
embOS
Real-Time Operating System

CPU & Compiler specifics for Renesas
RL78 using IAR Embedded Workbench

Document: UM01032
Software Version: 5.20.0.0

Revision: 0
Date: April 3, 2025

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: April 3, 2025

Software Revision Date By Description

5.20.0.0 0 250403 MC New software version.

5.18.1.0 0 230405 MC Chapter “Libraries” updated.

5.18.0.0 0 230308 TS/MC New software version.

5.16.0.0 0 220107 TS New software version.

5.10.2.1 0 200922 TS New software version.

5.10.2.0 0 200909 MC New software version.

5.02 0 180702 TS New software version.

4.40 0 180105 MC New software version.

4.36 0 170728 MC New software version.

4.34 0 170329 TS New software version.

4.16 0 160308 TS New software version.

4.14a 0 160115 TS New software version.

4.14 0 151130 TS New software version.

4.10b 0 150609 TS Chapter “Interrupts” updated.

4.04a 0 150303 MC Initial version.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

4

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

6

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..8

1.1 Installation ..9
1.2 First Steps .. 10
1.3 The example application OS_StartLEDBlink.c ... 11
1.4 Stepping through the sample application ...12

2 Build your own application ..15

2.1 Introduction ...16
2.2 Required files for an embOS ..16
2.3 Change library mode .. 16
2.4 Select another CPU .. 16

3 Libraries ...17

3.1 Naming conventions for prebuilt libraries .. 18

4 CPU and compiler specifics ..19

4.1 IAR C-Spy stack check warning ... 20
4.2 Interrupt and thread safety ...20
4.3 CPU modes ... 21

5 Stacks ... 22

5.1 Task stack ...23
5.2 System and Interrupt stack ...23

6 Interrupts ... 24

6.1 What happens when an interrupt occurs? ..25
6.2 Defining interrupt handlers in C ...25
6.3 Interrupt stack .. 25
6.4 Interrupt-stack switching .. 25
6.5 Zero latency interrupts with RL78 .. 26
6.6 OS_INT_SetPriorityThreshold() ...27

7 Technical data ...28

7.1 Resource Usage ... 29

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to get started with embOS. You should follow these steps to
become familiar with embOS.

embOS is shipped as a zip-file in electronic form. To install it, you should extract the zip-file
to any folder of your choice while preserving its directory structure (i.e. keep all files in their
respective sub directories). Ensure the files are not read-only after extraction. Assuming
that you are using an IDE to develop your application, no further installation steps are
required.

Note

The projects at /Start/BoardSupport/<DeviceManufacturer>/<Board> assume a
relative location for the /Start/Lib and /Start/Inc folders. If you copy a BSP folder
to another location, you will need to adjust the include paths of the project accordingly.

At /Start/BoardSupport/<DeviceManufacturer>/<Board> you should find several exam-
ple start projects, which you may adapt to write your application. To do so, follow the in-
structions of section First Steps on page 10.

In order to become familiar with embOS, consider using the example projects (even if you
will not use the IDE for application development).

If you do not or do not want to work with an IDE, you may copy either all library files or only
the library that is used with your project into your work directory. embOS does in not rely on
an IDE, but may be used without an IDE just as well, e.g. using batch files or a make utility.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS, you can create your first multitasking application. You received
several ready-to-go sample workspaces and projects as well as all required embOS files
inside the subfolder Start. The subfolder Start/BoardSupport contains the workspaces
and projects, sorted into manufacturer- and board-specific subfolders. It is a good idea to
use one of the projects as a starting point for any application development.

To get your new application running, you should:
• Create a directory for your development.
• Copy the whole Start folder from your embOS shipment into the directory.
• Clear the read-only attribute of all files in the copied Start folder.
• Open one sample workspace/project in

Start/BoardSupport/<DeviceManufacturer>/<Board> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After building the project of your choice, the screen should look like this:

For additional information, you should open the ReadMe.txt file that is part of every BSP.
It describes the different configurations of the project and, if required, gives additional
information about specific hardware settings of the supported evaluation board(s).

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application (the actual file shipped with your port of embOS may
differ slightly).

What happens is easy to see:

After initialization of embOS, two tasks are created and started. The two tasks get activated
and execute until they run into a delay, thereby suspending themselves for the specified
time, and eventually continue execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 an LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

12 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

16 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 10 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

18 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

osRL78<code_model><data_model><const_location><core>_<libmode>.a

Parameter Meaning Values

code_model
Specifies the selected code
model

n: near
f : far

data_model
Specifies the selected data
model

n: near data model
f : far data model

const_loca-
tion

Specifies the location of con-
stants

0: constants are located in ROM0
1: constants are located in ROM1
r: constants are located in RAM

core CPU core variant

1: RL78 core without instructions to
 support a hardware multiplier/
 divider (S2)

2: RL78 core with instructions to
 support a hardware multiplier/
 divider (S3)

libmode Specifies the library mode

XR: Extreme Release
R : Release
S : Stack check
SP: Stack check + profiling
D : Debug
DP: Debug + profiling
DT: Debug + profiling + trace

Example

osRL78nn1_SP.a is the library for a project using near code model and near data model for
the RL78_1 core variant with stack check and profiling support.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

20 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning
IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. Depending on the IAR version used, this warning can be disabled by removing the
check mark for Tools -> Options… -> Stack -> ’Warn when stack pointer is out
of bounds’ or Project -> Options… -> Debugger -> Plugins -> Stack.

4.2 Interrupt and thread safety
Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system libraries provide functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe.

The Setup directory in each embOS BSP contains the file OS_ThreadSafe.c which overwrites
these functions. By default they disable and restore embOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_Idle() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_Idle() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_INTERRUPT_SAFE.
• When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, OS_Idle()

and software timers.
• When defined to 0 thread safety is guaranteed only in tasks. In this case you must not

call e.g. heap functions from within an ISR, OS_Idle() or embOS software timers.

4.2.1 Enabling thread-safe IAR system libraries
By default, IAR does not use thread-safe system libraries. As a result the implemented hook
functions are not linked into the application. To use the thread-safe system libraries the
option “Enable thread support in library” must be set in Project -> Options… ->
General Options -> Library Configuration. Alternatively, the option --threaded_lib
can be passed to the linker.

To use the automatic thread-safe locking functions the function OS_INIT_SYS_LOCKS() must
be called.

To enable thread-safe C++ constructors and destructors the option --guard_calls needs
to be passed to the compiler.

For more information on IAR’s multithread support, please refer to the IAR Embedded Work-
bench manuals.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

21 CHAPTER 4 CPU modes

4.3 CPU modes
embOS for RENESAS RL78 supports all memory models that the IAR C/C++ Compiler sup-
ports. For the RL78 CPUs, there are two code memory models and two data models which
results in four different combinations for the memory model options.

The IAR compiler offers two code models:

Code Model Default memory attribute Code location

near __near_func 0x000000 to 0x00FFFF
far __far_func 0x000000 to 0xFFFFFF

The IAR compiler offers two data models:

Data Model Default memory attribute Data placement

near __near The highest 64KB of memory.
far __far The entire 1MB memory space.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

23 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

The stack pointer of the RL78 CPUs is a 16bit register and can therefore point to any near
memory location.

The stacks for the tasks may be located in any RAM location which can be addressed by
the stack pointer. The required amount of stack for a task depends on the embOS library
mode, the application and functions called by the task. As long as interrupt stack switching
is not used, all interrupts may also run on the task stack.

The minimum amount of stack required by embOS to save the task specific registers is
about 24 bytes. We recommend at least a minimum task stack size of 64 bytes. Using
the embOS IAR plugin or embOSView together with a stack check library may be used to
analyze the amount of stack used and needed for every task.

5.2 System and Interrupt stack
The IAR CSTACK is used as system stack. Your application uses this stack before executing
OS_Start(), during execution of embOS internal functions and during the timer tick rou-
tines. Also software timers use the system stack. If your interrupt service routines perform
stack switching by calling OS_INT_EnterIntStack(), they will also use the system stack.

The CSTACK segment also has to be located in the internal RAM which is addressable by
the stack pointer.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

25 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request.
• As soon as the interrupts are enabled, the interrupt is executed.
• The corresponding interrupt service routine (ISR) is started.
• The first thing you should do in the ISR, is to call OS_INT_Enter() or

OS_INT_EnterNestable(). These functions tell embOS, that you are executing an ISR.
In case of calling OS_INT_EnterNestable() embOS will reenable interrupts again to
allow nesting.

• The ISR stores all registers which are modified by the ISR on the current stack. Current
stack is either a task stack or the system stack.

• If your are using OS_INT_EnterIntStack() in the ISR, it will switch the stack pointer
to the system stack. Please be aware, that a function calling OS_INT_EnterIntStack()
is not allowed to have local variables.

• If you used OS_INT_EnterIntStack() at the beginning of your ISR, you have to call
OS_INT_LeaveIntStack() at the end of this function. The stack pointer will be restored
to its original value.

• Depending on which function you have called at the beginning of your ISR, you will
have to call OS_INT_Leave() or OS_INT_LeaveNestable() and the ISR will return from
interrupt. If the ISR caused a task switch, it will take place immediately when leaving
the ISR.

6.2 Defining interrupt handlers in C
The definition of an interrupt function using embOS calls is very much the same as for a
normal interrupt service routine (ISR). If your ISR will use embOS system calls, or if you
enable interrupts again in your ISR, you will have to call OS_INT_Enter() or OS_INT_En-
terNestable() at the start and OS_INT_Leave() or OS_INT_LeaveNestable() at the end
of your ISR. In case you want to execute the ISR on the system stack, you will have to call
OS_INT_EnterIntStack() right after e.g. OS_INT_Enter() and OS_INT_LeaveIntStack()
right before e.g. OS_INT_Leave().

Example

Simple interrupt routine:

#pragma vector= INTTM00_vect
__interrupt void OS_ISR_Tick(void) {
 OS_INT_EnterNestable();
 OS_INT_EnterIntStack();
 OS_HandleTick();
 OS_INT_LeaveIntStack();
 OS_INT_LeaveNestable();
}

6.3 Interrupt stack
The routines OS_INT_EnterIntStack() and OS_INT_LeaveIntStack() can be used to
switch the stack pointer to the system stack during execution of the ISR. If you are not
using these routines, the ISR uses the active stacks. The active stack is either a task stack
or the system stack.

6.4 Interrupt-stack switching
Since the RENESAS RL78 CPUs do not have a separate stack pointer for interrupts, every
interrupt runs on the current stack. To reduce the stack load of tasks, embOS offers its
own interrupt stack which is located in the system stack. To use the embOS interrupt

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

26 CHAPTER 6 Zero latency interrupts with RL78

stack, call OS_INT_EnterIntStack() at the beginning of an interrupt handler just after the
call of OS_INT_Enter() and call OS_INT_LeaveIntStack() at the end just before OS_IN-
T_Leave().

Note

Please note, that an interrupt handler using interrupt stack switching must not use
local variables. It must call a function instead.

Example

Interrupt-routine using embOS interrupt stack:

static void OS_ISR_Rx_Handler(void) {
 int Dummy;
 if (ASIS0 & 0x07) { // Check any reception error
 Dummy = RXB0; // Reset error, discard Byte
 } else {
 OS_COM_OnRx(RXB0); // Process data
 }
}
__interrupt [INTSR0_vect] void OS_ISR_rx(void) {
 OS_INT_EnterNestable(); // We will enable interrupts
 OS_INT_EnterIntStack(); // We will use interrupt stack
 OS_ISR_Rx_Handler(); // A call to a handler is required!
 OS_INT_LeaveIntStack(); // Interrupt stack switching does
 OS_INT_LeaveNestable(); // not allow local variables in ISR
}

6.5 Zero latency interrupts with RL78
Instead of disabling interrupts when embOS does atomic operations, the interrupt level of
the CPU is set per default to 1. Therefore all interrupts with the priorities 0 and 1 can still be
processed. Please note, that lower priority numbers define a higher priority. All interrupts
with priority levels 0 and 1 are never disabled. These interrupts are named zero latency
interrupts.

You must not execute any embOS function from within a zero latency interrupt
function.

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

27 CHAPTER 6 OS_INT_SetPriorityThreshold()

6.6 OS_INT_SetPriorityThreshold()
The interrupt priority limit for zero latency interrupts is set to 1 by default. This means, all
interrupts with priority 0 and 1 will never be disabled by embOS.

Description

OS_INT_SetPriorityThreshold() is used to set the interrupt priority limit between zero
latency interrupts and lower priority embOS interrupts.

Prototype

void OS_INT_SetPriorityThreshold(OS_UINT Priority)

Parameters

Parameter Description

Priority
The lowest value useable as priority for zero latency interrupts. All
interrupts with higher priority are never disabled by embOS. Valid
range: 0 ≤ Priority ≤ 2

Return value

None.

Additional information

To modify the default priority limit, OS_INT_SetPriorityThreshold() should be called be-
fore embOS was started.

This table shows which interrupt priority values are valid for a given priority limit.

Priority limit embOS interrupts Zero latency interrupts

0 1, 2, 3 0
1 (default) 2, 3 0, 1
2 3 0, 1, 2

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 7

Technical data

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

29 CHAPTER 7 Resource Usage

7.1 Resource Usage
The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~1700 bytes
embOS kernel RAM ~94 bytes
Task control block RAM 14 bytes
Software timer RAM 10 bytes
Task event RAM 0 bytes
Event object RAM 6 bytes
Mutex RAM 8 bytes
Semaphore RAM 4 bytes
RWLock RAM 14 bytes
Mailbox RAM 14 bytes
Queue RAM 16 bytes
Watchdog RAM 6 bytes
Fixed Block Size Memory Pool RAM 16 bytes

embOS for RL78 and IAR © 2010-2025 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	Interrupt and thread safety
	Enabling thread-safe IAR system libraries

	CPU modes

	Stacks
	Task stack
	System and Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt stack
	Interrupt-stack switching
	Zero latency interrupts with RL78
	OS_INT_SetPriorityThreshold()

	Technical data
	Resource Usage

