
embOS
Real-Time Operating System

CPU & Compiler specifics for MSP430
using IAR Embedded Workbench

Document: UM01023
Software Version: 5.16.1.0

Revision: 0
Date: January 14, 2022

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: January 14, 2022

Software Revision Date By Description

5.16.1.0 0 220114 MM New software version.

5.12.0.0 0 201028 MM New software version.

4.16 0 160310 TS First version.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

4

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

6

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..8

1.1 Installation ..9
1.2 First Steps .. 10
1.3 The example application OS_StartLEDBlink.c ... 11
1.4 Stepping through the sample application ...12

2 Build your own application ..15

2.1 Introduction ...16
2.2 Required files for an embOS ..16
2.3 Change library mode .. 16
2.4 Select another CPU .. 16

3 Libraries ...17

3.1 Naming conventions for prebuilt libraries .. 18
3.2 Data / Memory models, compiler options .. 18

4 CPU and compiler specifics ..19

4.1 CLIB and DLIB runtime environment .. 20

5 Stacks ... 21

5.1 Task stack ...22
5.2 System stack ...22
5.3 Interrupt stack .. 22

6 Interrupts ... 23

6.1 What happens when an interrupt occurs? ..24
6.2 Defining interrupt handlers in "C" .. 24

7 Technical data ...25

7.1 Resource Usage ... 26

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to start with embOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.

To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 10.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start. It is a good idea to use one of them as a starting point for
all of your applications. The subfolder BoardSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from BoardSupport subfolder.

To get your new application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work.
• Copy the whole folder Start which is part of your embOS distribution into your work

directory.
• Clear the read-only attribute of all files in the new Start folder.
• Open one sample workspace/project in

Start\BoardSupport\<DeviceManufacturer>\<CPU> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 a LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

12 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

If you continue stepping, you will arrive at the task that has lower priority:

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

16 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 10 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

18 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

os<System_lib><CPU><data_model><size_of_double>_<LibMode>.r43

Parameter Meaning Values

System_lib Specifies the CPU mode.
cl: CLIB
dl: DLIB

CPU Specifies the CPU variant.
430: MSP430
430x: MSP430X

data_model
Selected IAR system library
environment.

s: small data model
l: large data model

size_of_double
Selected data model, only for
MSP430x CPUs.

f: 32bit floating point
d: 64bit floating point

LibMode Specifies the library mode.

XR: Extreme Release
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + trace

Example

oscl430f_SP.r43 is the embOS library used with CLIB, with 32bit floating point calculation,
Stack check and Profiling functionality for an MSP430 CPU.

3.2 Data / Memory models, compiler options
embOS for MSP430 for IAR compiler is delivered with libraries for the most common data
models and other optional settings used by the IAR compiler.

For MSP430 CPUs, the IAR compiler offers one data model:

Data Model Default memory attribute Data placement

Small __data16 0-0xFFFF

For MSP430x CPUs, the IAR compiler offers three data models:

Data Model Default memory attribute Data placement

Small __data16 0-0xFFFF

Medium __data16, __data20 possible 0-0xFFFF

Large __data20 0-0xFFFFF

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

20 CHAPTER 4 CLIB and DLIB runtime environment

4.1 CLIB and DLIB runtime environment
The IAR compiler and workbench support two different runtime environments, called CLIB
and DLIB. Using the latest IAR embedded workbench and tools requires libraries built with
the same runtime environment settings as the current project settings. Previous versions of
the workbench allowed libraries built with CLIB to be linked in projects with CLIB environ-
ment as well as DLIB environment. The latest IAR tools generate a linker error if a library
linked into a project was built with different system library settings. Therefore, embOS for
MSP430 comes with libraries for CLIB and DLIB runtime environment.

The CLIB runtime environment

The CLIB runtime environment uses a small set of low-level input and output routines and
may be used for most of all applications, as long as C++ is not required. The embOS
libraries built for the CLIB runtime environment shall be used in a project using the CLIB
runtime environment.

The DLIB runtime environment

The DLIB runtime environment supports Standard C and C++, floating point support, in-
trinsics and extended formatting and locale support. IAR recommends the DLIB runtime
environment for newer developments.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

22 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack size required for a task is the sum of the stack size
of all routines, plus a basic stack size and plus the size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For the MSP430, the minimum stack size is about 24 bytes and for MSP430X using large
data model it is about 46 bytes. As MSP430(X) devices do not support an own interrupt
stack, please note, that interrupts can also run on task stacks. You may use embOSView
together with an embOS stack check library to analyze the total amount of task stack used
in your application. We recommend at least a minimum task stack size of 128 bytes.

5.2 System stack
The minimum system stack size required by embOS is about 60 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software-timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application. The size of the system stack can be changed by modifying the stack size define
in your linker file. We recommend a minimum stack size of 128 bytes.

5.3 Interrupt stack
Since MSP430(X) devices do not provide a separate stack pointer for interrupts, every in-
terrupt occupies additional stack space on the current stack. This may be the system stack,
or a task stack of a running task that is interrupted. The additional amount of necessary
stack for all interrupts has to be reserved on all task stacks. The current version of embOS
for MSP430 does not support extra interrupt stack switching in an interrupt routine. OS_IN-
T_EnterIntStack() and OS_INT_LeaveIntStack() are supplied for source compatibility
to other processors only and have no functionality.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

24 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU receives an interrupt request.
• As soon as the interrupts are enabled, the interrupt is accepted.
• The CPU saves PC and flags on the stack.
• The CPU jumps to the address specified in the vector table for the interrupt service

routine (ISR).
• ISR: save registers (function prologue)
• ISR: user-defined functionality
• ISR: restore registers (function epilogue)
• ISR: Execute RETI command, restoring PC, Flags and continue interrupted program

For details, please refer to Texas Instruments’ user’s manual.

6.2 Defining interrupt handlers in "C"
Routines defined with the keyword __interrupt automatically save & restore the registers
they modify and return with RETI. The interrupt vector number has to be given as additional
parameter by a #pragma directive prior the interrupt handler function.

For a detailed description on how to define an interrupt routine in “C”, refer to the IAR C/
C++ Compiler reference guide.

Example

Simple interrupt routine:

#prgama vector=12
static __interrupt void IntHandlerTimer(void) {
 IntCnt++;
}

Interrupt routine calling embOS functions

#prgama vector=12
static __interrupt void IntHandlerTimer(void) {
 OS_INT_Enter(); // Inform embOS that interrupt function is running
 IntCnt++;
 OS_MAILBOX_Put(&MB_Data, &IntCnt);
 OS_INT_Leave();
}

OS_INT_Enter() has to be the first function called in an interrupt handler using embOS
functions, when nestable interrupts are not required. OS_INT_Leave() has to be called
at the end the interrupt handler then. If interrupts should be nested, use OS_INT_En-
terNestable() and OS_INT_LeaveNestable() instead.

Note

MSP430 devices do not provide a separate stack pointer for interrupts, but use the
current stack. For more information, please refer to Interrupt stack on page 22.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 7

Technical data

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

26 CHAPTER 7 Resource Usage

7.1 Resource Usage
The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~1700 bytes
embOS kernel RAM ~106 bytes
Task control block RAM 14 bytes
Software timer RAM 12 bytes
Task event RAM 0 bytes
Event object RAM 6 bytes
Mutex RAM 8 bytes
Semaphore RAM 4 bytes
RWLocks RAM 14 bytes
Mailbox RAM 14 bytes
Queue RAM 16 bytes
Watchdog RAM 6 bytes
Fixed Block Size Memory Pool RAM 16 bytes

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries
	Data / Memory models, compiler options

	CPU and compiler specifics
	CLIB and DLIB runtime environment

	Stacks
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"

	Technical data
	Resource Usage

