embOS

Real-Time Operating System

CPU & Compiler specifics for MSP430
using IAR Embedded Workbench

Document: UM01023
Software Version: 5.16.1.0
Revision: 0
Date: January 14, 2022

Vi
SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: January 14, 2022

Software | Revision | Date By Description
5.16.1.0 0 220114 MM New software version.
5.12.0.0 0 201028 MM New software version.
4.16 0 160310 TS First version.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for MSP430 and IAR

© 2010-2022 SEGGER Microcontroller GmbH

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 8
3 R R I g 1= = | = o o P 9
A =3 A = o 1= 10
1.3 The example application OS_StartLEDBIINK.C ..cvvvviiiiiiiiiiiii e 11
1.4 Stepping through the sample application ... 12
2 Build your oWn @ppliCAtIONoeeiiiiiiiiiiiie i 15
2.1 INErOdUCHION i e 16
2.2 Required files for an embOS ... s 16
2.3 Change library MO . ..o e e 16
2.4 Select another CPU ... e e e 16
G T | o] > V=SSR 17
3.1 Naming conventions for prebuilt librari@sc.cooiiiiiiiiiiiiii 18
3.2 Data / Memory models, compiler OptionSocciiiiiiiiiiiii e 18
4 CPU and compiler SPECITICSouuiiiiiieiiiiiii ittt 19
4.1 CLIB and DLIB runtime environmentcioiiiiiiiiii i e e anenneeas 20
IS] = od 1€ TSRS 21
o N = 1] =] = Yol P 22
I AV (= 0 [= ol S 22
5.3 INEermUPE SEaCK .ot e 22
L 11 (=T ¢ (U] PSSP 23
6.1 What happens when an interrupt OCCUIS?civviiiiiiiiiiii i e e e 24
6.2 Defining interrupt handlers in "C" ... 24
A W =Tod oL T[> I o = = U 25
7.1 RESOUICE SO tuuiiiiiiitii ittt taintessaasse et sanaeessaneessasseessanseessannnessannnnesannnnesannns 26

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

9 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to start with embQOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.
To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 10.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embQOsS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 First Steps

1.2 First Steps

After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start . It is a good idea to use one of them as a starting point for
all of your applications. The subfolder Boar dSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from Boar dSupport subfolder.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c: \ wor k.
Copy the whole folder St art which is part of your embQOS distribution into your work
directory.
Clear the read-only attribute of all files in the new St art folder.
Open one sample workspace/project in
St ar t \ Boar dSuppor t\ <Devi ceManuf act ur er >\ <CPU> with your IDE (for example, by
double clicking it).
e Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

y:IAR Embedded Workbench IDE E=] E3

File Edit Wiew Project Simulator Tools Window Help

T IEIEEY IR ERAR AL X T
Workspare x m | - x
[DP_CSpy_sim =l j
e .
Files i | Ef3y | =* main
B [start_F149 -... ¢ *
I—E[:I.ﬂpplicatinn
| A EDExcluded int main{uoid) £
" (T 08 _IncDICh; % Initially disable interrupts =~
| B]start_27a | [08 InitKern(); #% Initialize 08 s
[:||_i|:. 05 _InitHUW(>; #% Initialize Hardware for 05 *s
[:ISetu 4% You need to create at least one task here 1t
- P 05_CREATETASK<&TCBHP, "HP Task". HPTask. 188, StackHFP>
I—ReadMe.txt 0S_CREATETASK<&TCBLP, "LP Task", LPTask, 058, StackLP>
[:IOutput 08 _Start(); % Start multitasking e
return @;
»

Start_F149 “:[]l | P | | ,I

=

| Messages :I;
Total number of errors: 0

Total number of warnings: 0 =
S | C 3

Ready Etrors

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 The example application OS_StartLEDBIink.c

1.3 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS; two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
a LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not
return.

:}}:IAR Embedded Workbench IDE M=l E3
File Edit Wew Project Debug Simulakor embQs Tools window Help
DEEHE S & =Rl o EES A R X

82 LEE X

Wiorkspac x H | - x

|DP_CSpy_Sim =l =
Files L int main{uoid)> ¢
_ & 08_IncDIC)>; % Initially disable interrupts =/

B P start_F149 -... v 08 _TnitKern<); »% Initialize 08 s
D-ﬂli'li"l':atlﬂl'l 05 _InitHUC>; #% Initialize Hardware for 085 */
[:ILiI:- #% You need to create at least one task here !
|—ID 0%_CREATETASK{&TCBHP. "HP Task". HPTask. 188, StackHP»;

Setup 0% _CREATETASK{&TCBLP, “LP Task". LPTask, G5B, StackLP»;
|— B readMe txt 05 _Start(); #% Start multitasking *s
[:IOutput return @;

Start_F149 I s | »

Ready

R

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown
below.

‘?ﬁmn Embedded Workbench IDE M=l
File Edit Yiew Project Debug Simulator embdS Tools Window Help
D@ S 4 BR o o A2y wumEe 2 &0 00
Se2r L2222 X
= *
IDF'_CSI:'P_SiITI j 03_TASK TCBHP. TCBLF; #%* Task—control-hlocks =~ j
Files [#2 B | static void HPTask(uoid) ¢
B (P start_F149 -... « ® “h%_
[:I.ﬂpplicatinn * > ’
A CILib 3
-2 O setup static void LPTaskCuoidd ¢
F— B readme txt while ¢1) £
L@ (7 output & N 05 _Delay ¢ 3
>
s
E
* main
=
Start_FMEII e R | ,I
A

Ready

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

13

CHAPTER 1 Stepping through the sample application

As CS_Start () is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

:}}:IAR Embedded Workbench IDE M=l E3
File Edit Wew Project Debug Simulakor embQs Tools window Help
D@ S 2Rl o o Sy v E e » &R
Sle2a Ll X
'.,.'.,.'|:|r|::;'.|:|a|:e = - x
IDF'_ESpy_Sim -] 05_TASK TCEHP. TCELF; #* Task—control-blocks =~ j
Files &2 B | | static void HPTaskCuoid> <
B start_F149 —... v vhile (13> {
= 05_Delay <18>;
[:I.ﬂpplicatinn * © 3 g
HACILb 3
-8 (I setup static void LPTaskCuoid) ¢
F— B readMe txt vhile C1> €
L@ [output N 08 Delay ¢ 3;
>
e
E
* main
E

Start_F149 I

[RN |

Ready

If you continue stepping, you will arrive at the task that has lower priority:

#F1AR Embedded Workbench IDE

=] E3

File Edit Yiew Project Debug Simulator embdS Tools Window Help
DEedaE & % Bl o ALYy SeuEe 2| BN
Se2r L2 Z X
workspace x - x
IDF'_CSI:'P_SiITI j 03_TASK TCBHP. TCBLF; #%* Task—control-hlocks =~ j
Files [#2 B | static void HPTask(uoid) ¢
B (P start_F149 -... v while (1> { .
[:I.ﬂpplicatinn * 3 ’
A CILib 3
-2 O setup static void LPTaskCvoidd <
F— B readMe txt while <1> £
L@ (7 output L= N 05 _Delay <5063;
¥
s
*
* main
k3
Start_FMEII e R |

Ready

:\\I_l‘_

embOS for MSP430 and IAR

© 2010-2022 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK Del ay() function in disassembly
mode. OS_Idl e() is part of RTCSI ni t. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

:}}:IAR Embedded Workbench IDE M=l E3
File Edit Yiew FProject Debug Simulakor embQS Tools Window Help
DEE@ & & =R o oS lde Sl E R o d 0| E
S8 Z2a LB X
[CP_CSpy_Sim Rl ez j
E ry
Files £ | o » Idle loop <€0%_Idle>
E
Eﬂstart_!:l‘t.g e W = Please note:
D-ﬂli'li"l':atlﬂl'l * * This is basically the "core" of the idle loop.
[:ILiI:- * This core loop can bhe changed, but:
|—.[:| -- * The idle loop does not have a stack of its own,. t
S * functionality should he implemented that relies o |
|—ReadMe.txt * to he preserved. However, a simple program loop c
[:IOutput : (like toggeling an output or incrementing a count
* lle just enter low power B mode here.
Ld
void 0S5_Jdle<void> { /% Idle loop: Ho task is ready to ex
#% Mothing to do ... enter low power
for (;;2; #% Alternative endless loop, reguire
#% yhen simulator iz used
>
Start_F149 I s | ,I
Ready v

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_d obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

‘?ﬁmn Embedded Workbench IDE M=l
File Edit Yiew Project Debug Simulator embdS Tools Window Help
DERE & & B v o |os Ide Sl G &GN
S8 23 LERZ X
*| name | Value | x|+ | F‘rinl Id | Marmne | Statusl Tirneout | Stack Info
O%_Status (s g 100 Ox418 HP Task Ready 28 /256 @ 0x218
QO5_Time 10 50 Oxd446 LP Task Delay 40(50) 28/ 256 @ 0x318
0% _MNumTasks 2 Idle
0O5_pCurrentTask Ox418 (HP Task)

0% _phactiveTask Ox418 (HP Task) =
embOs build Debug + Profiling (DP) lj 1| | _rI

ask.

g * Rtasinit_430F149,c T
IDF'_ESp_I,I_Sim j 05_ThSK TCHBHF, TCELP; /% Task—control-hlocks =~ j
Files 2] B | static void HPTaskCvoid) <
B start_F149 —... v . “h%_
[:I.ﬂpplicatinn * 3 ’
F& Ok 3
- L8 BN | scatic void LPTaskcvoidd < |
F— B readMe txt vhile C1> €
L@ 7 output L] N 08 Delay < 3;
i -
Start_F149 [l [4] I B
Feady v

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

16

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 10 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

18

CHAPTER 3

Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

os<System | i b><CPU><dat a_npdel ><si ze_of _doubl e>_<Li bMode>. r 43

Parameter Meaning Values
. e cl: CLIB
System|lib Specifies the CPU mode. dl: DLIB
e . 430: MSP430
CPU Specifies the CPU variant. 430x: MSP430X
Selected IAR system library s: small data model
dat a_nodel .
- environment. I large data model
size of double |Selected data model, only for f: 32bit floating point
- = MSP430x CPUs. d: 64bit floating point
XR: Extreme Release
R: Release
S: Stack check
Li bMbde Specifies the library mode. SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + trace
Example

oscl 430f _SP. r 43 is the embOS library used with CLIB, with 32bit floating point calculation,
Stack check and Profiling functionality for an MSP430 CPU.

3.2 Data/Memory models, compiler options

embOS for MSP430 for IAR compiler is delivered with libraries for the most common data
models and other optional settings used by the IAR compiler.

For MSP430 CPUs, the IAR compiler offers one data model:

Data Model
Small

Default memory attribute
__datal6

Data placement
0- OXFFFF

For MSP430x CPUs, the IAR compiler offers three data models:

Data Model Default memory attribute Data placement
Small __datal6 0- OXFFFF
Medium __datal6, _dat a20 possible 0- OXFFFF
Large __data20 0- OXFFFFF

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

20 CHAPTER 4 CLIB and DLIB runtime environment

4.1 CLIB and DLIB runtime environment

The IAR compiler and workbench support two different runtime environments, called CLIB
and DLIB. Using the latest IAR embedded workbench and tools requires libraries built with
the same runtime environment settings as the current project settings. Previous versions of
the workbench allowed libraries built with CLIB to be linked in projects with CLIB environ-
ment as well as DLIB environment. The latest IAR tools generate a linker error if a library
linked into a project was built with different system library settings. Therefore, embOS for
MSP430 comes with libraries for CLIB and DLIB runtime environment.

The CLIB runtime environment

The CLIB runtime environment uses a small set of low-level input and output routines and
may be used for most of all applications, as long as C++ is not required. The embOS
libraries built for the CLIB runtime environment shall be used in a project using the CLIB
runtime environment.

The DLIB runtime environment

The DLIB runtime environment supports Standard C and C++, floating point support, in-
trinsics and extended formatting and locale support. IAR recommends the DLIB runtime
environment for newer developments.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

22 CHAPTER 5 Task stack

5.1 Task stack

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack size required for a task is the sum of the stack size
of all routines, plus a basic stack size and plus the size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For the MSP430, the minimum stack size is about 24 bytes and for MSP430X using large
data model it is about 46 bytes. As MSP430(X) devices do not support an own interrupt
stack, please note, that interrupts can also run on task stacks. You may use embOSView
together with an embOS stack check library to analyze the total amount of task stack used
in your application. We recommend at least a minimum task stack size of 128 bytes.

5.2 System stack

The minimum system stack size required by embOS is about 60 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software-timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application. The size of the system stack can be changed by modifying the stack size define
in your linker file. We recommend a minimum stack size of 128 bytes.

5.3 Interrupt stack

Since MSP430(X) devices do not provide a separate stack pointer for interrupts, every in-
terrupt occupies additional stack space on the current stack. This may be the system stack,
or a task stack of a running task that is interrupted. The additional amount of necessary
stack for all interrupts has to be reserved on all task stacks. The current version of embOS
for MSP430 does not support extra interrupt stack switching in an interrupt routine. 0S_|I N-
T EnterlntStack() and OS_|I NT_Leavel nt Stack() are supplied for source compatibility
to other processors only and have no functionality.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

24

6.1

6.2

CHAPTER 6 What happens when an interrupt occurs?

What happens when an interrupt occurs?

The CPU receives an interrupt request.

As soon as the interrupts are enabled, the interrupt is accepted.

The CPU saves PC and flags on the stack.

The CPU jumps to the address specified in the vector table for the interrupt service
routine (ISR).

ISR: save registers (function prologue)

ISR: user-defined functionality

ISR: restore registers (function epilogue)

ISR: Execute RETI command, restoring PC, Flags and continue interrupted program

For details, please refer to Texas Instruments’ user’s manual.

Defining interrupt handlers in "C"

Routines defined with the keyword __i nt errupt automatically save & restore the registers
they modify and return with RETI. The interrupt vector number has to be given as additional
parameter by a #pr agma directive prior the interrupt handler function.

For a detailed description on how to define an interrupt routine in “C”, refer to the IAR C/
C++ Compiler reference guide.

Example

Simple interrupt routine:

#prgama vector=12
static __interrupt void IntHandl erTi mer(void) {
I nt Cnt ++;

}
Interrupt routine calling embOS functions

#prgama vector =12

static __interrupt void IntHandl erTi mer(void) {
OS_INT_Enter(); // InformenbGCS that interrupt function is running
| nt Cnt ++;

CS_MAI LBOX_Put (&VB_Data, & ntCnt);
OS_I NT_Leave();
}

OS INT_Enter () has to be the first function called in an interrupt handler using embQOS
functions, when nestable interrupts are not required. OS | NT _Leave() has to be called
at the end the interrupt handler then. If interrupts should be nested, use OGS | NT_En-
ter Nest abl e() and OS_| NT_LeaveNest abl e() instead.

Note

MSP430 devices do not provide a separate stack pointer for interrupts, but use the
current stack. For more information, please refer to Interrupt stack on page 22.

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 7

Technical data

embOS for MSP430 and IAR © 2010-2022 SEGGER Microcontroller GmbH

26

7.1 Resource Usage

CHAPTER 7

Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS

library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~1700 bytes
embOS kernel RAM ~106 bytes
Task control block RAM 14 bytes
Software timer RAM 12 bytes
Task event RAM 0 bytes
Event object RAM 6 bytes
Mutex RAM 8 bytes
Semaphore RAM 4 bytes
RWLocks RAM 14 bytes
Mailbox RAM 14 bytes
Queue RAM 16 bytes
Watchdog RAM 6 bytes
Fixed Block Size Memory Pool RAM 16 bytes

embOS for MSP430 and IAR

© 2010-2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries
	Data / Memory models, compiler options

	CPU and compiler specifics
	CLIB and DLIB runtime environment

	Stacks
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"

	Technical data
	Resource Usage

