Real-Time Operating System

CPU & Compiler specifics for
Altera NIOS II CPUs using

NIOS II Software Build Tools

Document: UM01035
Software Version: 5.8.2.0

Revision: 0
Date: January 24, 2020

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed to
be entirely free of error. The information in this manual is subject to change for functional or
performance improvements without notice. Please make sure your manual is the latest edition.
While the information herein is assumed to be accurate, SEGGER Microcontroller GmbH (SEG-
GER) assumes no responsibility for any errors or omissions. SEGGER makes and you receive no
warranties or conditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2001-2020 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com
Internet: www.segger.com

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: January 24, 2020

Software Revision Date By Description

5.8.2.0 0 200124 MC Update to latest embOS generic sources.

4.12a 0 150917 MC Update to latest embOS generic sources.

4.12a 0 150212 MC Initial version.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

4

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

6

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS (NIOS II Software Build Tools) ..9

1.1 Installation .. 10
1.2 First steps ...10
1.3 Setup the development environment .. 10
1.4 Prepare and build the sample start application ...10
1.5 Build your own application .. 11
1.6 Required files for an embOS application ..11
1.7 Add your own code .. 11
1.8 Change the embOS library mode ... 11
1.9 Re-building or modifying the BSP using NIOS II ...13

2 Using embOS (NIOS II IDE) ...15

2.1 Installation .. 16
2.2 First steps ...16
2.3 Build your own application .. 17
2.4 Required files for an embOS application ..17
2.5 Add your own code .. 17
2.6 Change the embOS library mode ... 17

3 Sample Application ... 18

3.1 The sample application OS_StartLEDBlink.c ... 19

4 Libraries ...20

4.1 Data / Memory models, compiler options .. 21
4.2 Available library modes ...21

5 CPU and compiler specifics ..22

5.1 Clock settings for embOS timer interrupt .. 23
5.2 Settings for UART used for embOSView .. 23
5.3 Reentrancy .. 24

6 Interrupts ... 25

6.1 What happens when an interrupt occurs? ..26
6.2 Defining interrupt handlers in C ...26
6.3 Interrupt-stack switching .. 26
6.4 Interrupt priorities ..27
6.5 Vectored Interrupt Controller VIC ...28

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

8

7 Stacks ... 29

7.1 Task stack for NIOS II ..30
7.2 System stack for NIOS II ..30
7.3 Interrupt stack for NIOS II ... 30

8 Technical data ...31

8.1 Memory requirements ...32

9 Shipped Files .. 33

9.1 List of files shipped with embOS ..34

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 1

Using embOS (NIOS II Software
Build Tools)

Since version 9.1, Altera delivers the NIOS II Software Build Tools for Eclipse, which are
installed as the default development platform for NIOS II. The older NIOS II IDE was still
delivered with following versions of the software and can be used to develop an embOS
application.

Assuming that you are using the NIOS II Software Build Tools to develop your application,
follow the instructions in this chapter. If you decide to use the NIOS II IDE, follow the
instructions in Using embOS (NIOS II IDE) on page 15 instead.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form. To install it, proceed as
follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of your
choice. When copying, keep all files in their respective sub directories. Make sure the files
are not read-only after copying. If you received a zip-file, extract it to any folder of your
choice, preserving the directory structure of the zip-file.

1.2 First steps
After installation of embOS you can create your first multitasking application. Your embOS
distribution contains the following folders needed for a project running under the NIOS II
Software Build Tools:
• Hello_Project: contains all sources required for an embOS application.
• Hello_BSP: contains the embOS libraries and additional files required to add embOS

support into the BSP and application.

1.3 Setup the development environment
• Start the NIOS II Software Build Tools for Eclipse.
• Create a new Hello World project plus BSP from template.
• Close the NIOS II Software Build Tools.
• Copy everything from the Hello_Project\ folder into the hello_world_x\ folder that

was created by the NIOS II Software Build Tools:
- Copy the entire CPU\ folder from the Hello_Project\ folder delivered with embOS into
the hello_world_x\ folder which was created by by the NIOS II Software Build Tools.
- Copy the entire Src folder from the Hello_Project\ folder delivered with embOS into
the hello_world_x\ folder which was created by the NIOS II Software Build Tools.

• Copy everything from the Hello_BSP\ folder into the hello_world_bsp\ folder that
was created by the NIOS II Software Build Tools:
- Copy the entire drivers\ folder from the Hello_BSP\ folder delivered with embOS into
the hello_world_bsp\ folder which was created by the NIOS II Software Build Tools.
- Copy the entire HAL\ folder from the Hello_BSP folder delivered with embOS into the
hello_world_bsp\ folder which was created by the NIOS II Software Build Tools.

• Finally delete the hello_world.c file in the hello_world_x folder that was created by
the NIOS II Software Build Tools.

1.4 Prepare and build the sample start application
• Start the NIOS II Software Build Tools for Eclipse again.
• Select and refresh the BSP. This should include all new sources that were copied into

the hello_world_bsp\ folder.
• Select and refresh the project. This should include all new sources that were copied into

the hello_world project\ folder.
• Modify the Makefile of your hello_world_x\ project:

- Edit the the search path for libraries, ALT_LIBRARY_DIRS:
The embOS libraries are located in the drivers folder that was copied into the bsp folder
of the project. Assuming the bsp folder was named hello_world_bsp\ during project
creation, and the bsp folder is on the same level as the project folder in the directory
structure, the search path to the libraries is relative to the project folder and can be
set as relative path as follows:
ALT_LIBRARY_DIRS := ../hello_world_bsp/drivers/segger_embOS/embosLibs
- Add the library names for the -msys-lib linker option to add an embOS library as
system library:
ALT_BSP_DEP_LIBRARY_NAMES := embOS_DP

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

11 CHAPTER 1 Build your own application

to add the embOS debug and profiling library to the project.
- Verify the library selection defined in OS_Config.h:
#define OS_LIBMODE_DP

• Save the Makefile.
• Rebuild the project.

You may now start the NIOS II Hardware debugger to download the application into your
CPU and step through the application. Initially, a target for debug and profiling is built. It
includes debug information to be used with the NIOS II debugger and may be run on a
NIOS II using the JTAG interface, ByteBlaster or USB-Blaster.

1.5 Build your own application
To build your own application, you may start with the sample hello world project that was
built as start. This has the advantage that all necessary files are included and all settings
for the project are already done. You may alternatively start with a project and BSP that
you already have for your application and add the embOS files as described in First steps
on page 10.

1.6 Required files for an embOS application
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from subfolder HAL\inc\ that was copied into the project specific BSP folder.

This header declares all embOS API functions and data types and has to be included in
any source file using embOS functions.

• RTOSInit.c from subfolder CPU\. It contains hardware dependent initialization code for
the embOS timer and optional UART for embOSView.

• OS_Error.c from the subfolder Src\. The embOS error handler is defined in this file. It
is required when stack check or runtime error check for debug libraries is required.

• One library from the subfolder drivers\segger_embos\embosLibs\ in the BSP.
• All other files from the Hello_BSP folder, which have to be copied into the bsp folder

of your project.

1.7 Add your own code
You may add your own code in any subfolder of the hello world project folder. After refresh-
ing your project, your code should be included.

1.8 Change the embOS library mode
For your application you may wish to choose an other embOS library type. During devel-
opment, you should use an embOS debug library. For your final application you may wish
to use an embOS release library. Select the library by modification of the ALT_BSP_DE-
P_LIBRARY_NAMES definition in the Makefile of the application. This switch is used to set the
-msys-lib linker option and has to select an embOS library as system library.

One of the following settings for ALT_BSP_DEP_LIBRARY_NAMES can be used:
1. embOS_XR to select the eXtreme Release library libembOS_XR.a
2. embOS_R to select the Release library libembOS_R.a
3. embOS_S to select the Stack check library libembOS_S.a
4. embOS_SP to select the Stack check and Profiling library libembOS_SP.a
5. embOS_D to select the Debug library libembOS_D.a
6. embOS_DP to select the Debug Profiling library libembOS_DP.a
7. embOS_DT to select the Debug Trace library libembOS_DT.a

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

12 CHAPTER 1 Change the embOS library mode

The embOS library mode has to be defined as project option according to the embOS library
which was chosen as system library. This is required to select library dependent functionality
and data types in the RTOS.h file.

The library mode has to be set for the BSP and the project. The library mode should be
defined in the OS_Config.h file which is included in the embOS API header file RTOS.h.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

13 CHAPTER 1 Re-building or modifying the BSP using NIOS II

1.9 Re-building or modifying the BSP using NIOS II
BSP Editor The BSP Editor is used to set or adjust major project options such as linker
settings, resource usage, system timer an others. After creation of the BSP and adding
embOS support by copying the files from the embOS_BSP\ folder into the BSP folder of the
project, it may be required to call the BSP Editor to adjust some settings.

Note

Whenever the NIOS II BSP Editor is closed with modified settings, the BSP is regen-
erated. Some sources are created and some generic sources are copied from an Altera
template folder. These generic sources replace the BSP specific sources required for
embOS and embOS will not be included in the project.

There are two possible solutions to fix or avoid this problem:

Solution 1

To avoid problems with the BSP Editor, you may disable the file generation for the specific
BSP files which were delivered with embOS. Open the Nios II BSP Editor. Select the tab
Enable File Generation and disable two source files for BSP generation. Browse through
Software Component Copied Files -> Operating Sytem -> HAL -> src, select the
files alt_malloc_lock.c and alt_env_lock.c and then, after right click, select Disable
generation from the context menu.

After disabling the two source files from generation, three additional header files which
were delivered with embOS have to be disabled from generation. Browse through Software
Component Copied Files -> Operating Sytem -> HAL -> inc -> os, select the

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

14 CHAPTER 1 Re-building or modifying the BSP using NIOS II

files alt_flag.h, alt_hooks.h and alt_sem.h and then, after right click, select Disable
generation from the context menu.

Solution 2

The second method has to be used when BSP was regenerated without disabling the embOS
specific files as described above. After editing the BSP or after regeneration of the BSP,
copy all files from the Hello_BSP\ folder delivered with embOS into the BSP folder of your
project.
• Copy the entire drivers\ folder from the Hello_BSP\ folder delivered with embOS into

the BSP\ folder of your project.
• Copy the entire HAL\ folder from the Hello_BSP\ folder delivered with embOS into the

BSP\ folder of your project.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 2

Using embOS (NIOS II IDE)

Since version 9.1, Altera delivers the NIOS II Software Build Tools for Eclipse, which are
installed as the default development platform for NIOS II. The older NIOS II IDE was still
delivered with following versions of the software and can be used to develop an embOS
application.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

16 CHAPTER 2 Installation

2.1 Installation
embOS is shipped as a zip-file in electronic form. To install it, proceed as follows: Extract
it to any folder of your choice, preserving the directory structure of the zip-file.

2.2 First steps
After installation of embOS you can create your first multitasking application. Your embOS
distribution contains the following folders needed for a project running under the NIOS II
IDE:
• Hello_Project: contains all sources required for an embOS application.
• components: contains the embOS libraries and additional components used to integrate

embOS into the HAL environment for NIOS II CPUs.
• Hello_BSP: contains the embOS libraries and additional files required to add embOS

support into the BSP and application.

2.2.1 Setup the development environment
• Start the NIOS II IDE.
• Create a new Hello World project.
• Close the NIOS II IDE.
• Copy everything from the Hello_Project\ folder into the hello_world_x\ folder that

was created by the NIOS II IDE:
- Copy the entire CPU\ folder from the Hello_Project\ folder delivered with embOS
into the hello_world_x\ folder that was created by by the NIOS II IDE.
- Copy the entire Src\ folder from the Hello_Project\ folder delivered with embOS
into the hello_world_x\ folder that was created by the NIOS II IDE.

• Copy everything from the components\ folder delivered with embOS into the
components\ folder of your nios2eds\components\ folder. Usually, this is located at
altera\91\nios2ed\ after a standard installation of the NIOS II software tools 9.1

• Copy everything from the Hello_BSP\ folder into the hello_world_x_syslib\ folder
that was created by the NIOS II IDE:
- Copy the “C” source files from the Hello_syslib\ folder delivered with embOS into
the hello_world_x_syslib\ folder that was created by the NIOS II IDE.
- Copy the entire os\ folder from the Hello_syslib\ folder delivered with embOS into
the hello_world_x_syslib\ folder that was created by the NIOS II IDE.
- Copy the entire priv\ folder from the Hello_syslib folder delivered with embOS into
the hello_world_x_syslib\ folder that was created by the NIOS II IDE.

• Finally delete the hello_world.c file in the hello_world_x\ folder that was created
by the NIOS II IDE.

2.2.2 Prepare and build the sample start application
• Start the NIOS II IDE again.
• Modify the project settings for your hello_world_x project:

- Under Properties | C/C++ Build | NIOS II Compiler | General | Include
Paths add the embOS include path for RTOS.h:
C:\altera\91\nios2eds\components\segger_embos\embOS\inc
You may alternatively browse for the path.
- Under Properties | C/C++ Build | NIOS II Compiler | Preprocessor | Defined
Symbols add the symbol for embOS library mode:
OS_LIBMODE_DP.
- Under Properties | C/C++ Build | Linker | General | Linker Flags add the
flag to link the embOS system library:
-msys-lib = embOS_DP
- Under Properties | C/C++ Build | Linker | General | Library Paths add
the path to the embOS library:
C:\altera\91\nios2eds\components\segger_embos\embOS\embOSLibs
You may alternatively browse for the path.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

17 CHAPTER 2 Build your own application

• Modify the related hello_world_x-syslib properties:
- Under C/C++ Build | NIOS II Compiler | General | Include Paths add the
path to the embOS API header file RTOS.h:
C:\altera\91\nios2eds\components\segger_embos\embOS\inc
You may alternatively browse for the path.
- Under Properties | C/C++ Build | NIOS II Compiler | Preprocessor | Defined
Symbols add the symbol for the embOS library mode:
OS_LIBMODE_DP

• Refresh your project (press F5). This should include all new sources which are contained
in the Src\ and CPU\ folders which were copied into your project folder.

• Rebuild your project.

You may now step through your project using the NIOS II simulator debugger or hardware
debugger. Initially a target for debug and profiling is built. It includes debug information to
be used with NIOS debugger. It may be run on NIOS2 using JTAG interface.

2.3 Build your own application
To build your own application, you may start with the sample hello world project that was
built as start. This has the advantage that all necessary files are included and all settings
for the project are already done.

2.4 Required files for an embOS application
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from subfolder components\segger_embos\embOS\inc\. This header declares

all embOS API functions and data types and has to be included in any source file using
embOS functions.

• RTOSInit.c from subfolder CPU\. It contains hardware dependent initialization code for
the embOS timer and optional UART for embOSView.

• OS_Error.c from the subfolder Src\. The embOS error handler is defined in this file. It
is required when stack check or runtime error check for debug libraries is required.

• One library from the subfolder components\segger_embos\embOS\embosLibs\.
• All files from the Hello_syslib\ folder, which have to be copied into the syslib\ folder

of your project.

2.5 Add your own code
You may add your own code in any subfolder of the hello world project folder. After refresh-
ing your project, your code should be included.

2.6 Change the embOS library mode
For your application you may wish to choose an other embOS library type. During devel-
opment, you should use an embOS debug library. For your final application you may wish
to use an embOS release library. Therefore you have to replace the embOS library define
macro in your project and have to modify the linker flag -msys-lib to address the correct
library.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 3

Sample Application

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

19 CHAPTER 3 The sample application OS_StartLEDBlink.c

3.1 The sample application OS_StartLEDBlink.c
The following is a printout of the sample application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS, two tasks are created. OS_InitHW() is in the RTOSInit*.c
file that is delivered as source and initializes the CPU if required. The embOS system itself
was automatically initialized by the Altera HAL during startup before main was called. After
creation of the tasks, OS_Start() is called to start the kernel. OS_Start() never returns.
It activates the task with the highest priority and starts it. In our example, two tasks are
activated and execute until they run into a delay, then suspend for the specified time and
continue execution afterwards.

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 4

Libraries

This chapter includes CPU-specific information such as CPU-modes and available libraries.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

21 CHAPTER 4 Data / Memory models, compiler options

4.1 Data / Memory models, compiler options
embOS for NIOS II CPUs is delivered with different libraries and can be used for all different
NIOS II CPU options.

4.2 Available library modes
There are seven different libraries available.

Features Define

Extreme Release OS_LIBMODE_XR

Release OS_LIBMODE_R

Stack check OS_LIBMODE_S

Stack check + profiling OS_LIBMODE_SP

Debug + stack check OS_LIBMODE_D

Debug + stack check + profiling OS_LIBMODE_DP

Debug + stack check + profiling + trace OS_LIBMODE_DT

The appropriate define has to be passed to the compiler. This can be done with a preproces-
sor option in your project and syslib settings for the NIOS II IDE, or by an appropriate
define in the OS_Config.h file when using the NIOS II Software Build Tools.

If no library mode is defined, OS_Config.h is included which allows a default library mode
definition in this file.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 5

CPU and compiler specifics

The hardware initialization routines and default settings in RTOSInit.c were designed for
NIOS II CPUs using the sample standard setup delivered with Altera NIOS II Development
Kits.

All CPU hardware dependent routines are found in RTOSInit.c and in the additional header
and source files used for the HAL setup in your components subdirectory. To use embOS
with the NIOS II IDE, please ensure the embOS components are copied to your components
directory and the specific files for your syslib are copied into your current syslib folder as
described under Installation on page 16. As you may have built your own CPU, hardware
dependent routines in RTOSInit.c may have to be modified for your particular CPU.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

23 CHAPTER 5 Clock settings for embOS timer interrupt

5.1 Clock settings for embOS timer interrupt
OS_InitHW() routine in RTOSInit.c does not initialize an embOS timer tick, as this should
have been done during initialization of the HAL environment. Normally a system timer
tick rate of 1 msec should have benn used per default. You may modify this tickrate in
OS_InitHW() if required. If you modified the system timer, or did not use the default system
timer, you have to modify:
• OS_InitHW() to initialize a timer for usage with embOS.
• OS_ISR_Tick() which resets timer interrupt pending and handles embOS timer

interrupts.

embOS will run without any timer, but you will loose any time related functions or software
timer. If there is only one hardware timer available in your CPU and you need this for your
own code, you may add your code into the embOS timer tick handler OS_ISR_Tick() in
RTOSInit.c.

5.2 Settings for UART used for embOSView
OS_COM_Init() routine in RTOSInit.c was written for sample CPUs of NIOS II Development
Kit, Stratix edition. This UART itself does not require any init routines, baudrate is fixed to
115200 baud and can not be changed.

The only thing what is done here is:
• Interrupt handler for UART interrupt is installed
• Interrupts for Rx and Tx are enabled.

If your particular UART differs, or if you may want to use an other UART for embOSView,
you have to modify:
• OS_COM_Init() to initialize UART for reception and transmission.
• OS_COM_Send1() to send one byte via UART
• OS_COM_Isr() to handle Rx and Tx interrupts.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

24 CHAPTER 5 Reentrancy

5.3 Reentrancy
Some GNU library functions used for NIOS II are not reentrant. To solve the reentrancy
problem of those functions, an individual structure containing all relevant data is required
for every task calling non reentrant functions. This data structure is defined as struct
_reent in the NIOS II development environment. Because this structure contains several
hundred bytes that have to be stored in the task stack, embOS does not automatically
implement this reentrancy data for every task upon creation of a task.

When you call non-reentrant library functions from a task, you have to create a _reent
structure on the task stack and have to initialize an associated pointer. Define a local reent
structure variable as first variable in the task function and then initialize it by simply calling
OS_InitReent(), which is delivered with embOS in the source file OS_InitReent.c.

Example

void Task(void) {
 struct _reent TaskReentStruct; /* Only required if task calls */
 OS_InitReent(&TaskReentStruct); /* non-reentrant library functions */
 while(1) {
 ... /* Task functionality */
 }
}

Please ensure sufficient task stack to hold the _reent structure variable. For details on
the _reent structure, _impure_ptr, and library functions which require precautions on
reentrance, please refer to the Altera documentation.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

26 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request.
• The CPU context is saved.
• The Altera HAL low level interrupt function is called.
• The interrupt handler which was installed by a HAL interrupt installation function is

called. This function dispatches to the assigned interrupt handler function.
• The interrupt handler handles the interrupt and returns.
• The Altera HAL low level imterrupt handler restores CPU context.
• The interrupt function continues operation.

For details, refer to the NIOS II CPU user manuals and appliaction notes which are delivered
with your NIOS II tools.

6.2 Defining interrupt handlers in C
Interrupt handlers are written as normal functions. The interrupt handler model used by
NIOS II GNU tools allows parameters passed to interrupt handlers. Using the HAL with
embOS, the parameters are not passed to the high level interrupt handler.

Altera HAL implements an embOS-safe interrupt handler which automatically informs em-
bOS that interrupt code is running. Therefore your interrupt handlers do not need to call
OS_INT_Enter() / OS_INT_Leave() as it is required by other embOS ports and described
in the generic manuals, but it may be used to clarify that an interrupt handler is called that
does not re-enable interrupts.

Interrupts must not be re-enabled during execution of an interrupt handler, except for
when the special embOS function OS_INT_EnterNestable() is used as first instruction in
an interrupt handler.

Examples

Simple interrupt handler:

void ISR_Timer(void* context, alt_u32 id) {
 /* OS_INT_EnterNestable(); does not have to be called */
 _HandleTimer();
 /* OS_INT_LeaveNestable(); does not have to be called */
}

Interrupt handler which re-enables interrupts:

void ISR_Timer(void* context, alt_u32 id) {
 OS_INT_EnterNestable(); /* Inform embOS that interrupt handler */
 /* is running and re-enable interrupts */
 _HandleTimer();
 OS_INT_LeaveNestable();
}

6.3 Interrupt-stack switching
Separate interrupt stack and interrupt stack switching for NIOS II is not implemented as
embOS function. OS_INT_EnterIntStack() and OS_INT_LeaveIntStack() are supplied for
source compatibility to other processors and future use. They have no functionality. The low
level interrupt handler which is implemented in the Altera HAL allows usage of a separate
interrupt stack which may be located in different RAM locations. By setting the option “Use
a separate exception stack” in the System Library settings, the low level interrupt handler
switches to the separate stack during exception execution. This option does not work with
embOS as long as the vectored interrupt controller is not used and must not be used. An
error should be generated when a project is built with this option.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

27 CHAPTER 6 Interrupt priorities

6.4 Interrupt priorities
Interrupt priorities of peripherals are hardwired and can not be changed during runtime
as long as the VIC is not used. embOS Timer and UART may run on lowest priority. User
interrupt handler calling embOS functions may run on any priority.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

28 CHAPTER 6 Vectored Interrupt Controller VIC

6.5 Vectored Interrupt Controller VIC
Newer versions of the NIOS II Software Build Tools allow usage of a vectored interrupt
controller in the CPU. The vectored interrupt controller has the advantage of faster response
to peripheral interrupts. The VIC can be used with embOS version 3.84 or later.

There are no modifications required in the application. The code which supports the VIC is
automatically inserted from the embOS library when the VIC is defined in the project.

6.5.1 Nested interrupts with the vectored interrupt controller
The vectored interrupt controller allows nested interrupts, when the macro ALTER-
A_VIC_DRIVER_PREEMPTION_INTO_NEW_REGISTER_SET_ENABLED is defined.

Nested interrupts with VIC may be used with embOS. The required code for nested inter-
rupt support with VIC is included in the embOS libraries. When using the VIC with nested
interrupts, the high level interrupt handler functions do not need to be modified.

Usage of the embOS functions OS_INT_EnterNestable() and OS_INT_LeaveNestable() is
not required in the interrupt handler, the functions must not be called when using the VIC
with nested interrupt support.

6.5.2 Quick nested interrupts with the vectored interrupt con-
troller

High speed nested interrupts (quick nested interrupts) with the vectored interrupt controller
can be activated by a call of:

NIOS2_WRITE_CONFIG(NIOS2_CONFIG_REG_ANI_MASK);

This option shall not be used with embOS because it may fail with the default interrupt
handler from Altera.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 7

Stacks

This chapter describes how embOS uses the different stacks of the NIOS II CPU.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

30 CHAPTER 7 Task stack for NIOS II

7.1 Task stack for NIOS II
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For NIOS II CPUs, this minimum basic task stack size is about 52 bytes. Because any
function call uses some amount of stack and every exception also pushes several bytes
onto the current stack, the task stack size has to be large enough to handle at least one
exception too. We recommend at least 512 bytes stack as a start, because a separate
exception stack must not be activated when using embOS.

7.2 System stack for NIOS II
The system stack is the stack used during startup before the call of OS_Start(). The system
stack is also used during embOS task switches, for embOS timer and internal functions.

Startup code normally initializes the stack pointer.

To enable stack check of embOS a size of the system stack has to be defined. This is done
by a constant define SYS_STACK_SIZE which may be redefined or modified by compiling
embOS sources.

Per default, SYS_STACK_SIZE is defined for 512 bytes of system stack.

7.3 Interrupt stack for NIOS II
NIOS II CPUs do not implement a separate interrupt stack by hardware. Every interrupt
runs on the current stack, as long as stack switching to separate exception stack is not used.
The stack used for interrupts and exceptions is either the task stack or the system stack.

Therefore task stacks have to be sufficient to handle all nested interrupts. Interrupt stack
switching by embOS is not implemented.

The separate exception stack that may be enabled by system library project or BSP settings
can not be used with embOS when the default interrupt controller and handler is used. An
error is generated during build if the separate exception stack is enabled.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 8

Technical data

This chapter lists technical data of embOS used with Altera NIOS II CPUs.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

32 CHAPTER 8 Memory requirements

8.1 Memory requirements
These values are neither precise nor guaranteed, but they give you a good idea of the
memory requirements. They vary depending on the current version of embOS. The mini-
mum ROM requirement for the kernel itself is about 3.000 bytes.

In the table below, which is for X-Release build, you can find minimum RAM size require-
ments for embOS resources. Note that the sizes depend on selected embOS library mode.

embOS resource RAM [bytes]

Task control block 36
Software timer 20
Mutex 16
Semaphore 8
Mailbox 24
Queue 32
Task event 0
Event object 16

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

Chapter 9

Shipped Files

embOS for NIOS II CPUs and NIOS II Software Tools is shipped with documentation in PDF
format and release notes as html.

All source files and additional files which are required for embOS used with the NIOS II IDE
are located in the subfolders Hello_Project\, Hello_syslib\ and components. All source
files and additional files which are required for embOS used with the NIOS II Software Build
Tools are located in the subfolders Hello_Project\ and Hello_BSP\.

The source version of embOS comes with an additional folder GenOSSrc\ , which contains
the generic embOS sources, and a folder CPU\ , which contains CPU specific files required
to recompile the libraries.

embOSView, release notes and the manuals are found in the root directory of the distrib-
ution.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

34 CHAPTER 9 List of files shipped with embOS

9.1 List of files shipped with embOS

File Explanation

root

*.pdf
Generic API and target specific documen-
tation.

Release_embOS_NIOS2_GNU.html Version control document.

embOSView.exe
Utility for runtime analysis, described in
generic documentation.

components\

.
Source files, headers, libraries and addi-
tional files required for embOS used with
the NIOS II IDE.

Hello_BSP\

.
Source files, headers and libraries required
for embOS used with the NIOS II Software
Build Tools.

Hello_Project\CPU\

RTOSInit.c
Source file required for embOS used with
both the NIOS II IDE and the NIOS II Soft-
ware Build Tools.

Hello_Project\Src\

OS_StartLEDBlink.c
OS_Error.c
OS_InitReent.c

Source files required for embOS used with
both the NIOS II IDE and the NIOS II Soft-
ware Build Tools.

Hello_syslib\

.
Source and header files required for em-
bOS used with the NIOS II IDE.

Any additional files shipped serve as example.

embOS for Altera NIOS II CPUs and Software Tools © 2001-2020 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS (NIOS II Software Build Tools)
	Installation
	First steps
	Setup the development environment
	Prepare and build the sample start application
	Build your own application
	Required files for an embOS application
	Add your own code
	Change the embOS library mode
	Re-building or modifying the BSP using NIOS II

	Using embOS (NIOS II IDE)
	Installation
	First steps
	Setup the development environment
	Prepare and build the sample start application

	Build your own application
	Required files for an embOS application
	Add your own code
	Change the embOS library mode

	Sample Application
	The sample application OS_StartLEDBlink.c

	Libraries
	Data / Memory models, compiler options
	Available library modes

	CPU and compiler specifics
	Clock settings for embOS timer interrupt
	Settings for UART used for embOSView
	Reentrancy

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt-stack switching
	Interrupt priorities
	Vectored Interrupt Controller VIC
	Nested interrupts with the vectored interrupt controller
	Quick nested interrupts with the vectored interrupt controller

	Stacks
	Task stack for NIOS II
	System stack for NIOS II
	Interrupt stack for NIOS II

	Technical data
	Memory requirements

	Shipped Files
	List of files shipped with embOS

