

embOS

Real Time Operating System

CPU & Compiler specifics for

ATMEL AVR with

IAR compiler and

Embedded Workbench

Document Rev. 6

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

embOS for ATMEL AVR and IAR Embedded Workbench 3/18

 2011 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with IAR Embedded Workbench ... 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Main.c .. 7
2.4. Stepping through the sample application Main.c using CSpy.............................. 7

3. Build your own application... 11
3.1. Required files for an embOS application .. 11
3.2. Select a start project .. 11
3.3. Add your own code .. 11
3.4. Change library mode.. 11

4. AT90 / ATMega specifics .. 12
4.1. Memory models ... 12
4.2. Available libraries... 12
4.3. Distributed project files... 13

5. Stacks ... 14
5.1. Stack address range.. 14
5.2. System stack ... 14
5.3. Task stacks.. 14

6. Interrupts ... 15
6.1. What happens when an interrupt occurs? ... 15
6.2. Defining interrupt handlers in "C"... 15
6.3. Interrupt-stack.. 16

7. Idle Mode .. 17
8. Technical data... 17

8.1. Memory requirements .. 17
9. Files shipped with embOS.. 17
10. Index ... 18

4/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS Real Time Operating System for the
ATMEL AT90/ATmega series of microcontrollers using IAR compiler and Em-
bedded Workbench.

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS using
ATMEL AT90 / ATmega based controllers with IAR Embedded Workbench. Be-
fore actually using embOS, you should read or at least glance through this
manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using IAR Embedded Workbench. If you have no experience using embOS,
you should follow this introduction, because it is the easiest way to learn how to
use embOS in your application.
Most of the other chapters in this document are intended to provide you with
detailed information about functionality and fine-tuning of embOS for the
ATMEL AT90 / ATmega based controllers using IAR Embedded Workbench.

embOS for ATMEL AVR and IAR Embedded Workbench 5/18

 2011 SEGGER Microcontroller GmbH & Co. KG

2. Using embOS with IAR Embedded Work-
bench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using IAR Embedded Workbench to develop your appli-
cation, no further installation steps are required. You will find a prepared sam-
ple start project, which you should use and modify to write your application. So
follow the instructions of the next chapter ‘First steps’.

You should do this even if you do not intend to use IAR’s Embedded Work-
bench for your application development in order to become familiar with em-
bOS.

If for some reason you do not want to work with IAR’s Embedded Workbench,
you should:
Copy either all or only the library-file that you need to your work-directory. This
has the advantage that when you switch to an updated version of embOS later
in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on IAR’s Embedded Workbench, it may be used
with batch files or a make utilities without any problem.

6/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received a ready to go sample start workspace
and project and it is a good idea to use this as a starting point of all your appli-
cations, as this project contains all compiler settings needed for embOS.

To get your new application running, you should proceed as follows.
• Create a work directory for your application, for example c:\work
• Copy the whole folder ‘Start’ from your embOS distribution into your work

directory.
• Clear the read only attribute of all files in the new ‘Start’-folder in your work-

ing directory.
• Open the folder ‘Start’.
• Open the sample workspace ‘Start.eww’. (e.g. by double clicking it)
• Select the configuration for CSpy simulator 3SD_CSpy
• Build the start project

Your screen should look like follows:

For latest information you should open the file start\ReadMe.txt.

embOS for ATMEL AVR and IAR Embedded Workbench 7/18

 2011 SEGGER Microcontroller GmbH & Co. KG

2.3. The sample application Main.c

The following is a printout of the sample application main.c. It is a good starting-
point for your application. (Please note that the file actually shipped with your
port of embOS may look slightly different from this one)
What happens is easy to see:
After initialization of embOS; two tasks are created and started
The 2 tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/**
* SEGGER MICROCONTROLLER SYSTEME GmbH
* Solutions for real time microcontroller applications

File : Main.c
Purpose : Skeleton program for embOS
--------- END-OF-HEADER ---------------------------------*/

#include "RTOS.H"

OS_STACKPTR int Stack0[128], Stack1[128]; /* Task stacks */
OS_TASK TCB0, TCB1; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 OS_Delay (10);
 }
}

void Task1(void) {
 while (1) {
 OS_Delay (50);
 }
}

/**
*
* main
*
**/

void main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_Start(); /* Start multitasking */
}

2.4. Stepping through the sample application Main.c using CSpy

When starting the debugger, you will usually see the main function (very similar
to the screenshot below). Now you can step through the program.
OS_IncDI()initailly disables interrupts and inhibits re-enabling of interrupts
during execution of OS_InitKern().
OS_InitKern() is part of the embOS Library; you can therefore only step
into it in disassembly mode. It initializes the relevant OS-Variables and enables
interrupts unless OS_IncDI() was not called before.
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.

8/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

OS_COM_Init() called from OS_InitHW() is optional. It is required if em-
bOSView shall be used. In this case it initializes the UART used for communi-
cation.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set breakpoints in the two tasks:

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, Task0() is the highest priority task and is therefore active.

embOS for ATMEL AVR and IAR Embedded Workbench 9/18

 2011 SEGGER Microcontroller GmbH & Co. KG

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend Task1 and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).
OS_Idle() is found in RTOSInit.c:

10/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay. Coming from OS_Idle(), you should
execute the ‘Go’ command to arrive at the highest priority task after its delay is
expired. This can be seen at the system variable OS_Time:

embOS for ATMEL AVR and IAR Embedded Workbench 11/18

 2011 SEGGER Microcontroller GmbH & Co. KG

3. Build your own application
To build your own application, you should start with the sample start project.
This has the advantage, that all necessary files are included and all settings for
the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:
• RTOS.h from sub folder Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c from CPU specific subfolder CPU_*\.
It contains hardware dependent initialization code for embOS timer and op-
tional UART for embOSView.

• One embOS library from the Lib\ subfolder
• OS_Error.c from subfolder Src\

The error handler is used if any library other than Release build library is
used in your project.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to “C” standard. This is re-
quired for some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.

3.2. Select a start project

embOS comes with one start project which includes different configurations for
different output formats or debug tools. The start project was built and tested
with ATmega103 CPU. For other ATMEL AVR or ATmega CPUs there may be
modifications required in RTOSInit.c.

3.3. Add your own code

For your own code, you may add a new group to the project.
You should then modify or replace the main.c source file in the subfolder src\.

3.4. Change library mode

For your application you may wish to choose an other library. For debugging
and program development you should use an embOS -debug library. For your
final application you may wish to use an embOS -release library.
Therefore you have to select or replace the embOS library in your project or
target:
• in the Lib group, exclude all libraries from build, except the one which should

be used for your application.
Finally check project options about library mode setting according library mode
used. Refer to chapter 4 about the library naming conventions to select the cor-
rect library and library mode specific define.

12/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

4. AT90 / ATMega specifics

4.1. Memory models

embOS was designed for the small memory model and CPU variants type 3
and type 5 that IAR’s C-Compiler supports.
Smaller CPUs with a maximum of 64KB Flash (ATMega64 or smaller) are sup-
ported and require usage of different libraries.

4.2. Available libraries

embOS comes with different libraries. During development of your application
you may use any of the debug type libraries, as those include error checks that
are helpful during development.
Later you may change to the stack check version, which executes faster, as all
other runtime error checks are disabled. The release library executes fastest as
it does not include any error checks during runtime.

The files to use for ATmega CPUs variant 3 are:

Memorymodel Library type Library define
Small Release rtos3S_R OS_LIBMODE_R
Small Stack-check rtos3S_S OS_LIBMODE_S
Small Stack-check + Profiling rtos3S_SP OS_LIBMODE_SP
Small Debug rtos3S_D OS_LIBMODE_D
Small Debug + Profiling rtos3S_DP OS_LIBMODE_DP
Small Debug + Profiling + Trace rtos3S_DT OS_LIBMODE_DT

The files to use for ATmega CPUs with 24bit code address range, variant 5 are:

Memorymodel Library type Library define
Small Release rtos5S_R OS_LIBMODE_R
Small Stack-check rtos5S_S OS_LIBMODE_S
Small Stack-check + Profiling rtos5S_SP OS_LIBMODE_SP
Small Debug rtos5S_D OS_LIBMODE_D
Small Debug + Profiling rtos5S_DP OS_LIBMODE_DP
Small Debug + Profiling + Trace rtos5S_DT OS_LIBMODE_DT

The files to use for ATmega CPUs with 24bit code address range, variant 6 are:

Memorymodel Library type Library Define
Small Release rtos6S_R OS_LIBMODE_R
Small Stack-check rtos6S_S OS_LIBMODE_S
Small Stack-check + Profiling rtos6S_SP OS_LIBMODE_SP
Small Debug rtos6S_D OS_LIBMODE_D
Small Debug + Profiling rtos6S_DP OS_LIBMODE_DP
Small Debug + Profiling + Trace rtos6S_DT OS_LIBMODE_DT

embOS for ATMEL AVR and IAR Embedded Workbench 13/18

 2011 SEGGER Microcontroller GmbH & Co. KG

The files to use for ATmega CPUs with small Flash (ATmega64 or smaller) are:

Memorymodel Library type Library define
Small Release rtos3SSF_R OS_LIBMODE_R
Small Stack-check rtos3SSF_S OS_LIBMODE_S
Small Stack-check + Profiling rtos3SSF_SP OS_LIBMODE_SP
Small Debug rtos3SSF_D OS_LIBMODE_D
Small Debug + Profiling rtos3SSF_DP OS_LIBMODE_DP
Small Debug + Profiling + Trace rtos3SSF_DT OS_LIBMODE_DT

When using IAR’s workbench, please check the following points:
• The memory model and CPU variant is set as general project option
• One embOS library is part of your project (included in one group of your tar-

get)
• The appropriate define is set as compiler option for your project.

4.3. Distributed project files

The distribution of embOS contains one start workspace with different projects
for the small memory model in the start subdirectory.
The projects contain configurations for any library type and one additional con-
figuration that should be used for CSpy.
The configuration names reflect the selected library.
You should use these configurations to develop your application. Simply add
new groups containing your own sources. This ensures, that all settings and
files needed for embOS are always setup correctly.

14/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

5. Stacks

5.1. Stack address range

Because the ATMEL AT90 / ATmega has a 16-bit hardware stack-pointer, a
stack has to be located in the lower 64kB of memory (0x0100 - 0xFFFF) The
lowest addresses are reserved as special function registers and tiny area. You
can not use memory outside this area as stack for a task.

5.2. System stack

The system stack is used for the following purposes:
• Normal stack during startup (until OS_Start() is called).
• embOS internal functions
• Software timer
• Stack for interrupt handler, when OS_EnterIntStack() is used.

The system stack is divided into two sections that are defined in the linker file or
can be configured in the embedded workbench under “Project options | General
| System”
RSTACK: The return stack is the segment where the CPUs stack pointer points
to. This is used for storage of return addresses during subroutine call.
A good value for the size of the return stack is a minimum of 32 bytes, or 16
levels under project option settings.

CSTACK: Is the segment that is used for parameter passing. It is implemented
by using CPUs Y-register as “stack pointer”.
A good value for the size of the CSTACK stack is a minimum of 100 bytes.

Bigger stacks are not a problem, of course.

5.3. Task stacks

Every task uses its own stack which has to be defined when the task is created.
As the system stack, the task stack also is divided into two parts, using the
CPUs stack pointer for return addresses and an additional emulated stack by
using the Y-register as stack pointer for parameter and local variables.

embOS for ATMEL AVR and IAR Embedded Workbench 15/18

 2011 SEGGER Microcontroller GmbH & Co. KG

6. Interrupts

6.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request
• As soon as the interrupts are enabled and the processor finished a complete

instruction, the interrupt is executed
• the CPU saves actual PC on the stack
• the CPU loads the specified instruction from the vector table. This should be

a jump to the interrupt service routine (ISR)
• ISR: save registers
• ISR: user-defined functionality
• ISR: restore registers
• ISR: Execute RETI command, restoring PC, thus returning to the interrupted

program
• For details, please refer to the Atmel / ATmega users manual.

6.2. Defining interrupt handlers in "C"

Routines preceded by the keywords #pragma vector save & restore the re-
turn address and return with RTI. embOS interrupt handler have to use
OS_CallISR()/ OS_CallNestableISR().

Example of an embOS interrupt handler
void OS_ISR_Tick_Handler(void);
void OS_ISR_Tick_Handler(void) {
 OS_TICK_Handle();
}

#pragma vector = TCC0_CCA_VECT
__interrupt void OS_ISR_Tick (void);
#pragma vector = TCC0_CCA_VECT
__interrupt void OS_ISR_Tick (void) {
 OS_CallISR(OS_ISR_Tick_Handler);
}

The rules for an embOS interrupt handler are as follows:

• The embOS interrupt handler must not define any local variables.
• The embOS interrupt handler has to call OS_CallISR()/

OS_CallNestableISR().
• The interrupt handler must not perform any other operation, calcu-

lation or function call. This has to be done by the local function called
from OS_CallISR() or OS_CallNestableISR().

• For Atxmega embOS interrupt handlers must have the interrupt pri-
ority 1. All other interrupt handlers with higher interrupt priorities
are zero latency interrupts which must not call any embOS API
function.

16/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

6.3. Interrupt-stack

Since the AT90 / ATmega has only one hardware stack pointer, every interrupt
uses additional stack space on the stack of the current task.

IAR uses the hardware stack pointer and additional RAM pointed to by register
Y as stack. As interrupts may occur any time, every task has to have enough
stack for its own subroutine calls and all interrupts as well.
To reduce the stack space used for tasks, interrupt service routines may use
the system stack for execution.
Stack switching is automatically done by OS_CallISR()/
OS_CallNestableISR() which calls internally OS_EnterIntStack()and
OS_LeaveIntStack().

embOS for ATMEL AVR and IAR Embedded Workbench 17/18

 2011 SEGGER Microcontroller GmbH & Co. KG

7. Idle Mode
In Idle mode, the CPU is stopped, but UART, SPI, ADC, timers, comparators
and interrupt system continue operation.
This may be used to save power consumption during idle times. Therefore you
may place the SLEEP command in OS_Idle(). Any further interrupt will wake
up the CPU and operation continues.

8. Technical data

8.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The minimum ROM requirement for the kernel itself is about 1904
bytes.
The table below shows minimum RAM size for embOS resources. Please note,
that sizes depend on selected embOS library mode; table below is for a re-
lease build.

embOS resource RAM [bytes]
Task control block 17
Resource semaphore 4
Counting semaphore 2
Mailbox 11
Software timer 9

9. Files shipped with embOS

Directory File Explanation
root *.pdf Generic API and target specific docu-

mentation
root Release.html Release notes of embOS MSP430
root embOSView.exe Utility for runtime analysis, described in

generic documentation
Start\ Start.eww Sample workspace for IAR workbench
Start\ Start_*.ewp Start project for various CPUs
Start\ Start_*.ewd Setup for CSpy debugger
Start\Inc\ RTOS.h To be included in any file using embOS

functions
Start\lib\ rtos*.r90 embOS libraries
Start\Src\ main.c Frame program to serve as a start
Start\Src\ OS_Error.c embOS error handler used in stack

check and debug builds
Start\CPU_*\ RtosInit_*.c Target CPU specific hardware initializa-

tion; can be modified
Start\CPU_*\ CSpy_*.mac Target CPU specific interrupt simulation

setup macro for CSpy simulator

Any additional files shipped serve as example.

18/18 embOS for ATMEL AVR and IAR Embedded Workbench

  2011 SEGGER Microcontroller GmbH & Co. KG

10. Index
I
Idle mode 17
Installation 5
Interrupts...................................... 15
Interrupt-stack.............................. 16

M
memory models12
memory requirements...................17
S
Sleep...17

Stacks ...14
system stack..................................14
T
target hardware17

	Contents
	About this document
	How to use this manual

	Using embOS with IAR Embedded Workbench
	Installation
	First steps
	The sample application Main.c
	Stepping through the sample application Main.c using CSpy

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change library mode

	AT90 / ATMega specifics
	Memory models
	Available libraries
	Distributed project files

	Stacks
	Stack address range
	System stack
	Task stacks

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt-stack

	Idle Mode
	Technical data
	Memory requirements

	Files shipped with embOS
	Index

