embOS

Zero latency
Real Time Operating System

CPU & Compiler specifics for
Fujitsu F2MC-16LX and FX series CPUs
Using Fujitsu Softune
workbench and compiler

Software version 3.86i
Document UM01034
Revision: 0

Date: May 10, 2012

\) E—
/SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/23 embOS for Fujitsu FZMC-16LX / FX microcontroller

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 3/23

Contents
L0 1 (=T 01 £ PP 3
1. ADOUL thiS AOCUMENT ...t e et e e e e e e e e e eaab e e e e e eeeeeees 4
1.1. HOW t0 USE thiS MANUAL........ceiiiiiiiiiiiiiiiiiiiiieii it 4
2. WAL IS MW ..ottt e e e e e e e et ettt e e e e e e e e e e esaba e e e e e eeeeeenees 4
2.1. Update / Upgrade information regarding interruptS.........cccceevveevvviniiieeeeeeeeeninnnnnn. 4
3. Using embOS with Softune WorkbenCh ... 5
3L INSTAIALION. ... 5
T e 1651 1 = 1P 6
3.3. The sample application MaIN.Ccouuuiiiiei e e e 7
3.4. Stepping through the sample application Main.c using the Softune Simulator.... 7
4. Build your oOWN appliCatiON........coiiiiiiieiee e e e e e e e e aaaaa—a 11
4.1. Required files for an embOS applicationcccoooviiiiiiiiiiiiiii e, 11
S 1o (= To =] = L o (o] [o 11
4.3. Add YOUIN OWN COR ...ttt e ettt e e e e e e e e eaaa e e e as 11
4.4. Change lIbrary MOAE.........oouuiiiii i e e s 11
4.5. Change Memory MOUEL........uuuiii i e 12
4.6. Select an other CPU ..., 12
4.7. Modify the StartuUp-COUE oo 13
5. FZMC-16LX COMPIlEr SPECITICS ...ieiiieeiiiiiiiii e e et e e e e e e e e e e e e e e e eeennnn 14
5.1. MeMOIY MOUEISeeuiiiiiiiieeeee e e et e e e e e e e ana s 14
5.2. Available lIDrari@sS.........u 14
S = T U URPPPPPTRTPPIN 15
6.1. Task StaCk fOr FEMOC-LBLXuuuuuiiiiiiiiiiiiiiiiiii s 15
6.2. F2MC-16LX System (Interrupt) STAaCKceevieiiiiiiiiiiiee e 15
6.3. User Stack fOr FAMOC-LOLXuuuuuuiiiiiiiiiiii s 16
6.4. Stack specifics of the Fujitsu FZAMC-16LX family...........coooooviiiiiiiiiiiniiein, 16
7. Dynamic memory, heap ManagemeNntcciieeeriiieuiiiieeeeeeeeeeeis e e e e e e e eeaaa e e e e e eeeannes 17
7.1. Heap memory definition and allocation..............ccooviiiiiiiiiiiiiieiii e 17
S T L1 (=T ¢ (U] o] £ PRSPPI 18
8.1. What happens when an interrupt OCCUIS?coeeiiiiiiiiiiiieee ettt 18
8.2. Zero latency, fast interrupts with FZMC-16LX CPUSccoovvvvviiiiieeeeeeeeeeiinn, 18
8.3. Interrupt priorities with embOS for FLI6LX/FX CPUS.......cccoviiiiiiiiiieeeeieeeeiiinn 18
8.4. Defining interrupt handlers in "C" ..o e 19
8.5. OS_SetFastiNtPriorityLimit()cooeeeeeiiiiiieee e 20
8.6. Special considerations for the FAMC-16LX / FX...ooovviiiiiiiiieieeiiieee e, 20
9. STOP / WAIT MOUE ... 21
10. TECHNICAI ATA.ttt 22
10.1. MEMOIY rEQUITEIMENTS ... iiieeiiiitiee e e e e e e ettt s e e e e e e e eetata e e e e e e e e eeesbsan e e e eeeeeenenes 22
11. Files shipped with @mbOS ... 22
D2 | o = SRR 23

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

4/23 embOS for Fujitsu FZMC-16LX / FX microcontroller

1. About this document

This guide describes how to use embOS with new zero latency interrupt han-
dling for F2MC-16LX Real Time Operating System for the Fujitsu FAMC-16LX
and F2MC-16FX series of microcontrollers using Softune workbench.

The stack specifics described in this manual refer to embOS version 3.22 or
later which requires additional user stack defined in startup code.

1.1. How to use this manual

This manual describes all CPU and compiler specifics of embOS for F2MC-
16LX and F2MC-16FX CPUs using Softune compiler. Before actually using
embOS, you should read or at least glance through this manual in order to be-
come familiar with the software.

Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Softune workbench. If you have no experience using embOS, you should
follow this introduction, because it is the easiest way to learn how to use em-
bOS in your application.

Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the F2MC-
16LX using Softune compiler.

2. What is new?

* OS heap management enabled

Since version 3.84c of embOS for F2AMC-16LX and FX CPUs, the thread safe
heap management function OS nmal | oc(), OS free() and OS _real | oc()
can be used.

The definition of the heap memory and the supporting _sbr k() function are
delivered in the source file sbrk.c.

» Zero latency, fast interrupts:

Since version 3.22a.1 of embOS for FAMC-16LX and FX CPUs, interrupt han-
dling inside embOS was modified. Instead of disabling interrupts when embOS
does atomic operations, the interrupt level of the CPU is set to 2. Therefore all
interrupts with level 1 or O can still be processed which results in zero latency.
Since version 3.60 of embOS for F2AMC-16LX, the priority limit is not fixed and
may be changed at runtime using OS_Set FastIntPriorityLimt().

2.1. Update / Upgrade information regarding interrupts

When you update / upgrade from an embOS version prior 3.22a.1, you may
have to change your interrupt handlers because of Fast interrupt support. All in-
terrupt handlers using embOS functions have to run on priorities from 6 to 2.
Please read chapter “Interrupts” in this manual.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 5/23

3. Using embOS with Softune workbench

3.1. Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.
In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using Softune workbench to develop your application, no
further installation steps are required. You will find a prepared sample start ap-
plication, which you should use and modify to write your application. So follow
the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use the workbench for your ap-
plication development in order to become familiar with embOS.

If for some reason you will not work with the embedded workbench, you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on Softune workbench, it may be used without the
workbench using batch files or a make utility without any problem.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

6/23

embOS for Fujitsu FZMC-16LX / FX microcontroller

3.2. First steps

After installation of embOS (- Installation) you are able to create your first
multitasking application. You received a ready to go sample start project and it
is a good idea to use this as a starting point of all your applications.

To get your new application running, you should proceed as follows:

» Create a work directory for your application, for example c:\work

» Copy the whole folder ‘Start’ which is part of your embOS distribution into

your work directory

« Clear the read only attribute of all files in the new ‘start’ folder.

* Open the sample start workspace \OS_ Start.wsp with Softune workbench

(e.g. by double clicking it)
» Build the start project

Your screen should look like follows:

g= Softune Workbench - 05_Start M= E
File Edit Yiew Project Debug Setup Window Help
e i] g NS] II@I-III 2o
IDS Start IDebug
E|--- “Workepace'D5_Start! [_ (O] x|
Elﬁ 0S_Start.abs - "0S_ I | =~
=23 Sourc:e Files 25|
26/
CH Start asm 27 | =)
= a CPU 28| = main.
- [mb30540.sm 29| =]
L[] rhosinit.c 3a f
=23 embOSLib_S 31 . .
I RTOSSD.LE 32 void main(veid) {| L
@ ATOSSOP LIE 33 0S_InitKern{}; F* initialize 0S *f
X RTOSSOT.LE 34| O0S_InitHW{); f* initialize Hardware for 05 *f
RTOSSR LI a5 f#* You need to create at least one task here ? *f
HTDSSSlLIB 36 05 _CREATETASK(&TCE@®, "HP Task™, Task@, 188, Stacks);|
. 37| O0S_CREATETASK{&TCB1, "LP Task", Task1, 58, Stack1);)
. : 1] 05 Start(); /= Start multitasking *f
- ependencies 39|31 -
[ebug ua|)
41|[EOF
L R o -
SEC 1:1 S
1 = I Y e A
Mo Error. =
b

[MBa0543

[

[

N

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 7/23

3.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-

point for your application. (Please note that the file actually shipped with your

port of embOS may look slightly different from this one)

What happens is easy to see:

» After initialization of embOS; two tasks are created and started

» The 2 tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**

* SEGGER M CROCONTROLLER SYSTEME GrbH
* Solutions for real time mcrocontroller applications

Rk S S S Rk Ik b O S S R R b Sk S b S b S R R S o kR S

File : Main.c
Pur pose : Skel eton program for enhCS
--------- END- OF- HEADER - - --=---==---cmmmmmmomeem e e ¥

#i ncl ude "RTGCS. H'

OS_STACKPTR int StackO[128], Stackl[128]; /* Task stacks */
OS_TASK TCBO, TCBI; /* Task-control -bl ocks */

voi d TaskO(void) {
while (1) {
CS Del ay (10);

}
voi d Taskl(void) {
while (1) {
CS_Del ay (50);
}

/**
*
* .

mal n
*
**/

int main(void) {

CS_IncDi(); /* Initially disable interrupts */
CS I nitKern(); /* initialize O */
OGS InitHW); /* initialize Hardware for OGS */
/* You need to create at |east one task here ! */

OS_CREATETASK(&TCBO, "HP Task", TaskO, 100, StackO);
OS_CREATETASK(&TCB1, "LP Task", Taskl, 50, Stackl);

CS Start(); /* Start multitasking */
return O;

}

3.4. Stepping through the sample application Main.c using the
Softune Simulator

After compilation you should then start the simulator debugger from Softune
workbench. This allows you to step through the program and see how the task
switching between the two tasks work. The sample project is prepared, so that
the timer interrupt, which is needed for delay, is simulated. This is done by the
command file OS_Start.prc which is called after the simulator debugger is
started.

After starting the simulator from menu ‘Debug | Start Debug’, the debugger
command file automatically sets a breakpoint at main and starts execution.

The sample application runs its startup code and stops at main:

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

8/23

embOS for Fujitsu FZMC-16LX / FX microcontroller

g= Softune Workbench - 05_Start : Debug M= E
File Edit Yiew Project Debug Setup Window Help
Y T O 7 e T3 = TR 1 2 S e
IDS_Start leebug j
B Workspace D5_Start B main.c o]
=) 05_Start.abs - "05_ 20: * ﬂ
Ea Source Filez a0: ¥ EEEEES EEEEETS EEEEES EEEEES F =
: 31:
B Start. asm 1 32: woid main(void] {
=23 CPU 33: 05 _InitKern(); /% initialize 0% */
B mb90540. asm 34: 05_InitHWQ):; /% initialize Hardware for 03 i
rtosinit.c 35: /% Tou need to create at least one task here ! */
253 embOSLib_S 36: 05_CREATETASK(sTCBO, "HF Task”, Task0, 100, Stackd):
..M RTOSSD LB 37: 03 _CREATETASE(sTCEL, "LF Task”, Taskl, 50, Stackl); [|
B RTOSSOP.LE 38 05_sStarci): /% Grart multitasking L
RTOSSDT.LIE o
RTOSSR.LIB : ad
rrosss.Le | (L AV
i RT0SSSP.LE | | IS B =1 | [watch 0] =]
#-[z8 Dependencies
B-[z8 Debug 08 s : Simulatd - 17 ;I "TCBD = struct {...}
_Start.prec: Simulating interrupt 5.TCBL = Struct {...}
.08 _Time = D'D
[-]
K — La|R N <] (=
SEC
C Ms T ON Mz [y e

Break at FFO114 by breakpaint

[DEBUG [MB30543

SIM [Bresk [FFFOT14

Before you start stepping through the program, you should set two additional
breakpoints in the two tasks:

g= Softune Workbench - DS_Start : Debug M= E
File Edt View Froject Debug Setup Window Help

T I T = T S 2 Y o o e e

a5 _5tart =||Debug =l 2|

B WorkspaceDS_Start B main.c ol

=-E) 0S_Start.abs - "05_
L——_I--a Source Files

B fraind

: woid TaskO(wvoid) {

while (1) §
03 _Delay (10):

Lo Start.asm 1
=3 CPU 18:) [
e [B] mb90540. a3m 19:
L[] rhosinit.c 20: woid Taskl(wvoid) {
59 embOSLb_S o 2l: while (1) {
‘W RTOSSDLE w ooz 03_Delay (50);
[RTOSSOP.LIE gif }
RTOSSDT.LIE e
RTOSSA.LIE : z
RTOS55.LIB 41| AV
i HTDSS.SP-UB LEEommand !E FWalch !EE
(&8 Dependencies ® TCBO = struct {u..)
[ehug 03_Start.prc: Simulating interrupt 17 ;I --TCBl - struct)
é----DS_Time =D'o
|
LI—I LI j Enter
— [[Enter |
Cl MsCTOKNWMzZ v CC

[DEBUG [MB30543

SIM [Bresk [FFFOT14

Now you can step through the program.
e OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables. It does

not enable interrupts, when OS_I ncDI () was called before.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 9/23

* OS_InitHW) is part of RTOSInit.c and therefore part of your application.
Its primary purpose is to initialize the hardware required to generate the
timer-tick-interrupt for embOS. Step through it to see what is done.

e OS Start () should be the last line in main, since it starts multitasking and
does not return.

When you step into OS_Start(), the next line executed is already in the highest

priority task created. (you may also use disassembly mode to get there of

course, then stepping through the task switching process). In our small start
rogram, TaskO() is the highest priority task and is therefore active.

IEEIHHHLC Mi=] E3
13: fij
14: woid Task0O(woid) |

o 15: while (1) ¢
x 16: 0% Delay (10);
17: 1 [
18: 1}
19:
20: woid Taskl (wvoid) |
o 2l: while (1) §

i 221 0% Delay (50);
23 1
Z4: 1 =
[| H

If you continue stepping, you will arrive in the task with the second highest prior-
ity, cause TaskO runs into a delay:

Igilnath |_ O] x|

135:
14: woid TaskO(woid) |
o 15: while (17 {
» 16: 0% Delay (10}
17: 1 [
15: 1
1a:
20: woid Taskl(woid) |
o 2l: while (1) {
K 22: 0% Delay (50):
231 1
24: 1 -
v

LT T

C

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will therefore start the idle-loop, which is an endless loop which is
always executed if there is nothing else to do (no task is ready, no interrupt rou-
tine or timer executing).

BB rtosinit.c M=]

112: This is basically the "core™ of the idle loop o

113: This core loop can be changed, but:

114: The idle loop doez not have a stack of itz own, therefore no

115: functionality should be implemented that relies on the stack

1l6: to be preserved. Howewer, a simple program loop can be programm

117: [like toggelihg an output or incrementihg a counter)

11a8: +/

1159:

120: woid 03 _Tdle(woid) { A% Idle loop: No task is ready to exec

121: 03 EI():

122: for (::):

123: 1 -
K M

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

10/23

embOS for Fujitsu FZMC-16LX / FX microcontroller

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. In the lower right corner you can see the
system variable OS_Time, which shows how much time has expired in the tar-

get system.

g= Softune Workbench - 05_Start : Debug
File Edit Yiew Project Debug Setup Window Help

=1 E3

Dlmlnl Y N T o e o

=l el elelol B = I|@|-|.|

a5 _5tart

JIDebug

=]

BB workspace'DS_Start’
=B 05_Start.abs - "0S_
=8 a Sourc:e Filez
-
- EI Start azm
= a CPU
b1 mbI0G40.sm
rtosinit.c
223 emb05Lib_S
‘W RTOSSD.LE
: @ RTOSSDP.LIE

ependencies
ebug

’g main.c

200 woi
X 21:
X 22z

23}

24:)

X 15: while (1)
05_Delay (10):
17:)

18: 1

void Taskl(wvoid)
while (1) {
03 _Delay (50):

13: ﬂ
% 14: woid TaskO{void) { =

SRC

<] | ol
,E[:ommand O] x| FWalch - [O] =]
H-TCED = struct {...}
05_Start.prc: Simulating interrupt 17 ;I H

F-TCEL = struct {...}
.08 _Time = D'11

MI CsOTONWMzOw [C

[DEBUG [MB30543

SIM [Bresk [F=FFOOFD

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 11/23

4. Build your own application

To build your own application, you should start with the sample start workspace
and start project. This has the advantage, that all necessary files are included
and all settings for the project are already done.

4.1. Required files for an embOS application

To build an application using embQOS, the following files from your embOS dis-
tribution are required and have to be included in your project:
* RTOS.h from sub folder Inc\
This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.
e RTOSInit*.c from subfolder CPU\ or a CPU_* subfolder.
It contains the hardware dependent initialization code for the embOS timer
and optional UART for embOSView.
* OS_Error.c from subfolder Src\.
It contains the embQOS error handler which is used in stack check or debug
libraries. When a release version of libraries is used, this file is not required.
* mb*.asm from subfolder CPU\ or a CPU_* subfolder.
It contains special function register addresses used for the selected CPU.
e start.asm from subfolder Src\ for F16LX CPUs, or START _MB96F348.asm
from the subfolder CPU_MB96F348 for F16FX CPUs.
It contains the startup code which runs and initializes the CPU after reset.
* One embOS library from the Lib\ subfolder
When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables. Also ensure that your startup code
exports SSTACK _BASE, SSTACK_TOP, USTACK_BASE and USTACK_TOP which
are needed for stack checking functions of embOS.
Your main() function has to initialize embOS by call of OS_I ni t Kern() and
OS I nitHW) prior any other embOS functions except OS I ncDI () are
called.

4.2. Select a start project

embOS comes with one start project for FL6LX CPUs and one start project for
F16FX CPUs which include different configurations for Release and Debug
output. The start project for F16LX was built and tested with an MB90F543
CPU.

The start project for FI6FX CPUs was built and tested with an MB96F348 CPU.
For other CPUs there may be modifications necessary as described later.

4.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

4.4. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

12/23

embOS for Fujitsu FZMC-16LX / FX microcontroller

final application you may wish to use an embOS -release library or a stack
check library.

Therefore you have to select or replace the embOS library in your project or
target:

* in the embOSLib group, exclude all libraries from build, except the one which
should be used for your application.
Finally check project options about library mode setting according library mode

used. Refer to chapter 4 about the library naming conventions to select the cor-
rect library.

#= Softune Workbench - 05_Start =]
File Edit “iew Project Debug Setup 'Window Help

ElElela] Bl Bl l|@|-|.|

D||2-|EI| R e e)

IDS Start JIDebug
Eﬂ ‘whork gpace'0S_Start! Setup Project
EE glsgso:?;;:;';_ 083 Target of setting: Generall MCL £ Compiler |Assembler| Linker | Librariﬂ_’l
S g ErPnEDSLH: 5 IDebug j Categony: Define Macio = || Cemmion Elptionl

i RTOSSD.LIE =8

: --@ RTOSSDPLIE g BCHF:EDSU'J ; Macro Name: |
| RTOSSDT LIE -

e E 0SSR LIE - Source Files Y alue: I
H ATOSSS5.LIB . |
§ RTDSSSPLIB ‘Mam Hame Lit - |
Dependencies []05_LIBMODE_D

Debug [w]O5_LIBMODE_DP

[105_LIBMODE_DT

(105 _LIEMODE_R
[(]05_LIBMODE_S
05 _LIEMODE_SP

Dption:
g ﬂ
w3
AMF LIST
-0 O5_LIBMODE_D ;I
KN I i
T oK I Cancel | Lol |

(S = I Y I A

[MBI0543 [[Sz

4.5. Change memory model

The sample start project was built for small memory model. To change to an

other memory model

» Select the desired memory model under “Project | Setup Project... | C Com-
piler | Category: Target Depend”.

* Include one or all embOS libraries which fit to the selected memory model.

We recommend to add a group which contains all libraries of one memory
model into your project.

4.6. Select an other CPU

» Select the desired CPU as project option under “Project | Setup Project... |
MCU | Target MCU".

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 13/23

» Copy all files from a CPU_* subdirectory into the CPU subdirectory of your
start project folder. (For example: To switch MCU type to MB90F497, copy
all files from subfolder CPU_90495 to subfolder CPU.

If your CPU is currently not supported, examine all RTOSInit files in the CPU

specific subfolders and select one which almost fits your CPU. You may have to

modify OS_I ni t HA() , communication routines for embOSView and also check
the interrupt vector definitions in Rtosinit.c.

4.7. Modify the startup-code

When you decide to write your own startup code, or have to use a startup code
not delivered with embQOS, ensure that the stack segment end addresses are
exported, as shown in the following excerpt of a startup file delivered with em-
bOS:

;======== Mbdification for enbQS, export synbols

. EXPORT SSTACK BASE, SSTACK TOP ; required for enb0s
. EXPORT USTACK_BASE, USTACK TOP ; required for enbCs

These addresses are needed for the embOS stack check functions.

Also ensure that the CPU initializes both stack pointers and starts main() run-
ning up in user mode with the user stack selected.

The startup files coming from Fujitsu normally allow selection via a setting in the
assembly startup file:

------- stack ---------
#set USRSTACK 0 ; use user stack, systemstack for interrupts
#set SYSSTACK 1 ; use systemstack for all (program+ inter)
#set STACKUSE USRSTACK ; USRSTACK, required for enbQOS since version 3.22

Prepare stacks and set the default stack type

#macro SYSSTACKI NI
OR CCR #H 20 ; set Systemstack flag
MOV A, #BNKSYM SSTACK _TOP ; System stack set
MOV SSB, A
MOVW A, #SSTACK_TOP
MOVW SP, A
#endm
#macr o USRSTACKI NI
AND CCR, #H DF ; User stack flag set
MOV A, #BNKSYM USTACK _TOP ; User stack set
MOV USB, A
MOVW A, #USTACK_TOP
MOVW SP, A
#endm
#i f STACKUSE == USRSTACK
SYSSTACKI NI
USRSTACKI NI ; finally user stack sel ected
#el se
USRSTACKI NI
SYSSTACKI NI ; finally system stack sel ected
#endi f

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

14/23

embOS for Fujitsu FZMC-16LX / FX microcontroller

5. F2MC-16LX compiler specifics

5.1. Memory models

embOS for FAMC-16LX supports all memory models that Fujitsu’s C-Compiler
supports (SMALL, MEDIUM, COMPACT and LARGE).

5.2. Available libraries

embOS comes with all libraries for every combination of memory model and li-

brary mode. The files to use are:

Memorymodel | Library type Library define

SMALL eXtreme Release RTOSSR OS LIBMODE XR
SMALL Release RTOSSR OS LIBMODE R
SMALL Stack-check RTOSSS OS_LIBMODE_S
SMALL Stack-check + Profiling |RTOSSSP OS LIBMODE SP
SMALL Debug RTOSSD OS_LIBMODE_D
SMALL Debug + Profiling RTOSSDP OS LIBMODE DP
SMALL Debug + Trace RTOSSDT OS _LIBMODE_DT
MEDIUM eXtreme Release RTOSMR OS LIBMODE XR
MEDIUM Release RTOSMR OS_LIBMODE_R
MEDIUM Stack-check RTOSMS OS _LIBMODE_S
MEDIUM Stack-check + Profiling | RTOSMSP OS_LIBMODE_SP
MEDIUM Debug RTOSMD OS LIBMODE D
MEDIUM Debug + Profiling RTOSMDP OS _LIBMODE_DP
MEDIUM Debug + Trace RTOSMDT OS LIBMODE DT
COMPACT eXtreme Release RTOSCR OS_LIBMODE_XR
COMPACT Release RTOSCR OS LIBMODE R
COMPACT Stack-check RTOSCS OS _LIBMODE_S
COMPACT Stack-check + Profiling |RTOSCSP OS LIBMODE SP
COMPACT Debug RTOSCD OS_LIBMODE_D
COMPACT Debug + Profiling RTOSCDP OS LIBMODE DP
COMPACT Debug + Trace RTOSCDT OS _LIBMODE_DT
LARGE eXtreme Release RTOSLR OS LIBMODE XR
LARGE Release RTOSLR OS _LIBMODE_R
LARGE Stack-check RTOSLS OS LIBMODE_S
LARGE Stack-check + Profiling | RTOSLSP OS_LIBMODE_SP
LARGE Debug RTOSLD OS LIBMODE D
LARGE Debug + Profiling RTOSLDP OS _LIBMODE_DP
LARGE Debug + Trace RTOSLDT OS LIBMODE DT

As can be seen from the table, the library names reflect the memory model and
the library type.

When using Softune workbench, please check the following points:

 The memory model is set as Compiler option

* The embOS library which fits to the selected memory model, is part of your
project (included in one group of your target) and is enabled for compilation.

» The appropriate define is set as compiler option for your project.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 15/23

6. Stacks

6.1. Task stack for F2AMC-16LX

The task stack-size required is the sum of the stack-size of all routines called by
the tasks plus a basic stack size used to store the task context.

The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.

For the F2MC-16LX, this minimum stack size is about 50 bytes in the large
memory model.

Every task has its individual stack which may be located in any RAM location.
The task stack is addressed with the CPUs user stack pointer.

6.2. FAMC-16LX System (Interrupt) stack

The FAMC-16LX and F2MC-16FX CPUs have been designed with multitasking
in mind; they have 2 stack-pointers, USP and SSP. The S-Flag selects the ac-
tive stack-pointer. During execution of a task, the S-flag is cleared thereby se-
lecting the user-stack-pointer. If an interrupt occurs, the FAMC-16LX sets the S-
flag and switches to the system-stack-pointer automatically this way. The SSP
is active when the interrupt function is entered and when the interrupt function
is left.

embOS comes with a special interrupt handler which switches back to the de-
fault USER stack on entry and switches back to the interrupt stack when the in-
terrupt handler is left.

This way, the interrupt does not use the stack of the task and the task stack-
size does not have to be increased for interrupt-routines.

After reset, the FAMC-16LX CPU switches to its system stack. With embOS,
since version 3.22, this stack has to be used for interrupts only. Therefore the
startup code has to define a user stack and has to switch to user stack during
startup.

As the interrupt stack is used for interrupt entry only, the required stack size
depends on the interrupt nesting level only. For large code model and embOS
debug libraries, every interrupt requires a maximum of 36 bytes on the interrupt
stack. The total amount of stack used by interrupts can therefore be caclculated
by multiplying 36bytes by the maximum nesting level (depending on different in-
terrupt priorities used).

The size of the interrupt stack is given as SSSIZE or STACK_SYS_SIZE in the
startup files. Initially we define a stack size of 256 bytes and recommend a
minimum of 128 bytes:

; ======== Mbdification for enbQS, USRSTACK required
SSSI ZE . EQU 256 ; <<< system stack size in words
#i f STACKUSE == USRSTACK
USS| ZE . EQU 256 7 <<< user stack size, if used
#el se

#error "enbCS requires STACKUSE set to USRSTACK"
#endi f

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

16/23 embOS for Fujitsu FZMC-16LX / FX microcontroller

6.3. User stack for F2MC-16LX

The F2MC-16LX and F2MC-16LX have 2 stack-pointers, USP and SSP. The S-
Flag selects the active stack-pointer. During execution of a task, the S-flag is
cleared thereby selecting the user-stack-pointer.

Since version 3.22, embOS also uses the user stack during startup, during the
execution of main() and during execution of high level interrupt handler func-
tions. Therefore a user stack has to be defined in the startup code as shown in
the example above.

This default user stack is also used during execution of OS_Idle(), during inter-
nal scheduler operation and for embOS software timers.

The user stack size therefore depends on the library mode and the application.
We initially set the user stack size to 256 bytes and recommend at least 128
bytes.

The size of the user stack is defined as USSIZE or STACK_USR_SIZE in the
startup files.

When using your own startup, ensure that main() is called with user stack se-
lected!

6.4. Stack specifics of the Fujitsu FAMC-16LX family

The Fujitsu F2AMC-16LX family of microcontrollers can address 16 mega bytes
of memory. Because it has 16-bit stack-pointers only, the stack is accessed by
using additional bank registers. As the internal RAM of FAMC-16LX derivates is
relatively small, it is a good idea to use this RAM as interrupt stack and system
stack.

Task stacks may reside in any RAM location, but have to reside in near mem-
ory, if small memory model is used.

For embQOS, since version 3.22, it is necessary to setup your startup file to use
USRSTACK as initial stack.

Normally you do not need a large user stack, because all tasks use their own
individual stack. Refer to the START.asm which is shipped as sample.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 17/23

7. Dynamic memory, heap management

The heap management functions of the standard system libraries are not
thread safe, the heap can not be allocated from multiple tasks without any kind
of mutual exclusion mechanism. Resource semaphores can be used to protect
the heap against mutual preemptive access from different task.

embOS delivers the thread safe management functions OS_mal | oc(),
CS free() and OS reall oc() which handle the required heap locking
automatically.

Since embOS version 3.84c of embOS for Fujitsu FAMC-16LX/FX, these func-
tions can be used instead of the standard system library functions nal | oc(),
free() andreal |l oc(). The embOS heap management functions were dis-
abled in previous versions of embOS.

Using the heap requires an additional helper function _sbr k() which is deliv-
ered with embOS in source form in the module sbrk.c.

7.1. Heap memory definition and allocation

The heap memory is defined as an array of characters in the source file sbrk.c
which is delivered with embOS.

The size of the heap can be defined by the macro HEAP_SIZE either in the file
itself, or as a preprocessor define in the project.

The file sbrk. ¢ has to be included in every application which needs dynamic
memory.

The _sbrk() function is called whenever the system library requests a new
chunk from the heap, or when some portion at the end of the allocated memory
is freed and given back to the heap.

/***

* SEGGER M CROCONTROLLER GrbH & Co KG *
* Solutions for real time mcrocontroller applications *
kkhkkhkhkhkhkkhkhhkhkhkkhkhhhhkhhhhhkhdhhhhhhhhhdhhhddhhhhdhdrhhdhhhhdhrxdddkhhkhrdhxdhhxxx
File : sbrk.c

Purpose : Inplementation of the _sbrk() function and heap nenory

*/

/***
*

* Confi guration

*/

#i f ndef HEAP_SI ZE
#define HEAP_SIZE 1024

#endi f

/***
*

* Local data

*/

static long brk_siz = 0;
static char _heap[HEAP_SI ZE] ;

/***
*

* sbrk()

*/

extern char* sbrk(int size) {

if (((brk_siz + size) > HEAP_SIZE) || ((brk_siz + size) < 0)) {
return((char*)-1);

}

brk_siz += size;

return(_heap + brk_siz - size);

/****** End G Flle ***/
L]}

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

18/23 embOS for Fujitsu FZMC-16LX / FX microcontroller

8. Interrupts

Interrupts are interruptions of a program caused by hardware. Normal interrupts
are maskable and can occur at any time unless they are disabled with the
CPU's disable-interrupt-instruction.

There are several good reasons for using interrupt-routines. They can respond
very fast to external events like the status change on an input, the expiration of
a hardware timer, reception or completion of transmission of a character via se-
rial interface or other events.

8.1. What happens when an interrupt occurs?

« The CPU-core receives an interrupt request

* As soon as the interrupts are enabled and the processor interrupt priority
level is below or equal to the priority level of the interrupting device, the inter-
rupt is executed

« The CPU switches to the system stack

» The CPU saves PC, flags and bank registers on the stack

* The ILM is loaded with the priority of the interrupt thus blocking lower priori-
tized interrupts

* The CPU jumps to the address specified in the vector table for the interrupt
service routine (ISR)

* |ISR: save registers

* ISR: user-defined functionality

* |ISR: restore registers

* ISR: Execute RETI command, restoring PC, Flags, bank registers and
switching to the stack that was active before receiving the interrupt

» For details, please refer to the Fujitsu users manual.

IMPORTANT:
Fujitsu’s FAMC-16LX anf FX CPUs do not automatically disable interrupts, when
an ISR is entered. Therefore nested interrupts are enabled per default.

8.2. Zero latency, fast interrupts with FAMC-16LX CPUs

Instead of disabling interrupts when embOS does atomic operations, the inter-
rupt level of the CPU is set to an adjustable priority. All interrupts with higher
priorities can still be processed. The default priority limit is set to 2, which
means, all interrupts with priority 1 and O can still be processed, when interrupts
are disabled by embOS.

These interrupts are named Fast interrupts. You must not execute any embOS
function from within a fast interrupt function.

Please note, that the highest useable interrupt priority of interrupt handler call-
ing embQOS functions must not exceed the priority limit which can be adjusted
during runtime using the function OS_Set FastIntPriorityLimt().

8.3. Interrupt priorities with embQOS for F16LX/FX CPUs

With introduction of Fast interrupts, interrupt priorities useable by the applica-
tion are divided into two groups:
» Low priority interrupts with priorities from 6 to a user definable priority
limit. These interrupts are called embOS interrupts.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 19/23

* High priority interrupts with priorities above the user definable priority
limit. These interrupts are called Fast interrupts.

Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters.
The priority limit between embQOS interrupts and Fast interrupts is prede-
fined to a value of 2, allowing fast interrupts to run with high priorities of O
and 1. The limit may be changed during system initialization by a call of
OS SetFastIntPriorityLimt().

8.4. Defining interrupt handlers in "C"

Routines preceded by the keyword i nterrupt save & restore the tempo-
rary registers and all registers they modify onto the stack and return with RETI.
The interrupt handler may be implemented in any source file.

The interrupt handler used by embOS are implemented in the CPU specific
RTCSI nit _*. c file.

Example of an embOS interrupt handler

embOS interrupt handler have to be used for interrupt sources running at all
priorities up to the user definable interrupt priority level limit for fast interrupts.

interrupt void OS ISR Tick (void) {
OS_Cal | Nest abl el SR(_I SR _Ti ck);
}

Any interrupt handler running at priorities from 1 to the selectable "Fast inter-
rupt” priority limit has to be written according the code example above, regard-
less any other embOS API function is called.

The rules for an embQOS interrupt handler are as follows:

* The embOS interrupt handler must not define any local variables.

» The embOS interrupt handler has to call OS_Cal | | SR(), when inter-
rupts should not be nested. It has to call OS_Cal | Nest abl el SR(),
when nesting should be allowed.

* The interrupt handler must not perform any other operation, calcu-
lation or function call. This has to be done by the local function called
from OS_Cal | | SR() or OS_Cal | Nest abl el SR() .

Differences between OS CalllISR() and OS CallNestablelSR()

OS Cal Il SR() should be used as entry function in an embOS interrupt han-
dler, when the corresponding interrupt should not be interrupted by another
embOS interrupt. OS_Cal | | SR() sets the interrupt priority of the CPU to the
user definable “fast” interrupt priority level, thus locking any other embQOS inter-
rupt, Fast interrupts are not disabled.

OS _Cal | Nest abl el SR() should be used as entry function in an embQOS in-
terrupt handler, when interruption by higher prioritized embOS interrupts should
be allowed. OS_Cal | Nest abl el SR() does not alter the interrupt priority of
the CPU, thus keeping all interrupts with higher priority enabled.

Example of a Fast interrupt handler

Fast interrupt handler have to be used for interrupt sources running at priorities
above the user definable interrupt priority limit.
They must not call any embQOS function.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

20/23 embOS for Fujitsu FZMC-16LX / FX microcontroller

__interrupt void FastUserlInterrupt (void) {

unsigned long Count; // local variables are all owed

Count = TPU_TCNTO;

Handl eCount (Count) ; /1 Any function call except enbOS functions is allowed
}

The rules for a Fast interrupt handler are as follows:
e Local variables may be used.
» Other functions may be called.
* embOS functions must not be called, nor direct, neither indirect.
* The priority of the interrupt has to be above the user definable priority
limit for fast interrupts.

8.5. OS_SetFastIntPriorityLimit()

With introduction of Fast interrupts, interrupt priorities useable for interrupts us-
ing embOS API functions are limited.

Interrupts with higher priorities are never disabled by embOS.

The default interrupt priority limit for fast interrupts is set to 2, allowing interrupts
with priorities of 6 to 2 be used with embOS functions. Interrupts with higher
priorities are never disabled by embOS and must not call any embOS function.
This priority limit may be changed by a call of OS_SetFastIntPriorityLimit().

Prototype
void OS SetFastIintPriorityLimt (OS_U NT Prio);

Parameter Meaning
The interrupt priority limit for fast interrupts.
O<=Prio<=5

Prio

Return value
Void.

Add. information

The Priority limit should not be set above 5, because 6 is the lowest interrupt
priority used by embOS internal timer interrupt. Setting a priority limit of 6
would block all embOS interrupts.

The debug version of embOS checks whether the limit is above 5 and calls
OS_Error (). The release version does not perform any checks.

8.6. Special considerations for the FAMC-16LX / FX

None.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller 21/23

9. STOP / WAIT Mode

Usage of the wait instruction is one possibility to save power consumption dur-
ing idle times. If required, you may modify the OS_| dl e() routine, which is part
of the hardware dependent module.

The stop-mode works without a problem; however the real-time operating sys-
tem is halted during the execution of the stop-instruction if the timer that the
scheduler uses is supplied from the internal clock. With external clock, the
scheduler keeps working.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

22/23

embOS for Fujitsu FZMC-16LX / FX microcontroller

10. Technical data

10.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the default memory model.

Short description ROM RAM

[byte] [byte]
Kernel approx.1300 26
Event-management < 200
Mailbox management < 550
Single-byte mailbox management < 300
Resource-semaphore management < 250
Timer-management < 250
Add. Task 18
Add. Semaphore 4
Add. Mailbox 12
Add. Timer 10
Power-management

11. Files shipped with embOS

Directory File Explanation

root *. pdf Generic API and target specific documen-
tation

root Rel ease. ht Ml | Version control document

root enbCOSVi ew. exe |Utility for runtime analysis, described in
generic documentation

START OS_Start.wsp |Sample workspace for Softune work-
bench

START GS_Start. prj Sample project for Softune workbench

START OS_Start.dat |Additional settings for sample project

START OS_Start.sup |Settings for Softune simulator

START Os_Start.prc [Command file for Softune simulator,
simulates timer interrupt

START\INC RTGS. H Include file for embOS, to be included in
every "C"-file using embQOS -functions

STARTAINC |_f16lxs.h CPU identification. Translates Project
CPU selection to CPU-Series definition.

START\LIB RTOCS*. LI B embOS libraries

START\SRC |main.c Sample frame program to serve as a start

START\SRC |sbrk.c Heap memory definition and support.

START\SRC |START. ASM Start up file, modified for embOS

START\CPU |nb90545. asm Internal register defines of CPU

START\CPU |Rtosinit.C CPU specific hardware routines used by
embOS.

START\CPU_* |Rtosinit*. C CPU specific hardware routines for vari-

nb90*. asm ous CPUs.

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

embOS for Fujitsu FZMC-16LX / FX microcontroller

23/23

12. Index

INEEITUPES .. 18
INEEITUPL e 19 L
S o1 TS 17 library mode.......ccccocevevieieiinnns 14
D M
Dynamic memorycccceeeveeeenns 17 (1071 [o ol RS 17
E memory modelS........ccceevenviennns 14
embOS INLETUPL.. oo 18 memory requirements............oo.... 22
F O
Fast interrupt.......ccooevveveeieeieennns 18
LS) TSR 17
H
(2 1= TR 17
HEAP_SIZE.......ccoooviiiiriiienn, 17
I
Installationccccoeeieiniieicnnnne, 5 R
Interrupt priorities........c.cceeveveennen. 18 O [0 DO 17
Interrupt, fast........ccoceveveieeiicennns 18

S

1S o] S 17
SSSIZE ...t 15
SSTACK_BASE.......cccceieee 11,13
SSTACK_TOP....ccccvivvrirnenn 11,13
STACK_SYS SIZE ..., 15
STACK_USR SIZE......ccoonuun.... 16
SEACKS e 15
Stop-mMode.......coveveveeiiiicesienen 21
)

USRSTACKoovirirrierienceieene 16
USSIZE ... 16
USTACK_BASE......cccceiene 11,13
USTACK_TOP......cccovvirrinne 11,13
W
Wait-mode........cceeveveevrenieniennn 21
Z

Zero latencycoveeeveeeicesiesiennn 18

0 1996 - 2012 SEGGER Microcontroller GmbH & Co. KG

	Contents
	About this document
	How to use this manual

	What is new?
	Update / Upgrade information regarding interrupts

	Using embOS with Softune workbench
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c using the Softune Simulator

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change library mode
	Change memory model
	Select an other CPU
	Modify the startup-code

	F²MC-16LX compiler specifics
	Memory models
	Available libraries

	Stacks
	Task stack for F²MC-16LX
	F²MC-16LX System (Interrupt) stack
	User stack for F²MC-16LX
	Stack specifics of the Fujitsu F²MC-16LX family

	Dynamic memory, heap management
	Heap memory definition and allocation

	Interrupts
	What happens when an interrupt occurs?
	Zero latency, fast interrupts with F²MC-16LX CPUs
	Interrupt priorities with embOS for F16LX/FX CPUs
	Defining interrupt handlers in "C"
	OS_SetFastIntPriorityLimit()
	Special considerations for the F²MC-16LX / FX

	STOP / WAIT Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

