embOS-Classic

CPU & Compiler specifics for Renesas
RX using IAR Embedded Workbench

Document: UM01020
Software Version: 5.20.0.0
Revision: 0
Date: June 2, 2025

Vi
SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS-Classic.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: June 2, 2025

Software | Revision | Date By Description
5.20.0.0 0 250602 MC New software version.
5.18.3.0 0 240327 TS New software version.
5.18.1.0 0 230428 TS New software version.
5.18.0.0 0 230328 TS New software version.
5.16.1.0 0 220217 TS New software version.
5.14.0.0 0 210802 MM New software version.
5.12.0.0 0 201014 MC New software version.
5.10.2.0 0 200715 MM New software version.
5.06 1 190625 TS Chapter “Libraries” and “Interrupts” regarding RXv3 updated.
5.06 0 190325 MC New software version.
5.02 0 180710 TS New software version.
4.24 0 160704 RH Chapter “"RTT and SystemView” added.
4.14 0 151123 TS New software version.
4.10b 0 150601 TS New software version.
4.10a 0 150519 TS New software version.

New generic embOS sources V3.90a.
3.90a 0 140410 TS RXv2 library description added.
DSP accumulator handling description added.

New generic embOS sources V3.88g.

3.889 0 1312111 AW | yarsion 3.88g1 for EWRX V2.50.

New generic embOS sources V3.88.
3.88 0 130319 | AW | B5p for RX 100 CPU added.
3.86i 0 120926 TS New generic embOS sources V3.86i.
3.86g 0 120806 AW New generic embOS sources V3.86g.
3.86e 0 120614 TS First FrameMaker version of the manual.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

DOS command line.

How to use this manual

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.
The target processor.

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Renesas RX and IAR

© 2010-2025 SEGGER Microcontroller GmbH

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 9
1.1 INStallation v e 10

A =3 A = o 1= 11

1.3 The example application OS_StartLEDBIINK.Cociviiiiiiiiiiiii e 12

1.4 Stepping through the sample application ... 13

2 Build your oWn @ppliCAtIONoeeiiiiiiiiiiiie i 17
2% NN 1 g o Ta [ol u o o PP PPRPIN 18
2.2 Required files for an embOS ... s 18
2.3 Change library MO . ..o e e 18
2.4 Select another CPU ... e e e 18

G T | o] > V=SSR 19
20 N 1 = U I o [Yo == 20
3.2 Naming conventions for prebuilt librari@s ..o 20

4 CPU and compiler SPECITICSouuiiiiiieiiiiiii ittt 21
4.1 IAR C-Spy stack check Warning ...ccocoviiiiiiiiiii i e e e e 22
4.2 IAR C-SpYy RTOS PlUGIN ettt i st s e s aae s e e s e s e aanaareseannans 22
4.3 Interrupt and thread Safelycciviiiiiiiiii i e 22
4.4 Thread-Local StOrage TLS ...ttt e e e e e e e neeens 24
4.4.1 AP fUNCHIONS Lttt e 24

o T N © T N T Y o () I PP 25

4.4.1.2 OS_TLS_SetTaskContextExtension()cccvviiiiiiiiiiiiiiiiiiiiiie e 26

IS] = od 1€ PSPPSR 27
o N = 1] =] = Yol P 28

I AV (= 0 [= ol S 28
5.3 INEermUPt SEaCK .ot e 28

LI |01 =T ¢ U] £ OO P PP PPPPPTRTRTR 29
6.1 What happens when an interrupt OCCUIS?civviiiiiiiiiiii i e e e 30
6.2 Defining interrupt handlers in C ... e 30
6.3 INterrUPt PrioritiES oottt e e 31
6.4 Interrupt handling ..o 31
6.4.1 API fUNCHIONS vttt e et e e e e a e e ae e areeeanaas 31

6.4.1.1 OS_INT_SetPriorityThreshold()cocoviiiiiiiiiiii e 32

6.4.2 Zero latency INterrUPES vviiiiii i e 32

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

6.4.3 embOS INLEITUPES .iiviiiiiii e e e 32

6.5 INterrupt NESEING ..oivviiiiiii i e 34
6.6 Interrupt-stack sWitChing ..o 34
6.7 Fast interrupt, RX SPECIfIC 1oviiriiiriiiii i i e e s aeaas 34
6.8 Non maskable interrupt, NMI ..o s e e eaanaas 34
6.9 Using Register Bank Save Function with RXv3 corecooiiiiiiiiiiiiees 34

7 RTT @nd SYSIEMVIEW ...coeiiiiiiiiiiii eaaeeeees 36
7.1 SEGGER Real Time Transfer .ottt e e e eanes 37
7.2 SEGGER Sy S emMVIEW ottt ettt 37

S TN I =Tl] Tor= e - - PSR 38
S T R S U=t] U1 ol U F7- o 1= 39

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to get started with embOS. You should follow these steps to
become familiar with embOS.

embQOS is shipped as a zip-file in electronic form. To install it, you should extract the zip-file
to any folder of your choice while preserving its directory structure (i.e. keep all files in their
respective sub directories). Ensure the files are not read-only after extraction. Assuming
that you are using an IDE to develop your application, no further installation steps are
required.

Note

The projects at / St art/ Boar dSupport / <Devi ceManuf act ur er >/ <Boar d> assume a
relative location for the / Start/Li b and/ Start/ | nc folders. If you copy a BSP folder
to another location, you will need to adjust the include paths of the project accordingly.

At/ St art/ Boar dSupport/ <Devi ceManuf act ur er >/ <Boar d> you should find several exam-
ple start projects, which you may adapt to write your application. To do so, follow the in-
structions of section First Steps on page 11.

In order to become familiar with embOS, consider using the example projects (even if you
will not use the IDE for application development).

If you do not or do not want to work with an IDE, you may copy either all library files or only
the library that is used with your project into your work directory. embQOS does in not rely on
an IDE, but may be used without an IDE just as well, e.g. using batch files or a make utility.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps

After installation of embQS, you can create your first multitasking application. You received
several ready-to-go sample workspaces and projects as well as all required embOS files
inside the subfolder St art. The subfolder St art/Boar dSupport contains the workspaces
and projects, sorted into manufacturer- and board-specific subfolders. It is a good idea to
use one of the projects as a starting point for any application development.

To get your new application running, you should:

Create a directory for your development.

Copy the whole St art folder from your embQOS shipment into the directory.

Clear the read-only attribute of all files in the copied St art folder.

Open one sample workspace/project in

St art / Boar dSupport / <Devi ceManuf act ur er >/ <Boar d> with your IDE (for example, by
double clicking it).

e Build the project. It should be built without any error or warning messages.

After building the project of your choice, the screen should look like this:

-

-

& Start_RSKRX62N - IAR Embedded Workbench IDE (=&][=]
File Edit View Project J-Link Tools Window Help

Dol & BR[0 o - Yl repr@dBBURS|D
‘Workspace x
[Debug v]

- X

B

Files anom
H Gl Start_RSKRX62N - Debug v

|—E_| [Application

| Excluded

| 05_StartLEDBlink.c

CiLib

3 Setup

|— ReadMe.txt

[Output

I Start_ RSKRXE2N

x

Meszages =
05_StartLEDBlink.c

RTOSInit_RXE62M.c

SEGGER_RTT.c

SEGGER_RTT_printf.c

SEGGER_SYSWVIEW.c

SEGGER_SYSVIEW Config_embOS_R¥.c

SEGGER_SYSVIEW_embOS.c
Linking

Build

< | T 3

Ready E .

For additional information, you should open the ReadMe.txt file that is part of every BSP.
It describes the different configurations of the project and, if required, gives additional
information about specific hardware settings of the supported evaluation board(s).

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBIink.c

1.3 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application (the actual file shipped with your port of embOS may
differ slightly).

What happens is easy to see:

After initialization of embQS, two tasks are created and started. The two tasks get activated
and execute until they run into a delay, thereby suspending themselves for the specified
time, and eventually continue execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
an LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not
return.

.

ﬁStart_RSKR}(GEN—LE\R Embedded Workbench IDE =NEN
Eile Edit View Project Debug J-Link Tools Window Help
sE=2=1- =) | | - wuEp e |2 WE e &
ZlelzaLE 22X
Workspace * | 0s_startLEDBlink.c | main) v X
[Debug - C4 —
EE L o~
Files ESa g | =
O (J start_RSKR... v a2l naing)
|- 1 Application ® 59 [int main(woid) {
[:ILib 60 05 IncDI(): % Initially disable interr
DSEtUD 61 05 InitKern(): ## Initialize OS5
. 62 05 _InitHW(): ## Tnitialize Hardware for C
— B ReadMe.txt 63 BSE _Init(); % Initialize LED ports
DDutput 64 <% You need to create at least one task before calling 05_Ste
A5 05_CREATETASK(&TCBHF, "HP Task". HPTask. 100, StackHF):
66 OS_CREATETASK(&TCBLEP, "LP Ta=sk". LPTask, G50, StackLP):
67 05 Start(): s% Start multitasking
68 return 0; -
69 -} =
70)
Start_RSKR=EZN ‘ S T
=
Messages File Line
Building configuration: Start_RSKRXE62N - Debug
Updating build tree...
Configuration is up-to-date.
=
E Debug Log Build x
Ready E

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown

below.
i Start_RSKRXG2N - IAR Embedded Workbench IDE = &=
File Edit View Project Debug J-Link Tools Window Help
sE=2=1- =) | | - wuEp e |BE VR &
S22 LEZL2|IX
Workspace * | os 513rﬂ.ﬂ)l!ﬁ1lu:| LPTask() +
Debug s 39 =ztatic 05 _TASK TCBHE, TCELF: s% Task-control-hl—
40 i
Files S] 41% static void HPFTask{woid) {
42 [while (1) {
B O Start_RSKR... v 13 BSF_ToggleLED(0) :
[(3 Application @ 11 05 Delaw (503
FE b 45 -}
DSEtUD ig -1
l_ B ReadMe.txt 48% static void LPTask{void) {
L# [J output 490 while (1) {
=] BSP_TogglelED(1): =
@ 51 | | OSIDElswiEnmy:
52 T
53 - 3}
54
55 L|:_| s
Start_RSKRXEZN ‘ |"’+ ol =
=
Messages File Line
Building configuration: Start_RSKRXE62N - Debug
Updating build tree...
Configuration is up-to-date.
=
2 Debuglog Build x
Ready E

As OS _Start () is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over CS_Start(), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

& Start_RSKRXG2N - [AR Embedded Workbench IDE = =R
File Edit View Project Debug J-Link Tools Window Help
e & | | - wEpePp BT
SlelZ2a LB 22X
Workspace * los Siartl.ﬂ)l!ﬁ'lk.cl LPTask() +
| Debug *| " 3% static OS_TASK TCEHE, TCELE; 7% Task-control-bi—
40 -
Files i By 413 static void HPFTask(woid) {
42 while (1) {
Bl (J Start_RSKR... v 47 BSP_TogglelED(D):
-1 £ Application © 11 0S_Delay(50):
FE LB 45 -}
DSEtUD ig -
F— Bl ReadMe.txt 48% static void LPTask(void) {
L@ 7 output 490 while (1)
50 BSFP_ToggleLED(1});
@ 51 05 Delay (2007]
52 ¥
53 -} =
54 3
55 E -
S | = &
57 * maing)
Eg - s
ga int main(woid) {
| Start_RSKRxE2N ‘l—--ﬁ e — —_— e e .. . =l
* Expression Value Location Type -
£ o Joxzc Jlong | v
< Debug Log |Buld Watch 1 *
Ready

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

15

CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

(4 Start_ RSKRXG2N - IAR Embedded Workbench IDE = &=
File Edit View Project Debug J-Link Tools Window Help

N @ S| | | - wuEe @p | &% 00 & | o
ZI 2 LEZZ|X
Workspace * | os 513rﬂ.ﬂ)l!ﬁ1lu:| LPTask() +
[DEbUQ b 39 static 05 _TASK TCEHF. TCELE: s% Task-control-hl—

40 i

Files g i 41% static volid HPTask({wvoid) {

42 0 while (1) {

B Start_RSKR... v 13 BSP_TogglelED(0)

-8 0 Application ® i U5 _Delay (507

FE b 45 -}

DSEtUD ig -1

— B readMe.txt 433 static void LPTask({void) {

L# [J output 490 while (1) {

50 BSP_TogglelED(1):

& 51 I0S_Delay(200}y,]
52 r 1
53 - 1} =
54 1
EE O~
1] * | &
57 * maing)
cg b o=
Ea int main(woid) {

Start_RSKR=E2M a l—" L':-‘ | - B . oll =
* Expression Value Location Type -
= 1 Jox2c Jlong | v
= Debug Log |Build Watch 1 *
Ready

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS TASK Del ay() function in disassembly
mode. OS I dl e() is part of RTCSI ni t. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

& Start_RSKRXG2N - [AR Embedded Workbench IDE = =R
File Edit View Project Debug J-Link Tools Window Help
N S| | | - w“uEeep |2 TR & o
SieZaLE22|X
s * | 05_start EDBink.c | RTOSInit_RX62N.c 05 Ide() + x
[Debug '] 406 * Fleaze note: —
- . 407 * Thi= i= basically the "core" of the idle loop. m
Files i H 408 * Thi= core loop can be changed. but:
409 * The idle loop does not hawe a =stack of its own, theref
Eﬁstaﬂ_FSKR... v 410 * functionality should be inplemented that relies on the
DADD"GBUU” 411 * to be preserwed. However. a simple program loop can be
DLib 412 * {like toggling an output or incrementing a counter)
DSEtUD 413 - =
. 414 wolid 05 _Idle{woid) { ## Idle loop: Ho task i=s ready t
l_REE'dME't’d: = 415 H | { A7 Nothing to do ... wait for int
L@ 7 output 416 [#if ((O0S_USE JLINEEX == 0) && (OS5 _DEBUG == 0})) < Ente
417 WAIT FOE_INTERRUFT({); .~ Switch CPU into =leep mode [l
418 + fendif [
419 T
420 - 1
421
422 0 -~
423 *
424 * 05 GetTime Cycles()
425 *
426 * Thi= routine is required for task-info via emb0SView ¢
| Start_RSKRxE2N g T ; : ; =l
* Expression Value Location Type -
= 1 Jox2c Jlong | Z
< Debug Log |Buld Watch 1 *
Ready

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

16 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_d obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

(4 Start_ RSKRXG2N - IAR Embedded Workbench IDE = &=
File Edit View Project Debug J-Link Tools Window Help
D@ & ERo o ~d Yo dHBMWHS A
AT
Workspace * | 05_startLEDBlink.c | RTOSINt_RX62M.c LPTask() v x
[DEbUQ b 39 static 05 _TASK TCEHF. TCELE: s% Task-control-hl—
40 -
Files & oy 41 O static void HPTask(woid) {
42 0 while (1) {
B () start_RSKR... v 43 BSF_TogglelED(0):
- C3 Application l® 11 0S_Delay (50}
FE b 45 -}
[:ISetup ig -
— B ReadMe.txt 433 static void LPTask(woid) £
L# [J output 490 while (1) {
=1 BSF_TogglelED(1)]
@ 51 05 Delay (2007
52 3
53 - 1 =
54 1
E5 E -
=1 *
57 * maing)
58 L =
ca int main{woid
Start_RSKRHEZM P —TE— 7 o '("|' » i S o ol =

x

Expression Value Location Type -
= 5o Joxec [long | 2
= Debug Log | Build Watch 1 *
Ready

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

18

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

20 CHAPTER 3 CPU modes

3.1 CPU modes

embOS for Renesas RX supports all memory and code model combinations that are sup-
ported by the IAR RX compiler.

Data Model Code Model Data Area
Near Huge (32 bits) 0x0-0x7FFF
0x0-0x FFFFFFFF OxFFFF8000-0x FFFFFFFF
Far Huge (32 bits) 0x0-0x7FFFFF
0x0-0x FFFFFFFF 0x FFFF8000-0x FFFFFFFF
Huge (32 bits))
Huge Ox0-Ox FEFEFFEE 0x0-0xFFFFFFFF

3.2 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.
The libraries are named as follows:

0s<Archi t ect ure><Si ze_of _doubl e><Si ze_of _i nt ><Endi anness>_<Dat aMbdel ><Li b-

Mode>. a
Parameter Meaning Values
Rx : RXvl core
Archi tect ure | Specifies the RX core Rx2: RXv2 core
Rx3: RXv3 core (IAR V4.x only)
Si ze_of _dou- | Specifies the size of doubl e f 132 bits
bl e data type d : 64 bits
Si ze of _int Specifies the size of i nt eger | - 32 bits
data type
b : Big endian

Endi anness Byte order

: Little endian

N : Near data model
Dat aModel Specifies the data model F : Far data model
H : Huge data model
XR : Extreme release
R : Release
S : Stack check
Li bMbde Specifies the library mode SP : Stack check + profiling
D : Debug
DP : Debug + stack check + profiling
DT : Debug + stack check + profiling
+ trace
Example

osRXf 1| _NDP. a is the library for an RX CPU with float normal (32 bit), large integer, little
endian, near memory model, with debug, stack check and profiling support.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

22 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning

IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. Depending on the IAR version used, this warning can be disabled by removing the
check mark for Tools -> Options...-> Stack -> "Warn when stack pointer is out
of bounds’ or Project -> Options...-> Debugger -> Plugins -> Stack.

4.2 IAR C-Spy RTOS plugin

SEGGER’s embOQOS plug-in for the IAR Embedded Workbench provides embOS awareness
during debugging sessions. This enables you to inspect the state of several embQOS primi-
tives such as the task list, semaphores, mailboxes, and software timers.

SEGGER’s embOS plug-in is already shipped with IAR EWARM but the most recent ver-
sion can be downloaded from segger.com/products/rtos/embos/tools/plug-ins/iar-embed-
ded-workbench.

4.3 Interrupt and thread safety

Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system libraries provide functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe.

The Setup directory in each embOS BSP contains the file OS_Thr eadSaf e. ¢ which overwrites
these functions. By default they disable and restore embQOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_| dl e() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_| dl e() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_| NTERRUPT_SAFE.

e When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, CS I dl e()
and software timers.

e When defined to 0 thread safety is guaranteed only in tasks. In this case you must not
call e.g. heap functions from within an ISR, GS_| dl e() or embOQOS software timers.

4.3.1 Enabling thread-safe IAR system libraries

By default, IAR does not use thread-safe system libraries. As a result the implemented hook
functions are not linked into the application. For more information on IAR’s multithread
support, please refer to the IAR Embedded Workbench manuals.

To use the thread-safe system libraries the option “Enabl e t hread support in library”
must be set in Project -> Options...-> General Options -> Library Configura-
ti on. Alternatively, the option --t hreaded_| i b can be passed to the linker. Additionally
the function OS_| NI T_SYS LOCKS() must be called.

With older IAR Embedded Workbench versions, neither the IDE option nor the linker option
are available. In this case, the linker has to be told to explicitly link the hook functions by
redirecting them to another symbol.

Activate the checkbox “Use command |ine options” in the dialog Project -> Options...
-> Linker -> Extra Options. Then, in the “Command |ine options:” field, add the
following lines:

--redirect __iar_Locksyslock=__iar_Locksysl ock _mntx

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench
https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench

23 CHAPTER 4 Interrupt and thread safety

--redirect __iar_Unl ocksysl ock=__iar_Unl ocksysl ock_nt x
--redirect __iar_Lockfilelock=__iar_Lockfilelock_ntx
--redirect __iar_Unlockfilelock=__iar_Unlockfilelock_ntx
--keep __iar_Locksysl ock_nt x

C++ thread safety

To enable thread-safe C++ constructors and destructors the option - -guard_cal | s needs
to be passed to the compiler.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

24 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS

The DLib for IAR supports usage of thread-local storage. Several library objects and func-
tions need local variables which have to be unique to a thread. Thread-local storage will be
required when these functions are called from multiple threads.

embOS for IAR is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task
is started. For each task that uses TLS the memory for the thread-local storage is allocated
by the IAR runtime environment on the heap. Therefore, thread-safe heap management
should be used together with TLS. For information on thread safety, please refer to Interrupt
and thread safety on page 22.

When the task terminates by a call of OS_TASK Ter ni nat e(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:

e error functions - errno, strerror.

e locale functions - localeconv, setlocale.

o time functions - asctime, localtime, gmtime, mktime.

e multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,
wctomb.

e rand functions - rand, srand.

e etc functions - atexit, strtok.

C++ exception engine.

4.4.1 APIfunctions

Routine Description

urew
jsel Alld
ysel Audun
dSl
Wil MS

Initializes the thread-local

O5_TLS_Set () storage for the current task.

Initializes the thread-local
storage and sets the TLS
task context extension for
the current task.

OS_TLS_Set TaskCont ext Ext ensi on()

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

25 CHAPTER 4 Thread-Local Storage TLS

4411 OS_TLS_Set()

Description

Initializes the thread-local storage for the current task.

Prototype

void OS _TLS Set(void);

Additional information

OS_TLS Set () shall be the first function called from a task when TLS should be used in
this task.

The required memory for the thread-local storage is allocated from the heap. If
OS _TLS Set () was already called for this task or if there is not enough memory on the
heap, then embOS will call S_Error () with the error code OS_ERR TLS INIT.

This function has to be used only in combination with OS_TASK_AddCont ext Ext ensi on() or
OS_TASK_Set Cont ext Ext ensi on() and OS_TLS Cont ext Ext ensi on as argument to these
functions. When OS_TLS_Set TaskCont ext Ext ensi on() is used, OS_TLS Set () will be called
automatically.

Example

static void Task(void) {
OS_TLS Set ();
OS_TASK_Set Cont ext Ext ensi on(&0S_TLS_Cont ext Ext ensi on) ;
while (1) {
}
}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

26 CHAPTER 4 Thread-Local Storage TLS

4.4.1.2 OS_TLS SetTaskContextExtension()

Description

Initializes the thread-local storage and sets the TLS task context extension for the current
task.

Prototype

voi d OS_TLS_ Set TaskCont ext Ext ensi on(voi d);

Additional information

OS_TLS Set TaskCont ext Ext ensi on() shall be the first function called from a task when
TLS should be used in this task.

The required memory for the thread-local storage is allocated from the heap. If
OS _TLS Set () was already called for this task or if there is not enough memory on the
heap, then embOS will call S_Error () with the error code OS_ERR TLS INIT.

If the task already contains a task context extension, OS_TLS Set TaskCont ext Ext en-
si on() cannot be used. Instead, OS_TASK_AddCont ext Ext ensi on() needs to be called with
OS_TLS Cont ext Ext ensi on as argument. Furthermore, OS_TLS Set () needs to be called
to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
OS_TLS_Set TaskCont ext Ext ensi on() ;
while (1) {
errno = 42; // errno specific to HPTask
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
OS_TLS_Set TaskCont ext Ext ensi on() ;
while (1) {
errno = 1; // errno specific to LPTask
OS_TASK_Del ay(200);
}

}

int main(void) {
errno = 0; [l errno not specific to any task
CS Init(); /1 Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enmbCS

return O;

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 5

Stacks

This chapter describes how embOS uses the different stacks of the Renesas RX CPU.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

28 CHAPTER 5 Task stack

5.1 Task stack

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For the Renesas RX CPUs, the minimum basic task stack size is about 44 bytes. Because
any function call uses some amount of stack, the task stack size has to be large enough to
handle these calls. We recommend at least 128 bytes stack as a start.

5.2 System stack

The minimum system stack size required by embOS is about 60 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to GS_Start ()), and because software timers also use the
system-stack, the actual stack requirements depend on the application.

The size of the system stack can be configured by modifying the project option “User mode
stack size” or can be defined in the linker file as _USTACK_SI ZE in the BSP specific Set up\
folder. We recommend a minimum stack size of 256 bytes.

5.3 Interrupt stack

The Renesas RX CU has been designed with multitasking in mind; it has 2 stack-pointer, the
USP and the ISP. The U-Flag selects the active stack-pointer. During execution of a task, a
software timer, or the embOS scheduler, the U-flag is set, thereby selecting the user-stack-
pointer. If an interrupt occurs, the RX clears the U-flag and switches to the interrupt stack
pointer automatically this way. The ISP is active during the entire ISR (interrupt service
routine). This way, the interrupt does not use the stack of the task and the stack size does
not have to be increased for interrupt-routines. Additional software stack-switching as for
other CPUs is therefore not necessary for the RX.

The size of the interrupt stack can be configured by modifying the project option “"Supervisor
mode stack size” or can be defined in the linker file as _I STACK SI ZE in the CPU specific
Set up\ folder. We recommend at least a minimum of 256 bytes.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

30 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?

e The CPU receives an interrupt request.

As soon as interrupts are enabled and the interrupt priority level (IPL) of the CPU is
lower than the IPL of the interrupt, the interrupt is accepted.

The CPU switches to the Interrupt stack.

The CPU saves the PC and flag register on the interrupt stack.

The CPU disables all further interrupts.

The CPU sets its IPL to the IPL of the accepted interrupt.

The CPU jumps to the address specified in the vector table for the interrupt service
routine (ISR).

ISR: Saves registers.

ISR: User-defined functionality is executed.

ISR: Restores registers.

ISR: Executes RTE command, restoring PC, Flag register and switching back to the user
stack.

For details, refer to the Renesas hard- and software manuals.

6.2 Defining interrupt handlersin C

Interrupt handlers for Renesas RX cores are written as normal C-functions which do not take
parameters and do not return any value. Routines defined with the keyword __i nterrupt
automatically save & restore the registers they modify and return with RTE.

For a detailed description on how to define an interrupt routine in “C", refer to the IAR RX
C-Compiler User’s manual.

For details how to write interrupt handlers using embOS functions, refer to the embQOS
generic manual.

For details about interrupt priorities, refer to chapter Interrupt priorities on page 31.

Note

Interrupts that use embOS API must not specify __nest ed, as this might lead to severe
problems. If nestable interrupts are desired, then OS | NT_Ent er Nest abl e() can be
used. This embOS API function ensures that interrupts are nestable. For zero latency
interrupts __nest ed can be used.

Example

Simple interrupt routine:

I
[l Interrupt handl er NOT using enbOCS functions
I
#pragma vect or =(104)
__interrupt void IntHandl erTi mer(void) {
| nt Cnt ++;
}
I
/1 Interrupt function using enbGOS functions
I
#pragma vect or =(OS_TI MER_VECT)
__interrupt void OS ISR Tick (void) {
OS_|I NT_Ent er Nest abl e() ;
OS_TI CK_Handl e() ;
OS_I NT_LeaveNest abl e();

}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

31 CHAPTER 6 Interrupt priorities

6.3 Interrupt priorities

RX CPUs can have up to 16 IPLs (interrupt priority levels) reaching from 0 to 15. While
most RX CPUs have 16 priority levels implemented, the RX610 CPUs only support 8 priority

levels from O to 7.

6.4 Interrupt handling

For the Renesas RX CPU embOS delivers following functions to handle interrupts.

6.4.1 APIfunctions

Routine Description

urew
Nsel
dsi

w1l MS

Sets the interrupt priority limit for ze-

OS_INT_SetPriorityThreshol d() ro latency interrupts

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

32

CHAPTER 6 Interrupt handling

6.4.1.1 OS_INT_SetPriorityThreshold()

Description

Sets the interrupt priority limit for zero latency interrupts.

Prototype
void OS_INT_SetPriorityThreshol d(OS_UINT Priority);
Parameters
Parameter Description
The highest value usable as priority for embOS interrupts. All
interrupts with higher priority are never disabled by embOS.
Priority Valid range:
1 <Priority <7 for RX610 CPUs.
1 <Priority < 15 for other RX CPUs.

Additional information

The interrupt priority limit for zero latency interrupts is set to 4 by default. This means, all
interrupts with higher priority than 4 (i.e. from 5 up to the maximum CPU specific priority)
will never be disabled by embQOS. To disable zero latency interrupts at all, the priority limit
may be set to the highest interrupt priority supported by the CPU, which is 7 for the RX610
series and 15 for other RX CPUs.

To modify the default priority limit,0S I NT_Set Pri orityThreshol d() should be called be-
fore embOS was started. In the sample start projects, OS | NT_Set Pri orityThreshol d()
is not called. The start projects use the default zero latency interrupt priority limit.

Any interrupts running above the zero latency interrupt priority limit must not call any
embOS function.

Note that the maximum allowed parameter is device dependent. The function will not check
whether the device specific limit is exceeded. It is the users responsibility not to use a value
above 7 for CPUs which do not support more than 8 priority levels.

6.4.2 Zero latency interrupts

Instead of disabling interrupts when embQOS enters a critical section, the processor’s IPL is
increased. This prevents the execution of interrupts with an IPL lower or equal to the current
IPL of the processor. All interrupts with IPL higher than the IPL threshold that embOS uses
to disable interrupt are called zero | atency interrupts.

Zero latency interrupts are never disabled by embOS.

The IPL of the processor can be increased by calling GS_I NT_Di sabl e(), which sets the
current IPL to the IPL threshold. Initially, the IPL threshold is set to 4, but may be modified
during system initialization by a call of the function OS_I NT_Set Pri orityThreshol d().
Therefore, by default all interrupts with IPL 5 and greater are zero latency interrupts and
can still be processed. You must not execute any embQOS function from within an interrupt
running on high priority.

6.4.3 embOS interrupts

Any interrupt handler using embOS API functions has to run with IPLs from 1 to the current
IPL threshold. These embOS interrupt handlers have to start with a call of GS_| NT_Ent er ()
or OS_| NT_Ent er Nest abl e() and must end with a call of OS_| NT_Leave() or OS_I NT_Leav-
eNest abl e() . Interrupt handlers running at low priorities, i.e. with priorities from 1 to the
current IPL threshold, which are not calling any embOS API function are allowed, but must
not re-enable interrupts!

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

33 CHAPTER 6 Interrupt handling

Note

The IPL threshold between embOS interrupts and zero latency interrupts is initially set
to 4, but can be changed at runtime by a call to OS | NT_Set Pri orityThreshol d() .

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

34 CHAPTER 6 Interrupt nesting

6.5 Interrupt nesting

The Renesas RX CPU uses a priority controlled interrupt scheduling which allows preemption
and nesting of interrupts. Interrupts and exceptions with a higher priority may preempt an
interrupt handler with lower priority when interrupts are enabled during execution of the
interrupt service routine.

An interrupt handler calling embOS functions has to start with a call of OS_I NT_Ent er ()
or OS_| NT_Ent er Nest abl e() to informs embQOS that an interrupt handler is running. Us-
ing CS_|I NT_Ent er Nest abl e() enables interrupts in the interrupt handler and thus allows
nesting of interrupts.

6.6 Interrupt-stack switching

Since the RX CPUs have a separate stack pointer for interrupts, there is no need for explicit
software stack-switching in an interrupt routine. The routines OS_|I NT_Ent er I nt St ack()
and OS_| NT_Leavel nt St ack() are supplied for source code compatibility to other proces-
sors only and have no functionality.

6.7 Fast interrupt, RX specific

The RX CPU supports a “Fast interrupt” mode which is described in the hardware manual.
The fast interrupt may be used for special purposes, but must not call any embQOS function.

6.8 Non maskable interrupt, NMI

The RX CPU supports a non maskable interrupt which is described in the hardware manual.
The NMI may be used for special purposes, but must not call any embOS function.

6.9 Using Register Bank Save Function with RXv3
core

Except in some products, the RXv3 CPU provides collective saving and restoring of CPU
registers. In order to perform fast collective saving and restoring of CPU registers, the RXv3
CPU provides dedicated save register banks and instructions for using these banks. Using
these save register banks, it is possible to perform fast register saving at the beginning of
interrupt handlers, and high-speed register restoring at the end of interrupt handlers.

The save register banks can only be accessed with the SAVE instruction and RSTR instruc-
tion. Each of these banks is used to save and restore the values of the following CPU reg-
isters: all general purpose registers (R1 to R15) except for RO, the USP, the FPSW, and the
accumulators (ACCO, ACC1).

The pragma directive bank= can be used with an interrupt function to save the values of
registers to the specified register bank at the start of the interrupt, and restore them again
afterward. The SAVE and RSTR instructions will be used.

The bank= interrupt specification can be used with any embOS or zero latency interrupt.

Example

11
/1 Interrupt function using bank pragna directive
11
#pragna vector = (TI MER_AQ0)
#pragnma bank = 1
__interrupt void OS_ ISR Tick (void) {
OS INT_EnterNestable(); // InformenbGS that interrupt code is running

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

35 CHAPTER 6 Using Register Bank Save Function with RXv3
core

CS_Tick_Handl e();
CS_| NT_LeaveNest abl e() ;
}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 7
RTT and SystemView

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

37 CHAPTER 7 SEGGER Real Time Transfer

7.1 SEGGER Real Time Transfer

With SEGGER'’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

7.2 SEGGER SystemView

SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVI EW Conf () on the target microcontroller.
This call is performed within OS_| ni t H\{) of the respective RTCSI nit *. ¢ file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGCGER_SYSVI EW Conf () call, the SEGGER_SYSVI EW h include directive as well as any other
reference to SEGGER_SYSVI EW * like SEGGER_SYSVI EW Ti ckCnt .

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that GS_TI ME_Confi gSysTi mer () was called before SEGGER SYSVI EW St art ()
is called or the SystemView PC application is started.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 8

Technical data

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

39

8.1 Resource Usage

CHAPTER 8

Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS

library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~1700 bytes
embOS kernel RAM ~140 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for Renesas RX and IAR

© 2010-2025 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	CPU modes
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	IAR C-Spy RTOS plugin
	Interrupt and thread safety
	Enabling thread-safe IAR system libraries

	Thread-Local Storage TLS
	API functions
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	Stacks
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt priorities
	Interrupt handling
	API functions
	OS_INT_SetPriorityThreshold()

	Zero latency interrupts
	embOS interrupts

	Interrupt nesting
	Interrupt-stack switching
	Fast interrupt, RX specific
	Non maskable interrupt, NMI
	Using Register Bank Save Function with RXv3 core

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

