
embOS-Classic

CPU & Compiler specifics for Renesas
RX using IAR Embedded Workbench

Document: UM01020
Software Version: 5.20.0.0

Revision: 0
Date: June 2, 2025

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS-Classic.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: June 2, 2025

Software Revision Date By Description

5.20.0.0 0 250602 MC New software version.

5.18.3.0 0 240327 TS New software version.

5.18.1.0 0 230428 TS New software version.

5.18.0.0 0 230328 TS New software version.

5.16.1.0 0 220217 TS New software version.

5.14.0.0 0 210802 MM New software version.

5.12.0.0 0 201014 MC New software version.

5.10.2.0 0 200715 MM New software version.

5.06 1 190625 TS Chapter “Libraries” and “Interrupts” regarding RXv3 updated.

5.06 0 190325 MC New software version.

5.02 0 180710 TS New software version.

4.24 0 160704 RH Chapter “RTT and SystemView” added.

4.14 0 151123 TS New software version.

4.10b 0 150601 TS New software version.

4.10a 0 150519 TS New software version.

3.90a 0 140410 TS
New generic embOS sources V3.90a.
RXv2 library description added.
DSP accumulator handling description added.

3.88g 0 131211 AW New generic embOS sources V3.88g.
Version 3.88g1 for EWRX V2.50.

3.88 0 130319 AW New generic embOS sources V3.88.
BSP for RX 100 CPU added.

3.86i 0 120926 TS New generic embOS sources V3.86i.

3.86g 0 120806 AW New generic embOS sources V3.86g.

3.86e 0 120614 TS First FrameMaker version of the manual.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

4

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

6

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..9

1.1 Installation .. 10
1.2 First Steps .. 11
1.3 The example application OS_StartLEDBlink.c ... 12
1.4 Stepping through the sample application ...13

2 Build your own application ..17

2.1 Introduction ...18
2.2 Required files for an embOS ..18
2.3 Change library mode .. 18
2.4 Select another CPU .. 18

3 Libraries ...19

3.1 CPU modes ... 20
3.2 Naming conventions for prebuilt libraries .. 20

4 CPU and compiler specifics ..21

4.1 IAR C-Spy stack check warning ... 22
4.2 IAR C-Spy RTOS plugin .. 22
4.3 Interrupt and thread safety ...22
4.4 Thread-Local Storage TLS ... 24

4.4.1 API functions .. 24
4.4.1.1 OS_TLS_Set() ..25
4.4.1.2 OS_TLS_SetTaskContextExtension() ..26

5 Stacks ... 27

5.1 Task stack ...28
5.2 System stack ...28
5.3 Interrupt stack .. 28

6 Interrupts ... 29

6.1 What happens when an interrupt occurs? ..30
6.2 Defining interrupt handlers in C ...30
6.3 Interrupt priorities ..31
6.4 Interrupt handling ..31

6.4.1 API functions .. 31
6.4.1.1 OS_INT_SetPriorityThreshold() ...32

6.4.2 Zero latency interrupts .. 32

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

8

6.4.3 embOS interrupts ..32
6.5 Interrupt nesting ..34
6.6 Interrupt-stack switching .. 34
6.7 Fast interrupt, RX specific ... 34
6.8 Non maskable interrupt, NMI ...34
6.9 Using Register Bank Save Function with RXv3 core ...34

7 RTT and SystemView ...36

7.1 SEGGER Real Time Transfer .. 37
7.2 SEGGER SystemView ..37

8 Technical data ...38

8.1 Resource Usage ... 39

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to get started with embOS. You should follow these steps to
become familiar with embOS.

embOS is shipped as a zip-file in electronic form. To install it, you should extract the zip-file
to any folder of your choice while preserving its directory structure (i.e. keep all files in their
respective sub directories). Ensure the files are not read-only after extraction. Assuming
that you are using an IDE to develop your application, no further installation steps are
required.

Note

The projects at /Start/BoardSupport/<DeviceManufacturer>/<Board> assume a
relative location for the /Start/Lib and /Start/Inc folders. If you copy a BSP folder
to another location, you will need to adjust the include paths of the project accordingly.

At /Start/BoardSupport/<DeviceManufacturer>/<Board> you should find several exam-
ple start projects, which you may adapt to write your application. To do so, follow the in-
structions of section First Steps on page 11.

In order to become familiar with embOS, consider using the example projects (even if you
will not use the IDE for application development).

If you do not or do not want to work with an IDE, you may copy either all library files or only
the library that is used with your project into your work directory. embOS does in not rely on
an IDE, but may be used without an IDE just as well, e.g. using batch files or a make utility.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS, you can create your first multitasking application. You received
several ready-to-go sample workspaces and projects as well as all required embOS files
inside the subfolder Start. The subfolder Start/BoardSupport contains the workspaces
and projects, sorted into manufacturer- and board-specific subfolders. It is a good idea to
use one of the projects as a starting point for any application development.

To get your new application running, you should:
• Create a directory for your development.
• Copy the whole Start folder from your embOS shipment into the directory.
• Clear the read-only attribute of all files in the copied Start folder.
• Open one sample workspace/project in

Start/BoardSupport/<DeviceManufacturer>/<Board> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After building the project of your choice, the screen should look like this:

For additional information, you should open the ReadMe.txt file that is part of every BSP.
It describes the different configurations of the project and, if required, gives additional
information about specific hardware settings of the supported evaluation board(s).

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application (the actual file shipped with your port of embOS may
differ slightly).

What happens is easy to see:

After initialization of embOS, two tasks are created and started. The two tasks get activated
and execute until they run into a delay, thereby suspending themselves for the specified
time, and eventually continue execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 an LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

16 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

18 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

20 CHAPTER 3 CPU modes

3.1 CPU modes
embOS for Renesas RX supports all memory and code model combinations that are sup-
ported by the IAR RX compiler.

Data Model Code Model Data Area

Near Huge (32 bits)
0x0-0xFFFFFFFF

0x0-0x7FFF
0xFFFF8000-0xFFFFFFFF

Far Huge (32 bits)
0x0-0xFFFFFFFF

0x0-0x7FFFFF
0xFFFF8000-0xFFFFFFFF

Huge Huge (32 bits)
0x0-0xFFFFFFFF 0x0-0xFFFFFFFF

3.2 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

os<Architecture><Size_of_double><Size_of_int><Endianness>_<DataModel><Lib-
Mode>.a

Parameter Meaning Values

Architecture Specifies the RX core
Rx : RXv1 core
Rx2: RXv2 core
Rx3: RXv3 core (IAR V4.x only)

Size_of_dou-
ble

Specifies the size of double
data type

f : 32 bits
d : 64 bits

Size_of_int
Specifies the size of integer
data type l : 32 bits

Endianness Byte order
b : Big endian
l : Little endian

DataModel Specifies the data model
N : Near data model
F : Far data model
H : Huge data model

LibMode Specifies the library mode

XR : Extreme release
R : Release
S : Stack check
SP : Stack check + profiling
D : Debug
DP : Debug + stack check + profiling
DT : Debug + stack check + profiling
+ trace

Example

osRXfll_NDP.a is the library for an RX CPU with float normal (32 bit), large integer, little
endian, near memory model, with debug, stack check and profiling support.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

22 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning
IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. Depending on the IAR version used, this warning can be disabled by removing the
check mark for Tools -> Options… -> Stack -> ’Warn when stack pointer is out
of bounds’ or Project -> Options… -> Debugger -> Plugins -> Stack.

4.2 IAR C-Spy RTOS plugin
SEGGER’s embOS plug-in for the IAR Embedded Workbench provides embOS awareness
during debugging sessions. This enables you to inspect the state of several embOS primi-
tives such as the task list, semaphores, mailboxes, and software timers.
SEGGER’s embOS plug-in is already shipped with IAR EWARM but the most recent ver-
sion can be downloaded from segger.com/products/rtos/embos/tools/plug-ins/iar-embed-
ded-workbench.

4.3 Interrupt and thread safety
Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system libraries provide functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe.

The Setup directory in each embOS BSP contains the file OS_ThreadSafe.c which overwrites
these functions. By default they disable and restore embOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_Idle() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_Idle() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_INTERRUPT_SAFE.
• When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, OS_Idle()

and software timers.
• When defined to 0 thread safety is guaranteed only in tasks. In this case you must not

call e.g. heap functions from within an ISR, OS_Idle() or embOS software timers.

4.3.1 Enabling thread-safe IAR system libraries
By default, IAR does not use thread-safe system libraries. As a result the implemented hook
functions are not linked into the application. For more information on IAR’s multithread
support, please refer to the IAR Embedded Workbench manuals.

To use the thread-safe system libraries the option “Enable thread support in library”
must be set in Project -> Options… -> General Options -> Library Configura-
tion. Alternatively, the option --threaded_lib can be passed to the linker. Additionally
the function OS_INIT_SYS_LOCKS() must be called.

With older IAR Embedded Workbench versions, neither the IDE option nor the linker option
are available. In this case, the linker has to be told to explicitly link the hook functions by
redirecting them to another symbol.

Activate the checkbox “Use command line options” in the dialog Project -> Options…
-> Linker -> Extra Options. Then, in the “Command line options:” field, add the
following lines:

--redirect __iar_Locksyslock=__iar_Locksyslock_mtx

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench
https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench

23 CHAPTER 4 Interrupt and thread safety

--redirect __iar_Unlocksyslock=__iar_Unlocksyslock_mtx
--redirect __iar_Lockfilelock=__iar_Lockfilelock_mtx
--redirect __iar_Unlockfilelock=__iar_Unlockfilelock_mtx
--keep __iar_Locksyslock_mtx

C++ thread safety

To enable thread-safe C++ constructors and destructors the option --guard_calls needs
to be passed to the compiler.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

24 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS
The DLib for IAR supports usage of thread-local storage. Several library objects and func-
tions need local variables which have to be unique to a thread. Thread-local storage will be
required when these functions are called from multiple threads.

embOS for IAR is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task
is started. For each task that uses TLS the memory for the thread-local storage is allocated
by the IAR runtime environment on the heap. Therefore, thread-safe heap management
should be used together with TLS. For information on thread safety, please refer to Interrupt
and thread safety on page 22.

When the task terminates by a call of OS_TASK_Terminate(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:
• error functions - errno, strerror.
• locale functions - localeconv, setlocale.
• time functions - asctime, localtime, gmtime, mktime.
• multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions - rand, srand.
• etc functions - atexit, strtok.
• C++ exception engine.

4.4.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TLS_Set()
Initializes the thread-local
storage for the current task. ●

OS_TLS_SetTaskContextExtension()

Initializes the thread-local
storage and sets the TLS
task context extension for
the current task.

●

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

25 CHAPTER 4 Thread-Local Storage TLS

4.4.1.1 OS_TLS_Set()

Description

Initializes the thread-local storage for the current task.

Prototype

void OS_TLS_Set(void);

Additional information

OS_TLS_Set() shall be the first function called from a task when TLS should be used in
this task.

The required memory for the thread-local storage is allocated from the heap. If
OS_TLS_Set() was already called for this task or if there is not enough memory on the
heap, then embOS will call OS_Error() with the error code OS_ERR_TLS_INIT.

This function has to be used only in combination with OS_TASK_AddContextExtension() or
OS_TASK_SetContextExtension() and OS_TLS_ContextExtension as argument to these
functions. When OS_TLS_SetTaskContextExtension() is used, OS_TLS_Set() will be called
automatically.

Example

static void Task(void) {
 OS_TLS_Set();
 OS_TASK_SetContextExtension(&OS_TLS_ContextExtension);
 while (1) {
 }
}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

26 CHAPTER 4 Thread-Local Storage TLS

4.4.1.2 OS_TLS_SetTaskContextExtension()

Description

Initializes the thread-local storage and sets the TLS task context extension for the current
task.

Prototype

void OS_TLS_SetTaskContextExtension(void);

Additional information

OS_TLS_SetTaskContextExtension() shall be the first function called from a task when
TLS should be used in this task.

The required memory for the thread-local storage is allocated from the heap. If
OS_TLS_Set() was already called for this task or if there is not enough memory on the
heap, then embOS will call OS_Error() with the error code OS_ERR_TLS_INIT.

If the task already contains a task context extension, OS_TLS_SetTaskContextExten-
sion() cannot be used. Instead, OS_TASK_AddContextExtension() needs to be called with
OS_TLS_ContextExtension as argument. Furthermore, OS_TLS_Set() needs to be called
to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 42; // errno specific to HPTask
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 1; // errno specific to LPTask
 OS_TASK_Delay(200);
 }
}

int main(void) {
 errno = 0; // errno not specific to any task
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 5

Stacks

This chapter describes how embOS uses the different stacks of the Renesas RX CPU.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

28 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For the Renesas RX CPUs, the minimum basic task stack size is about 44 bytes. Because
any function call uses some amount of stack, the task stack size has to be large enough to
handle these calls. We recommend at least 128 bytes stack as a start.

5.2 System stack
The minimum system stack size required by embOS is about 60 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers also use the
system-stack, the actual stack requirements depend on the application.

The size of the system stack can be configured by modifying the project option “User mode
stack size” or can be defined in the linker file as _USTACK_SIZE in the BSP specific Setup\
folder. We recommend a minimum stack size of 256 bytes.

5.3 Interrupt stack
The Renesas RX CU has been designed with multitasking in mind; it has 2 stack-pointer, the
USP and the ISP. The U-Flag selects the active stack-pointer. During execution of a task, a
software timer, or the embOS scheduler, the U-flag is set, thereby selecting the user-stack-
pointer. If an interrupt occurs, the RX clears the U-flag and switches to the interrupt stack
pointer automatically this way. The ISP is active during the entire ISR (interrupt service
routine). This way, the interrupt does not use the stack of the task and the stack size does
not have to be increased for interrupt-routines. Additional software stack-switching as for
other CPUs is therefore not necessary for the RX.

The size of the interrupt stack can be configured by modifying the project option “Supervisor
mode stack size” or can be defined in the linker file as _ISTACK_SIZE in the CPU specific
Setup\ folder. We recommend at least a minimum of 256 bytes.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

30 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU receives an interrupt request.
• As soon as interrupts are enabled and the interrupt priority level (IPL) of the CPU is

lower than the IPL of the interrupt, the interrupt is accepted.
• The CPU switches to the Interrupt stack.
• The CPU saves the PC and flag register on the interrupt stack.
• The CPU disables all further interrupts.
• The CPU sets its IPL to the IPL of the accepted interrupt.
• The CPU jumps to the address specified in the vector table for the interrupt service

routine (ISR).
• ISR: Saves registers.
• ISR: User-defined functionality is executed.
• ISR: Restores registers.
• ISR: Executes RTE command, restoring PC, Flag register and switching back to the user

stack.

For details, refer to the Renesas hard- and software manuals.

6.2 Defining interrupt handlers in C
Interrupt handlers for Renesas RX cores are written as normal C-functions which do not take
parameters and do not return any value. Routines defined with the keyword __interrupt
automatically save & restore the registers they modify and return with RTE.

For a detailed description on how to define an interrupt routine in “C”, refer to the IAR RX
C-Compiler User’s manual.

For details how to write interrupt handlers using embOS functions, refer to the embOS
generic manual.

For details about interrupt priorities, refer to chapter Interrupt priorities on page 31.

Note

Interrupts that use embOS API must not specify __nested, as this might lead to severe
problems. If nestable interrupts are desired, then OS_INT_EnterNestable() can be
used. This embOS API function ensures that interrupts are nestable. For zero latency
interrupts __nested can be used.

Example

Simple interrupt routine:

//
// Interrupt handler NOT using embOS functions
//
#pragma vector=(104)
__interrupt void IntHandlerTimer(void) {
 IntCnt++;
}
//
// Interrupt function using embOS functions
//
#pragma vector=(OS_TIMER_VECT)
__interrupt void OS_ISR_Tick (void) {
 OS_INT_EnterNestable();
 OS_TICK_Handle();
 OS_INT_LeaveNestable();
}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

31 CHAPTER 6 Interrupt priorities

6.3 Interrupt priorities
RX CPUs can have up to 16 IPLs (interrupt priority levels) reaching from 0 to 15. While
most RX CPUs have 16 priority levels implemented, the RX610 CPUs only support 8 priority
levels from 0 to 7.

6.4 Interrupt handling
For the Renesas RX CPU embOS delivers following functions to handle interrupts.

6.4.1 API functions

Routine Description

m
ain

T
ask

IS
R

S
W

 T
im

er

OS_INT_SetPriorityThreshold()
Sets the interrupt priority limit for ze-
ro latency interrupts. ● ● ● ●

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

32 CHAPTER 6 Interrupt handling

6.4.1.1 OS_INT_SetPriorityThreshold()

Description

Sets the interrupt priority limit for zero latency interrupts.

Prototype

void OS_INT_SetPriorityThreshold(OS_UINT Priority);

Parameters

Parameter Description

Priority

The highest value usable as priority for embOS interrupts. All
interrupts with higher priority are never disabled by embOS.
Valid range:
1 ≤ Priority ≤ 7 for RX610 CPUs.
1 ≤ Priority ≤ 15 for other RX CPUs.

Additional information

The interrupt priority limit for zero latency interrupts is set to 4 by default. This means, all
interrupts with higher priority than 4 (i.e. from 5 up to the maximum CPU specific priority)
will never be disabled by embOS. To disable zero latency interrupts at all, the priority limit
may be set to the highest interrupt priority supported by the CPU, which is 7 for the RX610
series and 15 for other RX CPUs.

To modify the default priority limit,OS_INT_SetPriorityThreshold() should be called be-
fore embOS was started. In the sample start projects, OS_INT_SetPriorityThreshold()
is not called. The start projects use the default zero latency interrupt priority limit.

Any interrupts running above the zero latency interrupt priority limit must not call any
embOS function.

Note that the maximum allowed parameter is device dependent. The function will not check
whether the device specific limit is exceeded. It is the users responsibility not to use a value
above 7 for CPUs which do not support more than 8 priority levels.

6.4.2 Zero latency interrupts
Instead of disabling interrupts when embOS enters a critical section, the processor’s IPL is
increased. This prevents the execution of interrupts with an IPL lower or equal to the current
IPL of the processor. All interrupts with IPL higher than the IPL threshold that embOS uses
to disable interrupt are called zero latency interrupts.

Zero latency interrupts are never disabled by embOS.

The IPL of the processor can be increased by calling OS_INT_Disable(), which sets the
current IPL to the IPL threshold. Initially, the IPL threshold is set to 4, but may be modified
during system initialization by a call of the function OS_INT_SetPriorityThreshold().
Therefore, by default all interrupts with IPL 5 and greater are zero latency interrupts and
can still be processed. You must not execute any embOS function from within an interrupt
running on high priority.

6.4.3 embOS interrupts
Any interrupt handler using embOS API functions has to run with IPLs from 1 to the current
IPL threshold. These embOS interrupt handlers have to start with a call of OS_INT_Enter()
or OS_INT_EnterNestable() and must end with a call of OS_INT_Leave() or OS_INT_Leav-
eNestable(). Interrupt handlers running at low priorities, i.e. with priorities from 1 to the
current IPL threshold, which are not calling any embOS API function are allowed, but must
not re-enable interrupts!

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

33 CHAPTER 6 Interrupt handling

Note

The IPL threshold between embOS interrupts and zero latency interrupts is initially set
to 4, but can be changed at runtime by a call to OS_INT_SetPriorityThreshold().

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

34 CHAPTER 6 Interrupt nesting

6.5 Interrupt nesting
The Renesas RX CPU uses a priority controlled interrupt scheduling which allows preemption
and nesting of interrupts. Interrupts and exceptions with a higher priority may preempt an
interrupt handler with lower priority when interrupts are enabled during execution of the
interrupt service routine.

An interrupt handler calling embOS functions has to start with a call of OS_INT_Enter()
or OS_INT_EnterNestable() to informs embOS that an interrupt handler is running. Us-
ing OS_INT_EnterNestable() enables interrupts in the interrupt handler and thus allows
nesting of interrupts.

6.6 Interrupt-stack switching
Since the RX CPUs have a separate stack pointer for interrupts, there is no need for explicit
software stack-switching in an interrupt routine. The routines OS_INT_EnterIntStack()
and OS_INT_LeaveIntStack() are supplied for source code compatibility to other proces-
sors only and have no functionality.

6.7 Fast interrupt, RX specific
The RX CPU supports a “Fast interrupt” mode which is described in the hardware manual.
The fast interrupt may be used for special purposes, but must not call any embOS function.

6.8 Non maskable interrupt, NMI
The RX CPU supports a non maskable interrupt which is described in the hardware manual.
The NMI may be used for special purposes, but must not call any embOS function.

6.9 Using Register Bank Save Function with RXv3
core

Except in some products, the RXv3 CPU provides collective saving and restoring of CPU
registers. In order to perform fast collective saving and restoring of CPU registers, the RXv3
CPU provides dedicated save register banks and instructions for using these banks. Using
these save register banks, it is possible to perform fast register saving at the beginning of
interrupt handlers, and high-speed register restoring at the end of interrupt handlers.
The save register banks can only be accessed with the SAVE instruction and RSTR instruc-
tion. Each of these banks is used to save and restore the values of the following CPU reg-
isters: all general purpose registers (R1 to R15) except for R0, the USP, the FPSW, and the
accumulators (ACC0, ACC1).

The pragma directive bank= can be used with an interrupt function to save the values of
registers to the specified register bank at the start of the interrupt, and restore them again
afterward. The SAVE and RSTR instructions will be used.

The bank= interrupt specification can be used with any embOS or zero latency interrupt.

Example

//
// Interrupt function using bank pragma directive
//
#pragma vector = (TIMER_A0)
#pragma bank = 1
__interrupt void OS_ISR_Tick (void) {
 OS_INT_EnterNestable(); // Inform embOS that interrupt code is running

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

35 CHAPTER 6 Using Register Bank Save Function with RXv3
core

 OS_Tick_Handle();
 OS_INT_LeaveNestable();
}

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

Chapter 7

RTT and SystemView

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

37 CHAPTER 7 SEGGER Real Time Transfer

7.1 SEGGER Real Time Transfer
With SEGGER’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

7.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVIEW_Conf() on the target microcontroller.
This call is performed within OS_InitHW() of the respective RTOSInit*.c file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGGER_SYSVIEW_Conf() call, the SEGGER_SYSVIEW.h include directive as well as any other
reference to SEGGER_SYSVIEW_* like SEGGER_SYSVIEW_TickCnt.

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that OS_TIME_ConfigSysTimer() was called before SEGGER_SYSVIEW_Start()
is called or the SystemView PC application is started.

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 8

Technical data

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

39 CHAPTER 8 Resource Usage

8.1 Resource Usage
The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~1700 bytes
embOS kernel RAM ~140 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for Renesas RX and IAR © 2010-2025 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	CPU modes
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	IAR C-Spy RTOS plugin
	Interrupt and thread safety
	Enabling thread-safe IAR system libraries

	Thread-Local Storage TLS
	API functions
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	Stacks
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt priorities
	Interrupt handling
	API functions
	OS_INT_SetPriorityThreshold()

	Zero latency interrupts
	embOS interrupts

	Interrupt nesting
	Interrupt-stack switching
	Fast interrupt, RX specific
	Non maskable interrupt, NMI
	Using Register Bank Save Function with RXv3 core

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

